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On the Sparre Andersen Transformation for

Multidimensional Brownian Bridge

By Shigeo KusuokaA and Koichiro TAKAOKA

Abstract. A family of law-preserving path transformations of d-
dimensional Brownian bridge (pinned Brownian motion), d > 1, is con-
structed. This generalizes a result of one-dimensional cases obtained
first by Embrechts, Rogers and Yor. Our approach and theirs are, how-
ever, completely different from each other.

1. Introduction and Statement of the Result

The study of law-preserving path transformations of one-dimensional
Brownian motion is currently a popular subject. Karatzas-Shreve [7] and
Bertoin [3] constructed a transformation connecting local minimum and
excursions in half-lines. A generalization to a larger class of path transfor-
mations (Corollary 1.2 of the present paper) was recently obtained first by
Embrechts-Rogers-Yor [5], whose approach is based on Brownian excursion
theory. Also, the second author (Takaoka [9]; an English translated ver-
sion is [10]) independently gives another proof of the same result; the proof
is obtained by taking the continuous-time limit of the idea lying behind
Richards’ proof of Sparre Andersen’s theorem on discrete-time processes
(see Theorem 2.1 and its proof below).

In this paper, we give a further extension along the lines of [9] [10], even
to multidimensional cases:

THEOREM 1.1. Fiz d € N, A € B(R?Y) and b € R?, where B(R?)
is the Borel o-algebra of R®. Let (Bt) teo,1) be a d-dimensional Brownian
bridge from 0 to b on a certain probability space (2, F, P), i.e., a Brownian
motion starting from the origin and conditioned to be at b at time 1. Let
(Zt)iejo,) denote its time-reversed process:

Z ¥ b—Bi_,  for telo,1].
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Fort € [0,1], define:

t
Lo [ 1aBds

I_(t) = t-T4();
rzit) = inf{s € [0,1] | Tx(s) >t ATL(1)};

1
Y. (t) déffl 14(b— Z,) dZs;

—t

def 1
Yo (t) - /1 1A“(b - Zs) dZs;

Bi(t) = Yi(PZ'(t));

where we take the integrals Yy (t) with respect to the backward filtration, i.e.,
the filtration generated by Z rather than by B. Furthermore,

g, def | B+(D4(1)) = Bo(I(1) =), af €[0T (1)];
' Bi(T+(1)) + B_(t=T4(1)), o te (1)1
Then we have

5 (d)
(Bt)iepo,y) = (Bt)iepo,1)-

REMARKS.

(i) Following [9] [10], we propose calling this transformation the Sparre
Andersen transformation of (By)ic(p1) with respect to A € B(R?), be-
cause, as we will see in more detail in Section 2, the starting point of our
study is a combinatorial theorem of E. Sparre Andersen [1] on sums of
exchangeable random variables.

(ii) Feller’s proof [6] of Sparre Andersen’s theorem has been used to
derive some continuous-time properties, e.g. Bertoin [4]. It should be noted,
however, that Richards’ proof of Sparre Andersen’s theorem, utilized in this
paper (see Section 2), covers a wider variety of cases and thus offers a unified
way of viewing the whole matter.

(iii) If A = ) then this transformation is the identity; if A = R? it is
the time-reversal transformation. Moreover, if we denote by (B{‘)te[o,l] the
resulting process with respect to A, then B4 and BA° are time reversals of
each other for any A € B(R?).
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In the special case where d = 1 and A = (a,0), a € R, then Tanaka’s
formula recovers the above mentioned result of Embrechts-Rogers-Yor [5]:

COROLLARY 1.2.  Let (Bt) (0,1 be a one-dimensional standard Brown-

ian motion starting from the origin on a certain probability space (2, F, P).
Fiz a € R. Fort € [0,1], define:

I df  its local time at a up to time t;

P00 [ 1 (B ds
re@ € or—re);
ra1-(t) € inf{se0,1]|I%(s) >t ATL(L) };

e 4
Vi) € (B va) — (@V0)+
e 4
ver) (B, Aa) — (an0) — §t3

a def a ay—
Bi(t) = YE({ri} (@)
(Note that B%(0) =0 a.s.) Furthermore

Ao d;f{ BL(TY(1)) = BYTY(D) — ), if te[0,T4(1);
CTBHTLW) + BL(E-TL), i te (L)1)

Then the process (Bg)te[o,” s also a Brownian motion starting from the
origin.

The rest of this paper is organized as follows. Section 2 explains the
underlying discrete-time argument. In Section 3, we prove Theorem 1.1.

2. Path Transformation for Pinned Random Walk

As mentioned above in the Introduction, our starting point is Sparre
Andersen’s theorem:

THEOREM 2.1 (Sparre Andersen [1]). Let (Sk);L, be an arbitrary one-
dimensional process starting from the origin and with exchangeable incre-
ments, i.e., the joint distribution of the n random variables

S1—50, S2 =51, ..., Sn— 51
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is symmetric with respect to the n arguments. Then the two functionals
(1) min{k €{0,1,...,n}; Sk = Oréljaganj},
(i) t{ke{l,...,n}; S, >0}

are identically distributed.

Richards’ proof (unpublished; see Baxter [2]) of Theorem 2.1 involves a
path transformation of pinned random walk which we will use in the next
section. The key idea is the following

LeEMMA 2.2 (Richards; Baxter [2]). (i) Fizx d € N and A € B(RY).
For each (x1,x2,---,x,) € (RY)", form a new arrangement of the xy’s by
placing first in decreasing order of k the terms xy for which s € A and
then (afterwards) in increasing order of k the xy for which sy ¢ A, where

S0 < and Sk def Zle xz;j fork=1,...,n. Denote this new arrangement
by (Z1,...,Zn ). Then the transformation
04: (R — (RY)"
(mla"'axn) L (jla-'-afn)

is one-to-one and onto. Furthermore, if u is an exchangeable measure on

((RY", B(RN")), i.e., if
Vo € &, VB € B(RY"), plo(B)] = p[B]
with &, the symmetric group of order n, then
VB € B(R)"), nu[0a(B)] = u[B].

(i) Let (Sk)iL, be a d-dimensional process starting from the origin and
with exchangeable increments. Fiz A € B(R?Y) and define

Xk déf Sk_Sk—l for k:].,"‘,n;
(X1(w), -+, Xn(w)) © g, (Xq1(w), -+, Xp(w)) for weQ;

& def

So = 0

k
S, def ZXJ for k=1,... n.
j=1
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Then @
(Sk:)knzo = (Sk)kn:O'

PrROOF OF LEMMA 2.2. (i) It is straightforward to check that 04 is

one-to-one and onto. Next, let A def {0,1}™. For A = (A1, -+, A\n) € A
define

O ¥ {(ay, - zn) € (RY" | s € A if M\, =1,
Sk¢A if)\k:O, k::1,2,---,n}.

Then it is clear that

CyNnCy = 0 if )\#A/,
UJon = rRH™
AEA

In addition, for each A € A there exists a o) € &, such that
VB C (RY)™, 04(BNCy) =0x(BNCY).
Therefore, for any B € B((R)"):

plba(B)] = > pl0a(BNCY))
AeA

= Y uloa(BNCy)]
A

= Z uw[BNCy] by exchangeability
A

= u[Bl.

(ii) This is an immediate consequence of (i). (]

REMARKS. (i) We can apply the above argument to all d-dimensional
random walks and pinned random walks, d > 1.

(ii) We propose that (S’k)k":[) be called the Sparre Andersen transforma-
tion of (Sk){L, with respect to A € B(RY).

PrOOF OF THEOREM 2.1 (Richards). If d =1 and A = (0,00), then
(Sk)j-pand its transformation (Sj),;L, have the following relation:

#{ke{l,...,n}; S, >0} = min{k € {0,1,...,n}; Sk = max S} as.
<j<n
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The proof of Theorem 2.1 is therefore complete. [

Finally, a little closer look at this transformation immediately gives the
following property, the proof of which we omit.

PROPOSITION 2.3.  With the notations of Lemma 2.2(ii) assumed, de-

fine fork=0,...,n
. def
r3(k) = t{ie{l,....k}; S; €A}, (I5(0)=0)

rS(k) € k-Tik);
iy ') = min{j €{0,1,...,n} T5(j) > kATE(n)};

Yok = Z 1a(S5) (Sj = Sj1);

k

V) =N 1ac(S)) (S5 — Sj-1);

=1

Si(k) € YSUTI (k).

<.

: {S+<Fi<n>> S+(Ti(n) —k), if 0<k<T(n);
ST (n) + S-(k =T (n)), if TI(n)<k<n,

3. Proof of the Main Theorem

The idea of the proof of Theorem 1.1 is to show that our path trans-
formation of Brownian bridge is the continuous-time limit of the Sparre
Andersen transformation for pinned random walk. A quite similar method
was employed in the proof of the main theorem of [9] [10] (Corollary 1.2 of
the present paper). It should be noted, however, that the way we approxi-
mate the paths of (Bt)te[o,l] with pinned random walk here is not the same
as in [9] [10].

DEFINITION 3.1. Let

S]E;n) défB(Qﬁn) for k:O713"'72n’ neN.
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Clearly (S(n))ino is a d-dimensional random walk pinned at b. Also, let

(S ]gn) )2r i—o denote its Sparre Andersen transformation with respect to A.

DEFINITION 3.2. For ¢ € [0, 1], define:

t
(n)(py def / 2" 5+1] .
e €[ 1, (B(Es)) gs;
W0 L (BOESHD)) ds
r™e) < oM,

ryte € inf{se[ 1] T8 (s) >t AT (1) };

v = Zu( (#)) (Bl A ) = BEA5);

VAN Z e (B(%)) (B(M LY B(tA %));
k=1

n def n n)y —
B @) ¥ vy r-te).
Furthermore,

Ao [ BU@O) = B ) ), i te o,
o By + BMe-rMa)), i te @), 1.

ProOPOSITION 3.3. We have

S’](gn) = B(n)(%) k:0717-..72n7 a.s.,

Proor. This is a straightforward consequence of Proposition 2.3 and
the following fact:

1
2—nﬁ{j€{1,---,k}\5§ cA} = I‘(”(2£) k=0,1,---,2". 0

We shall use the next lemma to prove Proposition 3.5 below.

LEMMA 3.4. For any bounded Borel measurable function f : R* — R
we have:

vt e (0’ 1)7 lelﬁ)lE [|f(Bt+6) - f(Bt)| ‘ﬂ] =0 a.s.,
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where (Fi)icpo,1) s the filtration generated by B.

PrROOF. Let p(t;x,y) denote the transition density function of d-
dimensional Brownian motion. Then, for any fixed ¢ € (0,1) and z € R?
there exists a positive constant C, ; such that

ple;z,y) p(1—t—€ y,b)
S Ox,t p(67 x, y)

P[Byye€dy|By=x]/dy =

for all y € R and all sufficiently small € > 0. Consequently, for each a > 0
we have

E1|f(Btye) — f(Bi)| | Bt = x]

< Cus { Cne) > [ )~ Sl dy

+ 2| floo p(esw,y)dy}

ly—z|>ay/e

= Cyy { (2me) %2 /|yx|<a\/€ |f(y) — f(x)|dy

+ 2| floo /|y|>a p(1;0,y) dy } :

Furthermore, the Lebesgue differentiation theorem (see e.g. Stroock [8] §5.3)
states that, for Lebesgue-almost every z € R% :

lmed [ (7))l dy =0,
ly—x|<e

el0

and hence
I B (1 (Beed) — S8l | B =] < 2Coclfll [ p(1:0.0)dy
€ y|>a

Since a can be made arbitrarily large, we conclude

13ng[|f(Bt+e)—f(Bt)’|Bt:$] =0.0
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PRrOPOSITION 3.5. The following assertions hold:

@ lmE [ sup [T)(t) — m)r] =0,
nloo  |te[0,1]

0.

(i) hmE[sup v ™M) - Yi(t)]]
nloo  |tg0,1]

Consequently, there exists a subsequence (ny)p2, such that

lim sup |I‘ ()—Fi(t)\ = 0 as.,
kToo tefo,1]
lim sup |Yi )()—Yi(t)\ = 0 as.
kToo tefo,1]

Proor. (i) It holds that

Tim E [ sup [T (¢) — F+(t)|]

nloo

te[0,1]

—Tm E l sup ]/ La (B(E5H) - 1A(BS)}ds”
nloo  lte0,1]

< hTimE [/ ‘1 [2ns+1] ) 14(Bs) ds]

)

o
< [ dsTm B 14 (BES)) —14(B,)
=0 by Lemma 3.4.

(ii) We have

Yy = ZlA(b 2(%h))
{2 (0-0v =22 2 (-0 v 20))

2"n—1

= > 1a (b* Z(zﬁn))
k=0

-{Z <(1 —t)V %) -Z ((1 —t)V 2%) } by reindexing
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_ 2"211A(b 2060) {25

2" —1

S - 20)
{Z((1—t) Zil) Z((l—t)Azﬁn)}
- [z ez~ [T (- 205) 0z
_ /11_t1A (v 2(Z)) az.,
where the third equality holds since
Z((1=)V )+ 2 (1=t A4) =Z(1-t)+ Z(5).

Moreover, there exists a G-Brownian motion (W;)ie[o,1) such that

b— 7,
dt
1—t 7

where G = (G;)ic(0,1] is the filtration generated by Z. It follows that

1) - Z(4)}

dzZ; = dW; +

E [ sup ]Yin) (t) — Y+(t)’]

te[0,1]
[Sup ‘/1 t La(b-2(8h) 14— 2)

t€[0,1]

dZs

t€(0,1]

J
§2Elsup‘/ 1a(b-2( }))—1A(b—Z)}dZS-
J

SQE[sup ‘/O {1a(b-2z(5D) 1400 - 2)

te(0,1]

o | [ (1= 2058) - 10— 20} 2=

zds}%]

b— Z
| Ids]

— S

o

<2CFE

{/01 4 (b= 2(5) =140 - 2,)

+2F Uol ]1A (b-2(%) — 140 - 2,)
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{/ ‘1 [2ns+11)> A(Bs) ds}%]

+2E[/ 14 (BOZ5) — 14(B,) Ssds}

with C' the constant appearing in the Burkholder-Davis-Gundy inequality.
The same reasoning as in (i) then leads to the desired property. O

=2CFE

The following lemma is needed to prove Proposition 3.7 below.
LEMMA 3.6. Let
S def clio 1B x c(o.1: R | 7 non—decre:%msing, ~v(0) =0, v(1) <1,
{(“) €CMOMR) > CUOTER) |y~ ya) i 2(0) = 1(1), 5 <

equipped with the metric induced by the sup norm. Define ® : § —

C([0,1]; R) by
def

(y,7) = y(v (),

where
e

_ def .
v H(t) = inf{s € [0,1]| y(s) >t A~y(1)}
for t €[0,1]. Then ® is a continuous mapping.

Proor. We divide the proof into two steps.
Step 1. We first show that

Y(y.7) €S, ®(y,v) € C(10,1]; RY),
i.e., for any sequence (t,)5°; C [0, 1] with ¢, — ¢

Jim (y, ) (tn) = Sy, 1)(®)-
We will prove this only for the case where (t,), is non-increasing: the other
cases can be proved similarly.
Since we have assumed that (¢,), is non-increasing, (y~!(¢,)),, is also
non-increasing and so lim,, 1 7~ 1(t,) exists. In addition, it is easy to verify
that

'7('771 tn)) = tn/\’)/(l)’
YY) = tAA(D).



222 Shigeo KusuokA and Koichiro TAKAOKA

Therefore,
7(7{%%107_1(%)) = 71%7(7—1(75”))
= iiTrgo(tnAv(l))
= tAv(1)
= y(y7'(1)

and thus, by definition of S we have

y(y (1) = y(iiggofl(tn))

= lim y(y " (tn))-

Step 2. Next we prove that ® is a continuous mapping. Let
(YnsTn))eq € S and (Yoo, Yoo) € S be such that

lim (Z/n,’?n) = (yma7w) in S.
nloo
What we wish to show is:

Tim sup |y (7, 1) — Yoo (v (£))] = 0.
nloo 4e(0,1]

It is easy to see that

sup [(t A (1)) = (EAYo(1)) =0 (n T 00)

t€[0,1]
and also
sup [(EATn(1) = 1o ()] = sup |1 (9 (1) = Yoo (3 (1))
t€[0,1] t€[0,1]
< sup a(t) = Yel®)]
t€(0,1]

— 0 (n7o0),
which combine to yield

(3.1) lim sup |(t A yoo(1)) = Yeo(7,, ' ()] = 0.
nloote0,1)
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Furthermore, since

Yoo (V0 (Yo(1))) = 700 (t), € [0,1],

we have, by definition of S,

(3.2) yoo(’)/o_ol (Voo (1)) = Yoo (1), te0,1].

It follows that

sup [yn(v, " (1)) — Yoo (7' (1)

t€[0,1]
< sup [y (v " (£) = Yoo ()]
t€(0,1]
+ 5D [yoe (9 (1)) = Yoo (7 (1)
t€[0,1]
< sup [yn(t) = Yoo (t)]
t€[0,1]
+ s oo (7" (Yoo (1)) = woe (7 )] by (3:2)

and therefore

Tim sup |ya (v, (1)) = Yoo (70 (1))
nloo 4e0,1]

< sup [poo (! (00 (1)) = 9 (02 )
=0 by (3.1),

which completes the proof of Lemma 3.6. [

PROPOSITION 3.7. (i) (Bx+(t))e(,1] have continuous paths a.s.
(i1) For the subsequence (ny)g2 in Proposition 3.5,

lim sup |B ( )—BL(t)|=0 a.s.
EToo tefo,1)

Proor. We see that, for almost all w € €2 and all n € N,

(Y (@,, TP @, ey € S
(YVi(w,t), e (w, ))te[O,l] € S
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The desired properties then follow from Proposition 3.5 and Lemma 3.6. [J

PROPOSITION 3.8. (i) (B )tE[Ol has continuous paths a.s.

(ii) For the subsequence (ny)x in Propositions 3.5 and 3.7 we have:

lim sup |B —B|=0 a.s.
kToo tefo,1]

PROOF. (i) The first assertion follows immediately from Proposition
3.7(1).
(ii) For the sake of brevity we introduce the following notations:
def
an €T T (),

B € 1o rPa) -

Then, for a,, <t < F(f)(l) we have

Lﬂm—éﬁ+rgn—r@ugﬂ

= {8 ) - B0 0) -}
~{B <r+<1>> B, (1) - 1)}

<|B (1) - By (1))

+| B ) 1) - By (1) 1)

g)f%@—ygw+£?MB Bgm.

B - B(t+1,(1) -1V M) < [YIV() - va ()]

It follows that

sup ‘Bt(n) - B (t +I4(1) — I‘(f)(l))’
an<t<fn
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<) = vi )|+ sup |BS @) - B(1)]
te[0,1]

+ sup ‘B(,n)(t) —B,(t)‘ a.s.
te[0,1]

and hence by Propositions 3.5 and 3.7(ii)
(3.3)  lim sup ‘Bt(n") -B (t +T4(1) — r(fk)a))’ =0 a.s.

kToo Qn g Stgﬁnk
This implies

lim sup |B — By
kToo tefo,1]

<lim sup \Bt(n — B/ + Tim sup ]B( W _ By
k100 0<t<an, kloo g, <t<1

+lim  sup |B§nk) - By
kToo any, <t<ﬁnk

=lim  sup \Btnk) — By by Proposition 3.5
kToo An g <t<ﬁnk

< lim sup ]Bt(”’“) - B (t +I4 (1) — ngk)(l)ﬂ

kToo an <t<ﬁnk
>  p(ng) A
+lim  sup ’B (t + T4 (1) =Ty (1)) — By
kTOO Qn <t<6nk
=0 as. by (3.3)0

We are now in a position to prove our main theorem.

PrRoOOF oF THEOREM 1.1. It is clear that

lim sup ‘52% Bt‘ =0 a.s.
nloo (0,1
Also, we have
sup ‘S[ gne] ~t‘ = sup B(")([Q;f]) —Et) by Proposition 3.3
t€[0,1] te€[0,1]
< swp [BO(ED) - BIED) [+ sup ~ By
t€[0,1] te[0,1]
< sup Bt(n) — By| + sup ’B 2t Bt‘

t€[0,1] t€[0,1]
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which in turn implies that

lim su Sn — B =0 as.
koo 4o Opl]’ 27 ¢] t’

with (ng)x the subsequence in Proposition 3.8. The argument in Section 2

shows

Vn € N, (g[(;")t])te[o,l] = (S[(;T?tote[&l] ’

and therefore, for any m € N and 0 <t <to < ...t <1,

(Bu.Buy. - Bi,) D (Biy. By, By,,).

This and the path continuity of (Bt)te[o,l] (see Proposition 3.8(i)) complete

the proof. [
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