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On the Sparre Andersen Transformation for

Multidimensional Brownian Bridge

By Shigeo Kusuoka and Koichiro Takaoka

Abstract. A family of law-preserving path transformations of d-
dimensional Brownian bridge (pinned Brownian motion), d ≥ 1, is con-
structed. This generalizes a result of one-dimensional cases obtained
first by Embrechts, Rogers and Yor. Our approach and theirs are, how-
ever, completely different from each other.

1. Introduction and Statement of the Result

The study of law-preserving path transformations of one-dimensional

Brownian motion is currently a popular subject. Karatzas-Shreve [7] and

Bertoin [3] constructed a transformation connecting local minimum and

excursions in half-lines. A generalization to a larger class of path transfor-

mations (Corollary 1.2 of the present paper) was recently obtained first by

Embrechts-Rogers-Yor [5], whose approach is based on Brownian excursion

theory. Also, the second author (Takaoka [9]; an English translated ver-

sion is [10]) independently gives another proof of the same result; the proof

is obtained by taking the continuous-time limit of the idea lying behind

Richards’ proof of Sparre Andersen’s theorem on discrete-time processes

(see Theorem 2.1 and its proof below).

In this paper, we give a further extension along the lines of [9] [10], even

to multidimensional cases:

Theorem 1.1. Fix d ∈ N , A ∈ B(Rd) and b ∈ Rd, where B(Rd)

is the Borel σ-algebra of Rd. Let (Bt) t∈[0,1] be a d-dimensional Brownian

bridge from 0 to b on a certain probability space (Ω,F , P ), i.e., a Brownian

motion starting from the origin and conditioned to be at b at time 1. Let

(Zt)t∈[0,1] denote its time-reversed process:

Zt
def
= b−B1−t for t ∈ [0, 1].
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For t ∈ [0, 1], define:

Γ+(t)
def
=

∫ t

0
1A(Bs)ds;

Γ−(t)
def
= t− Γ+(t);

Γ−1
± (t)

def
= inf{s ∈ [0, 1] | Γ±(s) ≥ t ∧ Γ±(1)};

Y+(t)
def
=

∫ 1

1−t
1A(b− Zs) dZs;

Y−(t)
def
=

∫ 1

1−t
1Ac(b− Zs) dZs;

B±(t)
def
= Y±(Γ−1

± (t));

where we take the integrals Y±(t) with respect to the backward filtration, i.e.,

the filtration generated by Z rather than by B. Furthermore,

B̃t
def
=

{
B+( Γ+(1) ) − B+( Γ+(1) − t ), if t ∈ [0,Γ+(1)];

B+( Γ+(1) ) + B−( t− Γ+(1) ), if t ∈ (Γ+(1), 1].

Then we have

(B̃t)t∈[0,1]
(d)
= (Bt)t∈[0,1].

Remarks.

(i) Following [9] [10], we propose calling this transformation the Sparre

Andersen transformation of (Bt)t∈[0,1] with respect to A ∈ B(Rd), be-

cause, as we will see in more detail in Section 2, the starting point of our

study is a combinatorial theorem of E. Sparre Andersen [1] on sums of

exchangeable random variables.

(ii) Feller’s proof [6] of Sparre Andersen’s theorem has been used to

derive some continuous-time properties, e.g. Bertoin [4]. It should be noted,

however, that Richards’ proof of Sparre Andersen’s theorem, utilized in this

paper (see Section 2), covers a wider variety of cases and thus offers a unified

way of viewing the whole matter.

(iii) If A = ∅ then this transformation is the identity; if A = Rd it is

the time-reversal transformation. Moreover, if we denote by (B̃A
t )t∈[0,1] the

resulting process with respect to A, then B̃A and B̃Ac
are time reversals of

each other for any A ∈ B(Rd).
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In the special case where d = 1 and A = (a,∞), a ∈ R, then Tanaka’s

formula recovers the above mentioned result of Embrechts-Rogers-Yor [5]:

Corollary 1.2. Let (Bt) t∈[0,1] be a one-dimensional standard Brown-

ian motion starting from the origin on a certain probability space (Ω,F , P ).

Fix a ∈ R. For t ∈ [0, 1], define:

�at
def
= its local time at a up to time t;

Γa
+(t)

def
=

∫ t

0
1(a,∞)(Bs) ds;

Γa
−(t)

def
= t− Γa

+(t);

{Γa
±}−1(t)

def
= inf{ s ∈ [0, 1] | Γa

±(s) ≥ t ∧ Γa
±(1) };

Y a
+(t)

def
= (Bt ∨ a) − (a ∨ 0) +

�t
2

;

Y a
−(t)

def
= (Bt ∧ a) − (a ∧ 0) − �t

2
;

Ba
±(t)

def
= Y a

±({Γa
±}−1(t)).

(Note that Ba
±(0) = 0 a.s.) Furthermore

B̃a
t

def
=

{
Ba

+( Γa
+(1) ) − Ba

+( Γa
+(1) − t ), if t ∈ [0,Γa

+(1)];

Ba
+( Γa

+(1) ) + Ba
−( t− Γa

+(1) ), if t ∈ (Γa
+(1), 1].

Then the process (B̃a
t )t∈[0,1] is also a Brownian motion starting from the

origin.

The rest of this paper is organized as follows. Section 2 explains the

underlying discrete-time argument. In Section 3, we prove Theorem 1.1.

2. Path Transformation for Pinned Random Walk

As mentioned above in the Introduction, our starting point is Sparre

Andersen’s theorem:

Theorem 2.1 (Sparre Andersen [1]). Let (Sk)
n
k=0 be an arbitrary one-

dimensional process starting from the origin and with exchangeable incre-

ments, i.e., the joint distribution of the n random variables

S1 − S0, S2 − S1, . . . , Sn − Sn−1
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is symmetric with respect to the n arguments. Then the two functionals

(i) min {k ∈ {0, 1, . . . , n}; Sk = max
0≤j≤n

Sj},

(ii) �{k ∈ {1, . . . , n}; Sk > 0 }

are identically distributed.

Richards’ proof (unpublished; see Baxter [2]) of Theorem 2.1 involves a

path transformation of pinned random walk which we will use in the next

section. The key idea is the following

Lemma 2.2 (Richards; Baxter [2]). (i) Fix d ∈ N and A ∈ B(Rd).

For each (x1, x2, · · · , xn) ∈ (Rd)
n
, form a new arrangement of the xk’s by

placing first in decreasing order of k the terms xk for which sk ∈ A and

then (afterwards) in increasing order of k the xk for which sk /∈ A, where

s0
def
= 0 and sk

def
=

∑k
j=1 xj for k = 1, . . . , n. Denote this new arrangement

by ( x̃1, . . . , x̃n ). Then the transformation

θA : (Rd)
n −→ (Rd)

n

(x1, · · · , xn) �−→ ( x̃1, . . . , x̃n )

is one-to-one and onto. Furthermore, if µ is an exchangeable measure on

( (Rd)
n
, B((Rd)

n
)), i.e., if

∀σ ∈ Sn, ∀B ∈ B((Rd)
n
), µ [σ(B)] = µ [B]

with Sn the symmetric group of order n, then

∀B ∈ B((Rd)
n
), µ [θA(B)] = µ [B].

(ii) Let (Sk)
n
k=0 be a d-dimensional process starting from the origin and

with exchangeable increments. Fix A ∈ B(Rd) and define

Xk
def
= Sk − Sk−1 for k = 1, · · · , n;

(X̃1(ω), · · · , X̃n(ω))
def
= θA (X1(ω), · · · , Xn(ω)) for ω ∈ Ω;

S̃0
def
= 0;

S̃k
def
=

k∑
j=1

X̃j for k = 1, . . . , n.
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Then

(Sk)
n
k=0

(d)
= (S̃k)

n
k=0.

Proof of Lemma 2.2. (i) It is straightforward to check that θA is

one-to-one and onto. Next, let Λ
def
= {0, 1}n. For λ = (λ1, · · · , λn) ∈ Λ

define

Cλ
def
= {(x1, · · · , xn) ∈ (Rd)

n | sk ∈ A if λk = 1,

sk /∈ A if λk = 0, k = 1, 2, · · · , n}.

Then it is clear that

Cλ ∩ Cλ′ = ∅ if λ �= λ′,⋃
λ∈Λ

Cλ = (Rd)n.

In addition, for each λ ∈ Λ there exists a σλ ∈ Sn such that

∀B ⊂ (Rd)n, θA(B ∩ Cλ) = σλ(B ∩ Cλ).

Therefore, for any B ∈ B((Rd)n):

µ[θA(B)] =
∑
λ∈Λ

µ[θA(B ∩ Cλ)]

=
∑
λ

µ[σλ(B ∩ Cλ)]

=
∑
λ

µ [B ∩ Cλ ] by exchangeability

= µ [B].

(ii) This is an immediate consequence of (i). �

Remarks. (i) We can apply the above argument to all d-dimensional

random walks and pinned random walks, d ≥ 1.

(ii) We propose that (S̃k)
n
k=0 be called the Sparre Andersen transforma-

tion of (Sk)
n
k=0 with respect to A ∈ B(Rd).

Proof of Theorem 2.1 (Richards). If d = 1 and A = (0,∞), then

(Sk)
n
k=0and its transformation (S̃k)

n
k=0 have the following relation:

�{k ∈ {1, . . . , n}; Sk > 0 } = min {k ∈ {0, 1, . . . , n}; S̃k = max
0≤j≤n

S̃j} a.s.
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The proof of Theorem 2.1 is therefore complete. �

Finally, a little closer look at this transformation immediately gives the

following property, the proof of which we omit.

Proposition 2.3. With the notations of Lemma 2.2(ii) assumed, de-

fine for k = 0, . . . , n :

ΓS
+(k)

def
= �{j ∈ {1, . . . , k}; Sj ∈ A }; ( ΓS

+(0)
def
= 0 )

ΓS
−(k)

def
= k − ΓS

+(k);

{ΓS
±}−1(k)

def
= min {j ∈ {0, 1, . . . , n}; ΓS

±(j) ≥ k ∧ ΓS
±(n)};

Y S
+ (k)

def
=

k∑
j=1

1A(Sj) (Sj − Sj−1);

Y S
− (k)

def
=

k∑
j=1

1Ac(Sj) (Sj − Sj−1);

S±(k)
def
= Y S

± ({ΓS
±}−1(k)).

Then, a.s.,

S̃k =

{
S+(ΓS

+(n)) − S+(ΓS
+(n) − k), if 0 ≤ k ≤ ΓS

+(n);

S+(ΓS
+(n)) + S−(k − ΓS

+(n)), if ΓS
+(n) < k ≤ n.

3. Proof of the Main Theorem

The idea of the proof of Theorem 1.1 is to show that our path trans-

formation of Brownian bridge is the continuous-time limit of the Sparre

Andersen transformation for pinned random walk. A quite similar method

was employed in the proof of the main theorem of [9] [10] (Corollary 1.2 of

the present paper). It should be noted, however, that the way we approxi-

mate the paths of (Bt)t∈[0,1] with pinned random walk here is not the same

as in [9] [10].

Definition 3.1. Let

S
(n)
k

def
= B( k

2n ) for k = 0, 1, · · · , 2n, n ∈ N .
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Clearly (S
(n)
k )2

n

k=0 is a d-dimensional random walk pinned at b. Also, let

(S̃
(n)
k )2

n

k=0 denote its Sparre Andersen transformation with respect to A.

Definition 3.2. For t ∈ [0, 1], define:

Γ
(n)
+ (t)

def
=

∫ t

0
1A

(
B( [2ns+1]

2n )
)
ds;

Γ
(n)
− (t)

def
= t− Γ

(n)
+ (t);

{Γ(n)
± }−1(t)

def
= inf{ s ∈ [0, 1] | Γ

(n)
± (s) ≥ t ∧ Γ

(n)
± (1) };

Y
(n)
+ (t)

def
=

2n∑
k=1

1A
(
B( k

2n )
) (
B(t ∧ k

2n ) −B(t ∧ k−1
2n )

)
;

Y
(n)
− (t)

def
=

2n∑
k=1

1Ac

(
B( k

2n )
) (
B(t ∧ k

2n ) −B(t ∧ k−1
2n )

)
;

B
(n)
± (t)

def
= Y

(n)
± ({Γ(n)

± }−1(t)).

Furthermore,

B̃
(n)
t

def
=

{
B

(n)
+ ( Γ

(n)
+ (1) ) − B

(n)
+ ( Γ

(n)
+ (1) − t ), if t ∈ [0,Γ

(n)
+ (1)];

B
(n)
+ ( Γ

(n)
+ (1) ) + B

(n)
− ( t− Γ

(n)
+ (1) ), if t ∈ (Γ

(n)
+ (1), 1].

Proposition 3.3. We have

S̃
(n)
k = B̃(n)( k

2n ) k = 0, 1, · · · , 2n, a.s.,

Proof. This is a straightforward consequence of Proposition 2.3 and

the following fact:

1

2n
�{j ∈ {1, · · · , k} | S(n)

j ∈ A} = Γ
(n)
+ ( k

2n ), k = 0, 1, · · · , 2n. �

We shall use the next lemma to prove Proposition 3.5 below.

Lemma 3.4. For any bounded Borel measurable function f : Rd → R

we have:

∀t ∈ (0, 1), lim
ε↓0
E [|f(Bt+ε) − f(Bt)| | Ft] = 0 a.s.,
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where (Ft)t∈[0,1] is the filtration generated by B.

Proof. Let p(t;x, y) denote the transition density function of d-

dimensional Brownian motion. Then, for any fixed t ∈ (0, 1) and x ∈ Rd

there exists a positive constant Cx,t such that

P [Bt+ε ∈ dy |Bt = x ] / dy =
p(ε;x, y) p(1 − t− ε; y, b)

p(1 − t; x, b)
≤ Cx,t p(ε;x, y)

for all y ∈ Rd and all sufficiently small ε > 0. Consequently, for each a > 0

we have

E [ |f(Bt+ε) − f(Bt)| |Bt = x ]

≤ Cx,t

{
(2πε)−d/2

∫
|y−x|<a

√
ε
|f(y) − f(x)| dy

+ 2 ||f ||∞
∫
|y−x|≥a

√
ε
p(ε;x, y) dy

}

= Cx,t

{
(2πε)−d/2

∫
|y−x|<a

√
ε
|f(y) − f(x)| dy

+ 2 ||f ||∞
∫
|y|≥a

p(1; 0, y) dy

}
.

Furthermore, the Lebesgue differentiation theorem (see e.g. Stroock [8] §5.3)

states that, for Lebesgue-almost every x ∈ Rd :

lim
ε↓0

ε−d
∫
|y−x|<ε

|f(y) − f(x)| dy = 0,

and hence

lim
ε↓0

E [ |f(Bt+ε) − f(Bt)| |Bt = x ] ≤ 2Cx,t ||f ||∞
∫
|y|≥a

p(1; 0, y) dy.

Since a can be made arbitrarily large, we conclude

lim
ε↓0

E [ |f(Bt+ε) − f(Bt)| |Bt = x ] = 0. �
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Proposition 3.5. The following assertions hold:

(i) lim
n↑∞

E

[
sup
t∈[0,1]

|Γ(n)
± (t) − Γ±(t)|

]
= 0,

(ii) lim
n↑∞

E

[
sup
t∈[0,1]

|Y (n)
± (t) − Y±(t)|

]
= 0.

Consequently, there exists a subsequence (nk)
∞
k=1 such that

lim
k↑∞

sup
t∈[0,1]

|Γ(nk)
± (t) − Γ±(t)| = 0 a.s.,

lim
k↑∞

sup
t∈[0,1]

|Y (nk)
± (t) − Y±(t)| = 0 a.s.

Proof. (i) It holds that

lim
n↑∞

E

[
sup
t∈[0,1]

|Γ(n)
+ (t) − Γ+(t)|

]

= lim
n↑∞

E

[
sup
t∈[0,1]

∣∣∣ ∫ t

0

{
1A

(
B( [2ns+1]

2n )
)
− 1A(Bs)

}
ds

∣∣∣
]

≤ lim
n↑∞

E

[∫ 1

0

∣∣∣1A (
B( [2ns+1]

2n )
)
− 1A(Bs)

∣∣∣ds]

≤
∫ 1

0
ds lim

n↑∞
E

[∣∣∣1A (
B( [2ns+1]

2n )
)
− 1A(Bs)

∣∣∣]
= 0 by Lemma 3.4.

(ii) We have

Y
(n)
+ (t) =

2n∑
k=1

1A
(
b− Z(2n−k

2n )
)

·
{
Z

(
(1 − t) ∨ (2n−k)+1

2n

)
− Z

(
(1 − t) ∨ 2n−k

2n

)}

=
2n−1∑
k=0

1A
(
b− Z( k

2n )
)

·
{
Z

(
(1 − t) ∨ k+1

2n

)
− Z

(
(1 − t) ∨ k

2n

)}
by reindexing
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=
2n−1∑
k=0

1A
(
b− Z( k

2n )
){
Z(k+1

2n ) − Z( k
2n )

}

−
2n−1∑
k=0

1A
(
b− Z( k

2n )
)

·
{
Z

(
(1 − t) ∧ k+1

2n

)
− Z

(
(1 − t) ∧ k

2n

)}
=

∫ 1

0
1A

(
b− Z( [2ns]

2n )
)
dZs −

∫ 1−t

0
1A

(
b− Z( [2ns]

2n )
)
dZs

=

∫ 1

1−t
1A

(
b− Z( [2ns]

2n )
)
dZs,

where the third equality holds since

Z
(
(1 − t) ∨ k

2n

)
+ Z

(
(1 − t) ∧ k

2n

)
= Z(1 − t) + Z( k

2n ).

Moreover, there exists a G-Brownian motion (Wt)t∈[0,1] such that

dZt = dWt +
b− Zt

1 − t dt,

where G = (Gt)t∈[0,1] is the filtration generated by Z. It follows that

E

[
sup
t∈[0,1]

|Y (n)
+ (t) − Y+(t)|

]

= E

[
sup
t∈[0,1]

∣∣∣ ∫ 1

1−t

{
1A

(
b− Z( [2ns]

2n )
)
− 1A (b− Zs)

}
dZs

∣∣∣
]

≤ 2E

[
sup
t∈[0,1]

∣∣∣ ∫ t

0

{
1A

(
b− Z( [2ns]

2n )
)
− 1A (b− Zs)

}
dZs

∣∣∣
]

≤ 2E

[
sup
t∈[0,1]

∣∣∣ ∫ t

0

{
1A

(
b− Z( [2ns]

2n )
)
− 1A (b− Zs)

}
dWs

∣∣∣
]

+2E

[
sup
t∈[0,1]

∣∣∣ ∫ t

0

{
1A

(
b− Z( [2ns]

2n )
)
− 1A (b− Zs)

} b− Zs

1 − s ds
∣∣∣
]

≤ 2C E


{∫ 1

0

∣∣∣1A (
b− Z( [2ns]

2n )
)
− 1A (b− Zs)

∣∣∣2 ds}
1
2




+2E

[∫ 1

0

∣∣∣1A (
b− Z( [2ns]

2n )
)
− 1A (b− Zs)

∣∣∣ | b− Zs |
1 − s ds

]
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= 2C E


{∫ 1

0

∣∣∣1A (
B( [2ns+1]

2n )
)
− 1A(Bs)

∣∣∣ ds}
1
2




+2E

[∫ 1

0

∣∣∣1A (
B( [2ns+1]

2n )
)
− 1A(Bs)

∣∣∣ |Bs |
s
ds

]

with C the constant appearing in the Burkholder-Davis-Gundy inequality.

The same reasoning as in (i) then leads to the desired property. �

The following lemma is needed to prove Proposition 3.7 below.

Lemma 3.6. Let

S def
=

{
(y, γ) ∈ C

(
[0, 1];Rd

)
× C

(
[0, 1];R

) ∣∣∣∣ γ non-decreasing, γ(0) = 0, γ(1) ≤ 1,
y(s) = y(t) if γ(s) = γ(t), s < t

}

equipped with the metric induced by the sup norm. Define Φ : S →
C([0, 1]; Rd) by

Φ(y, γ)
def
= y(γ−1(·)),

where

γ−1(t)
def
= inf{ s ∈ [0, 1] | γ(s) ≥ t ∧ γ(1) }

for t ∈ [0, 1]. Then Φ is a continuous mapping.

Proof. We divide the proof into two steps.

Step 1. We first show that

∀(y, γ) ∈ S, Φ(y, γ) ∈ C([0, 1];Rd),

i.e., for any sequence (tn)∞n=1 ⊂ [0, 1] with tn → t

lim
n↑∞

Φ(y, γ)(tn) = Φ(y, γ)(t).

We will prove this only for the case where (tn)n is non-increasing: the other

cases can be proved similarly.

Since we have assumed that (tn)n is non-increasing, (γ−1(tn))n is also

non-increasing and so limn↑∞ γ−1(tn) exists. In addition, it is easy to verify

that

γ(γ−1(tn)) = tn ∧ γ(1),

γ(γ−1(t)) = t ∧ γ(1).
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Therefore,

γ( lim
n↑∞

γ−1(tn)) = lim
n↑∞

γ(γ−1(tn))

= lim
n↑∞

(tn ∧ γ(1))

= t ∧ γ(1)

= γ(γ−1(t))

and thus, by definition of S we have

y(γ−1(t)) = y( lim
n↑∞

γ−1(tn))

= lim
n↑∞

y(γ−1(tn)).

Step 2. Next we prove that Φ is a continuous mapping. Let

((yn, γn))∞n=1 ⊂ S and (y∞, γ∞) ∈ S be such that

lim
n↑∞

(yn, γn) = (y∞, γ∞) in S.

What we wish to show is:

lim
n↑∞

sup
t∈[0,1]

|yn(γ−1
n (t)) − y∞(γ−1

∞ (t))| = 0.

It is easy to see that

sup
t∈[0,1]

|(t ∧ γn(1)) − (t ∧ γ∞(1))| → 0 (n ↑ ∞)

and also

sup
t∈[0,1]

|(t ∧ γn(1)) − γ∞(γ−1
n (t))| = sup

t∈[0,1]

∣∣∣γn(γ−1
n (t)) − γ∞(γ−1

n (t))
∣∣∣

≤ sup
t∈[0,1]

|γn(t) − γ∞(t)|

→ 0 (n ↑ ∞),

which combine to yield

lim
n↑∞

sup
t∈[0,1]

|(t ∧ γ∞(1)) − γ∞(γ−1
n (t))| = 0.(3.1)
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Furthermore, since

γ∞(γ−1
∞ (γ∞(t))) = γ∞(t), t ∈ [0, 1],

we have, by definition of S,

y∞(γ−1
∞ (γ∞(t))) = y∞(t), t ∈ [0, 1].(3.2)

It follows that

sup
t∈[0,1]

|yn(γ−1
n (t)) − y∞(γ−1

∞ (t))|

≤ sup
t∈[0,1]

|yn(γ−1
n (t)) − y∞(γ−1

n (t))|

+ sup
t∈[0,1]

|y∞(γ−1
n (t)) − y∞(γ−1

∞ (t))|

≤ sup
t∈[0,1]

|yn(t) − y∞(t)|

+ sup
t∈[0,1]

∣∣∣y∞ (
γ−1
∞

(
γ∞(γ−1

n (t))
))

− y∞(γ−1
∞ (t))

∣∣∣ by (3.2)

and therefore

lim
n↑∞

sup
t∈[0,1]

|yn(γ−1
n (t)) − y∞(γ−1

∞ (t))|

≤ lim
n↑∞

sup
t∈[0,1]

∣∣∣y∞ (
γ−1
∞

(
γ∞(γ−1

n (t))
))

− y∞(γ−1
∞ (t))

∣∣∣
= 0 by (3.1),

which completes the proof of Lemma 3.6. �

Proposition 3.7. (i) (B±(t))t∈[0,1] have continuous paths a.s.

(ii) For the subsequence (nk)
∞
k=1 in Proposition 3.5,

lim
k↑∞

sup
t∈[0,1]

|B(nk)
± (t) −B±(t)| = 0 a.s.

Proof. We see that, for almost all ω ∈ Ω and all n ∈ N ,

(Y
(n)
± (ω, t), Γ

(n)
± (ω, t))t∈[0,1] ∈ S,

(Y±(ω, t), Γ±(ω, t))t∈[0,1] ∈ S.
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The desired properties then follow from Proposition 3.5 and Lemma 3.6. �

Proposition 3.8. (i) (B̃t)t∈[0,1] has continuous paths a.s.

(ii) For the subsequence (nk)k in Propositions 3.5 and 3.7 we have:

lim
k↑∞

sup
t∈[0,1]

|B̃(nk)
t − B̃t| = 0 a.s.

Proof. (i) The first assertion follows immediately from Proposition

3.7(i).

(ii) For the sake of brevity we introduce the following notations:

αn
def
= |Γ(n)

+ (1) − Γ+(1)|;
βn

def
= 1 − |Γ(n)

+ (1) − Γ+(1)|.

Then, for αn ≤ t ≤ Γ
(n)
+ (1) we have∣∣∣B̃(n)

t − B̃
(
t+ Γ+(1) − Γ

(n)
+ (1)

)∣∣∣
=

∣∣∣{B(n)
+ (Γ

(n)
+ (1)) −B(n)

+ (Γ
(n)
+ (1) − t)

}
−

{
B+(Γ+(1)) −B+(Γ

(n)
+ (1) − t)

}∣∣∣
≤

∣∣∣B(n)
+ (Γ

(n)
+ (1)) −B+(Γ+(1))

∣∣∣
+

∣∣∣B(n)
+ (Γ

(n)
+ (1) − t) −B+(Γ

(n)
+ (1) − t)

∣∣∣
≤

∣∣∣Y (n)
+ (1) − Y+(1)

∣∣∣ + sup
t∈[0,1]

∣∣∣B(n)
+ (t) −B+(t)

∣∣∣ .
Similarly, for Γ

(n)
+ (1) ≤ t ≤ βn,∣∣∣B̃(n)

t − B̃
(
t+ Γ+(1) − Γ

(n)
+ (1)

)∣∣∣ ≤
∣∣∣Y (n)

+ (1) − Y+(1)
∣∣∣

+ sup
t∈[0,1]

∣∣∣B(n)
− (t) −B−(t)

∣∣∣ .
It follows that

sup
αn≤t≤βn

∣∣∣B̃(n)
t − B̃

(
t+ Γ+(1) − Γ

(n)
+ (1)

)∣∣∣
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≤
∣∣∣Y (n)

+ (1) − Y+(1)
∣∣∣ + sup

t∈[0,1]

∣∣∣B(n)
+ (t) −B+(t)

∣∣∣
+ sup

t∈[0,1]

∣∣∣B(n)
− (t) −B−(t)

∣∣∣ a.s.

and hence by Propositions 3.5 and 3.7(ii)

lim
k↑∞

sup
αnk

≤t≤βnk

∣∣∣B̃(nk)
t − B̃

(
t+ Γ+(1) − Γ

(nk)
+ (1)

)∣∣∣ = 0 a.s.(3.3)

This implies

lim
k↑∞

sup
t∈[0,1]

|B̃(nk)
t − B̃t|

≤ lim
k↑∞

sup
0≤t≤αnk

|B̃(nk)
t − B̃t| + lim

k↑∞
sup

βnk
≤t≤1

|B̃(nk)
t − B̃t|

+lim
k↑∞

sup
αnk

≤t≤βnk

|B̃(nk)
t − B̃t|

= lim
k↑∞

sup
αnk

≤t≤βnk

|B̃(nk)
t − B̃t| by Proposition 3.5

≤ lim
k↑∞

sup
αnk

≤t≤βnk

∣∣∣B̃(nk)
t − B̃

(
t+ Γ+(1) − Γ

(nk)
+ (1)

)∣∣∣
+lim

k↑∞
sup

αnk
≤t≤βnk

∣∣∣B̃ (
t+ Γ+(1) − Γ

(nk)
+ (1)

)
− B̃t

∣∣∣
= 0 a.s. by (3.3) �

We are now in a position to prove our main theorem.

Proof of Theorem 1.1. It is clear that

lim
n↑∞

sup
t∈[0,1]

∣∣∣S(n)
[2nt] −Bt

∣∣∣ = 0 a.s.

Also, we have

sup
t∈[0,1]

∣∣∣S̃(n)
[2nt] − B̃t

∣∣∣ = sup
t∈[0,1]

∣∣∣B̃(n)( [2nt]
2n ) − B̃t

∣∣∣ by Proposition 3.3

≤ sup
t∈[0,1]

∣∣∣B̃(n)( [2nt]
2n ) − B̃( [2nt]

2n )
∣∣∣ + sup

t∈[0,1]

∣∣∣B̃( [2nt]
2n ) − B̃t

∣∣∣
≤ sup

t∈[0,1]

∣∣∣B̃(n)
t − B̃t

∣∣∣ + sup
t∈[0,1]

∣∣∣B̃( [2nt]
2n ) − B̃t

∣∣∣ a.s.,
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which in turn implies that

lim
k↑∞

sup
t∈[0,1]

∣∣∣S̃(nk)
[2nk t] − B̃t

∣∣∣ = 0 a.s.

with (nk)k the subsequence in Proposition 3.8. The argument in Section 2

shows

∀n ∈ N ,
(
S̃

(n)
[2nt]

)
t∈[0,1]

(d)
=

(
S

(n)
[2nt]

)
t∈[0,1]

,

and therefore, for any m ∈ N and 0 ≤ t1 < t2 < . . . tm ≤ 1,

(
B̃t1 , B̃t2 , . . . , B̃tm

)
(d)
= (Bt1 , Bt2 , . . . , Btm).

This and the path continuity of (B̃t)t∈[0,1] (see Proposition 3.8(i)) complete

the proof. �
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