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On the Pseudo-Cyclicity of Some Iwasawa Modules

Associated to Abelian Fields

By Takae Tsuji

Abstract. Let p be an odd prime number, and K/Q a totally
imaginary finite abelian extension of the first kind, with the Galois
group ∆. Let U∞ (resp. E∞ ) denote the projective limit of the semi-
local units (resp. the global units) of the fields in the cyclotomic Zp-

extension of K. We will show that (U∞/E∞)
+

contains a cyclic Λ[∆]-
submodule of finite index.

Introduction

Let p be a fixed prime number, and Zp be the ring of p-adic integers.

We denote by Q∞ the cyclotomic Zp-extension of the rational number field

Q. Let K be a finite abelian extension of Q, satisfying K ∩Q∞ = Q. Let

K∞ be the cyclotomic Zp-extension of K, i.e. K∞ = KQ∞ ; and for each

n ≥ 0, let Kn be the intermediate field of K∞/K such that Kn is a cyclic

extension of degree pn over K. Put ∆ = Gal(K/Q) and Γ = Gal(K∞/K).

Let L∞ be the maximal unramified abelian p-extension over K∞, and

let X = Gal(L∞/K∞). Then X is a module over the completed group ring

Zp[[Gal(K∞/Q)]] in a natural way. Identifying ∆ with Gal(K∞/Q∞) and

Zp[[Γ]] with the formal power series ring Λ = Zp[[T ]], X becomes a Λ[∆]-

module, and it is known that X is finitely generated torsion over Λ. Under

this condition, one can see that various Iwasawa modules which are defined

with respect to K∞/K also have the structure of Λ[∆]-modules. Let J ∈ ∆

denote the complex conjugation. For a Λ[∆]-module M , we will put

M+ = {m ∈M |J(m) = m}, M− = {m ∈M |J(m) = −m}.

Assume that K contains a primitive p-th root ζp of unity. Supposing that

X+ is a finite module, Greenberg has proved thatX− contains a cyclic Λ[∆]-

submodule of finite index (Greenberg[Gr2] Theorem 5). In the following,
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we will call such a Λ[∆]-module a pseudo-cyclic Λ[∆]-module. Let M∞ be

the maximal abelian p-extension over K∞ unramified outside p, and let

x = Gal(M∞/K∞). Then it is known that X− is pseudo-isomorphic to

x+, that is, isomorphic up to finite, and denoted by X− ∼ x+ (see §3).

Therefore, the pseudo-cyclicity of X− is equivalent to that of x+. For each

prime divisor v ofKn lying above p, let Un,v be the group of local units in the

v-completion Kn,v which are congruent to 1 modulo the maximal ideal, and

let Un =
∏
v|p
Un,v. Let En be the image of the group of all units in Kn by the

embedding Kn ↪→
∏
v|p
Kn,v. Let En be the closure of En ∩Un in Un. We will

denote by U∞ and E∞ the projective limits of Un and En respectively, being

taken with respect to the norm maps. Then it is known that (U∞/E∞)+ is

isomorphic to a Λ[∆]-submodule of x+ (cf.Washington[W] Corollary13.6).

Therefore if X− is a pseudo-cyclic Λ[∆]-module, then (U∞/E∞)+ is also a

pseudo-cyclic Λ[∆]-module (see Lemma 4).

The purpose of the paper is to prove the pseudo-cyclicity of (U∞/E∞)+

directly, without supposing the finiteness of X+, that is, our main result is

the following:

Theorem. Let p be an odd prime number and let K be a totally imag-

inary finite abelian extention of Q. Suppose that K is of the first kind,

i.e. its conductor is not divisible by p2. Then (U∞/E∞)+ contains a cyclic

Λ[∆]-submodule of finite index.

If we suppose the finiteness of X+, then we have that (U∞/E∞)+ is of

finite index inx+. Therefore we have (U∞/E∞)+ ∼ x+. Hence our theorem

can be used to show the pseudo-cyclicity of X− (Greenberg loc.cit.), which

we shall state as a corollary at the end of this paper.

An outline of the paper is the followings: in §1, for one prime divisor

v, we consider the structure of the Λ[Gal(Kv/Qp)]-module U∞,v = lim
←
Un,v.

That is, we study the structure of some modules which are defined with

respect to a local Zp-extension. In §2, we assume that K/Q is of the first

kind, and study the structure of the Λ[∆]-module U∞. First, we show that

the consideration of U∞ is reduced to that of U∞,v, and then, using our

result in §1, we give the structure of the Λ[∆]-module U∞. We note that,

when K = Q(ζp), the structure of the Λ[∆]-module U∞ was known by
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Iwasawa[Iw1]; furthermore when K is a finite abelian field with degree rela-

tively prime to p, it was known by Gillard[Gi]. In §3, we study the Kummer

duality, and then the structure of adjoint modules as Λ[∆]-modules, which

were previously known as Λ-modules. Finally, after we prepare an algebraic

lemma in §4, using our result concerning U∞ in §2 and the results in §§3-4,

we prove the main theorem and mention its corollary.

I would like to express my sincere gratitude to Professor Masami Ohta

who has proposed me to the theme of this paper and many excellent sug-

gestions. Finally I would like to thank Professor Masato Kurihara for the

contribution of the important Remark 2.

1. Local Theory

1.1. Let p be a fixed prime number. We fix an algebraic closure Ωp of

the p-adic number field Qp, and always consider algebraic extensions of Qp

to be contained in Ωp.

Let k be a finite extension of Qp (in Ωp) with

[k : Qp] = d.

We denote by kab the maximal abelian p-extension over k. By local class

field theory, there is a canonical isomorphism

Gal(kab/k) −̃→ Ak,

where Ak denotes the p-adic completion of the multiplicative group k× :

Ak = lim
←
k×/(k×)

pn
. Then, we can write

Ak = πzp × Uk,

where π is a uniformizing parameter of k, and Uk is the principal units of

k, that is, the units congruent to 1 modulo the maximal ideal.

We denote by kur the maximal unramified abelian p-extension over k.

Since the inertia group of Gal(kab/k) is isomorphic to Uk, kur/k is a Zp-

extention:

Gal(kur/k) ∼= Zp.

Let Wk be the group of all p-th power roots of unity in k. Then Wk is

a subgroup of Uk and Uk/Wk is a free Zp-module of rank d. Therefore we

obtain

Gal(kab/k) ∼=Wk ⊕ Zp
d+1.
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From the above, it follows that there are d + 1 independent Zp-extensions

over k. In particular there exist Zp-extensions over k different from kur/k.

Let k∞ be a Zp-extention over k; and for each n ≥ 0, let kn denote the

intermediate field of k∞/k such that kn is a cyclic extension of degree pn

over k. If k∞ is a Zp-extention over k different from kur/k, then there exists

an n0 ≥ 0 such that k∞
⋂
kur = kn0 . Hence k∞/kn is a totally ramified

extension for n ≥ n0.

1.2. We fix a Zp-extension Qp,∞ of Qp different from Qp,ur/Qp. Let

k be a finite abelian extension of Qp such that k
⋂

Qp,∞ = Qp, and let

k∞ = kQp,∞. Then we obtain a Zp-extention k∞/k different from kur/k.

Put Γ = Gal(k∞/k) and D = Gal(k/Qp).

Let Mn, 0 ≤ n ≤ ∞, be the maximal abelian p-extension over kn and

let

X = Gal(M∞/k∞).

Then Γ acts on X by conjugation. Fix a topological generator γ0 of Γ,

and identify the completed group ring Zp[[Γ]] with the formal power series

ring Zp[[T ]] by γ0 = 1 + T . Then we can make X into a Zp[[T ]]-module.

Furthermore, identifying D with Gal(k∞/Qp,∞), we can also make X into

a Zp[D][[T ]]-module. Here we will consider the structure of the Zp[D][[T ]]-

module X. In the following, we write Λ = Zp[[T ]] and Λ[D] = Zp[D][[T ]].

For each n ≥ 0, we define the element ωn ∈ Λ = Zp[[T ]] by

ωn = (1 + T )p
n − 1.

Then we have

ωnX = Gal(M∞/Mn), X/ωnX = Gal(Mn/k∞).

We have already seen in §1.1 that X/ω0X = X/TX = Gal(M0/k∞) =

Gal(kab/k∞) is finitely generated over Zp. Hence by Nakayama’s lemma, X

is finitely generated over Λ (cf.Washington [W],Lemma 13.16).

Since Mn = kn,ab, Gal(Mn/kn) and hence Gal(Mn/k∞) are both finitely

generated Zp-modules. Let Xn be the submodule of X containing ωnX

such that Xn/ωnX is the torsion Zp-submodule of X/ωnX = Gal(Mn/k∞).

Clearly Xn is a Λ[D]-module, and

Y =
∞⋂
n=0

Xn, X
′ = X/Y
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are, also, Λ[D]-modules.

We denote by W the group of all p-th power roots of unity in Ωp, and

let

Wn =Wkn =W
⋂
kn
×, 0 ≤ n ≤ ∞.

We obviously have

W0 ⊆W1 ⊆ · · · ⊆Wn ⊆ · · · ⊆W∞ ⊆W, W∞ =
∞⋃
n=0

Wn.

Hence either W∞ is finite and W∞ = Wn for sufficiently large n ≥ 0, or

W∞ = W and k∞ = k(W ). First, we consider the case where k∞ = k(W ).

Let κ : Γ → 1 + pZp (or 1 + 4Z2 if p = 2 ) be the p-cyclotomic character,

i.e. it is the unique character satisfying γ(ζ) = ζκ(γ) for every ζ ∈ W . We

define the element Ṫ ∈ Λ by

Ṫ = κ(γ0)(1 + T )−1 − 1,

where γ0 is the topological generator which is fixed in the above. For each

a ≥ 0, let W (a) be the subgroup of all pa-th roots of unity in W , and we

will consider

lim
←
W (a).

This is isomorphic to Zp as a Zp-module, and Γ acts on lim
←
W (a) via the

character κ. Hence we have the following Λ-isomorphism:

lim
←
W (a) ∼= Λ/(1 + T − κ(γ0)) = Λ/(Ṫ ).

Iwasawa has determined the structure of the Λ-module X as follows

([Iw2] Theorem 25):

(i) Suppose that k∞ = k(W ), i.e. W∞ =W . Then

X ∼= Λd ⊕ Λ/(Ṫ ), Y = Λ/(Ṫ ), X ′ ∼= Λd

(ii) Suppose that k∞ �= k(W ), i.e. W∞ is finite. Then

X ⊆ Λd, Λd/X ∼=W∞.

We shall prove the following:
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Proposition 1. (i) Suppose that k∞ = k(W ). Then we have an ex-

act sequence

0 −→ X −→ Λ[D]⊕ Λ/(Ṫ ) −→ F −→ 0

of Λ[D]-modules, where F is a Λ[D]-module such that paF = 0 for some

a ≥ 0.

(ii) Suppose that k∞ �= k(W ). Then we have an exact sequence

0 −→ X −→ Λ[D] −→ F −→ 0

of Λ[D]-modules, where F is a Λ[D]-module such that paF = 0 for some

a ≥ 0.

Proof. (i) Since X ′ ∼= Λd, the exact sequence

(1) 0 −→ Y −→ X −→ X ′ −→ 0

of Λ[D]-modules induces an exact sequence

0 −→ Y/TY −→ X/TX −→ X ′/TX ′ −→ 0

of Zp[D]-modules. Furthermore we have that X/TX = X/ω0X =

Gal(M0/k∞), and that Y/TY = (Λ/(Ṫ ))/T (Λ/(Ṫ )) = Λ/(Ṫ , T ) is a finite

Zp[D]-module. Hence we obtain a Qp[D]-isomorphism

Gal(M0/k∞)⊗zp Qp
∼= (X ′/TX ′)⊗zp Qp.

On the other hand, from the exact sequence

0 −→ Gal(M0/k∞) −→ Gal(M0/k) −→ Gal(k∞/k) −→ 0,

we have an exact sequence

0 −→ (X ′/TX ′)⊗zp Qp −→ Ak ⊗zp Qp −→ Qp −→ 0

of Qp[D]-modules. Since Ak = πzp ×Uk, we have Ak ⊗zp Qp
∼= Qp⊕Qp[D]

as Qp[D]-modules, hence as representation spaces over Qp for D. Therefore

we obtain a Qp[D]-isomorphism

(X ′/TX ′)⊗zp Qp
∼= Qp[D].
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We need now the following lemma (Greengerg[Gr2] Lemma):

Lemma 1. Let ∆ be a finite abelian group, and let � denote the quo-

tient field of Λ. Let both M and M ′ be Λ[∆]-modules such that both of them

are finitely generated and torsion-free as Λ-modules.

Suppose that M ⊗Λ � and M ′ ⊗Λ � are isomorphic as representation

spaces over � for ∆, equivalently that (M/TM)⊗Zp
Qp and (M ′/TM ′)⊗Zp

Qp are isomorphic as representation spaces over Qp for ∆. Then there exists

an injective Λ[∆]-homomorphism ϕ : M →M ′ such that paM ′ ⊆ ϕ(M) for

some integer a ≥ 0.

Since X ′ ∼= Λd, using Lemma 1 for the above isomorphism, we obtain

there exists an injective Λ[∆]-homomorphism ϕ : Λ[D] → X ′ such that

cokernel(ϕ) is annihilated by pa. Let X0 be the inverse image of Λ[D]

by the map X → X ′ at (1), and let cokernel(ϕ) = F ′. Then we have a

commutative diagram of Λ[D]-modules

0 0

↓ ↓
0 −→ Λ/(Ṫ ) −→ X0 −→ Λ[D] −→ 0

‖ ↓ ↓
0 −→ Λ/(Ṫ ) −→ X −→ X ′ −→ 0

↓ ↓
F ′ −̃→ F ′

↓ ↓
0 0.

Therefore we obtain an isomorphism : X0 ∼= Λ[D]⊕Λ/(Ṫ ) of Λ[D]-modules.

Thus, the cokernel of the map X → Λ[D]⊕Λ/(Ṫ ) defined by multiplication

by pa is annihilated by pa. This completes the proof of (i).

(ii) Since X/TX = Gal(M0/k∞), similarly as in the case (i), we

obtain

(X/TX)⊗zp Qp
∼= Qp[D].

Since X is a torsion-free Λ-module, we can also use Lemma 1 in a similar

manner as above to complete the proof of (ii). �
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1.3. Let Un be the principal units of kn, and let

U∞ = lim
←
Un,

where the projective limit is defined by means of the norm maps km → kn
for m ≥ n ≥ 0. Γ acts on U∞ in the obvious manner; so as in §1.2, we can

make U∞ into a Λ[D]-module. We now study its structure as a Λ[D]-module

in the following.

For each n ≥ 0, letOn be the ring of integers in kn, and πn a uniformizing

parameter of kn. Take the p-adic completion from the exact sequence

0 −→ (On)× −→ kn
× −→ < πn > −→ 0,

to obtain the exact sequence

0 −→ Un −→ Akn −→ Zp −→ 0,

of Zp[Gal(kn/Qp)]-modules. For m ≥ n ≥ 0, we consider the maps Akm →
Akn induced by the norm maps. For m ≥ n ≥ n0, since km/kn is a totally

ramified extension, πm maps to πn by the norm map for a suitable choice of

uniformizing parameters. Therefore we obtain the following commutative

diagram for m ≥ n ≥ n0:

0 −→ Um −→ Akm −→ Zp −→ 0

↓ ↓ ‖
0 −→ Un −→ Akn −→ Zp −→ 0.

Since lim
←
Akn
∼= lim
←

Gal(Mn/kn) = X, taking the projective limit, we obtain

the exact sequence

(2) 0 −→ U∞ −→ X −→ Zp −→ 0

of Λ[D]-modules. We note that Γ×D act on Zp trivially by definition.

New, we shall prove the following:

Proposition 2. (i) Suppose that k∞ = k(W ). Then we have an ex-

act sequence

0 −→ U∞ −→ Λ[D]⊕ Λ/(Ṫ ) −→ F −→ 0
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of Λ[D]-modules, where F is a Λ[D]-module such that paF = 0 for some

a ≥ 0.

(ii) Suppose that k∞ �= k(W ). Then we have an exact sequence

0 −→ U∞ −→ Λ[D] −→ F −→ 0

of Λ[D]-modules, where F is a Λ[D]-module such that paF = 0 for some

a ≥ 0.

Proof. (i) U∞ contains lim
←
W (a) ∼= Λ/(Ṫ ), and we set U ′∞ =

U∞/(Λ/(Ṫ )). From the sequences (1) and (2), we have a commutative

diagram

0

↓
0 −→ Λ/(Ṫ ) −→ U∞ −→ U ′∞ −→ 0

‖ ↓ ↓
0 −→ Λ/(Ṫ ) −→ X −→ X ′ −→ 0

↓ ↓
Zp −̃→ Zp

↓ ↓
0 0.

It follows that U ′∞ → X ′ is injective, and hence U∞
′ is a torsion-free Λ-

module, since X ′ ∼= Λd. Tensoring � over Λ for the sequence right vertical,

we obtain an �[D]-isomorphism

U ′∞ ⊗Λ � ∼= X ′ ⊗Λ �.

In the proof of Proposition 1 (i), we have seen that X ′⊗Λ� ∼= �[D]. Hence

we have

U ′∞ ⊗Λ � ∼= �[D].

Using Lemma 1 to this situation, similarly as in Proposition 1 (i), one can

prove (i).

(ii) U∞ is a torsion-free Λ-module, since U∞ ⊆ X ⊆ Λd. Tensoring �
over Λ for the sequence (2), we obtain an �[D]-isomorphism

U∞ ⊗Λ � ∼= X ⊗Λ �.
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Using Lemma 1 and the isomorphism X ⊗Λ � ∼= �[D], one can also prove

(ii). This completes the proof of Proposition 2. �

Remark 1. One can extend Propositions 1 and 2 to a more general

situation as follows. Let k′ be any finite algebraic extension of Qp with the

ring of integersO, and let k′∞/k
′ be a Zp-extension different from k′ur/k

′. Let

k/k′ be a finite abelian extension such that k∩k′∞ = k′, and let k∞ = kk′∞.

Let D = Gal(k/k′) ∼= Gal(k∞/k′∞). Both X and U∞, defined as above

for k∞/k are Λ[D]-modules. Then we have the same exact sequences of

Λ[D]-modules as in Propositions 1 and 2, if we replace the terms Λ[D] =

Zp[D][[T ]] by O[D][[T ]].

I would like to thank Professor Masato Kurihara for supplying the fol-

lowing:

Remark 2. Here we mention that there exists a Zp-extension k∞/k
such that U∞ is not isomorphic to Λ[D]⊕Λ/(Ṫ ) (i.e. F �= {0} in Proposition

2).

Let p be an odd prime. Let H be the unramified cyclic p-extension of

Qp with the ring of integers OH . Let k = H(ζp) and k∞ = H(W ). Thus k∞
is the cyclotomic Zp-extension of k. Note that, since OH

∼= Zp[Gal(H/Qp)],

we have OH [[Gal(k∞/H)]] ∼= Zp[[Gal(k∞/Qp)]] ∼= Λ[D]. By Coleman[C1],

[C2] and Greither[G], there is an exact sequence of Λ[D]-modules

0 −→ Zp(1) −→ U∞ −→ OH [[Gal(k∞/H)]] −→ Zp(1) −→ 0

where Zp(1) = lim
←
W (a). (In fact, if H/Qp is any unramified extension, then

such a sequence exists.) The first map is inclusion map, and Zp(1) ∼= Λ/(Ṫ ).

Then we will consider the kernel of the third map φ : OH [[Gal(k∞/H)]] −→
Zp(1). The map φ is defined as following:

Let κ : Gal(k∞/H) → Zp
× be the p-cyclotomic character and fix a

generator ζ = (ζpa) of Zp(1) = lim
←
W (a). Then φ is given by φ(σ) = ζ−pκ(σ)

for σ ∈ Gal(k∞/H) and φ(v) = ζ−Tr(v) for v ∈ OH , where Tr is the trace

map from OH to Zp.

Since OH
∼= Zp[Gal(H/Qp)], identifying a generator τ of Gal(H/Qp)

with the element 1+S in the formal power series ring Zp[[S]], we obtain an

isomorphism

OH
∼= Zp[[S]]/((1 + S)p − 1) ∼= Zp[S]/((1 + S)p − 1).
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Therefore we have

OH [[Gal(k∞/H)]] ∼= (Zp[S]/((1 + S)p − 1) )[Gal(k/H)][[T ]] ( ∼= Λ[D] ).

Then by the definition of φ, we have S = τ − 1, Ṫ = κ(γ0)γ
−1
0 − 1 ∈ ker(φ).

Hence the ideal (S, Ṫ ) which generated by S and Ṫ over (Zp[S]/((1+S)p−
1) )[Gal(k/H)][[T ]] ∼= Λ[D] is contained in ker(φ). Consequently ker(φ) and

hence, U∞/(Λ/(Ṫ )) is not isomorphic to Λ[D].

2. Semi-Local Units

We will denote by Q∞ the cyclotomic Zp-extension of Q. Let K be

an abelian extension of Q. Assume that K is of the first kind, that is,

its conductor is not divisible by p2 (or 8 if p = 2). Then we obviously

have K ∩ Q∞ = Q. Let K∞ be the cyclotomic Zp-extension over K, i.e.

K∞ = KQ∞; and for each n ≥ 0, let Kn denote the intermediate field

of K∞/K such that Kn is a cyclic extension of degree pn over K. Then

one can easily see that, under our assumption on K, every prime divisor

of K, lying above p, is totally ramified in K∞. Put ∆ = Gal(K/Q) and

Γ = Gal(K∞/K).

Let v be a finite prime divisor of K∞, lying above p. For each n ≥ 0,

let Kn,v be the completion of Kn with respect to the restriction of v to Kn.

Let Un,v denote the principal units of Kn,v, and let

Un =
∏
v|p
Un,v,

where v runs over all the prime divisors of K∞ lying above p. Let

U∞ = lim
←
Un,

where the projective limit is defined by means of the maps Um → Un for

m ≥ n ≥ 0 induced by the norm maps. Γ act on U∞ in the obvious manner.

Identifying ∆ with Gal(K∞/Q∞), we make U∞ into a Zp[∆][[T ]]-module as

in §1.2. Then we will consider the structure of the Zp[∆][[T ]]-module U∞
in the following. Put Λ[∆] = Zp[∆][[T ]].

Let D be the decomposition group of p in K/Q. Fixing a finite prime

divisor v of K∞, we have

Un =
∏

σ∈D\∆
Un,vσ =

∏
σ∈D\∆

(Un,v)σ
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where σ runs over a set of left representatives for the cosets of D\∆. There-

fore we obtain

Un −̃→ Un,v ⊗Zp[D] Zp[∆]

as Zp[Gal(Kn/Q)]-modules since every prime divisor of K, lying above p,

is totally ramified in K∞. Furthermore, since Zp[∆] is a free Zp[D]-module,

taking the projective limit, we obtain a Λ[∆]-isomorphism

U∞ ∼= U∞,v ⊗Zp[D] Zp[∆],

where U∞,v = lim
←
Un,v.

Tensoring Zp[∆] over Zp[D] on the sequences in Proposition 2, we obtain

the following result:

Proposition 3. (i) Suppose that Kv contains a primitive p-th root ζp
of unity (or i if p = 2). Then we have an exact sequence

0 −→ U∞ −→ Λ[∆]⊕ (Λ/(Ṫ )⊗Zp[D] Zp[∆]) −→ F −→ 0

of Λ[∆]-modules, where F is a Λ[∆]-module such that paF = 0 for some

a ≥ 0.

(ii) Suppose that Kv contains no primitive p-th root ζp of unity (or i

if p = 2). Then we have an exact sequence

0 −→ U∞ −→ Λ[∆] −→ F −→ 0

of Λ[∆]-modules, where F is a Λ[∆]-module such that paF = 0 for some

a ≥ 0.

Remark 3. Assume that [K : Q] is not divisible by p. Let Φ be an

irreducible character of ∆ over Qp, and eΦ the corresponding idempotent

in Zp[∆]:

eΦ =
1

[k : Q]

∑
δ∈∆

Φ(δ)δ−1.

Choose an absolutely irreducible component χ of Φ, and let OΦ denote the

ring of integers in Ωp generated by the values of χ over Zp. Then we obtain

a Zp[∆]-isomorphism

eΦZp[∆]−̃→OΦ.
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Thus eΦU∞ is regarded as a OΦ-module.

The following result had been shown by Gillard ([Gi] Proposition 1):

As OΦ[[T ]]-modules

eΦU∞ ∼= OΦ[[T ]], ωχ−1(p) �= 1

eΦU∞ ∼= OΦ[[T ]]⊕OΦ[[T ]]/(Ṫ ), ωχ−1(p) = 1,

where ω is the Teichmüller character.

Hence if [K : Q] is not divisible by p, then we have the following:

(i) If ζp (or i if p = 2) ∈ Kv, then

U∞ ∼= Λ[∆]⊕ (Λ/(Ṫ )⊗Zp[D] Zp[∆]).

(ii) If ζp (or i if p = 2) /∈ Kv, then

U∞ ∼= Λ[∆].

3. Kummer Duality and Adjoint Modules

3.1. We keep the notion as in the previous section. But we assume

here that p is an odd prime number, and that K contains a primitive p-th

root ζp of unity. Let J ∈ ∆ be the complex conjugation (J �= 1).

For a Λ[∆]-module M , we define

M+ = {m ∈M |J(m) = m}, M− = {m ∈M |J(m) = −m}.

Then M+ = (1 + J)M , M− = (1− J)M and

M =M+ ⊕M−

since p �= 2. Also K∞ contains the group W of all p-th power roots of unity,

by our assumption on K.

Let M∞ be the maximal abelian p-extension unramified outside p, and

let

x = Gal(M∞/K∞).

It is known that there is a subgroupm of the discrete abelian groupK∞
×⊗Z

(Qp/Zp) such that the usual pairing induces the Pontryagin duality:

< , > : x×m −→ W.
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It also has the property that

< ξσ, ξv >= ξ < σ, v >

for any ξ ∈ Gal(K∞/Q) ∼= Γ×∆ (cf.Iwasawa[Iw2] §7). Clearly the pairing

< , > induces a Zp-isomorphism

x −̃→ Homzp(m,W ).

We define ξ ◦ ϕ for ϕ ∈ Homzp(m,W ) by

(ξ ◦ ϕ)(v) = ξϕ(ξ−1v), ξ ∈ Γ×∆, v ∈m.

Then the above Zp-isomorphism becomes a Λ[∆]-isomorphism.

Let An be the p-Sylow subgroup of the ideal class group of Kn, and let

A∞ = lim
→
An

where the inductive limit is defined by means of the natural maps An → Am

for m ≥ n ≥ 0. Clearly A∞ is a Λ[∆]-module. It is known that

A∞
− ∼= m−

as Λ[∆]-modules (cf.Iwasawa[Iw2] Lemma10). Then defining also ξ ◦ ϕ for

ϕ ∈ Homzp(A∞
−,W ) by

(ξ ◦ ϕ)(v) = ξϕ(ξ−1v), ξ ∈ Γ× Λ, v ∈ A∞−,

we have a Λ[∆]-isomorphism

(3) x+ ∼= Homzp(A∞
−,W ).

3.2. Let bothM andM ′ be finitely generated Λ-modules. A morphism

f : M −→ M ′

is call a pseudo-isomorphism if the kernel and the cokernel of f are both

finite modules. When there exists such a pseudo-isomorphism, we write

M ∼M ′.
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If both M and M ′ are torsion Λ-modules, then M ∼ M ′ implies M ′ ∼ M .

However, this is not true in general. The structure theorem of finitely

generated Λ-modules states that given such a Λ-module M , there exists a

unique Λ-module of the form

E(M) = Λr ⊕
( t⊕
i=1

Λ/(p)ei
)
⊕

( s⊕
j=1

Λ/(fj)
ej
)

where fj is an irreducible distinguished polynomial, r, s, t ≥ 0 and ei, ej >

0, with M ∼ E(M) as Λ-modules. We call E(M) the elementary Λ-module

associated with M . Also Iwasawa invariants associated with M are defined

by

µ(M) =
t∑

i=1

ei, λ(M) =
s∑

j=1

ej deg(fj).

Let ℘ be a prime ideal of height 1 in Λ. Then either ℘ = (p), the princi-

pal ideal generated by p, or there exists a unique irreducible distinguished

polynomial f(T ) such that ℘ = (f(T )).

For each prime ideal ℘ of height 1 in Λ, we will set

M℘ =M ⊗Λ Λ℘

where Λ℘ denotes the localization of Λ at ℘. Now, let ∆ be a finite abelian

group, and let M be a Λ[∆]-module which is finitely generated and torsion

as a Λ-module. If

E(M) =
t⊕

i=1

Λ/℘i
ei

with prime ideals ℘i of height 1 in Λ and ei > 0, then M℘ = {0} if and only

if ℘ �= ℘i, 1 ≤ i ≤ t. Let X0 and Y denote the kernel and the cokernel,

respectively, of the morphism

M −→
∏
℘

M℘

induced by the canonical map M → M℘, the product being taken over all

℘. Then X0 is the maximal finite Λ-submodule of M . We define

α(M) = Homzp(Y,Qp/Zp).



198 Takae Tsuji

and make α(M) into a Λ[∆]-module by defining

(ξ · ϕ)(y) = ϕ(ξy)

for ξ ∈ ∆× Λ, ϕ ∈ α(M) and y ∈ Y . We call α(M) the adjoint module of

M .

Let both M and M ′ be finitely generated torsion Λ-modules. The fol-

lowing properties of Λ-modules are known (cf. Federer[F]):

1) α(M) is a finitely generated torsion Λ-module.

2) If E is an elementary torsion Λ-module then E ∼= α(E).

3) If M ∼M ′ then α(M) ∼ α(M ′).
4) α(M) ∼M .

Lemma 2. Let M be a Λ[∆]-module which is finitely generated and

torsion as a Λ-module. Suppose µ(M) = 0. Then we have a pseudo-

isomorphism of Λ[∆]-modules

α(M) ∼M.

Proof. Let Φ be an irreducible character of ∆ over Qp, and eΦ the

corresponding idempotent in Qp[∆]:

eΦ =
1

|∆|
∑
δ∈∆

Φ(δ)δ−1.

Then we have

|∆|
∑
Φ

eΦZp[∆] ⊆ Zp[∆] ⊆
∑
Φ

eΦZp[∆]

in Qp[∆], where Φ runs over all distinct irreducible characters. Choose an

absolutely irreducible component χ of Φ, and let OΦ denote the ring of

integers in Ωp generated by the values of χ over Zp. Then we obtain a

Zp[∆]-isomorphism

eΦZp[∆]−̃→OΦ.

Let F1 and F2 denote the cokernels of the inclusion map Zp[∆] →
⊕
Φ

OΦ

and the map
⊕
Φ

OΦ → Zp[∆], defined by multiplication by pN for large
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N ≥ 0, respectively. Then both F1 and F2 are finite modules, and the

following diagram is commutative:

0 −→ Zp[∆] −→
⊕
Φ

OΦ −→ F1 −→ 0

↓ pN ‖
0 ←− F2 ←− Zp[∆] ←−

⊕
Φ

OΦ ←− 0.

Then the above diagram induces a commutative diagram of Λ[∆]-
module s

M −→
⊕
Φ

(M ⊗Zp[∆]
OΦ) −→ M ⊗Zp[∆]

F1 −→ 0

↓ pN ‖

0 ←− M ⊗Zp[∆]
F2 ←− M ←−

⊕
Φ

(M ⊗Zp[∆]
OΦ),

where δ ∈ ∆ acts onM⊗Zp[∆]OΦ as χ(δ). Since µ(M) = 0, bothM⊗Zp[∆]F1

and M ⊗Zp[∆] F2 are finite modules. Hence we have a pseudo-isomorphism

M ∼
⊕
Φ

(M ⊗Zp[∆] OΦ)

of Λ[∆]-modules. By the properties 3 ) and 4 ), we obtain

α(M) ∼
⊕
Φ

α(M ⊗Zp[∆] OΦ)

∼
⊕
Φ

(M ⊗Zp[∆] OΦ)

∼ M

as Λ[∆]-modules. This completes the proof of Lemma 2. �

Remark 4. If |∆| is not divisible by p then

Zp[∆] =
∑
Φ

eΦZp[∆] ∼=
⊕
Φ

OΦ.

Hence we obtain

M ∼=
⊕
Φ

(M ⊗Zp[∆] OΦ).
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In this case, one can prove the above lemma without the assumption that

µ(M) = 0.

3.3. We again assume that p is an odd prime number, and that K

contains ζp here. Let Ln, 0 ≤ n ≤ ∞, denote the maximal unramified

abelian p-extension over Kn, and let

X = Gal(L∞/K∞), Y0 = Gal(L∞/K∞L0).

We make Homzp(A∞,Qp/Zp) into a Λ[∆]-module by defining

(ξ · ϕ)(v) = ϕ(ξv)

for ξ ∈ Γ×∆, ϕ ∈ Homzp(A∞,Qp/Zp) and v ∈ A∞. Then, it is known that

there is a Λ[∆]-isomorphism

α(Y0) ∼= Homzp(A∞,Qp/Zp)

(cf. Iwasawa[Iw2] Theorem 11). Now, we have µ(X) = 0 when K is

abelian over Q by Ferrero-Washington[F-W]. So, using Lemma 2 we ob-

tain a pseudo-isomorphism

(4) X− ∼ Homzp(A∞
−,Qp/Zp)

of Λ[∆]-modules.

Fixing a Zp-isomorphism

W −̃→ Qp/Zp

we have a Zp-isomorphism

Homzp(A∞
−,W ) −̃→ Homzp(A∞

−,Qp/Zp).

By (3) and (4), we obtain a pseudo-isomorphism

x+ ∼ X−,

of Zp-modules. We will consider the action of Γ and ∆ on the above groups.

Since K∞ ⊃ W , we may consider the p-cyclotomic character κ : Γ →
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1 + pZp. Recall Ṫ = κ(γ0)(1 + T )−1 − 1. For ϕ ∈ Homzp(A∞
−,W ) ∼=

Homzp(A∞
−,Qp/Zp), we have

(γ0 ◦ ϕ)(v) = γ0ϕ(γ−1
0 v)

= κ(γ0)ϕ(γ−1
0 v)

= ((κ(γ0)γ
−1
0 ) · ϕ)(v).

Thus the following diagram is commutative:

(5)

x+ −→ X−

(1 + T )

� �(1 + Ṫ )

x+ −→ X−

where the lefthand map and the righthand map are the action of (1 + T )

and (1 + Ṫ ), respectively.

Next we will consider the action of ∆. We note that, for ζ ∈ W and

δ ∈ ∆, we have

δ(ζ) = ζω(δ).

For ϕ ∈ Homzp(A∞
−,W ) ∼= Homzp(A∞

−,Qp/Zp),

(δ ◦ ϕ)(v) = δϕ(δ−1v)

= ω(δ)ϕ(δ−1v)

= ((ω(δ)δ−1) · ϕ)(v).

Thus the following diagram is commutative, for any δ ∈ ∆:

(6)

x+ −→ X−

δ

� �ω(δ)δ−1

x+ −→ X−

where the lefthand map and the righthand map are the action of δ and

ω(δ)δ−1, respectively.

3.4. In this subsection, we let K be a totally imaginary finite abelian

extension of Q of the first kind; but we assume that K does not contain ζp.
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Letting K ′ = K(ζp), K
′ is also an abelian extension of Q of the first kind.

Then Gal(K ′/K) is a cyclic group of degree d(�= 1), which is a divisor of

(p − 1). Fix a generator σ of Gal(K ′/K). Let K ′∞ be the cyclotomic Zp-

extension over K ′, i.e. K ′∞ = K ′Q∞ = K(W ), and let ∆′ = Gal(K ′/Q).

Let L′∞ be the maximal unramified abelian p-extension over K ′∞, and

M ′∞ the maximal abelian p-extension over K ′∞ unramified outside p. Let

X ′ = Gal(L′∞/K
′
∞), x′ = Gal(M ′∞/K

′
∞).

Clearly both X ′ and x′ are Λ[∆′]-modules. We let

ei =
1

d

d∑
j=1

ωi(σj)σ−j ∈ Zp[∆
′].

On the other hand we have seen in §3.2 that

x′+ ∼ X ′−

as Λ[∆′]-modules, in the sense of (5) and (6). By (6), we obtain

eix′+ ∼ e1−iX
′−.

Let M0 be the maximal abelian extension of K∞ contained in M ′∞. Then

one can see easily thatM0 corresponds to (σ−1)x′, andx = Gal(M∞/K∞)

is the p-Sylow subgroup of Gal(M0/K∞). Hence

x ∼= x′/(σ − 1)x′

since the order of Gal(K ′∞/K∞) ∼=< σ > is prime to p. Similarly for X ′,
we have

X ∼= X ′/(σ − 1)X ′.

Therefore we obtain

X = e0X ∼= e0
(
X ′/(σ − 1)X ′

)
∼= e0X ′.

Summarizing the above results, we see that

X− ∼ e1x′+

as Λ[∆]-modules. (The action of Λ[∆] is the same as above.)
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4. Pseudo-Cyclic Λ[∆]-Modules and Cyclic Λ℘[∆]-Modules

Let M be a finitely generated torsion Λ-module. We will call M a

pseudo-cyclic Λ-module if there exists a cyclic Λ-module M ′ with

M ∼M ′

as Λ-modules. Assume that g, h ∈ Λ are relatively prime. One can easily

see that

Λ/(g · h) ∼ Λ/(g)⊕ Λ/(h)

Λ/(g)⊕ Λ/(h) ∼ Λ/(g · h).

Let

E(M) =
t⊕

i=1

Λ/℘i
ei

with prime ideals ℘i of height 1 in Λ and ei > 0. Then M is a pseudo-cyclic

Λ-module if and only if ℘i �= ℘j for all i �= j, 1 ≤ i, j ≤ t. Furthermore

this is equivalent to saying that M℘ = M ⊗Λ Λ℘ is a cyclic Λ℘-module for

every ℘.

Let O be the ring of integers in a finite algebraic extension of Qp, and

let

ΛO = O[[T ]], MO =M ⊗Zp
O =M ⊗Λ ΛO.

Noting the remark above, M is a pseudo-cyclic Λ-module if and only if MO
is a pseudo-cyclic ΛO-module.

Now, let ∆ be a finite abelian group, and letM be a Λ[∆]-module which

is finitely generated and torsion as a Λ-module. We will call M a pseudo-

cyclic Λ[∆]-module if there exists a cyclic Λ[∆]-module M ′ with

M ∼M ′.

as Λ[∆]-modules. Since both M and M ′ are torsion Λ-modules, we also

have M ′ ∼ M . Therefore M is a pseudo-cyclic Λ[∆]-module if and only if

M contains a cyclic Λ[∆]-submodule of finite index.

We will assume that µ(M) = 0. We have seen, in the proof of Lemma

2, that

M ∼
⊕
Φ

M ⊗Zp[∆] OΦ
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as Λ[∆]-modules, where Φ runs over all distinct irreducible characters of ∆

over Qp. Note that δ ∈ ∆ acts on M ⊗Zp[∆] OΦ as χ(δ), where χ is an

absolutely irreducible component of Φ. Then M is a pseudo-cyclic Λ[∆]-

module if and only if M ⊗Zp[∆] OΦ is a pseudo-cyclic OΦ[[T ]]-module for

every irreducible character Φ of ∆ over Qp. Furthermore, let O be the ring

of integers in a finite algebraic extension of Qp, containing all the values of

χ, which will be fixed throughout the following, and let

MΦ,O = M ⊗Zp[∆] OΦ ⊗OΦ
O

= M ⊗Zp[∆] O.

Note that δ ∈ ∆ acts on MΦ,O as χ(δ). Summarizing the argument above,

M is a pseudo-cyclic Λ[∆]-module if and only if MΦ,O is pseudo-cyclic ΛO-

module for every irreducible character Φ of ∆ over Qp.

We shall prove following two lemmas:

Lemma 3. Let M be a Λ[∆]-module which is finitely generated and tor-

sion as a Λ-module. Suppose µ(M) = 0. Then the following two conditions

are equivalent:

a) M is a pseudo-cyclic Λ[∆]-module.

b) M℘ is a cyclic Λ℘[∆]-module for every prime ideal ℘ of height 1 in

Λ.

Proof. a) ⇒ b) is clear.

a) is equivalent to saying thatMΦ,O is pseudo-cyclic ΛO-module for every

irreducible character Φ of ∆ over Qp. In addition, this is also equivalent

to saying that MΦ,O ⊗ΛO ΛO,℘ is a cyclic ΛO,℘-module for every irreducible

character Φ of ∆ over Qp and for every prime ideal ℘ of height 1 in ΛO,

where ΛO,℘ denote the localization of ΛO at ℘. Since

⊕
Φ

(MΦ,O ⊗ΛO ΛO,℘) = (
⊕
Φ

MΦ,O)⊗ΛO ΛO,℘

∼= (M ⊗Zp
O)⊗ΛO ΛO,℘

= MO,℘,

the above statement is equivalent to saying that MO,℘ is a cyclic ΛO,℘[∆]-

module for every ℘. Therefore a necessary and sufficient condition for a) is
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that MO,℘ is cyclic ΛO,℘[∆]-module for every prime ideal ℘ of height 1 in

ΛO.

Now, let ℘ be a prime ideal of height 1 in Λ, and write ℘ = ℘1 · · · ℘s in

ΛO, where ℘i, 1 ≤ i ≤ s, are prime ideals of height 1 in ΛO. Since

MO,℘i = (M ⊗Zp
O)⊗ΛO ΛO,℘i

= M℘ ⊗Λ℘ ΛO,℘i ,

if M℘ is a cyclic Λ℘[∆]-module, then MO,℘i is a cyclic ΛO,℘i [∆]-module for

1 ≤ i ≤ s.
Hence we have b) ⇒ a), this completes the proof of Lemma 3. �

Lemma 4. Let M be a pseudo-cyclic Λ[∆]-module. Suppose µ(M) = 0.

Then a Λ[∆]-submodule of M is also a pseudo-cyclic Λ[∆]-module.

Proof. MO,Φ is a pseudo-cyclic ΛO-module for every irreducible char-

acter Φ of ∆ over Qp. By the structure theorem of finitely generated Λ-

modules, for every prime ideal ℘ of height 1 in ΛO, there exist some e ≥ 0

such that

MO,Φ ⊗ΛO ΛO,℘ ∼= (ΛO/℘
e)⊗ΛO ΛO,℘.

Any ΛO,℘-submodule of (ΛO/℘e) ⊗ΛO ΛO,℘ is also a cyclic ΛO,℘-module.

Hence a ΛO-submodule of MO,Φ is also a pseudo-cyclic ΛO-module, which

completes the proof of the lemma. �

Remark 5. If |∆| is not divisible by p then we have seen that

M =
∑
Φ

eΦM ∼=
⊕
Φ

(M ⊗Zp[∆] OΦ)

in Remark 4. Therefore, in this case, one can prove the above lemmas

without the assumption that µ(M) = 0.

5. The Proof of the Main Theorem and Its Corollary

Let En be the group of all units in Kn, and identify it with the image

of the embedding Kn ↪→
∏
v|p
Kn,v. Let En be the closure of En ∩ Un in Un,

and let

E∞ = lim
←
En,
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where the projective limit is defined in the same manner as U∞.

The main theorem of this paper is the following:

Theorem. Let p be an odd prime and let K be a totally imaginary

abelian extension of Q. Suppose that K is of the first kind. Then (U∞/E∞)+

contains a cyclic Λ[∆]-submodule of finite index.

We will show that µ( (U∞/E∞)+) = 0, in order to apply Lemma 3 to

(U∞/E∞)+.

By class field theory, there is the exact sequence

(7) 0 −→ (U∞/E∞)+ −→ x+ −→ X+ −→ 0

of Λ[∆]-modules (cf.Washington[W] Corollary 13.6).

By µ(X+) = 0, we have µ( (U∞/E∞)+) = µ(x+). If ζp ∈ K, then we

have seen that

x+ ∼ X−

in §3.3.Therefore we obtain µ(x+) = µ(X−) = 0.

If ζp /∈ K then we have seen that

x+ ∼= x′+/(σ − 1)x′+

in §3.4. Therefore we have µ(x+) ≤ µ(x′+) = 0.

Hence we have proved that µ( (U∞/E∞)+) = 0.

By Lemma 3, it is enough to prove the following claim, for each prime

ideal ℘ of height 1 in Λ:

Claim. ((U∞/E∞)+)℘ is a cyclic Λ℘[∆]-module.

First we will consider the case where ζp ∈ K.

• ℘ �= (Ṫ ), (p) . By Proposition 3 (i), we obtain a Λ℘[∆]-isomorphism

(U∞)℘
∼= Λ℘[∆].

The result follows immediately.

• ℘ = (p) . Since µ( (U∞/E∞)+) = 0, we have ((U∞/E∞)+)(p) = {0}.
• ℘ = (Ṫ ) . By (7), we have that ((U∞/E∞)+)(Ṫ) is isomorphic to a

Λ(Ṫ)[∆]-submodule of (x+)(Ṫ). Thus it is enough to prove that (x+)(Ṫ) is a
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cyclic Λ(Ṫ)[∆]-module by Lemma 4. Furthermore, by the diagram (5), this

is equivalent to saying that (X−)(T) is a cyclic Λ(T)[∆]-module. So we will

consider the cyclicity of (X−)(T).

In general for any CM-field K, Iwasawa[Iw2] and Greenberg[Gr1] have

shown that the characteristic polynomial f(T ) of X− is divisible by T r(K),

where r(K) is the number of prime ideals dividing p in the maximal totally

real subfield K+ of K which split in K. Let g(T ) = f(T )/T r(K) Green-

berg[Gr1] has then shown that g(0) is non-zero when K is an abelian field.

Let L′∞ be the maximal subextension of K∞ in L∞ in which every prime

divisor of K∞, lying above p splits completely. Sinnott ([S] Proposition 6.1)

has shown that

Gal(L∞/L
′
∞)
− ∼= (Λ/(T ))r(K).

Summarizing the above results, the characteristic polynomial of

Gal(L′∞/K∞)− is prime to T . Then we have Gal(L′∞/K∞)−(T) = X−(T).

In the proof of the above result, Sinnott has also shown that

Gal(L∞/L
′
∞)
− ∼= (

⊕
v

Zp · v)
−
.

where v runs over all the primes of K∞ lying above p, using Iwasawa[Iw2]

Lemma 24. Since K is of the first kind, the direct sum is running over all

the primes of K lying above p. Therefore we have

Gal(L∞/L
′
∞)
− ∼= Zp[D\∆]−,

as desired.

This proves the claim for all prime ideals ℘ of height 1 in Λ when ζp ∈ K.

Next we will consider the case where ζp /∈ K.

Let U∞′ and E∞′ be the modules defined as before for K ′∞/K
′, where

K ′ = K(ζp). Then e0(U∞′/E∞′)+ = (U∞/E∞)+ and we have just proved

that (U∞′/E∞′)+ is a pseudo-cyclic Λ[∆′]-module. Hence we see that

(U∞/E∞)+ is a pseudo-cyclic Λ[∆]-module. This completes the proof of

the main Theorem.

We remark that, when ζp /∈ Kv, one can prove the claim using Proposi-

tion 3 (ii), in a manner similar to the case where ζp ∈ K.

Let X ′ and x′ denote the modules for K ′ = K(ζp) defined in §3.4, and

let ei denote the element in Zp[∆
′] defined in §3.4. Under the same condition

as in Theorem, we obtain the following:
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Corollary. (i) When ζp ∈ K, suppose that λ(X+) = 0. Then X−

contains a cyclic Λ[∆]-submodule of finite index.

(ii) When ζp /∈ K, suppose that λ(e1X
′+) = 0. Then X− contains a

cyclic Λ[∆]-submodule of finite index.

Proof. (i) By µ(X+) = λ(X+) = 0 and (7), we have that

(U∞/E∞)+ ∼ x+. However, we have seen that x+ ∼ X− in §3.3, which

proves (i).

(ii) By µ(X ′+) = λ(e1X
′+) = 0 and (7), we have that

e1(U∞′/E∞′)+ ∼ e1x′+. And, we have seen that e1x′+ ∼ e0X ′− = X−

in §3.4, which completes the proof of (ii). �
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