On the Pseudo-Cyclicity of Some Iwasawa Modules Associated to Abelian Fields

By Takae TSUJI

Abstract. Let p be an odd prime number, and K/\mathbf{Q} a totally imaginary finite abelian extension of the first kind, with the Galois group Δ . Let \mathcal{U}_{∞} (resp. \mathcal{E}_{∞}) denote the projective limit of the semilocal units (resp. the global units) of the fields in the cyclotomic \mathbf{Z}_{p} extension of K. We will show that $(\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+$ contains a cyclic $\Lambda[\Delta]$ submodule of finite index.

Introduction

Let p be a fixed prime number, and \mathbf{Z}_p be the ring of p-adic integers. We denote by \mathbf{Q}_{∞} the cyclotomic \mathbf{Z}_p -extension of the rational number field \mathbf{Q} . Let K be a finite abelian extension of \mathbf{Q} , satisfying $K \cap \mathbf{Q}_{\infty} = \mathbf{Q}$. Let K_{∞} be the cyclotomic \mathbf{Z}_p -extension of K, i.e. $K_{\infty} = K\mathbf{Q}_{\infty}$; and for each $n \geq 0$, let K_n be the intermediate field of K_{∞}/K such that K_n is a cyclic extension of degree p^n over K. Put $\Delta = \operatorname{Gal}(K/\mathbf{Q})$ and $\Gamma = \operatorname{Gal}(K_{\infty}/K)$.

Let L_{∞} be the maximal unramified abelian *p*-extension over K_{∞} , and let $X = \operatorname{Gal}(L_{\infty}/K_{\infty})$. Then X is a module over the completed group ring $\mathbf{Z}_p[[\operatorname{Gal}(K_{\infty}/\mathbf{Q})]]$ in a natural way. Identifying Δ with $\operatorname{Gal}(K_{\infty}/\mathbf{Q}_{\infty})$ and $\mathbf{Z}_p[[\Gamma]]$ with the formal power series ring $\Lambda = \mathbf{Z}_p[[T]]$, X becomes a $\Lambda[\Delta]$ module, and it is known that X is finitely generated torsion over Λ . Under this condition, one can see that various Iwasawa modules which are defined with respect to K_{∞}/K also have the structure of $\Lambda[\Delta]$ -modules. Let $J \in \Delta$ denote the complex conjugation. For a $\Lambda[\Delta]$ -module M, we will put

$$M^+ = \{m \in M | J(m) = m\}, M^- = \{m \in M | J(m) = -m\}.$$

Assume that K contains a primitive p-th root ζ_p of unity. Supposing that X^+ is a finite module, Greenberg has proved that X^- contains a cyclic $\Lambda[\Delta]$ -submodule of finite index (Greenberg[Gr2] Theorem 5). In the following,

¹⁹⁹¹ Mathematics Subject Classification. Primary 11R23.

we will call such a $\Lambda[\Delta]$ -module a *pseudo-cyclic* $\Lambda[\Delta]$ -module. Let M_{∞} be the maximal abelian *p*-extension over K_{∞} unramified outside *p*, and let $\mathcal{X} = \operatorname{Gal}(M_{\infty}/K_{\infty})$. Then it is known that X^- is pseudo-isomorphic to \mathcal{X}^+ , that is, isomorphic up to finite, and denoted by $X^- \sim \mathcal{X}^+$ (see §3). Therefore, the pseudo-cyclicity of X^- is equivalent to that of \mathcal{X}^+ . For each prime divisor *v* of K_n lying above *p*, let $U_{n,v}$ be the group of local units in the *v*-completion $K_{n,v}$ which are congruent to 1 modulo the maximal ideal, and let $\mathcal{U}_n = \prod_{v|p} U_{n,v}$. Let E_n be the image of the group of all units in K_n by the embedding $K_n \hookrightarrow \prod_{v|p} K_{n,v}$. Let \mathcal{E}_n be the closure of $E_n \cap \mathcal{U}_n$ in \mathcal{U}_n . We will denote by \mathcal{U}_{∞} and \mathcal{E}_{∞} the projective limits of \mathcal{U}_n and \mathcal{E}_n respectively, being taken with respect to the norm maps. Then it is known that $(\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+$ is isomorphic to a $\Lambda[\Delta]$ -submodule of \mathcal{X}^+ (cf.Washington[W] Corollary13.6). Therefore if X^- is a pseudo-cyclic $\Lambda[\Delta]$ -module, then $(\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+$ is also a pseudo-cyclic $\Lambda[\Delta]$ -module (see Lemma 4).

The purpose of the paper is to prove the pseudo-cyclicity of $(\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+$ directly, without supposing the finiteness of X^+ , that is, our main result is the following:

THEOREM. Let p be an odd prime number and let K be a totally imaginary finite abelian extention of **Q**. Suppose that K is of the first kind, i.e. its conductor is not divisible by p^2 . Then $(\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+$ contains a cyclic $\Lambda[\Delta]$ -submodule of finite index.

If we suppose the finiteness of X^+ , then we have that $(\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+$ is of finite index in \mathcal{X}^+ . Therefore we have $(\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+ \sim \mathcal{X}^+$. Hence our theorem can be used to show the pseudo-cyclicity of X^- (Greenberg loc.cit.), which we shall state as a corollary at the end of this paper.

An outline of the paper is the followings: in §1, for one prime divisor v, we consider the structure of the $\Lambda[\operatorname{Gal}(K_v/\mathbf{Q}_p)]$ -module $U_{\infty,v} = \lim_{\leftarrow} U_{n,v}$. That is, we study the structure of some modules which are defined with respect to a local \mathbf{Z}_p -extension. In §2, we assume that K/\mathbf{Q} is of the first kind, and study the structure of the $\Lambda[\Delta]$ -module \mathcal{U}_{∞} . First, we show that the consideration of \mathcal{U}_{∞} is reduced to that of $U_{\infty,v}$, and then, using our result in §1, we give the structure of the $\Lambda[\Delta]$ -module \mathcal{U}_{∞} . We note that, when $K = \mathbf{Q}(\zeta_p)$, the structure of the $\Lambda[\Delta]$ -module \mathcal{U}_{∞} was known by Iwasawa[Iw1]; furthermore when K is a finite abelian field with degree relatively prime to p, it was known by Gillard[Gi]. In §3, we study the Kummer duality, and then the structure of adjoint modules as $\Lambda[\Delta]$ -modules, which were previously known as Λ -modules. Finally, after we prepare an algebraic lemma in §4, using our result concerning \mathcal{U}_{∞} in §2 and the results in §§3-4, we prove the main theorem and mention its corollary.

I would like to express my sincere gratitude to Professor Masami Ohta who has proposed me to the theme of this paper and many excellent suggestions. Finally I would like to thank Professor Masato Kurihara for the contribution of the important Remark 2.

1. Local Theory

1.1. Let p be a fixed prime number. We fix an algebraic closure Ω_p of the p-adic number field \mathbf{Q}_p , and always consider algebraic extensions of \mathbf{Q}_p to be contained in Ω_p .

Let k be a finite extension of \mathbf{Q}_p (in Ω_p) with

$$[k:\mathbf{Q}_p] = d$$

We denote by k_{ab} the maximal abelian *p*-extension over *k*. By local class field theory, there is a canonical isomorphism

$$\operatorname{Gal}(k_{ab}/k) \longrightarrow A_k,$$

where A_k denotes the *p*-adic completion of the multiplicative group k^{\times} : $A_k = \lim k^{\times} / (k^{\times})^{p^n}$. Then, we can write

$$A_k = \pi^{\mathbf{Z}_p} \times U_k$$

where π is a uniformizing parameter of k, and U_k is the principal units of k, that is, the units congruent to 1 modulo the maximal ideal.

We denote by k_{ur} the maximal unramified abelian *p*-extension over *k*. Since the inertia group of $\text{Gal}(k_{ab}/k)$ is isomorphic to U_k , k_{ur}/k is a \mathbb{Z}_p -extention:

$$\operatorname{Gal}(k_{ur}/k) \cong \mathbf{Z}_p.$$

Let W_k be the group of all *p*-th power roots of unity in *k*. Then W_k is a subgroup of U_k and U_k/W_k is a free \mathbb{Z}_p -module of rank *d*. Therefore we obtain

$$\operatorname{Gal}(k_{ab}/k) \cong W_k \oplus \mathbf{Z}_p^{d+1}$$

From the above, it follows that there are d + 1 independent \mathbf{Z}_p -extensions over k. In particular there exist \mathbf{Z}_p -extensions over k different from k_{ur}/k .

Let k_{∞} be a \mathbb{Z}_p -extention over k; and for each $n \geq 0$, let k_n denote the intermediate field of k_{∞}/k such that k_n is a cyclic extension of degree p^n over k. If k_{∞} is a \mathbb{Z}_p -extention over k different from k_{ur}/k , then there exists an $n_0 \geq 0$ such that $k_{\infty} \cap k_{ur} = k_{n_0}$. Hence k_{∞}/k_n is a totally ramified extension for $n \geq n_0$.

1.2. We fix a \mathbf{Z}_p -extension $\mathbf{Q}_{p,\infty}$ of \mathbf{Q}_p different from $\mathbf{Q}_{p,ur}/\mathbf{Q}_p$. Let k be a finite abelian extension of \mathbf{Q}_p such that $k \cap \mathbf{Q}_{p,\infty} = \mathbf{Q}_p$, and let $k_{\infty} = k\mathbf{Q}_{p,\infty}$. Then we obtain a \mathbf{Z}_p -extention k_{∞}/k different from k_{ur}/k . Put $\Gamma = \text{Gal}(k_{\infty}/k)$ and $D = \text{Gal}(k/\mathbf{Q}_p)$.

Let M_n , $0 \le n \le \infty$, be the maximal abelian *p*-extension over k_n and let

$$X = \operatorname{Gal}(M_{\infty}/k_{\infty}).$$

Then Γ acts on X by conjugation. Fix a topological generator γ_0 of Γ , and identify the completed group ring $\mathbf{Z}_p[[\Gamma]]$ with the formal power series ring $\mathbf{Z}_p[[T]]$ by $\gamma_0 = 1 + T$. Then we can make X into a $\mathbf{Z}_p[[T]]$ -module. Furthermore, identifying D with $\operatorname{Gal}(k_{\infty}/\mathbf{Q}_{p,\infty})$, we can also make X into a $\mathbf{Z}_p[D][[T]]$ -module. Here we will consider the structure of the $\mathbf{Z}_p[D][[T]]$ module X. In the following, we write $\Lambda = \mathbf{Z}_p[[T]]$ and $\Lambda[D] = \mathbf{Z}_p[D][[T]]$.

For each $n \ge 0$, we define the element $\omega_n \in \Lambda = \mathbf{Z}_p[[T]]$ by

$$\omega_n = (1+T)^{p^n} - 1.$$

Then we have

$$\omega_n X = \operatorname{Gal}(M_\infty/M_n), \ X/\omega_n X = \operatorname{Gal}(M_n/k_\infty).$$

We have already seen in §1.1 that $X/\omega_0 X = X/TX = \text{Gal}(M_0/k_\infty) = \text{Gal}(k_{ab}/k_\infty)$ is finitely generated over \mathbf{Z}_p . Hence by Nakayama's lemma, X is finitely generated over Λ (cf.Washington [W],Lemma 13.16).

Since $M_n = k_{n,ab}$, $\operatorname{Gal}(M_n/k_n)$ and hence $\operatorname{Gal}(M_n/k_\infty)$ are both finitely generated \mathbb{Z}_p -modules. Let X_n be the submodule of X containing $\omega_n X$ such that $X_n/\omega_n X$ is the torsion \mathbb{Z}_p -submodule of $X/\omega_n X = \operatorname{Gal}(M_n/k_\infty)$. Clearly X_n is a $\Lambda[D]$ -module, and

$$Y = \bigcap_{n=0}^{\infty} X_n, \ X' = X/Y$$

are, also, $\Lambda[D]$ -modules.

We denote by W the group of all p-th power roots of unity in Ω_p , and let

$$W_n = W_{k_n} = W \bigcap k_n^{\times}, \qquad 0 \le n \le \infty.$$

We obviously have

$$W_0 \subseteq W_1 \subseteq \cdots \subseteq W_n \subseteq \cdots \subseteq W_\infty \subseteq W, \quad W_\infty = \bigcup_{n=0}^\infty W_n.$$

Hence either W_{∞} is finite and $W_{\infty} = W_n$ for sufficiently large $n \geq 0$, or $W_{\infty} = W$ and $k_{\infty} = k(W)$. First, we consider the case where $k_{\infty} = k(W)$. Let $\kappa : \Gamma \to 1 + p\mathbf{Z}_p$ (or $1 + 4\mathbf{Z}_2$ if p = 2) be the *p*-cyclotomic character, i.e. it is the unique character satisfying $\gamma(\zeta) = \zeta^{\kappa(\gamma)}$ for every $\zeta \in W$. We define the element $\dot{T} \in \Lambda$ by

$$\dot{T} = \kappa(\gamma_0)(1+T)^{-1} - 1,$$

where γ_0 is the topological generator which is fixed in the above. For each $a \geq 0$, let $W^{(a)}$ be the subgroup of all p^a -th roots of unity in W, and we will consider

$$\lim W^{(a)}$$

This is isomorphic to \mathbf{Z}_p as a \mathbf{Z}_p -module, and Γ acts on $\lim_{\leftarrow} W^{(a)}$ via the character κ . Hence we have the following Λ -isomorphism:

$$\lim W^{(a)} \cong \Lambda/(1 + T - \kappa(\gamma_0)) = \Lambda/(\dot{T}).$$

Iwasawa has determined the structure of the Λ -module X as follows ([Iw2] Theorem 25):

(i) Suppose that $k_{\infty} = k(W)$, i.e. $W_{\infty} = W$. Then

$$X \cong \Lambda^d \oplus \Lambda/(\dot{T}), \ Y = \Lambda/(\dot{T}), \ X' \cong \Lambda^d$$

(ii) Suppose that $k_{\infty} \neq k(W)$, i.e. W_{∞} is finite. Then

$$X \subseteq \Lambda^d, \ \Lambda^d / X \cong W_{\infty}.$$

We shall prove the following:

PROPOSITION 1. (i) Suppose that $k_{\infty} = k(W)$. Then we have an exact sequence

 $0 \ \longrightarrow \ X \ \longrightarrow \ \Lambda[D] \oplus \Lambda/(\dot{T}) \ \longrightarrow \ F \ \longrightarrow \ 0$

of $\Lambda[D]$ -modules, where F is a $\Lambda[D]$ -module such that $p^a F = 0$ for some $a \ge 0$.

(ii) Suppose that $k_{\infty} \neq k(W)$. Then we have an exact sequence

 $0 \ \longrightarrow \ X \ \longrightarrow \ \Lambda[D] \ \longrightarrow \ F \ \longrightarrow \ 0$

of $\Lambda[D]$ -modules, where F is a $\Lambda[D]$ -module such that $p^a F = 0$ for some $a \ge 0$.

PROOF. (i) Since $X' \cong \Lambda^d$, the exact sequence

 $(1) 0 \longrightarrow Y \longrightarrow X \longrightarrow X' \longrightarrow 0$

of $\Lambda[D]$ -modules induces an exact sequence

$$0 \ \longrightarrow \ Y/TY \ \longrightarrow \ X/TX \ \longrightarrow \ X'/TX' \ \longrightarrow \ 0$$

of $\mathbf{Z}_p[D]$ -modules. Furthermore we have that $X/TX = X/\omega_0 X = \text{Gal}(M_0/k_{\infty})$, and that $Y/TY = (\Lambda/(\dot{T}))/T(\Lambda/(\dot{T})) = \Lambda/(\dot{T},T)$ is a finite $\mathbf{Z}_p[D]$ -module. Hence we obtain a $\mathbf{Q}_p[D]$ -isomorphism

 $\operatorname{Gal}(M_0/k_\infty) \otimes_{\mathbf{Z}_p} \mathbf{Q}_p \cong (X'/TX') \otimes_{\mathbf{Z}_p} \mathbf{Q}_p.$

On the other hand, from the exact sequence

 $0 \longrightarrow \operatorname{Gal}(M_0/k_\infty) \longrightarrow \operatorname{Gal}(M_0/k) \longrightarrow \operatorname{Gal}(k_\infty/k) \longrightarrow 0,$

we have an exact sequence

$$0 \longrightarrow (X'/TX') \otimes_{\mathbf{z}_p} \mathbf{Q}_p \longrightarrow A_k \otimes_{\mathbf{z}_p} \mathbf{Q}_p \longrightarrow \mathbf{Q}_p \longrightarrow 0$$

of $\mathbf{Q}_p[D]$ -modules. Since $A_k = \pi^{\mathbf{z}_p} \times U_k$, we have $A_k \otimes_{\mathbf{z}_p} \mathbf{Q}_p \cong \mathbf{Q}_p \oplus \mathbf{Q}_p[D]$ as $\mathbf{Q}_p[D]$ -modules, hence as representation spaces over \mathbf{Q}_p for D. Therefore we obtain a $\mathbf{Q}_p[D]$ -isomorphism

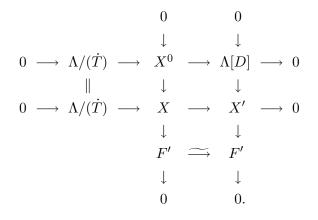
$$(X'/TX') \otimes_{\mathbf{z}_p} \mathbf{Q}_p \cong \mathbf{Q}_p[D].$$

We need now the following lemma (Greengerg[Gr2] Lemma):

LEMMA 1. Let Δ be a finite abelian group, and let \Im denote the quotient field of Λ . Let both M and M' be $\Lambda[\Delta]$ -modules such that both of them are finitely generated and torsion-free as Λ -modules.

Suppose that $M \otimes_{\Lambda} \mathfrak{F}$ and $M' \otimes_{\Lambda} \mathfrak{F}$ are isomorphic as representation spaces over \mathfrak{F} for Δ , equivalently that $(M/TM) \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$ and $(M'/TM') \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$ are isomorphic as representation spaces over \mathbf{Q}_p for Δ . Then there exists an injective $\Lambda[\Delta]$ -homomorphism $\varphi: M \to M'$ such that $p^a M' \subseteq \varphi(M)$ for some integer $a \geq 0$.

Since $X' \cong \Lambda^d$, using Lemma 1 for the above isomorphism, we obtain there exists an injective $\Lambda[\Delta]$ -homomorphism $\varphi : \Lambda[D] \to X'$ such that cokernel(φ) is annihilated by p^a . Let X^0 be the inverse image of $\Lambda[D]$ by the map $X \to X'$ at (1), and let cokernel(φ) = F'. Then we have a commutative diagram of $\Lambda[D]$ -modules



Therefore we obtain an isomorphism : $X^0 \cong \Lambda[D] \oplus \Lambda/(\dot{T})$ of $\Lambda[D]$ -modules. Thus, the cokernel of the map $X \to \Lambda[D] \oplus \Lambda/(\dot{T})$ defined by multiplication by p^a is annihilated by p^a . This completes the proof of (i).

(ii) Since $X/TX = \text{Gal}(M_0/k_\infty)$, similarly as in the case (i), we obtain

$$(X/TX) \otimes_{\mathbf{Z}_p} \mathbf{Q}_p \cong \mathbf{Q}_p[D].$$

Since X is a torsion-free Λ -module, we can also use Lemma 1 in a similar manner as above to complete the proof of (ii). \Box

1.3. Let U_n be the principal units of k_n , and let

$$U_{\infty} = \lim U_n,$$

where the projective limit is defined by means of the norm maps $k_m \to k_n$ for $m \ge n \ge 0$. Γ acts on U_{∞} in the obvious manner; so as in §1.2, we can make U_{∞} into a $\Lambda[D]$ -module. We now study its structure as a $\Lambda[D]$ -module in the following.

For each $n \ge 0$, let \mathcal{O}_n be the ring of integers in k_n , and π_n a uniformizing parameter of k_n . Take the *p*-adic completion from the exact sequence

$$0 \longrightarrow (\mathcal{O}_n)^{\times} \longrightarrow k_n^{\times} \longrightarrow <\pi_n > \longrightarrow 0,$$

to obtain the exact sequence

$$0 \longrightarrow U_n \longrightarrow A_{k_n} \longrightarrow \mathbf{Z}_p \longrightarrow 0,$$

of $\mathbf{Z}_p[\operatorname{Gal}(k_n/\mathbf{Q}_p)]$ -modules. For $m \ge n \ge 0$, we consider the maps $A_{k_m} \to A_{k_n}$ induced by the norm maps. For $m \ge n \ge n_0$, since k_m/k_n is a totally ramified extension, π_m maps to π_n by the norm map for a suitable choice of uniformizing parameters. Therefore we obtain the following commutative diagram for $m \ge n \ge n_0$:

Since $\lim_{\leftarrow} A_{k_n} \cong \lim_{\leftarrow} \operatorname{Gal}(M_n/k_n) = X$, taking the projective limit, we obtain the exact sequence

$$(2) 0 \longrightarrow U_{\infty} \longrightarrow X \longrightarrow \mathbf{Z}_p \longrightarrow 0$$

of $\Lambda[D]$ -modules. We note that $\Gamma \times D$ act on \mathbf{Z}_p trivially by definition.

New, we shall prove the following:

PROPOSITION 2. (i) Suppose that $k_{\infty} = k(W)$. Then we have an exact sequence

$$0 \longrightarrow U_{\infty} \longrightarrow \Lambda[D] \oplus \Lambda/(\dot{T}) \longrightarrow F \longrightarrow 0$$

of $\Lambda[D]$ -modules, where F is a $\Lambda[D]$ -module such that $p^a F = 0$ for some $a \ge 0$.

(ii) Suppose that $k_{\infty} \neq k(W)$. Then we have an exact sequence

$$0 \longrightarrow U_{\infty} \longrightarrow \Lambda[D] \longrightarrow F \longrightarrow 0$$

of $\Lambda[D]$ -modules, where F is a $\Lambda[D]$ -module such that $p^a F = 0$ for some $a \ge 0$.

PROOF. (i) U_{∞} contains $\lim_{\leftarrow} W^{(a)} \cong \Lambda/(\dot{T})$, and we set $U'_{\infty} = U_{\infty}/(\Lambda/(\dot{T}))$. From the sequences (1) and (2), we have a commutative diagram

It follows that $U'_{\infty} \to X'$ is injective, and hence U_{∞}' is a torsion-free Λ -module, since $X' \cong \Lambda^d$. Tensoring \Im over Λ for the sequence right vertical, we obtain an $\Im[D]$ -isomorphism

$$U'_{\infty} \otimes_{\Lambda} \mathfrak{S} \cong X' \otimes_{\Lambda} \mathfrak{S}.$$

In the proof of Proposition 1 (i), we have seen that $X' \otimes_{\Lambda} \mathfrak{S} \cong \mathfrak{S}[D]$. Hence we have

$$U'_{\infty} \otimes_{\Lambda} \mathfrak{S} \cong \mathfrak{S}[D]$$

Using Lemma 1 to this situation, similarly as in Proposition 1 (i), one can prove (i).

(ii) U_{∞} is a torsion-free Λ -module, since $U_{\infty} \subseteq X \subseteq \Lambda^d$. Tensoring \Im over Λ for the sequence (2), we obtain an $\Im[D]$ -isomorphism

$$U_{\infty} \otimes_{\Lambda} \Im \cong X \otimes_{\Lambda} \Im.$$

Using Lemma 1 and the isomorphism $X \otimes_{\Lambda} \mathfrak{F} \cong \mathfrak{F}[D]$, one can also prove (ii). This completes the proof of Proposition 2. \Box

REMARK 1. One can extend Propositions 1 and 2 to a more general situation as follows. Let k' be any finite algebraic extension of \mathbf{Q}_p with the ring of integers \mathcal{O} , and let k'_{∞}/k' be a \mathbf{Z}_p -extension different from k'_{ur}/k' . Let k/k' be a finite abelian extension such that $k \cap k'_{\infty} = k'$, and let $k_{\infty} = kk'_{\infty}$. Let $D = \operatorname{Gal}(k/k') \cong \operatorname{Gal}(k_{\infty}/k'_{\infty})$. Both X and U_{∞} , defined as above for k_{∞}/k are $\Lambda[D]$ -modules. Then we have the same exact sequences of $\Lambda[D]$ -modules as in Propositions 1 and 2, if we replace the terms $\Lambda[D] =$ $\mathbf{Z}_p[D][[T]]$ by $\mathcal{O}[D][[T]]$.

I would like to thank Professor Masato Kurihara for supplying the following:

REMARK 2. Here we mention that there exists a \mathbf{Z}_p -extension k_{∞}/k such that U_{∞} is not isomorphic to $\Lambda[D] \oplus \Lambda/(\dot{T})$ (i.e. $F \neq \{0\}$ in Proposition 2).

Let p be an odd prime. Let H be the unramified cyclic p-extension of \mathbf{Q}_p with the ring of integers \mathcal{O}_H . Let $k = H(\zeta_p)$ and $k_{\infty} = H(W)$. Thus k_{∞} is the cyclotomic \mathbf{Z}_p -extension of k. Note that, since $\mathcal{O}_H \cong \mathbf{Z}_p[\operatorname{Gal}(H/\mathbf{Q}_p)]$, we have $\mathcal{O}_H[[\operatorname{Gal}(k_{\infty}/H)]] \cong \mathbf{Z}_p[[\operatorname{Gal}(k_{\infty}/\mathbf{Q}_p)]] \cong \Lambda[D]$. By Coleman[C1], [C2] and Greither[G], there is an exact sequence of $\Lambda[D]$ -modules

$$0 \longrightarrow \mathbf{Z}_p(1) \longrightarrow U_{\infty} \longrightarrow \mathcal{O}_H[[\operatorname{Gal}(k_{\infty}/H)]] \longrightarrow \mathbf{Z}_p(1) \longrightarrow 0$$

where $\mathbf{Z}_p(1) = \lim_{\leftarrow} W^{(a)}$. (In fact, if H/\mathbf{Q}_p is any unramified extension, then such a sequence exists.) The first map is inclusion map, and $\mathbf{Z}_p(1) \cong \Lambda/(\dot{T})$. Then we will consider the kernel of the third map $\phi : \mathcal{O}_H[[\operatorname{Gal}(k_{\infty}/H)]] \longrightarrow \mathbf{Z}_p(1)$. The map ϕ is defined as following:

Let κ : $\operatorname{Gal}(k_{\infty}/H) \to \mathbf{Z}_{p}^{\times}$ be the *p*-cyclotomic character and fix a generator $\zeta = (\zeta_{p^{a}})$ of $\mathbf{Z}_{p}(1) = \lim_{\leftarrow} W^{(a)}$. Then ϕ is given by $\phi(\sigma) = \zeta^{-p\kappa(\sigma)}$ for $\sigma \in \operatorname{Gal}(k_{\infty}/H)$ and $\phi(v) = \zeta^{-\operatorname{Tr}(v)}$ for $v \in \mathcal{O}_{H}$, where Tr is the trace map from \mathcal{O}_{H} to \mathbf{Z}_{p} .

Since $\mathcal{O}_H \cong \mathbf{Z}_p[\operatorname{Gal}(H/\mathbf{Q}_p)]$, identifying a generator τ of $\operatorname{Gal}(H/\mathbf{Q}_p)$ with the element 1 + S in the formal power series ring $\mathbf{Z}_p[[S]]$, we obtain an isomorphism

$$\mathcal{O}_H \cong \mathbf{Z}_p[[S]]/((1+S)^p - 1) \cong \mathbf{Z}_p[S]/((1+S)^p - 1).$$

Therefore we have

 $\mathcal{O}_H[[\operatorname{Gal}(k_{\infty}/H)]] \cong (\mathbf{Z}_p[S]/((1+S)^p - 1))[\operatorname{Gal}(k/H)][[T]] \ (\cong \Lambda[D]).$

Then by the definition of ϕ , we have $S = \tau - 1$, $\dot{T} = \kappa(\gamma_0)\gamma_0^{-1} - 1 \in \ker(\phi)$. Hence the ideal (S, \dot{T}) which generated by S and \dot{T} over $(\mathbf{Z}_p[S]/((1+S)^p - 1))[\operatorname{Gal}(k/H)][[T]] \cong \Lambda[D]$ is contained in $\ker(\phi)$. Consequently $\ker(\phi)$ and hence, $U_{\infty}/(\Lambda/(\dot{T}))$ is not isomorphic to $\Lambda[D]$.

2. Semi-Local Units

We will denote by \mathbf{Q}_{∞} the cyclotomic \mathbf{Z}_p -extension of \mathbf{Q} . Let K be an abelian extension of \mathbf{Q} . Assume that K is of the first kind, that is, its conductor is not divisible by p^2 (or 8 if p = 2). Then we obviously have $K \cap \mathbf{Q}_{\infty} = \mathbf{Q}$. Let K_{∞} be the cyclotomic \mathbf{Z}_p -extension over K, i.e. $K_{\infty} = K\mathbf{Q}_{\infty}$; and for each $n \geq 0$, let K_n denote the intermediate field of K_{∞}/K such that K_n is a cyclic extension of degree p^n over K. Then one can easily see that, under our assumption on K, every prime divisor of K, lying above p, is totally ramified in K_{∞} . Put $\Delta = \operatorname{Gal}(K/\mathbf{Q})$ and $\Gamma = \operatorname{Gal}(K_{\infty}/K)$.

Let v be a finite prime divisor of K_{∞} , lying above p. For each $n \geq 0$, let $K_{n,v}$ be the completion of K_n with respect to the restriction of v to K_n . Let $U_{n,v}$ denote the principal units of $K_{n,v}$, and let

$$\mathcal{U}_n = \prod_{v|p} U_{n,v},$$

where v runs over all the prime divisors of K_{∞} lying above p. Let

$$\mathcal{U}_{\infty} = \lim \mathcal{U}_n,$$

where the projective limit is defined by means of the maps $\mathcal{U}_m \to \mathcal{U}_n$ for $m \geq n \geq 0$ induced by the norm maps. Γ act on \mathcal{U}_{∞} in the obvious manner. Identifying Δ with $\operatorname{Gal}(K_{\infty}/\mathbf{Q}_{\infty})$, we make \mathcal{U}_{∞} into a $\mathbf{Z}_p[\Delta][[T]]$ -module as in §1.2. Then we will consider the structure of the $\mathbf{Z}_p[\Delta][[T]]$ -module \mathcal{U}_{∞} in the following. Put $\Lambda[\Delta] = \mathbf{Z}_p[\Delta][[T]]$.

Let D be the decomposition group of p in K/\mathbf{Q} . Fixing a finite prime divisor v of K_{∞} , we have

$$\mathcal{U}_n = \prod_{\sigma \in D \setminus \Delta} \mathcal{U}_{n,v^{\sigma}} = \prod_{\sigma \in D \setminus \Delta} (\mathcal{U}_{n,v})^{\sigma}$$

where σ runs over a set of left representatives for the cosets of $D \setminus \Delta$. Therefore we obtain

$$\mathcal{U}_n \longrightarrow U_{n,v} \otimes_{\mathbf{Z}_p[D]} \mathbf{Z}_p[\Delta]$$

as $\mathbf{Z}_p[\operatorname{Gal}(K_n/\mathbf{Q})]$ -modules since every prime divisor of K, lying above p, is totally ramified in K_{∞} . Furthermore, since $\mathbf{Z}_p[\Delta]$ is a free $\mathbf{Z}_p[D]$ -module, taking the projective limit, we obtain a $\Lambda[\Delta]$ -isomorphism

$$\mathcal{U}_{\infty} \cong U_{\infty,v} \otimes_{\mathbf{Z}_p[D]} \mathbf{Z}_p[\Delta],$$

where $U_{\infty,v} = \lim_{\leftarrow} U_{n,v}$.

Tensoring $\mathbf{Z}_p[\Delta]$ over $\mathbf{Z}_p[D]$ on the sequences in Proposition 2, we obtain the following result:

PROPOSITION 3. (i) Suppose that K_v contains a primitive p-th root ζ_p of unity (or i if p = 2). Then we have an exact sequence

$$0 \longrightarrow \mathcal{U}_{\infty} \longrightarrow \Lambda[\Delta] \oplus (\Lambda/(\dot{T}) \otimes_{\mathbf{Z}_p[D]} \mathbf{Z}_p[\Delta]) \longrightarrow F \longrightarrow 0$$

of $\Lambda[\Delta]$ -modules, where F is a $\Lambda[\Delta]$ -module such that $p^a F = 0$ for some $a \ge 0$.

(ii) Suppose that K_v contains no primitive p-th root ζ_p of unity (or i if p = 2). Then we have an exact sequence

$$0 \longrightarrow \mathcal{U}_{\infty} \longrightarrow \Lambda[\Delta] \longrightarrow F \longrightarrow 0$$

of $\Lambda[\Delta]$ -modules, where F is a $\Lambda[\Delta]$ -module such that $p^a F = 0$ for some $a \ge 0$.

REMARK 3. Assume that $[K : \mathbf{Q}]$ is not divisible by p. Let Φ be an irreducible character of Δ over \mathbf{Q}_p , and e_{Φ} the corresponding idempotent in $\mathbf{Z}_p[\Delta]$:

$$e_{\Phi} = \frac{1}{[k:\mathbf{Q}]} \sum_{\delta \in \Delta} \Phi(\delta) \delta^{-1}.$$

Choose an absolutely irreducible component χ of Φ , and let \mathcal{O}_{Φ} denote the ring of integers in Ω_p generated by the values of χ over \mathbf{Z}_p . Then we obtain a $\mathbf{Z}_p[\Delta]$ -isomorphism

$$e_{\Phi}\mathbf{Z}_p[\Delta] \xrightarrow{\sim} \mathcal{O}_{\Phi}.$$

Thus $e_{\Phi}\mathcal{U}_{\infty}$ is regarded as a \mathcal{O}_{Φ} -module.

The following result had been shown by Gillard ([Gi] Proposition 1): As $\mathcal{O}_{\Phi}[[T]]$ -modules

$$e_{\Phi}\mathcal{U}_{\infty} \cong \mathcal{O}_{\Phi}[[T]], \qquad \qquad \omega\chi^{-1}(p) \neq 1$$
$$e_{\Phi}\mathcal{U}_{\infty} \cong \mathcal{O}_{\Phi}[[T]] \oplus \mathcal{O}_{\Phi}[[T]]/(\dot{T}), \qquad \qquad \omega\chi^{-1}(p) = 1,$$

where ω is the Teichmüller character.

Hence if $[K : \mathbf{Q}]$ is not divisible by p, then we have the following: (i) If ζ_p (or i if p = 2) $\in K_v$, then

$$\mathcal{U}_{\infty} \cong \Lambda[\Delta] \oplus (\Lambda/(\dot{T}) \otimes_{\mathbf{Z}_p[D]} \mathbf{Z}_p[\Delta]).$$

(ii) If ζ_p (or *i* if p = 2) $\notin K_v$, then

$$\mathcal{U}_{\infty} \cong \Lambda[\Delta].$$

3. Kummer Duality and Adjoint Modules

3.1. We keep the notion as in the previous section. But we assume here that p is an odd prime number, and that K contains a primitive p-th root ζ_p of unity. Let $J \in \Delta$ be the complex conjugation $(J \neq 1)$.

For a $\Lambda[\Delta]$ -module M, we define

$$M^+ = \{m \in M | J(m) = m\}, M^- = \{m \in M | J(m) = -m\}$$

Then $M^+ = (1 + J)M$, $M^- = (1 - J)M$ and

$$M = M^+ \oplus M^-$$

since $p \neq 2$. Also K_{∞} contains the group W of all p-th power roots of unity, by our assumption on K.

Let M_{∞} be the maximal abelian *p*-extension unramified outside *p*, and let

$$\mathcal{X} = \operatorname{Gal}(M_{\infty}/K_{\infty}).$$

It is known that there is a subgroup m of the discrete abelian group $K_{\infty}^{\times} \otimes_{\mathbf{Z}}$ $(\mathbf{Q}_p/\mathbf{Z}_p)$ such that the usual pairing induces the Pontryagin duality:

$$<,>: \mathcal{X} imes m \longrightarrow W.$$

It also has the property that

$$<\xi\sigma, \xiv>=\xi<\sigma, v>$$

for any $\xi \in \text{Gal}(K_{\infty}/\mathbf{Q}) \cong \Gamma \times \Delta$ (cf.Iwasawa[Iw2] §7). Clearly the pairing \langle , \rangle induces a \mathbf{Z}_p -isomorphism

$$\mathfrak{X} \cong \operatorname{Hom}_{\mathbf{z}_n}(m, W).$$

We define $\xi \circ \varphi$ for $\varphi \in \operatorname{Hom}_{\mathbf{z}_p}(m, W)$ by

$$(\xi \circ \varphi)(v) = \xi \varphi(\xi^{-1}v), \qquad \xi \in \Gamma \times \Delta, \ v \in m.$$

Then the above \mathbf{Z}_p -isomorphism becomes a $\Lambda[\Delta]$ -isomorphism.

Let A_n be the *p*-Sylow subgroup of the ideal class group of K_n , and let

$$A_{\infty} = \lim A_n$$

where the inductive limit is defined by means of the natural maps $A_n \to A_m$ for $m \ge n \ge 0$. Clearly A_{∞} is a $\Lambda[\Delta]$ -module. It is known that

$$A_{\infty}^{-} \cong m^{-}$$

as $\Lambda[\Delta]$ -modules (cf.Iwasawa[Iw2] Lemma10). Then defining also $\xi \circ \varphi$ for $\varphi \in \operatorname{Hom}_{\mathbf{z}_p}(A_{\infty}^{-}, W)$ by

$$(\xi \circ \varphi)(v) = \xi \varphi(\xi^{-1}v), \qquad \xi \in \Gamma \times \Lambda, \ v \in A_{\infty}^{-},$$

we have a $\Lambda[\Delta]$ -isomorphism

(3)
$$\mathcal{X}^+ \cong \operatorname{Hom}_{\mathbf{z}_p}(A_{\infty}^-, W).$$

3.2. Let both M and M' be finitely generated Λ -modules. A morphism

$$f : M \longrightarrow M'$$

is call a pseudo-isomorphism if the kernel and the cokernel of f are both finite modules. When there exists such a pseudo-isomorphism, we write

$$M \sim M'$$
.

If both M and M' are torsion Λ -modules, then $M \sim M'$ implies $M' \sim M$. However, this is not true in general. The structure theorem of finitely generated Λ -modules states that given such a Λ -module M, there exists a unique Λ -module of the form

$$E(M) = \Lambda^r \oplus \left(\bigoplus_{i=1}^t \Lambda/(p)^{e_i}\right) \oplus \left(\bigoplus_{j=1}^s \Lambda/(f_j)^{e_j}\right)$$

where f_j is an irreducible distinguished polynomial, $r, s, t \ge 0$ and $e_i, e_j > 0$, with $M \sim E(M)$ as Λ -modules. We call E(M) the elementary Λ -module associated with M. Also Iwasawa invariants associated with M are defined by

$$\mu(M) = \sum_{i=1}^{t} e_i, \ \lambda(M) = \sum_{j=1}^{s} e_j \deg(f_j).$$

Let \wp be a prime ideal of height 1 in Λ . Then either $\wp = (p)$, the principal ideal generated by p, or there exists a unique irreducible distinguished polynomial f(T) such that $\wp = (f(T))$.

For each prime ideal \wp of height 1 in Λ , we will set

$$M_{\wp} = M \otimes_{\Lambda} \Lambda_{\wp}$$

where Λ_{\wp} denotes the localization of Λ at \wp . Now, let Δ be a finite abelian group, and let M be a $\Lambda[\Delta]$ -module which is finitely generated and torsion as a Λ -module. If

$$E(M) = \bigoplus_{i=1}^{t} \Lambda / \wp_i^{e_i}$$

with prime ideals \wp_i of height 1 in Λ and $e_i > 0$, then $M_{\wp} = \{0\}$ if and only if $\wp \neq \wp_i$, $1 \leq i \leq t$. Let X^0 and Y denote the kernel and the cokernel, respectively, of the morphism

$$M \longrightarrow \prod_{\wp} M_{\wp}$$

induced by the canonical map $M \to M_{\wp}$, the product being taken over all \wp . Then X^0 is the maximal finite Λ -submodule of M. We define

$$\alpha(M) = \operatorname{Hom}_{\mathbf{Z}_p}(Y, \mathbf{Q}_p / \mathbf{Z}_p).$$

and make $\alpha(M)$ into a $\Lambda[\Delta]$ -module by defining

$$(\xi \cdot \varphi)(y) = \varphi(\xi y)$$

for $\xi \in \Delta \times \Lambda$, $\varphi \in \alpha(M)$ and $y \in Y$. We call $\alpha(M)$ the adjoint module of M.

Let both M and M' be finitely generated torsion Λ -modules. The following properties of Λ -modules are known (cf. Federer[F]):

- 1) $\alpha(M)$ is a finitely generated torsion Λ -module.
- 2) If E is an elementary torsion Λ -module then $E \cong \alpha(E)$.
- 3) If $M \sim M'$ then $\alpha(M) \sim \alpha(M')$.
- 4) $\alpha(M) \sim M$.

LEMMA 2. Let M be a $\Lambda[\Delta]$ -module which is finitely generated and torsion as a Λ -module. Suppose $\mu(M) = 0$. Then we have a pseudoisomorphism of $\Lambda[\Delta]$ -modules

$$\alpha(M) \sim M.$$

PROOF. Let Φ be an irreducible character of Δ over \mathbf{Q}_p , and e_{Φ} the corresponding idempotent in $\mathbf{Q}_p[\Delta]$:

$$e_{\Phi} = \frac{1}{|\Delta|} \sum_{\delta \in \Delta} \Phi(\delta) \delta^{-1}.$$

Then we have

$$|\Delta| \sum_{\Phi} e_{\Phi} \mathbf{Z}_p[\Delta] \subseteq \mathbf{Z}_p[\Delta] \subseteq \sum_{\Phi} e_{\Phi} \mathbf{Z}_p[\Delta]$$

in $\mathbf{Q}_p[\Delta]$, where Φ runs over all distinct irreducible characters. Choose an absolutely irreducible component χ of Φ , and let \mathcal{O}_{Φ} denote the ring of integers in Ω_p generated by the values of χ over \mathbf{Z}_p . Then we obtain a $\mathbf{Z}_p[\Delta]$ -isomorphism

$$e_{\Phi}\mathbf{Z}_{p}[\Delta] \xrightarrow{\sim} \mathcal{O}_{\Phi}$$

Let F_1 and F_2 denote the cokernels of the inclusion map $\mathbf{Z}_p[\Delta] \to \bigoplus_{\Phi} \mathcal{O}_{\Phi}$ and the map $\bigoplus_{\Phi} \mathcal{O}_{\Phi} \to \mathbf{Z}_p[\Delta]$, defined by multiplication by p^N for large

 $N \geq 0$, respectively. Then both F_1 and F_2 are finite modules, and the following diagram is commutative:

Then the above diagram induces a commutative diagram of $\Lambda[\Delta]\text{-}$ module s

$$M \longrightarrow \bigoplus_{\Phi} (M \otimes_{\mathbf{Z}_{p}[\Delta]} \mathcal{O}_{\Phi}) \longrightarrow M \otimes_{\mathbf{Z}_{p}[\Delta]} F_{1} \longrightarrow 0$$

$$\downarrow_{p}^{N} \qquad \qquad \parallel$$

$$M \longrightarrow \bigoplus_{\Phi} (M \otimes_{\mathbf{Z}_{p}[\Delta]} \mathcal{O}_{\Phi}),$$

where $\delta \in \Delta$ acts on $M \otimes_{\mathbf{Z}_p[\Delta]} \mathcal{O}_{\Phi}$ as $\chi(\delta)$. Since $\mu(M) = 0$, both $M \otimes_{\mathbf{Z}_p[\Delta]} F_1$ and $M \otimes_{\mathbf{Z}_p[\Delta]} F_2$ are finite modules. Hence we have a pseudo-isomorphism

$$M \sim \bigoplus_{\Phi} (M \otimes_{\mathbf{Z}_p[\Delta]} \mathcal{O}_{\Phi})$$

of $\Lambda[\Delta]$ -modules. By the properties 3) and 4), we obtain

$$\alpha(M) \sim \bigoplus_{\Phi} \alpha(M \otimes_{\mathbf{Z}_p[\Delta]} \mathcal{O}_{\Phi})$$
$$\sim \bigoplus_{\Phi} (M \otimes_{\mathbf{Z}_p[\Delta]} \mathcal{O}_{\Phi})$$
$$\sim M$$

as $\Lambda[\Delta]$ -modules. This completes the proof of Lemma 2. \Box

REMARK 4. If $|\Delta|$ is not divisible by p then

$$\mathbf{Z}_p[\Delta] = \sum_{\Phi} e_{\Phi} \mathbf{Z}_p[\Delta] \cong \bigoplus_{\Phi} \mathcal{O}_{\Phi}.$$

Hence we obtain

$$M \cong \bigoplus_{\Phi} (M \otimes_{\mathbf{Z}_p[\Delta]} \mathcal{O}_{\Phi}).$$

In this case, one can prove the above lemma without the assumption that $\mu(M) = 0$.

3.3. We again assume that p is an odd prime number, and that K contains ζ_p here. Let L_n , $0 \leq n \leq \infty$, denote the maximal unramified abelian *p*-extension over K_n , and let

$$X = \operatorname{Gal}(L_{\infty}/K_{\infty}), \quad Y_0 = \operatorname{Gal}(L_{\infty}/K_{\infty}L_0).$$

We make $\operatorname{Hom}_{\mathbf{z}_p}(A_{\infty}, \mathbf{Q}_p/\mathbf{Z}_p)$ into a $\Lambda[\Delta]$ -module by defining

$$(\xi \cdot \varphi)(v) = \varphi(\xi v)$$

for $\xi \in \Gamma \times \Delta$, $\varphi \in \operatorname{Hom}_{\mathbf{Z}_p}(A_{\infty}, \mathbf{Q}_p/\mathbf{Z}_p)$ and $v \in A_{\infty}$. Then, it is known that there is a $\Lambda[\Delta]$ -isomorphism

$$\alpha(Y_0) \cong \operatorname{Hom}_{\mathbf{z}_p}(A_\infty, \mathbf{Q}_p/\mathbf{Z}_p)$$

(cf. Iwasawa[Iw2] Theorem 11). Now, we have $\mu(X) = 0$ when K is abelian over **Q** by Ferrero-Washington[F-W]. So, using Lemma 2 we obtain a pseudo-isomorphism

(4)
$$X^- \sim \operatorname{Hom}_{\mathbf{Z}_p}(A_{\infty}^-, \mathbf{Q}_p/\mathbf{Z}_p)$$

of $\Lambda[\Delta]$ -modules.

Fixing a \mathbf{Z}_p -isomorphism

$$W \cong \mathbf{Q}_p / \mathbf{Z}_p$$

we have a \mathbf{Z}_p -isomorphism

$$\operatorname{Hom}_{\mathbf{Z}_p}(A_{\infty}^{-}, W) \xrightarrow{\sim} \operatorname{Hom}_{\mathbf{Z}_p}(A_{\infty}^{-}, \mathbf{Q}_p/\mathbf{Z}_p)$$

By (3) and (4), we obtain a pseudo-isomorphism

$$\mathcal{X}^+ \sim X^-,$$

of \mathbf{Z}_p -modules. We will consider the action of Γ and Δ on the above groups. Since $K_{\infty} \supset W$, we may consider the *p*-cyclotomic character $\kappa : \Gamma \rightarrow$

 $1 + p\mathbf{Z}_p$. Recall $\dot{T} = \kappa(\gamma_0)(1+T)^{-1} - 1$. For $\varphi \in \operatorname{Hom}_{\mathbf{Z}_p}(A_{\infty}^{-}, W) \cong \operatorname{Hom}_{\mathbf{Z}_p}(A_{\infty}^{-}, \mathbf{Q}_p/\mathbf{Z}_p)$, we have

$$\begin{aligned} (\gamma_0 \circ \varphi)(v) &= \gamma_0 \varphi(\gamma_0^{-1} v) \\ &= \kappa(\gamma_0) \varphi(\gamma_0^{-1} v) \\ &= ((\kappa(\gamma_0)\gamma_0^{-1}) \cdot \varphi)(v). \end{aligned}$$

Thus the following diagram is commutative:

(5)
$$\begin{array}{cccc} \mathcal{X}^+ & \longrightarrow & X^- \\ & & & \downarrow_{(1+\bar{T})} \downarrow & & \downarrow_{(1+\bar{T})} \\ & & & \mathcal{X}^+ & \longrightarrow & X^- \end{array}$$

where the lefthand map and the righthand map are the action of (1 + T)and $(1 + \dot{T})$, respectively.

Next we will consider the action of Δ . We note that, for $\zeta \in W$ and $\delta \in \Delta$, we have

$$\delta(\zeta) = \zeta^{\omega(\delta)}.$$

For $\varphi \in \operatorname{Hom}_{\mathbf{z}_p}(A_{\infty}^{-}, W) \cong \operatorname{Hom}_{\mathbf{z}_p}(A_{\infty}^{-}, \mathbf{Q}_p/\mathbf{Z}_p),$

$$\begin{aligned} (\delta \circ \varphi)(v) &= \delta \varphi(\delta^{-1}v) \\ &= \omega(\delta)\varphi(\delta^{-1}v) \\ &= ((\omega(\delta)\delta^{-1}) \cdot \varphi)(v). \end{aligned}$$

Thus the following diagram is commutative, for any $\delta \in \Delta$:

(6)
$$\begin{array}{cccc} & \mathcal{X}^+ & \longrightarrow & X^- \\ & \delta \downarrow & & \downarrow \omega(\delta)\delta^{-1} \\ & \mathcal{X}^+ & \longrightarrow & X^- \end{array}$$

where the lefthand map and the righthand map are the action of δ and $\omega(\delta)\delta^{-1}$, respectively.

3.4. In this subsection, we let K be a totally imaginary finite abelian extension of **Q** of the first kind; but we assume that K does not contain ζ_p .

Letting $K' = K(\zeta_p)$, K' is also an abelian extension of \mathbf{Q} of the first kind. Then $\operatorname{Gal}(K'/K)$ is a cyclic group of degree $d(\neq 1)$, which is a divisor of (p-1). Fix a generator σ of $\operatorname{Gal}(K'/K)$. Let K'_{∞} be the cyclotomic \mathbf{Z}_p -extension over K', i.e. $K'_{\infty} = K'\mathbf{Q}_{\infty} = K(W)$, and let $\Delta' = \operatorname{Gal}(K'/\mathbf{Q})$.

Let L'_{∞} be the maximal unramified abelian *p*-extension over K'_{∞} , and M'_{∞} the maximal abelian *p*-extension over K'_{∞} unramified outside *p*. Let

$$X' = \operatorname{Gal}(L'_{\infty}/K'_{\infty}), \ \mathcal{X}' = \operatorname{Gal}(M'_{\infty}/K'_{\infty}).$$

Clearly both X' and \mathcal{X}' are $\Lambda[\Delta']$ -modules. We let

$$e_i = \frac{1}{d} \sum_{j=1}^d \omega^i(\sigma^j) \sigma^{-j} \in \mathbf{Z}_p[\Delta'].$$

On the other hand we have seen in $\S3.2$ that

$$\mathcal{X}'^+ \sim X'^-$$

as $\Lambda[\Delta']$ -modules, in the sense of (5) and (6). By (6), we obtain

$$e_i \mathcal{X}'^+ \sim e_{1-i} X'^-.$$

Let M^0 be the maximal abelian extension of K_{∞} contained in M'_{∞} . Then one can see easily that M^0 corresponds to $(\sigma-1)\mathcal{X}'$, and $\mathcal{X} = \text{Gal}(M_{\infty}/K_{\infty})$ is the *p*-Sylow subgroup of $\text{Gal}(M^0/K_{\infty})$. Hence

$$\mathcal{X} \cong \mathcal{X}'/(\sigma - 1)\mathcal{X}'$$

since the order of $\operatorname{Gal}(K'_{\infty}/K_{\infty}) \cong <\sigma >$ is prime to p. Similarly for X', we have

$$X \cong X'/(\sigma - 1)X'.$$

Therefore we obtain

$$X = e_0 X \cong e_0 \left(X' / (\sigma - 1) X' \right) \cong e_0 X'.$$

Summarizing the above results, we see that

$$X^- \sim e_1 \mathcal{X}'^+$$

as $\Lambda[\Delta]$ -modules. (The action of $\Lambda[\Delta]$ is the same as above.)

4. Pseudo-Cyclic $\Lambda[\Delta]$ -Modules and Cyclic $\Lambda_{\wp}[\Delta]$ -Modules

Let M be a finitely generated torsion Λ -module. We will call M a pseudo-cyclic Λ -module if there exists a cyclic Λ -module M' with

$$M \sim M'$$

as Λ -modules. Assume that $g, h \in \Lambda$ are relatively prime. One can easily see that

$$egin{array}{lll} \Lambda/(g \cdot h) &\sim& \Lambda/(g) \oplus \Lambda/(h) \ \Lambda/(g) \oplus \Lambda/(h) &\sim& \Lambda/(g \cdot h). \end{array}$$

Let

$$E(M) = \bigoplus_{i=1}^{t} \Lambda / \wp_i^{e_i}$$

with prime ideals \wp_i of height 1 in Λ and $e_i > 0$. Then M is a pseudo-cyclic Λ -module if and only if $\wp_i \neq \wp_j$ for all $i \neq j$, $1 \leq i, j \leq t$. Furthermore this is equivalent to saying that $M_{\wp} = M \otimes_{\Lambda} \Lambda_{\wp}$ is a cyclic Λ_{\wp} -module for every \wp .

Let \mathcal{O} be the ring of integers in a finite algebraic extension of \mathbf{Q}_p , and let

$$\Lambda_{\mathcal{O}} = \mathcal{O}[[T]], \quad M_{\mathcal{O}} = M \otimes_{\mathbf{Z}_p} \mathcal{O} = M \otimes_{\Lambda} \Lambda_{\mathcal{O}}.$$

Noting the remark above, M is a pseudo-cyclic Λ -module if and only if $M_{\mathcal{O}}$ is a pseudo-cyclic $\Lambda_{\mathcal{O}}$ -module.

Now, let Δ be a finite abelian group, and let M be a $\Lambda[\Delta]$ -module which is finitely generated and torsion as a Λ -module. We will call M a pseudocyclic $\Lambda[\Delta]$ -module if there exists a cyclic $\Lambda[\Delta]$ -module M' with

$$M \sim M'$$
.

as $\Lambda[\Delta]$ -modules. Since both M and M' are torsion Λ -modules, we also have $M' \sim M$. Therefore M is a pseudo-cyclic $\Lambda[\Delta]$ -module if and only if M contains a cyclic $\Lambda[\Delta]$ -submodule of finite index.

We will assume that $\mu(M) = 0$. We have seen, in the proof of Lemma 2, that

$$M \sim \bigoplus_{\Phi} M \otimes_{\mathbf{Z}_p[\Delta]} \mathcal{O}_{\Phi}$$

as $\Lambda[\Delta]$ -modules, where Φ runs over all distinct irreducible characters of Δ over \mathbf{Q}_p . Note that $\delta \in \Delta$ acts on $M \otimes_{\mathbf{Z}_p[\Delta]} \mathcal{O}_{\Phi}$ as $\chi(\delta)$, where χ is an absolutely irreducible component of Φ . Then M is a pseudo-cyclic $\Lambda[\Delta]$ module if and only if $M \otimes_{\mathbf{Z}_p[\Delta]} \mathcal{O}_{\Phi}$ is a pseudo-cyclic $\mathcal{O}_{\Phi}[[T]]$ -module for every irreducible character Φ of Δ over \mathbf{Q}_p . Furthermore, let \mathcal{O} be the ring of integers in a finite algebraic extension of \mathbf{Q}_p , containing all the values of χ , which will be fixed throughout the following, and let

$$M_{\Phi,\mathcal{O}} = M \otimes_{\mathbf{Z}_p[\Delta]} \mathcal{O}_{\Phi} \otimes_{\mathcal{O}_{\Phi}} \mathcal{O}$$
$$= M \otimes_{\mathbf{Z}_p[\Delta]} \mathcal{O}.$$

Note that $\delta \in \Delta$ acts on $M_{\Phi,\mathcal{O}}$ as $\chi(\delta)$. Summarizing the argument above, M is a pseudo-cyclic $\Lambda[\Delta]$ -module if and only if $M_{\Phi,\mathcal{O}}$ is pseudo-cyclic $\Lambda_{\mathcal{O}}$ module for every irreducible character Φ of Δ over \mathbf{Q}_p .

We shall prove following two lemmas:

LEMMA 3. Let M be a $\Lambda[\Delta]$ -module which is finitely generated and torsion as a Λ -module. Suppose $\mu(M) = 0$. Then the following two conditions are equivalent:

a) M is a pseudo-cyclic $\Lambda[\Delta]$ -module.

b) M_{\wp} is a cyclic $\Lambda_{\wp}[\Delta]$ -module for every prime ideal \wp of height 1 in Λ .

PROOF. a) \Rightarrow b) is clear.

a) is equivalent to saying that $M_{\Phi,\mathcal{O}}$ is pseudo-cyclic $\Lambda_{\mathcal{O}}$ -module for every irreducible character Φ of Δ over \mathbf{Q}_p . In addition, this is also equivalent to saying that $M_{\Phi,\mathcal{O}} \otimes_{\Lambda_{\mathcal{O}}} \Lambda_{\mathcal{O},\wp}$ is a cyclic $\Lambda_{\mathcal{O},\wp}$ -module for every irreducible character Φ of Δ over \mathbf{Q}_p and for every prime ideal \wp of height 1 in $\Lambda_{\mathcal{O}}$, where $\Lambda_{\mathcal{O},\wp}$ denote the localization of $\Lambda_{\mathcal{O}}$ at \wp . Since

$$\bigoplus_{\Phi} (M_{\Phi,\mathcal{O}} \otimes_{\Lambda_{\mathcal{O}}} \Lambda_{\mathcal{O},\wp}) = (\bigoplus_{\Phi} M_{\Phi,\mathcal{O}}) \otimes_{\Lambda_{\mathcal{O}}} \Lambda_{\mathcal{O},\wp}$$

$$\cong (M \otimes_{\mathbf{Z}_p} \mathcal{O}) \otimes_{\Lambda_{\mathcal{O}}} \Lambda_{\mathcal{O},\wp}$$

$$= M_{\mathcal{O},\wp},$$

the above statement is equivalent to saying that $M_{\mathcal{O},\wp}$ is a cyclic $\Lambda_{\mathcal{O},\wp}[\Delta]$ module for every \wp . Therefore a necessary and sufficient condition for a) is that $M_{\mathcal{O},\wp}$ is cyclic $\Lambda_{\mathcal{O},\wp}[\Delta]$ -module for every prime ideal \wp of height 1 in $\Lambda_{\mathcal{O}}$.

Now, let \wp be a prime ideal of height 1 in Λ , and write $\wp = \wp_1 \cdots \wp_s$ in $\Lambda_{\mathcal{O}}$, where \wp_i , $1 \leq i \leq s$, are prime ideals of height 1 in $\Lambda_{\mathcal{O}}$. Since

$$\begin{aligned} M_{\mathcal{O},\wp_i} &= (M \otimes_{\mathbf{Z}_p} \mathcal{O}) \otimes_{\Lambda_{\mathcal{O}}} \Lambda_{\mathcal{O},\wp_i} \\ &= M_{\wp} \otimes_{\Lambda_{\wp}} \Lambda_{\mathcal{O},\wp_i}, \end{aligned}$$

if M_{\wp} is a cyclic $\Lambda_{\wp}[\Delta]$ -module, then $M_{\mathcal{O},\wp_i}$ is a cyclic $\Lambda_{\mathcal{O},\wp_i}[\Delta]$ -module for $1 \leq i \leq s$.

Hence we have b) \Rightarrow a), this completes the proof of Lemma 3. \Box

LEMMA 4. Let M be a pseudo-cyclic $\Lambda[\Delta]$ -module. Suppose $\mu(M) = 0$. Then a $\Lambda[\Delta]$ -submodule of M is also a pseudo-cyclic $\Lambda[\Delta]$ -module.

PROOF. $M_{\mathcal{O},\Phi}$ is a pseudo-cyclic $\Lambda_{\mathcal{O}}$ -module for every irreducible character Φ of Δ over \mathbf{Q}_p . By the structure theorem of finitely generated Λ modules, for every prime ideal \wp of height 1 in $\Lambda_{\mathcal{O}}$, there exist some $e \geq 0$ such that

$$M_{\mathcal{O},\Phi} \otimes_{\Lambda_{\mathcal{O}}} \Lambda_{\mathcal{O},\wp} \cong (\Lambda_{\mathcal{O}}/\wp^e) \otimes_{\Lambda_{\mathcal{O}}} \Lambda_{\mathcal{O},\wp}.$$

Any $\Lambda_{\mathcal{O},\wp}$ -submodule of $(\Lambda_{\mathcal{O}}/\wp^e) \otimes_{\Lambda_{\mathcal{O}}} \Lambda_{\mathcal{O},\wp}$ is also a cyclic $\Lambda_{\mathcal{O},\wp}$ -module. Hence a $\Lambda_{\mathcal{O}}$ -submodule of $M_{\mathcal{O},\Phi}$ is also a pseudo-cyclic $\Lambda_{\mathcal{O}}$ -module, which completes the proof of the lemma. \Box

REMARK 5. If $|\Delta|$ is not divisible by p then we have seen that

$$M = \sum_{\Phi} e_{\Phi} M \cong \bigoplus_{\Phi} (M \otimes_{\mathbf{Z}_p[\Delta]} \mathcal{O}_{\Phi})$$

in Remark 4. Therefore, in this case, one can prove the above lemmas without the assumption that $\mu(M) = 0$.

5. The Proof of the Main Theorem and Its Corollary

Let E_n be the group of all units in K_n , and identify it with the image of the embedding $K_n \hookrightarrow \prod_{v|p} K_{n,v}$. Let \mathcal{E}_n be the closure of $E_n \cap \mathcal{U}_n$ in \mathcal{U}_n , and let

and let

$$\mathcal{E}_{\infty} = \lim \mathcal{E}_{n_{1}}$$

where the projective limit is defined in the same manner as \mathcal{U}_{∞} .

The main theorem of this paper is the following:

THEOREM. Let p be an odd prime and let K be a totally imaginary abelian extension of **Q**. Suppose that K is of the first kind. Then $(\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+$ contains a cyclic $\Lambda[\Delta]$ -submodule of finite index.

We will show that $\mu((\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+) = 0$, in order to apply Lemma 3 to $(\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+$.

By class field theory, there is the exact sequence

(7)
$$0 \longrightarrow (\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+ \longrightarrow \mathcal{X}^+ \longrightarrow X^+ \longrightarrow 0$$

of $\Lambda[\Delta]$ -modules (cf.Washington[W] Corollary 13.6).

By $\mu(X^+) = 0$, we have $\mu((\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+) = \mu(\mathcal{X}^+)$. If $\zeta_p \in K$, then we have seen that

$$\mathcal{X}^+ \sim X^-$$

in §3.3.Therefore we obtain $\mu(\mathcal{X}^+) = \mu(X^-) = 0$.

If $\zeta_p \notin K$ then we have seen that

$$\mathcal{X}^+ \cong \mathcal{X}'^+ / (\sigma - 1) \mathcal{X}'^+$$

in §3.4. Therefore we have $\mu(\mathcal{X}^+) \leq \mu(\mathcal{X}'^+) = 0$.

Hence we have proved that $\mu((\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+) = 0.$

By Lemma 3, it is enough to prove the following claim, for each prime ideal \wp of height 1 in Λ :

CLAIM. $((\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+)_{\wp}$ is a cyclic $\Lambda_{\wp}[\Delta]$ -module.

First we will consider the case where $\zeta_p \in K$.

• $\wp \neq (\dot{T}), (p)$. By Proposition 3 (i), we obtain a $\Lambda_{\wp}[\Delta]$ -isomorphism

$$(\mathcal{U}_{\infty})_{\wp} \cong \Lambda_{\wp}[\Delta].$$

The result follows immediately.

• $\wp = (p)$. Since $\mu((\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+) = 0$, we have $((\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+)_{(p)} = \{0\}$.

• $\wp = (\dot{T})$. By (7), we have that $((\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+)_{(\dot{T})}$ is isomorphic to a $\Lambda_{(\dot{T})}[\Delta]$ -submodule of $(\mathcal{X}^+)_{(\dot{T})}$. Thus it is enough to prove that $(\mathcal{X}^+)_{(\dot{T})}$ is a

cyclic $\Lambda_{(\dot{T})}[\Delta]$ -module by Lemma 4. Furthermore, by the diagram (5), this is equivalent to saying that $(X^{-})_{(T)}$ is a cyclic $\Lambda_{(T)}[\Delta]$ -module. So we will consider the cyclicity of $(X^{-})_{(T)}$.

In general for any CM-field K, Iwasawa[Iw2] and Greenberg[Gr1] have shown that the characteristic polynomial f(T) of X^- is divisible by $T^{r(K)}$, where r(K) is the number of prime ideals dividing p in the maximal totally real subfield K^+ of K which split in K. Let $g(T) = f(T)/T^{r(K)}$ Greenberg[Gr1] has then shown that g(0) is non-zero when K is an abelian field.

Let L'_{∞} be the maximal subextension of K_{∞} in L_{∞} in which every prime divisor of K_{∞} , lying above p splits completely. Sinnott ([S] Proposition 6.1) has shown that

$$\operatorname{Gal}(L_{\infty}/L_{\infty}')^{-} \cong (\Lambda/(T))^{r(K)}.$$

Summarizing the above results, the characteristic polynomial of $\operatorname{Gal}(L'_{\infty}/K_{\infty})^{-}$ is prime to *T*. Then we have $\operatorname{Gal}(L'_{\infty}/K_{\infty})^{-}_{(T)} = X^{-}_{(T)}$. In the proof of the above result, Sinnott has also shown that

$$\operatorname{Gal}(L_{\infty}/L_{\infty}')^{-} \cong (\bigoplus_{v} \mathbf{Z}_{p} \cdot v)^{-}.$$

where v runs over all the primes of K_{∞} lying above p, using Iwasawa[Iw2] Lemma 24. Since K is of the first kind, the direct sum is running over all the primes of K lying above p. Therefore we have

$$\operatorname{Gal}(L_{\infty}/L_{\infty}')^{-} \cong \mathbf{Z}_{p}[D\backslash\Delta]^{-},$$

as desired.

This proves the claim for all prime ideals \wp of height 1 in Λ when $\zeta_p \in K$. Next we will consider the case where $\zeta_p \notin K$.

Let \mathcal{U}_{∞}' and \mathcal{E}_{∞}' be the modules defined as before for K'_{∞}/K' , where $K' = K(\zeta_p)$. Then $e_0(\mathcal{U}_{\infty}'/\mathcal{E}_{\infty}')^+ = (\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+$ and we have just proved that $(\mathcal{U}_{\infty}'/\mathcal{E}_{\infty}')^+$ is a pseudo-cyclic $\Lambda[\Delta']$ -module. Hence we see that $(\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+$ is a pseudo-cyclic $\Lambda[\Delta]$ -module. This completes the proof of the main Theorem.

We remark that, when $\zeta_p \notin K_v$, one can prove the claim using Proposition 3 (ii), in a manner similar to the case where $\zeta_p \in K$.

Let X' and \mathcal{X}' denote the modules for $K' = K(\zeta_p)$ defined in §3.4, and let e_i denote the element in $\mathbf{Z}_p[\Delta']$ defined in §3.4. Under the same condition as in Theorem, we obtain the following:

COROLLARY. (i) When $\zeta_p \in K$, suppose that $\lambda(X^+) = 0$. Then X^- contains a cyclic $\Lambda[\Delta]$ -submodule of finite index.

(ii) When $\zeta_p \notin K$, suppose that $\lambda(e_1 X'^+) = 0$. Then X^- contains a cyclic $\Lambda[\Delta]$ -submodule of finite index.

PROOF. (i) By $\mu(X^+) = \lambda(X^+) = 0$ and (7), we have that $(\mathcal{U}_{\infty}/\mathcal{E}_{\infty})^+ \sim \mathcal{X}^+$. However, we have seen that $\mathcal{X}^+ \sim X^-$ in §3.3, which proves (i).

(ii) By $\mu(X'^+) = \lambda(e_1X'^+) = 0$ and (7), we have that $e_1(\mathcal{U}_{\infty}'/\mathcal{E}_{\infty}')^+ \sim e_1\mathcal{X}'^+$. And, we have seen that $e_1\mathcal{X}'^+ \sim e_0X'^- = X^-$ in §3.4, which completes the proof of (ii). \Box

References

- [C1] Coleman, R., Division values in local fields, Invent. Math. 53 (1979), 91– 116.
- [C2] Coleman, R., Local units modulo circular units, Proc. Amer. Math. Soc. 89 (1983), 1–7.
- [F] Federer, L. J., Neotherian $\mathbf{Z}_p[[T]]$ -modules, adjoints, and Iwasawa theory, Illinois J. Math. **30** (1986), 636–652.
- [F-W] Ferrero, B. and L. C. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. **109** (1979), 377–395.
- [Gi] Gillard, R., Unités cyclotomiques, unités semi-locales et \mathbf{Z}_l -extensions II, Ann. Inst. Fourier, Grenoble **29** (1979), fasc.4 1–15.
- [Gr1] Greenberg, R., On a certain *l*-adic repesentation, Invent. Math. **21** (1973), 117–124.
- [Gr2] Greenberg, R., On Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263–284.
- [G] Greither, C, Class group of abelian fields, and the main conjecture, Ann. Inst. Fourier, Grenoble **42** (1992), fasc.3 449–499.
- [Iw1] Iwasawa, K., On some modules in the theory of the cyclotomic fields, J. Math. Soc. Japan 16 (1964), 42–82.
- [Iw2] Iwasawa, K., On \mathbb{Z}_l -extensions of algebraic number fields, Ann. of Math. **98** (1973), 246–326.
- [S] Sinnott, W., Appendix to L. J. Federer and B. H. Gross: Regulaters and Iwasawa modules, Invent. Math. 62 (1981), 443–457.
- [W] Washington, L. C., Introduction to Cyclotomic Fields, GTM 83, Springer-Verlag: New York, 1983.

(Received July 1, 1996)

Iwasawa Modules

Department of Mathematical Sciences University of Tokyo 3-8-1 Komaba, Meguro-ku Tokyo 153, Japan E-mail: ttsuji@ms.u-tokyo.ac.jp