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On the Pseudo-Cyclicity of Some Iwasawa Modules
Associated to Abelian Fields

By Takae T'suJI

Abstract. Let p be an odd prime number, and K/Q a totally
imaginary finite abelian extension of the first kind, with the Galois
group A. Let Uy (resp. £ ) denote the projective limit of the semi-
local units (resp. the global units) of the fields in the cyclotomic Z,-

extension of K. We will show that (Use/Exe)’ contains a cyclic A[A]-
submodule of finite index.

Introduction

Let p be a fixed prime number, and Z, be the ring of p-adic integers.
We denote by Q. the cyclotomic Z,-extension of the rational number field
Q. Let K be a finite abelian extension of Q, satisfying K N Qs = Q. Let
K, be the cyclotomic Zj-extension of K, i.e. Ko = KQ ; and for each
n > 0, let K,, be the intermediate field of K, /K such that K, is a cyclic
extension of degree p" over K. Put A = Gal(K/Q) and I' = Gal(K«/K).

Let Lo, be the maximal unramified abelian p-extension over K, and
let X = Gal(Ls/Kso). Then X is a module over the completed group ring
Z,[[Gal(K«/Q)]] in a natural way. Identifying A with Gal(K/Qo) and
Z,[[I']] with the formal power series ring A = Z,[[T]], X becomes a A[A]-
module, and it is known that X is finitely generated torsion over A. Under
this condition, one can see that various Iwasawa modules which are defined
with respect to Ko /K also have the structure of A[A]-modules. Let J € A
denote the complex conjugation. For a A[A]-module M, we will put

Mt ={me M|J(m)=m}, M~ ={me M|J(m)=—m}.

Assume that K contains a primitive p-th root ¢, of unity. Supposing that
X7 is a finite module, Greenberg has proved that X~ contains a cyclic A[A]-
submodule of finite index (Greenberg[Gr2] Theorem 5). In the following,
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we will call such a A[A]-module a pseudo-cyclic A[A]-module. Let My, be
the maximal abelian p-extension over K., unramified outside p, and let
L = Gal(Mx/Ks). Then it is known that X~ is pseudo-isomorphic to
X, that is, isomorphic up to finite, and denoted by X~ ~ It (see §3).
Therefore, the pseudo-cyclicity of X~ is equivalent to that of ™. For each
prime divisor v of K, lying above p, let Uy, , be the group of local units in the
v-completion K, , which are congruent to 1 modulo the maximal ideal, and
let U, = H Un,. Let E, be the image of the group of all units in K,, by the
vlp
embedding K, — H K, . Let &, be the closure of E, NU, in U,,. We will

vlp
denote by Uy, and £ the projective limits of U, and &, respectively, being

taken with respect to the norm maps. Then it is known that (Use/Exo)™ is
isomorphic to a A[A]-submodule of T (cf.Washington[W] Corollary13.6).
Therefore if X~ is a pseudo-cyclic A[A]-module, then (Uso/Ex)™ is also a
pseudo-cyclic A[A]-module (see Lemma 4).

The purpose of the paper is to prove the pseudo-cyclicity of (Uso/Eso)™
directly, without supposing the finiteness of X, that is, our main result is
the following:

THEOREM. Let p be an odd prime number and let K be a totally imag-
inary finite abelian extention of Q. Suppose that K is of the first kind,
i.e. its conductor is not divisible by p*>. Then (Uso/Es)™ contains a cyclic
A[A]-submodule of finite index.

If we suppose the finiteness of X, then we have that (Uso/Ex)” is of
finite index in . Therefore we have (Us, /Exo)™ ~ L. Hence our theorem
can be used to show the pseudo-cyclicity of X~ (Greenberg loc.cit.), which
we shall state as a corollary at the end of this paper.

An outline of the paper is the followings: in §1, for one prime divisor
v, we consider the structure of the A{Gal(K,/Q))]-module Uy, = lgn Unv-
That is, we study the structure of some modules which are defined with
respect to a local Zy-extension. In §2, we assume that K/Q is of the first
kind, and study the structure of the A[A]-module Uy,. First, we show that
the consideration of Uy is reduced to that of U, and then, using our
result in §1, we give the structure of the A[A]-module U,,. We note that,
when K = Q(({p), the structure of the A[A]-module Uy, was known by
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Iwasawa[lw1]; furthermore when K is a finite abelian field with degree rela-
tively prime to p, it was known by Gillard[Gi]. In §3, we study the Kummer
duality, and then the structure of adjoint modules as A[A]-modules, which
were previously known as A-modules. Finally, after we prepare an algebraic
lemma in §4, using our result concerning Uy, in §2 and the results in §§3-4,
we prove the main theorem and mention its corollary.

I would like to express my sincere gratitude to Professor Masami Ohta
who has proposed me to the theme of this paper and many excellent sug-
gestions. Finally I would like to thank Professor Masato Kurihara for the
contribution of the important Remark 2.

1. Local Theory

1.1. Let p be a fixed prime number. We fix an algebraic closure €, of
the p-adic number field Q,, and always consider algebraic extensions of Q,
to be contained in €,,.

Let k be a finite extension of Q, (in €2,) with

k:Q,) =d.

We denote by k. the maximal abelian p-extension over k. By local class
field theory, there is a canonical isomorphism

Gal(k:ab/k) = Ak,

where A, denotes J;he p-adic completion of the multiplicative group k* :
Ay, = lim k™ /(k*)"" . Then, we can write

A = TP X Uy,

where 7 is a uniformizing parameter of k, and Uy is the principal units of
k, that is, the units congruent to 1 modulo the maximal ideal.

We denote by k., the maximal unramified abelian p-extension over k.
Since the inertia group of Gal(kq/k) is isomorphic to Uy, kur/k is a Z,-
extention:

Gal(kyr/k) = Zy,.

Let Wi be the group of all p-th power roots of unity in k. Then Wy, is
a subgroup of Uy and Uy /Wy is a free Zy,-module of rank d. Therefore we
obtain
Gal(kqp/k) = W), © Z,1
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From the above, it follows that there are d + 1 independent Z,-extensions
over k. In particular there exist Z,-extensions over k different from k., /k.

Let ks be a Zp-extention over k; and for each n > 0, let k;,, denote the
intermediate field of ko, /k such that k, is a cyclic extension of degree p”
over k. If ks is a Z,-extention over k different from k,,/k, then there exists
an ng > 0 such that ke kur = kn,. Hence koo /K, is a totally ramified
extension for n > ng.

1.2. We fix a Z,-extension Q, o of Q,, different from Q, .»/Q,. Let
k be a finite abelian extension of Q, such that k(1 Qp . = Qp, and let
ks = kQp,oo. Then we obtain a Z,-extention ks /k different from ky,/k.
Put I' = Gal(kx/k) and D = Gal(k/Qy).
Let M,, 0 < n < oo, be the maximal abelian p-extension over k, and
let
X = Gal(Mx/kso)-

Then I' acts on X by conjugation. Fix a topological generator ~y of I',

and identify the completed group ring Z,[[I']] with the formal power series

ring Z,[[T]] by 70 = 1+ T. Then we can make X into a Z,[[T]]-module.

Furthermore, identifying D with Gal(koo/Qp,00), We can also make X into

a Z,[D][[T]]-module. Here we will consider the structure of the Z,[D][[T]]-

module X. In the following, we write A = Z,[[T]] and A[D] = Z,[D][[T]].
For each n > 0, we define the element w,, € A = Z,[[T]] by

wy = (L+T)P" —1.
Then we have
wpX = Gal(Moo /M), X/wpX = Gal(M,,/kso).

We have already seen in §1.1 that X/woX = X/TX = Gal(My/ksx) =
Gal(kqp/koo) is finitely generated over Z,. Hence by Nakayama’s lemma, X
is finitely generated over A (cf.Washington [W],Lemma 13.16).

Since My, = ky, g, Gal(M,,/ky,) and hence Gal(M,,/k«) are both finitely
generated Z,-modules. Let X, be the submodule of X containing w,X
such that X, /w, X is the torsion Z,-submodule of X/w, X = Gal(M,,/kx).
Clearly X, is a A[D]-module, and

V=)Xn X' =X/Y

n=0
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are, also, A[D]-modules.
We denote by W the group of all p-th power roots of unity in €2,, and
let
Wy =Wy, =W ([ k™, 0<n< .

We obviously have
WoCW1C- - CWpCo - CWoo CW, Woo = | Wa.
n=0

Hence either W, is finite and W, = W,, for sufficiently large n > 0, or
We = W and ko = k(W). First, we consider the case where ko = k(W).
Let k : I' = 1+ pZ, (or 1+ 4Zy if p = 2 ) be the p-cyclotomic character,
i.e. it is the unique character satisfying v(¢) = ¢ for every ¢ € W. We
define the element 7' € A by

T=r(y)1+T)" —1,

where g is the topological generator which is fixed in the above. For each
a >0, let W@ be the subgroup of all p®-th roots of unity in W, and we
will consider

lim W),

This is isomorphic to Z, as a Zjp-module, and I' acts on lim W@ via the

—

character x. Hence we have the following A-isomorphism:
lim W = A/(1+T — k(7)) = A/(T).

Iwasawa has determined the structure of the A-module X as follows
([Iw2] Theorem 25):
(i) Suppose that ke = k(W), i.e. Woo = W. Then

X=NA/T), Y =A/(T), X =\
(ii) Suppose that ko # k(W), i.e. W is finite. Then
X CAY AYX =W,

We shall prove the following:
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PROPOSITION 1. (i) Suppose that koo = k(W). Then we have an ex-
act sequence

0 — X — AD]®A/(T) — F — 0

of A[D]-modules, where F' is a A[D]-module such that p*F = 0 for some
a > 0.
(ii) Suppose that koo # k(W'). Then we have an exact sequence

0 — X — A[D] — F — 0

of A[D]-modules, where F is a A[D]-module such that p®F = 0 for some
a> 0.

PrROOF. (i) Since X’ = A%, the exact sequence
(1) 0 —Y — X — X' — 0
of A[D]-modules induces an exact sequence
0 — Y/TY — X/TX — X'/TX' — 0

of Z,[D]-modules. Furthermore we have that X/TX = X/wyX =
Gal(My/ks), and that Y/TY = (A/(T))/T(A/(T)) = A/(T,T) is a finite
Z,y[D]-module. Hence we obtain a Qp[D]-isomorphism

Gal(Mo/ec) @5, Qp = (X'/TX') @5, Q.
On the other hand, from the exact sequence
0 — Gal(My/ks) — Gal(Mo/k) — Gal(ks/k) — 0,
we have an exact sequence
0 — (X'/)TX")®2,Qp — Ap®z,Qy — Q, — 0

of Qp[D]-modules. Since Ay = 1% x Uy, we have Ay ®@z, Qp = Q, ® Q,[D]
as Qp[D]-modules, hence as representation spaces over Q,, for D. Therefore
we obtain a Qp[D]-isomorphism

(X'/TX') ®2, Qp = Q[D].
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We need now the following lemma (Greengerg[Gr2] Lemma):

LEMMA 1. Let A be a finite abelian group, and let & denote the quo-
tient field of A. Let both M and M’ be A[A]-modules such that both of them
are finitely generated and torsion-free as A-modules.

Suppose that M @5 S and M' @p S are isomorphic as representation
spaces over § for A, equivalently that (M /TM)®z, Qp and (M'/TM")®z,
Q, are isomorphic as representation spaces over Q,, for A. Then there exists
an injective A[A]-homomorphism ¢ : M — M’ such that p*M' C (M) for
some integer a > 0.

Since X’ =2 A%, using Lemma 1 for the above isomorphism, we obtain
there exists an injective A[A]-homomorphism ¢ : A[D] — X’ such that
cokernel(ip) is annihilated by p® Let X° be the inverse image of A[D]
by the map X — X’ at (1), and let cokernel(¢) = F’. Then we have a
commutative diagram of A[D]-modules

0 0
! !

0 — A/(T) — X' — AD] — 0
| ! |

0 — AT) — X — X' — 0
! !
F = F
! !

Therefore we obtain an isomorphism : X0 2 A[D]@&A/(T) of A[D]-modules.
Thus, the cokernel of the map X — A[D]@® A/(T") defined by multiplication
by p® is annihilated by p®. This completes the proof of (1).
(ii) Since X/TX = Gal(My/ks), similarly as in the case (i), we
obtain
(X/TX) &4, Qy = QD).

Since X is a torsion-free A-module, we can also use Lemma 1 in a similar
manner as above to complete the proof of (ii). O
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1.3. Let U, be the principal units of k,, and let
Uso = lim U,

where the projective limit is defined by means of the norm maps k,, — kj,
for m >n > 0. I' acts on Uy, in the obvious manner; so as in §1.2, we can
make Uy, into a A[D]-module. We now study its structure as a A[D]-module
in the following.

For each n > 0, let O,, be the ring of integers in k,,, and 7, a uniformizing
parameter of k,. Take the p-adic completion from the exact sequence

0 — (0)" — k" — <m>— 0,
to obtain the exact sequence
0 — U, — A, — Z, — 0,

of Z,[Gal(k,/Qp)]-modules. For m > n > 0, we consider the maps Ay, —
Ay, induced by the norm maps. For m > n > ng, since k,/ky, is a totally
ramified extension, 7, maps to m, by the norm map for a suitable choice of
uniformizing parameters. Therefore we obtain the following commutative
diagram for m > n > ng:

0 — Upn— A, — Z, — 0
! ! I

0 — U, — Ay, — Z, — 0.

Since lim A, = lim Gal(M,,/k,) = X, taking the projective limit, we obtain
the exact sequence

(2) 0 — U — X — Z, — 0

of A[D]-modules. We note that I' x D act on Zj, trivially by definition.
New, we shall prove the following:

PROPOSITION 2. (i) Suppose that ke = k(W). Then we have an ez-
act sequence

0 — Usx — AD|®A/(T) — F — 0
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of A[D]-modules, where F is a A[D]-module such that p®F = 0 for some
a> 0.
(ii) Suppose that koo # k(W). Then we have an exact sequence

0 — Uy — AD] — F — 0

of A[D]-modules, where F is a A[D]-module such that p®F = 0 for some
a > 0.

PROOF. (i) U, contains lim W@ = A/(T), and we set U/ =

Uso/(A/(T)). From the sequences (1) and (2), we have a commutative
diagram

0
!
0 — ANT) — Us — Uy — 0
| ! l
0 — AT — X — X — 0
! !
Z, — 1Z,
! !
0 0.

It follows that U, — X' is injective, and hence Uy’ is a torsion-free A-
module, since X’ 22 A%, Tensoring < over A for the sequence right vertical,
we obtain an 3[D]-isomorphism

UL, A3 X ®, 9.

In the proof of Proposition 1 (i), we have seen that X' ®, S = S[D]. Hence
we have

Ul, @n S 2 S(D).
Using Lemma 1 to this situation, similarly as in Proposition 1 (i), one can
prove (i).
(ii) Uw is a torsion-free A-module, since Uy, € X C A?. Tensoring
over A for the sequence (2), we obtain an 3[D]-isomorphism

Uso Qn = X ®) S.
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Using Lemma 1 and the isomorphism X ®j & =

3[D], one can also prove
(ii). This completes the proof of Proposition 2. [

REMARK 1. One can extend Propositions 1 and 2 to a more general
situation as follows. Let k' be any finite algebraic extension of Q,, with the
ring of integers O, and let k. /k’ be a Z,-extension different from £/, /k". Let
k/K' be a finite abelian extension such that k Nk, = k', and let koo = kk._.
Let D = Gal(k/F') = Gal(kwo/kL,). Both X and Uy, defined as above
for ko /k are A[D]-modules. Then we have the same exact sequences of
A[D]-modules as in Propositions 1 and 2, if we replace the terms A[D] =
2, [D][[T]] by OLD][[T].

I would like to thank Professor Masato Kurihara for supplying the fol-
lowing:

REMARK 2. Here we mention that there exists a Z,-extension koo /k
such that Uy, is not isomorphic to A[D]®A/(T) (i.e. F # {0} in Proposition
2).

Let p be an odd prime. Let H be the unramified cyclic p-extension of
Q, with the ring of integers Op. Let k = H((p) and koo = H(W). Thus k
is the cyclotomic Zy-extension of k. Note that, since Oy = Z,[Gal(H/Q,)],
we have Oy[[Gal(koo/H)]] = Zp[[Gal(ks/Qp)]] = A[D]. By Coleman[C1],
[C2] and Greither[G], there is an exact sequence of A[D]-modules

0 — Zy(1) — Usx — Ogl[Gal(ko/H)]] — Zp(1) — 0
where Z,,(1) = lim W@, (In fact, if H/Q, is any unramified extension, then

such a sequence exists.) The first map is inclusion map, and Z,(1) = A/(T).
Then we will consider the kernel of the third map ¢ : Og[[Gal(ks/H)|] —
Z,(1). The map ¢ is defined as following:

Let k : Gal(kw/H) — Z,* be the p-cyclotomic character and fix a
generator ¢ = ((pa) of Z,(1) = lim W@, Then ¢ is given by ¢(o) = ¢ P59
for o € Gal(koo/H) and $(v) = ¢~ for v € Oy, where Tr is the trace
map from Op to Z,.

Since Oy = Z,[Gal(H/Q,)], identifying a generator 7 of Gal(H/Q))
with the element 1+ .5 in the formal power series ring Z,[[S]], we obtain an
isomorphism

On = Z,[[SN]/((1 +5)" = 1) = Zp[S]/((1 + 5)" — 1).
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Therefore we have
Onl[Gal(koo /H)]] = (Zp[S]/((1 4+ S)P — 1) )[Gal(k/H)][[T]] ( = A[D]).

Then by the definition of ¢, we have S =7 —1, T'= k(y0)7, * — 1 € ker(e).
Hence the ideal (S, T') which generated by S and T' over (Z,[S]/((1+S)? —
1) )[Gal(k/H)|[[T]] = A[D] is contained in ker(¢). Consequently ker(¢) and
hence, Uso/(A/(T)) is not isomorphic to A[D].

2. Semi-Local Units

We will denote by Qs the cyclotomic Z,-extension of Q. Let K be
an abelian extension of Q. Assume that K is of the first kind, that is,
its conductor is not divisible by p? (or 8 if p = 2). Then we obviously
have K N Qs = Q. Let K be the cyclotomic Zj-extension over K, i.e.
Ky = KQu; and for each n > 0, let K,, denote the intermediate field
of K /K such that K, is a cyclic extension of degree p™ over K. Then
one can easily see that, under our assumption on K, every prime divisor
of K, lying above p, is totally ramified in K. Put A = Gal(K/Q) and
I' =Gal(K«/K).

Let v be a finite prime divisor of K, lying above p. For each n > 0,
let K, , be the completion of K,, with respect to the restriction of v to K,.
Let Uy, denote the principal units of K, ,,, and let

un = H Un,m
p

where v runs over all the prime divisors of K, lying above p. Let
U = limU,,,

where the projective limit is defined by means of the maps U,, — U, for
m > n > 0 induced by the norm maps. I'" act on U in the obvious manner.
Identifying A with Gal(Ko/Qoo), we make Us, into a Z,[A][[T]]-module as
in §1.2. Then we will consider the structure of the Z,[A][[T]]-module Us
in the following. Put A[A] = Z,[A][[T]].

Let D be the decomposition group of p in K/Q. Fixing a finite prime
divisor v of K, we have

un: H un,vaz H (un,v)a

oceD\A oceD\A
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where o runs over a set of left representatives for the cosets of D\A. There-
fore we obtain
U, — Un,v ®Zp[D} Zp[A]

as Zp|Gal(K,,/Q)]-modules since every prime divisor of K, lying above p,
is totally ramified in K. Furthermore, since Z,[A] is a free Z,[D]-module,
taking the projective limit, we obtain a A[A]-isomorphism

uoo = o0,V ®ZP[D} ZP[A]7

where Uy, = lim Uy, .
Tensoring Z,[A] over Z,[D] on the sequences in Proposition 2, we obtain
the following result:

PROPOSITION 3. (i) Suppose that K, contains a primitive p-th root ¢,
of unity (ori if p=2). Then we have an exact sequence

0 — U — A[A]® (A/(T) ®g,p Zp[A]) — F — 0

of A[A]-modules, where F is a A[A]-module such that p®F = 0 for some
a > 0.

(ii) Suppose that K, contains no primitive p-th root ¢, of unity (or i
if p=2). Then we have an exact sequence

0 — U — A[A] — F — 0

of A[A]-modules, where F' is a A[A]-module such that p®F = 0 for some
a > 0.

REMARK 3. Assume that [K : Q] is not divisible by p. Let ® be an
irreducible character of A over Q,, and e the corresponding idempotent
in Z,[A]:

1
ep = — > B(6)67L.
a2
Choose an absolutely irreducible component y of ®, and let Og denote the
ring of integers in 2, generated by the values of x over Z,. Then we obtain
a Zp[A]-isomorphism
€¢ZP[A]:>O¢.
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Thus eglly, is regarded as a Og-module.
The following result had been shown by Gillard ([Gi] Proposition 1):
As Og|[[T]]-modules

eallss = Os[[T]], wx '(p) #1
O[T & Oa[[T]/(T), wx'(p) =1,

I

ealso

where w is the Teichmiiller character.
Hence if [K : Q] is not divisible by p, then we have the following:
(i) If ¢ (oriif p=2) € K,, then

Use = A[A] @ (A/(T) @g,(p) Zp[A]).
(ii) If ¢y (or i if p=2) ¢ K, then
U = AA].
3. Kummer Duality and Adjoint Modules

3.1. We keep the notion as in the previous section. But we assume
here that p is an odd prime number, and that K contains a primitive p-th
root (, of unity. Let J € A be the complex conjugation (J # 1).

For a A[A]-module M, we define

M* ={me M|J(m)=m}, M~ ={me M|J(m)=—m}.
Then M+ = (1+ J)M, M~ = (1 — J)M and
M=M"®e M~

since p # 2. Also K, contains the group W of all p-th power roots of unity,
by our assumption on K.
Let My be the maximal abelian p-extension unramified outside p, and
let
T =Gal(My/Kx).

It is known that there is a subgroup M of the discrete abelian group K™ ®y,
(Qp/Zy) such that the usual pairing induces the Pontryagin duality:

<,>:Ixm — W
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It also has the property that
<lo,lv>=¢<o,v>

for any € € Gal(K~/Q) = T' x A (cf.Iwasawal[Ilw2] §7). Clearly the pairing
<, > induces a Zjy-isomorphism

X — Homg, (M, W).
We define £ o ¢ for ¢ € Homg, (1, W) by
(Eop)(v) = Ep(€ ), el x A, vem.

Then the above Z,-isomorphism becomes a A[A]-isomorphism.
Let A, be the p-Sylow subgroup of the ideal class group of K,,, and let

Ay =1lim A,

where the inductive limit is defined by means of the natural maps A, — A,
for m > n > 0. Clearly Ay is a A[A]-module. It is known that

A~ = m

as A[A]-modules (cf.Iwasawal[lw2] Lemmal0). Then defining also £ o ¢ for
¢ € Homg, (A, W) by

(€0 9)(v) = ol M), §ET XA, veE AL,
we have a A[A]-isomorphism

(3) It = Homy, (As—, W).

3.2. Let both M and M’ be finitely generated A-modules. A morphism
f: M — M

is call a pseudo-isomorphism if the kernel and the cokernel of f are both
finite modules. When there exists such a pseudo-isomorphism, we write

M~ M'.
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If both M and M’ are torsion A-modules, then M ~ M’ implies M’ ~ M.
However, this is not true in general. The structure theorem of finitely
generated A-modules states that given such a A-module M, there exists a
unique A-module of the form

t s

E(M) = A" (DA (p)) ® (D A/(F))

i=1 =1

where f; is an irreducible distinguished polynomial, r, s, ¢ > 0 and e;, e; >
0, with M ~ E(M) as A-modules. We call E(M) the elementary A-module
associated with M. Also Iwasawa invariants associated with M are defined
by
t s
(M) => e, AMM)=>ejdeg(f;).
i=1 j=1

Let p be a prime ideal of height 1 in A. Then either p = (p), the princi-
pal ideal generated by p, or there exists a unique irreducible distinguished
polynomial f(7) such that p = (f(7)).

For each prime ideal g of height 1 in A, we will set

]\4p:]W®AAp

where A, denotes the localization of A at p. Now, let A be a finite abelian
group, and let M be a A[A]-module which is finitely generated and torsion
as a A-module. If

E(M) = @A/@iei

with prime ideals p; of height 1 in A and e; > 0, then M, = {0} if and only
if o # @i, 1 <i <t Let X and Y denote the kernel and the cokernel,
respectively, of the morphism

M — [[M,
[
induced by the canonical map M — M, the product being taken over all
©. Then XY is the maximal finite A-submodule of M. We define

a(M) = Homy, (Y. Q,/Z,).
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and make o(M) into a A[A]-module by defining

(€ 9)y) = v(8y)

forE e Ax A, pea(M)andy €Y. We call (M) the adjoint module of
M.

Let both M and M’ be finitely generated torsion A-modules. The fol-
lowing properties of A-modules are known (cf. Federer[F]):

1) «(M) is a finitely generated torsion A-module.

2) If E is an elementary torsion A-module then £ = a(FE).

3) If M ~ M’ then a(M) ~ a(M").
) a(M)~ M.

W

LEMMA 2. Let M be a AJA]-module which is finitely generated and
torsion as a A-module. Suppose (M) = 0. Then we have a pseudo-
isomorphism of A[A]-modules

a(M) ~ M.

PrOOF. Let ® be an irreducible character of A over Q,, and eg the
corresponding idempotent in Q,[A]:

1
ep=— Y D56
A 2 %0

Then we have

A[D eaZy[A] © Zy[A] © D eaZy[A]
P P

in Qp[A], where ® runs over all distinct irreducible characters. Choose an
absolutely irreducible component y of ®, and let Qg denote the ring of
integers in 2, generated by the values of x over Z,. Then we obtain a
Z,[Al-isomorphism
epZy|A]—0s.
Let Fy and F, denote the cokernels of the inclusion map Z,[A] — @(’)q)
®
and the map EBO‘I’ — Z,[A], defined by multiplication by pV for large
®
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N > 0, respectively. Then both F; and Fy are finite modules, and the
following diagram is commutative:

0 —  Z,[A] —>@O¢—>F1—>0
P
Lo I
0 «— Fy «— Z,A] «— @O@ — 0.
1]

Then the above diagram induces a commutative diagram of A[A]-
module s

M — @(M@ZP[A] Op) — Moz o Fi — 0
P
1N Il

0 — Mog P — M — PWMog i, 0.
P

where 6 € A acts on M@z, A]Og as x(6). Since u(M) = 0, both M®z, (A1 F1
and M ®z_a] F> are finite modules. Hence we have a pseudo-isomorphism

M ~ DM ®z,4) Oa)
[}

of A[A]-modules. By the properties 3 ) and 4 ), we obtain

a(M) ~ Pa(lM gz, Os)

[

~ DM @z, Os)
[

~ M

as A[A]-modules. This completes the proof of Lemma 2. [
REMARK 4. If |A| is not divisible by p then

Zy[A] = e Zp[A] = P Oq.
(] (]

Hence we obtain

M = P(M ©z,a) Oa).
[
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In this case, one can prove the above lemma without the assumption that
u(M) = 0.

3.3. We again assume that p is an odd prime number, and that K
contains (, here. Let L,, 0 < n < oo, denote the maximal unramified
abelian p-extension over K,, and let

X = Gal(Loo/Kw), Yo = Gal(Loo/KasoLo).
We make Homg, (Ax, Qp/Zp) into a A[{A]-module by defining
(€ ¢)(v) = p(Ev)

for § € I'x A, ¢ € Homg, (A, Qp/Zy) and v € Ay. Then, it is known that
there is a A[A]-isomorphism

Oé(Yb) = HOmzp(Aman/Zp)

(cf. Iwasawal[lw2] Theorem 11). Now, we have u(X) = 0 when K is
abelian over Q by Ferrero-Washington[F-W]. So, using Lemma 2 we ob-
tain a pseudo-isomorphism

(4) X7 ~Homg, (Ax™, Qp/Zp)

of A[A]-modules.
Fixing a Zp-isomorphism

W — Qp/Zy
we have a Z,-isomorphism
Homyg, (Ao ™, W) — Homyg, (Asc ™, Qp/Zp).
By (3) and (4), we obtain a pseudo-isomorphism
TH~X",

of Z,-modules. We will consider the action of I' and A on the above groups.
Since Koo D W, we may consider the p-cyclotomic character x : I' —
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1+ pZ, Recall T = k(y)(1+T)™' —1. For ¢ € Homyg,(As ™, W) =
Homy, (As ™, Qp/Zy), we have

(oo)(v) = 9y 'v)
= K(0)e(g 'v)
= ((5(v)w ") - @) ().

Thus the following diagram is commutative:

rv — X~
(5) (1+T)l l(HT)
rtv — X~

where the lefthand map and the righthand map are the action of (1 4+ 7))
and (1 + T), respectively.

Next we will consider the action of A. We note that, for { € W and
6 € A, we have

5(¢) = ¢
For ¢ € Homg,(As™, W) = Homg, (A ™, Qp/Zp),

(bop)(v) = ép(6~"v)
= w(8)p(67v)

= ((W(@®)6™") - 9)(v).

Thus the following diagram is commutative, for any 6 € A:

r — X~
(6) 5| |w@s
rt — X~

where the lefthand map and the righthand map are the action of § and
w(8)671, respectively.

3.4. In this subsection, we let K be a totally imaginary finite abelian
extension of Q of the first kind; but we assume that K does not contain (,.
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Letting K/ = K((p), K’ is also an abelian extension of Q of the first kind.
Then Gal(K'/K) is a cyclic group of degree d(# 1), which is a divisor of
(p —1). Fix a generator o of Gal(K'/K). Let K/  be the cyclotomic Z,-
extension over K’ i.e. K., = K'Qsx = K(W), and let A’ = Gal(K'/Q).
Let L’ be the maximal unramified abelian p-extension over K/, and
M/ the maximal abelian p-extension over K/ unramified outside p. Let

X' =Gal(L /K.), ' = Gal(M. /K..).
Clearly both X’ and I’ are A[A’]-modules. We let
14

p ng w'(o)oI € Zy[A].

€; =

On the other hand we have seen in §3.2 that
CU/+ ~ X'~
as A[A’]-modules, in the sense of (5) and (6). By (6), we obtain

Jr
6,’3’;/ ~ el_iX'

Let M be the maximal abelian extension of K, contained in M. . Then
one can see easily that M corresponds to (0—1)L’, and L = Gal(My/Ko)
is the p-Sylow subgroup of Gal(M°/K,). Hence

r=x'/(c-1)I'

since the order of Gal(K/ /K~ ) =< o > is prime to p. Similarly for X’
we have

X=X /(o -1)X',

Therefore we obtain
X =egX 2 eo(X'/(0 — 1)X) Z e X'
Summarizing the above results, we see that
X ~ 61$/+

as A[A]-modules. (The action of A[A] is the same as above.)
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4. Pseudo-Cyclic A[A]-Modules and Cyclic A,[A]-Modules

Let M be a finitely generated torsion A-module. We will call M a
pseudo-cyclic A-module if there exists a cyclic A-module M’ with

M ~ M’

as A-modules. Assume that g, h € A are relatively prime. One can easily
see that

A/(g-h) ~ A/(g)®A/(h)
A(g)eA/(h) ~ A/(g-h).

Let .
E(M) =P A/p:%
i=1

with prime ideals g; of height 1 in A and e; > 0. Then M is a pseudo-cyclic
A-module if and only if p; # @; for all i # j, 1 <, j < t. Furthermore
this is equivalent to saying that M, = M ®, A, is a cyclic A,-module for
every (.
Let O be the ring of integers in a finite algebraic extension of Q,, and
let
Ao = O[[TH, Mo =M ®Zp O =M ®p Ao.

Noting the remark above, M is a pseudo-cyclic A-module if and only if Mo
is a pseudo-cyclic Ap-module.

Now, let A be a finite abelian group, and let M be a A[A]-module which
is finitely generated and torsion as a A-module. We will call M a pseudo-
cyclic A[A]-module if there exists a cyclic A[{A]-module M’ with

M ~ M.

as A[A]-modules. Since both M and M’ are torsion A-modules, we also
have M’ ~ M. Therefore M is a pseudo-cyclic A[A]-module if and only if
M contains a cyclic A[A]-submodule of finite index.

We will assume that pu(M) = 0. We have seen, in the proof of Lemma
2, that

M ~ DM &z, Os
P
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as A[A]-modules, where ® runs over all distinct irreducible characters of A
over Q,. Note that 6 € A acts on M ®z ) Op as x(6), where x is an
absolutely irreducible component of ®. Then M is a pseudo-cyclic A[A]-
module if and only if M ®gz a] Os is a pseudo-cyclic Og[[T]]-module for
every irreducible character ® of A over Q,,. Furthermore, let O be the ring
of integers in a finite algebraic extension of Q,,, containing all the values of
X, which will be fixed throughout the following, and let

Meso = M ®Z,(A] Os ®o, O
= Meg,n0.

Note that 6 € A acts on Mg o as x(6). Summarizing the argument above,
M is a pseudo-cyclic A[A]-module if and only if Mg ¢ is pseudo-cyclic Ap-
module for every irreducible character ® of A over Q.

We shall prove following two lemmas:

LEMMA 3. Let M be a A[A]-module which is finitely generated and tor-
sion as a A-module. Suppose u(M) = 0. Then the following two conditions
are equivalent:

a) M is a pseudo-cyclic A[A]-module.

b) M, is a cyclic Ay[A]-module for every prime ideal © of height 1 in
A.

PROOF. a) = b) is clear.

a) is equivalent to saying that Mg o is pseudo-cyclic Ap-module for every
irreducible character ® of A over Q,. In addition, this is also equivalent
to saying that Mg 0 ®a, Ao,p is a cyclic Ap ,-module for every irreducible
character ® of A over Q, and for every prime ideal g of height 1 in Ap,
where Ap , denote the localization of Ap at p. Since

P (Ms.0 @rp Now) = (P Ms,o) @rp Ao
o o

= (M Xz, 0) @np Aoy
= M07p7

the above statement is equivalent to saying that Mo, is a cyclic Ap [A]-
module for every p. Therefore a necessary and sufficient condition for a) is
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that Mo, is cyclic Ap ,[A]-module for every prime ideal p of height 1 in
Ao.

Now, let p be a prime ideal of height 1 in A, and write p = @; - - - ps in
Ao, where p;, 1 <i < s, are prime ideals of height 1 in Ap. Since

MO,m = (M ®Zp O) @ro A(’),pz‘
= M, @A, Ao,m,

if M, is a cyclic Ag[A]-module, then Mo, is a cyclic Ap,,, [A]-module for
1< <s.
Hence we have b) = a), this completes the proof of Lemma 3. [J

LEMMA 4. Let M be a pseudo-cyclic A[A]-module. Suppose (M) = 0.
Then a A[A]-submodule of M is also a pseudo-cyclic A[A]-module.

PROOF. Mp s is a pseudo-cyclic Ap-module for every irreducible char-
acter ® of A over Q,. By the structure theorem of finitely generated A-
modules, for every prime ideal g of height 1 in Ay, there exist some e > 0
such that

Moo @rp Moy = (Ao/e°) Qno Nop-

Any Ap o-submodule of (Ap/p®) ®a, Ao, is also a cyclic Ap ,-module.
Hence a Ap-submodule of Mo ¢ is also a pseudo-cyclic Ap-module, which
completes the proof of the lemma. [

REMARK 5. If |A| is not divisible by p then we have seen that

M = ZecpM = EB(M ®Z,[A] Os)
(2] P

in Remark 4. Therefore, in this case, one can prove the above lemmas
without the assumption that p(M) = 0.

5. The Proof of the Main Theorem and Its Corollary

Let E, be the group of all units in K,,, and identify it with the image
of the embedding K,, — HKW,. Let &, be the closure of £, "U,, in U,,

v|p
and let

Eoo = 1lim &,
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where the projective limit is defined in the same manner as Uy.
The main theorem of this paper is the following;:

THEOREM. Let p be an odd prime and let K be a totally imaginary
abelian extension of Q. Suppose that K is of the first kind. Then (Uso/Eso)™
contains a cyclic A[{A]-submodule of finite index.

We will show that pu( (Uso/Exe)™) = 0, in order to apply Lemma 3 to
(Uso/Ex) ™

By class field theory, there is the exact sequence
(7) 0 — (Us/Exx)t — TT — Xt — 0

of AJA]-modules (cf.Washington[W] Corollary 13.6).
By u(X*) =0, we have u( (Uso/Exo)™) = u(XF). If (, € K, then we
have seen that
Tt~ X~

in §3.3.Therefore we obtain u(L) = u(X~) = 0.
If ¢, ¢ K then we have seen that

Tr=x" /(e -1

in §3.4. Therefore we have u(X) < u(X'") = 0.

Hence we have proved that p( (Us/Exe)™) = 0.

By Lemma 3, it is enough to prove the following claim, for each prime
ideal g of height 1 in A:

CLAIM. ((Z/Ic,o/<5’oo)+)p is a cyclic A,[A]-module.

First we will consider the case where (, € K.
e 0# (T), (p) . By Proposition 3 (i), we obtain a A,[A]-isomorphism

(Uso), = AglA]-

The result follows immediately.

e o= (p). Since u( Uso/Exo)) = 0, we have ((Z/{oo/é’oo)+)(p) = {0}.

e 9= (T). By (7), we have that ((Z/{OO/EOO)+)(T) is isomorphic to a
A [A]-submodule of ($+)(T). Thus it is enough to prove that ($+)(T) is a
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cyclic A¢;[A]-module by Lemma 4. Furthermore, by the diagram (5), this

is equivalent to saying that (X _)(T) is a cyclic A¢y[Al-module. So we will
consider the cyclicity of (X 7).

In general for any CM-field K, Iwasawa[lw2] and Greenberg[Grl] have
shown that the characteristic polynomial f(T") of X~ is divisible by 77,
where r(K) is the number of prime ideals dividing p in the maximal totally
real subfield K+ of K which split in K. Let g(T) = f(T)/T"™) Green-
berg[Grl] has then shown that g(0) is non-zero when K is an abelian field.

Let L. be the maximal subextension of K in Ly in which every prime
divisor of K, lying above p splits completely. Sinnott ([S] Proposition 6.1)
has shown that

Gal(Loo /L) ™ = (A/(T))").

Summarizing the above results, the characteristic polynomial of
Gal(L,/Ko) ™ is prime to 7. Then we have Gal(Li/Koo) (1) = X~ ().
In the proof of the above result, Sinnott has also shown that

Gal(Loo/LL)” = (P Zy-v) .

where v runs over all the primes of K, lying above p, using Iwasawa[lw2]
Lemma 24. Since K is of the first kind, the direct sum is running over all
the primes of K lying above p. Therefore we have

Cal(Loo/LL,)” = Z,[D\A]7,

as desired.

This proves the claim for all prime ideals g of height 1 in A when (, € K.

Next we will consider the case where ¢, ¢ K.

Let Us' and £ be the modules defined as before for K/ /K’, where
K' = K(¢). Then ey(Us'/Ex')" = (Uso/Exo)™ and we have just proved
that (Uso'/Ex')T is a pseudo-cyclic A[A’)-module. Hence we see that
(Uso/Ex0)T is a pseudo-cyclic A[A]-module. This completes the proof of
the main Theorem.

We remark that, when ¢, ¢ K,, one can prove the claim using Proposi-
tion 3 (ii), in a manner similar to the case where (, € K.

Let X’ and X’ denote the modules for K’ = K((,) defined in §3.4, and
let e; denote the element in Z,[A’] defined in §3.4. Under the same condition
as in Theorem, we obtain the following:
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COROLLARY. (i) When (, € K, suppose that N(X*) = 0. Then X~
contains a cyclic A[A]-submodule of finite index.

(ii) When (, ¢ K, suppose that \(eyX'") = 0. Then X~ contains a
cyclic A[A]-submodule of finite index.

PROOF. (i) By w(XT) = AX*) = 0 and (7), we have that
(Uso/Ex0)T ~ TT. However, we have seen that L+ ~ X~ in §3.3, which
proves (i).

(ii) By w(X'") = XeX’") = 0 and (7), we have that
e1Us'/Ex)T ~ exX'". And, we have seen that e; X' ~ egX'™ = X~
in §3.4, which completes the proof of (ii). O
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