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A Sheaf-Theoretic Approach to the

Equivariant Serre Spectral Sequence

By Hannu Honkasalo

Abstract. Let G be a finite group and f : Y → X a Hurewicz G-
fibration. Using sheaf-theoretic methods, we show that, under suitable
assumptions on the G-spaces X and Y , the equivariant cohomology
of Y is the limit of a spectral sequence, whose E2-term is given by the
equivariant cohomology of X with coefficient system depending on the
equivariant cohomology of the fibre of f .

Introduction

Let G be a finite group and C = CG = Or(G) the orbit category of G ;

the objects of C are the G-sets G/H for all subgroups H ≤ G and the

morphisms of C are all G-maps between the G-sets G/H .

In [5] we associated to a G-space X a Grothendieck topos Γ(X̃) whose

objects are certain families of sheaves on the fixed point subspaces XK

of X . The main result of [5] states that if X is paracompact, then for

any contravariant G-coefficient system m : Cop → Ab , the equivariant

cohomology groups H̄n
G(X;m) of X are isomorphic to the cohomology

groups of the topos Γ(X̃) with coefficients in a family of constant sheaves

determined by m . We also showed that, given a G-map f : Y → X , there

is a spectral sequence expressing a connection between the cohomology of

Γ(X̃) and Γ(Ỹ ) .

The purpose of the present paper is to obtain a more concrete form of

this connection. In particular, we derive the following equivariant Serre

spectral sequence:
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Theorem. Let f : Y → X be a Hurewicz G-fibration. Assume that

all subspaces of the G-spaces X and Y are paracompact, X is locally G-

contractible, and all fixed point subspaces of X are non-empty and simply

connected. Let also m : Cop → Ab be a contravariant G-coefficient system.

Then there is a spectral sequence with

Epq
2 = H̄p

G(X;Hq(F )) ,

converging to H̄p+q
G (Y ;m) . Here Hq(F ) is a contravariant G-coefficient

system associating to G/P the equivariant cohomology group H̄q
P (F ;mP )

of the fibre F of f , and mP is the P -coefficient system with mP (P/H) =

m(G/H) for H ≤ P .

If the simply connectedness hypothesis on X is dropped, there still is a

a spectral sequence, but in this case the E2-term is an object which may be

regarded as the equivariant cohomology of X with suitable local (i.e. locally

constant) coefficients.

The spectral sequence of the Theorem, as well as that of [5], can be

regarded as generalizations of the classical Leray spectral sequence in sheaf

cohomology. They are both constructed by an application of Grothendieck’s

spectral sequence of composite functors, see Théorème 2.4.1 of [2].

We point out that our methods are sheaf theoretic. This is the reason

for the strong hypotheses needed in the Theorem. Also for this reason,

the equivariant cohomology theory we use is the equivariant Alexander-

Spanier cohomology constructed in [4]. For paracompact G-spaces which

are locally sufficiently nice, as X in the Theorem, this version of equivari-

ant cohomology is, of course, isomorphic to, for example, the equivariant

singular cohomology of Illman (see [6]).

A different construction of the equivariant Serre spectral sequence has

been given by Moerdijk and Svensson in [7], using singular methods. Their

approach avoids many of the extra assumptions needed in our sheaf-

theoretic approach.

The organization of this paper is the following: In section 1 we recall

the definition of Γ(X̃) and also construct a new topos Σ(X) associated to

a G-space. Section 2 is devoted to a study of certain morphisms of topoi

needed in the construction of the spectral sequence of the Theorem. In

section 3 we consider the connection between the cohomology of X and
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Y for a G-map f : Y → X , and in section 4 we finally specialize to a

G-fibration f .

1. Topoi Associated to a G-Space

Let G be a finite group and C = CG = Or(G) the orbit category of G

(see the Introduction). As in [5], we let D = DG be the category whose

objects are the morphisms u : G/H → G/K of C and whose morphisms

u→ u′ are the pairs (α, β) of morphisms of C making the square

(1.1)

G/H
β←−−− G/H ′

u

�
�u′

G/K
α−−−→ G/K ′

commutative. In the terminology of [1] we have D = FC , the category of

factorizations in C .

Let X be a (Hausdorff) G-space. To X we can associate the functor

X : Cop → Top given by G/K �→ XK ∼= MapG(G/K,X) on objects. Using

the methods of [8, ch. I] we obtain a C-topos X → C whose fibre over G/K

is Sh(XK) , the topos of sheaves on XK ; a morphism α : G/K → G/K ′

of C induces the morphism

(X(α)∗, X(α)∗) : Sh(XK′
)−→Sh(XK)

of topoi between the fibres of X . Let X̃ = D ×C X be the fibre product

of X → C and the “target” functor T : D → C mapping u �→ G/K

(u ∈ Ob(D) as above). Then X̃ → D is a D-topos whose fibre over the

object u : G/H → G/K of D is Sh(XK) .

The topos Γ(X̃) of sections of X̃ → D was the main object of study in

[5]. We recall that the objects of Γ(X̃) are the families F = (F(u))u∈Ob(D) ,

where for each u : G/H → G/K , F(u) ∈ Sh(XK) , such that each mor-

phism (α, β) of D , as in 1.1, induces functorially a morphism

F(α, β) : F(u)−→X(α)∗F(u′) .

We also recall that the above construction is natural with respect to G-

maps. Namely, if f : Y → X is a G-map between G-spaces, inducing the
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map fK : Y K → XK between fixed point subspaces for K ≤ G , we have

an obvious natural transformation between the functors Y,X : Cop → Top ,

and this gives rise to a morphism

(f∗, f
∗) : Γ(Ỹ )−→Γ(X̃)

of topoi. Explicitly, if F = (F(u)) is an object of Γ(Ỹ ) , then (f∗F)(u) =

fK∗ F(u) for u : G/H → G/K .

Now we associate to the G-space X a new category Σ(X) . The objects

of Σ(X) are the families E = (EH)H≤G , where EH ∈ Sh(XH) for each H ≤
G , such that every morphism β : G/H ′ → G/H of C induces functorially

a morphism of sheaves

E(β) : EH −→X(β)∗EH′ .

A morphism E → E ′ in Σ(X) is a family of morphisms EH → E ′H of

Sh(XH) for H ≤ G such that the square

EH −−−→ E ′H�
�

X(β)∗EH′ −−−→ X(β)∗E ′H′

commutes for every β : G/H ′ → G/H .

Proposition 1.2. Σ(X) is a Grothendieck topos.

Proof. It is enough to note that Σ(X) satisfies the conditions of

Giraud’s theorem (see [3, Théorème 1.2]). The first three conditions follow

from the fact that X(β)∗ commutes with all inductive limits (being a left

adjoint functor) and with finite projective limits (being exact). Thus it

remains to show that Σ(X) has a set of generators.

Let K ≤ G and x ∈ XK . Assume that for every γ : G/H → G/K

we are given an open neighbourhood Vγ of X(γ)(x) in XH . Then we can

find an arbitrarily small open Gx-invariant neighbourhood U of x in X

with the following properties:

gx �= x =⇒ U ∩ gU = ∅
gx /∈ XH =⇒ (gU) ∩XH = ∅

X(γ)(x) = gx =⇒ (gU) ∩XH ⊂ Vγ (γ : G/H → G/K) .
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Define

EH =
∐

g∈G/Gx

(gU) ∩XH ∈ Sh(XH) ,

if MapG(G/H,G/K) �= ∅ and EH = ∅ otherwise. In this way we obtain an

object E = (EH)H≤G of Σ(X) , and all such objects form a set of generators

for Σ(X) . �

To end this section, we point out that Γ(X̃) and Σ(X) can in an evident

way be regarded as ringed topoi, the ring being in both cases the family

consisting of constant sheaves Z .

2. Some Morphisms

In the notation of the previous section, we have an obvious functor

Λ∗ : Σ(X) → Γ(X̃) , mapping the object (EH)H≤G of Σ(X) to the object

(F(u))u∈Ob(D) of Γ(X̃) defined by

F(u) = X(u)∗EH , u : G/H → G/K .

Lemma 2.1. The functor Λ∗ is the inverse image part of a morphism

of topoi

Λ = (Λ∗,Λ
∗) : Γ(X̃)−→Σ(X) .

Proof. Since Λ∗ is clearly exact, it is enough to construct a right

adjoint Λ∗ to Λ∗ .

Let F = (F(u)) be an object of Γ(X̃) and P ≤ G a subgroup.

We consider the comma category C/(G/P ) whose objects are all G-maps

G/H → G/P for H ≤ G and morphisms are all commutative triangles

(2.2)

To the object object F of Γ(X̃) we associate the functor F (C/(G/P )) →
Sh(XP ) which maps the object 2.2 of F (C/(G/P )) to the sheaf
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X(ψ)∗F(u) on XP . We define Λ∗(F)P to be the projective limit of this

functor F (C/(G/P ))→ Sh(XP ) , i.e.

Λ∗(F)P = lim←−X(ψ)∗F(u) ∈ Sh(XP ) ,

the limit taken over all objects 2.2 of F (C/(G/P )) .

We let Λ∗(F) = (Λ∗(F)P )P≤G . In this way we obtain a functor Λ∗ :

Γ(X̃) → Σ(X) , and we leave it to the reader to verify that Λ∗ is right

adjoint to Λ∗ . �

Let F = (F(u))u∈Ob(D) be an object of Γ(X̃) and P ≤ G . We give

a more concrete description of the sheaf Λ∗(F)P constructed in the proof

of Lemma 2.2. Let us denote CP = Or(P ) and DP = F (CP ) . We have

the functor CP → C mapping a P -orbit P/H to the G-orbit G/H ∼=
G ×P (P/H) and a P -map v : P/H → P/K to the G-map G ×P v :

G/H → G/K ; this functor induces a functor ιP : DP → D .

Let XP be the G-space X regarded as a P -space. Then we have

the topos Γ(X̃P ) and the functor ι∗P : Γ(X̃) → Γ(X̃P ) induced by ιP .

Further, restriction to the subspace XP ⊂ XK for K ≤ P defines an

obvious functor

ρP : Γ(X̃P )−→Hom(DP ,Sh(XP )) .

We claim that the projective limit of (ρP ◦ ι∗P )(F) is isomorphic to the

sheaf Λ∗(F)P on XP , that is

(2.3) Λ∗(F)P ∼= lim←−
v∈DP

F(G×P v) | XP .

This claim is, actually, a consequence of the simple observation that the

functor CP → C/(G/P ) mapping P/H to the canonical surjection G/H ∼=
G ×P (P/H) → G ×P (P/P ) ∼= G/P , is an equivalence of categories, and

it induces an equivalence DP → F (C/(G/P )) .

The following fact about the functor ι∗P : Γ(X̃)→ Γ(X̃P ) will be useful

in section 4:

Lemma 2.4. The functor ι∗P is the direct image part of a morphism of

topoi Γ(X̃)→ Γ(X̃P ) .
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Proof. By Proposition (1.2.9) of [8], ι∗P has a left adjoint ιP ! :

Γ(X̃P )→ Γ(X̃) . To prove the Lemma, we must show that ιP ! is exact.

Let F be an object of Γ(X̃P ) and w : G/L → G/M an object of

D , i.e. a G-map. Let DP /w be the category whose objects are the pairs

(v, (α, β)) , where v : P/H → P/K is an object of DP and (α, β) : G ×P

v → w is a morphism of D , so the square in the diagram

G/H
∼←−−− G×P (P/H)

β←−−− G/L

G×P v

�
�w

G/K
∼←−−− G×P (P/K)

α−−−→ G/M

must commute; a morphism of DP /w is a morphism of DP making evident

triangles commutative. Now, by the construction of Proposition (1.2.9) of

[8],

ιP !(F) : w �→ lim−→
DP /w

X(α)∗F(v) ∈ Sh(XM ) .

Consider the normalizer N(L,P ) = {b ∈ G | b−1Lb ≤ P} . The group

P acts on the right on N(L,P ) . We choose one representative from each

P -orbit of N(L,P ) , and for each such a representative b we define the

G-map

β : G/L→ G/Lβ , gL �→ gbLβ ; Lβ = b−1Lb .

Let B be the set of these G-maps β . We write G/M as a disjoint union

of P -orbits:

G/M ∼=
∐
j

P/Pj .

For every β ∈ B , let

w ◦ β−1 ∈MapG(G/Lβ, G/M) ∼= MapP (P/Lβ, G/M)

∼=
∐
j

MapP (P/Lβ, P/Pj)
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correspond to the P -map vβ : P/Lβ → P/Pjβ ; let also αβ : G/Pjβ →
G/M be the G-map induced by P/Pjβ ↪→ G/M . Then we see that the

diagrams

G/Lβ
∼←−−− G×P (P/Lβ)

β←−−− G/L

G×P vβ

�
�w

G/Pjβ
∼←−−− G×P (P/Pjβ )

αβ−−−→ G/M

(β ∈ B)

represent the objects of a cofinal discrete subcategory of DP /w . Hence

ιP !(F)(w) ∼=
∐
β∈B

X(αβ)∗F(vβ) ,

and the exactness of ιP ! is clear. �

3. Cohomology of a G-Map

Let f : Y → X be a G-map. In this and the next section we have to

assume that all subspaces of X and Y are paracompact.

We consider modules in the ringed topoi Γ(Ỹ ) , Γ(X̃) and Σ(X) ; the

corresponding abelian categories are denoted Mod Γ(Ỹ ) , Mod Γ(X̃) and

Mod Σ(X) . The global section functors are denoted ΓY : Mod Γ(Ỹ )→ Ab ,

ΓX : Mod Γ(X̃)→ Ab and ΓΣ(X) : Mod Σ(X)→ Ab . Their derived func-

tors are the cohomology functors of the corresponding topoi: RnΓX(·) =

Hn(Γ(X̃); ·) etc.

Let m : Cop → Ab be a contravariant coefficient system and m/Y ∈
Mod Γ(Ỹ ) the corresponding object consisting of constant sheaves (see sec-

tion 1 of [5]). By the main result of [5],

Hn(Γ(Ỹ );m/Y ) ∼= H̄n
G(Y ;m) ,

the equivariant Alexander-Spanier cohomology of Y with coefficients m .

We want to establish a connection between H̄n
G(Y ;m) and the cohomology

of X ; a start in this direction was made in section 7 of [5].

First of all, we have a factorization

ΓY : Mod Γ(Ỹ )
f∗−→Mod Γ(X̃)

ΓX−→Ab ,
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where f∗ and ΓX are the direct image parts of two morphisms of topoi.

Thus there is the following identity for the derived functors between the

appropriate derived categories of bounded below complexes:

(3.1) RΓY = RΓX ◦Rf∗ .

The spectral sequence arising from this identity was studied in section 7 of

[5].

Secondly, to compute Rf∗(m/Y ) , consider the Alexander-Spanier reso-

lution C·(m/Y ) of m/Y (cf. section 2 of [5]). Explicitly, for u : G/H →
G/K we have Cn(m/Y )(u) = Cn(Y K ;m(G/H)) , and the sections of this

sheaf on an open set U ⊂ Y K are

Γ(U, Cn(Y K ;m(G/H))) = C̄n(U ;m(G/H)) ,

because, under the present hypothesis, U is paracompact. Here C̄n refers

to the group of Alexander-Spanier cochains, with the locally zero cochains

factored out. In particular, the sheaves Cn(Y K ;m(G/H)) are flabby,

whence

(3.2) Rf∗(m/Y ) = f∗C·(m/Y ) .

Thirdly, we note

Lemma 3.3. There is a factorization

ΓX : Mod Γ(X̃)
Λ∗−→Mod Σ(X)

ΓΣ(X)−→ Ab .

Proof. The functor which to an abelian group A associates the family

of constant sheaves A , is left adjoint to both ΓX and ΓΣ(X) ◦ Λ∗ . �

It follows that RΓX = RΓΣ(X) ◦RΛ∗ . Combining this with 3.1 and 3.2

we get

RΓY (m/Y ) = RΓΣ(X)(RΛ∗(f∗C·(m/Y ))) .

This leads to the following result:
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Proposition 3.4. In the above situation, there is a spectral sequence

with

Epq
2 = Hp(Σ(X);RqΛ∗(f∗C·(m/Y ))) ,

converging to H̄p+q
G (Y ;m) .

In the next section we give a more concrete description of the E2-term

in some special cases.

4. Cohomology of a G-Fibration

In this section we assume, in addition to the hypotheses of section

3, that f : Y → X is a Hurewicz G-fibration and X is locally G-

contractible. This last condition, which is satisfied if, for example, X

is a G − CW -complex, means that every orbit Gx ⊂ X has arbitrarily

small open G-neighbourhoods V such that Gx is a G-deformation retract

of V . Our objective is to study the E2-term of the spectral sequence of

Proposition 3.4. We prove the following fact about the coefficient system

RqΛ∗(f∗C·(m/Y )) = (RqΛ∗(f∗C·(m/Y ))P )P≤G ∈ Mod Σ(X) :

Proposition 4.1. For P ≤ G , the sheaf RqΛ∗(f∗C·(m/Y ))P on XP

is locally constant, with stalk over x ∈ XP isomorphic to H̄q
P (f−1(x);mP ) .

We recall that the contravariant P -coefficient system mP is determined

by the G-coefficient system m through mP (P/H) = m(G×P (P/H)) .

By 2.3 we have RqΛ∗(f∗C·(m/Y ))P ∼= RqΛP (f∗C·(m/Y )) , where ΛP is

the composite

ΛP : Γ(X̃)
ι∗P−→Γ(X̃P )

ρP−→Hom(DP ,Sh(XP ))
lim←−−→Sh(XP ) .

Here ι∗P and lim←− are the direct image parts of two morphisms of topoi,

and ι∗P and ρP are exact. Furthermore, the derived functors of lim←−◦ρP
can be calculated with aid of the acyclic objects described in (1.3.10) of [8],

and ρP maps these objects to lim←−-acyclic objects of Hom(DP ,Sh(XP )) .

It follows that

RΛP
∼= (R lim←−) ◦ ρP ◦ ι∗P ,
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and in particular

RqΛP (f∗C·(m/Y )) ∼= lim←−
q(ρP ι

∗
P f∗C·(m/Y )) .

Let fP : f−1(XP )→ XP be the restriction of f . Then fP is a P -map,

with P acting trivially on XP .

Lemma 4.2. The complex ρP ι
∗
P f∗C·(m/Y ) is quasi-isomorphic to the

complex (fP )∗C·(mP /f
−1(XP )) .

Remark 4.3. The sections of the complex (fP )∗C·(mP /f
−1(XP ))

over an open set V ⊂ XP form, in the notation of section 2 of [5], the

complex Ā·(f−1(V );mP ) , which to an object v : P/H → P/K of DP

associates the complex C̄·(f−1(V )K ;m(G/H)) of abelian groups. On the

other hand, ρP ι
∗
P f∗C·(m/Y ) maps v : P/H → P/K to the restriction to

XP of the complex of sheaves on XK whose sections over an open set

U ⊂ XK are C̄·(f−1(U)K ;m(G/H)) .

Proof of 4.2. Restriction of cochains defines a natural morphism

ρP ι
∗
P f∗C·(m/Y ) → (fP )∗C·(mP /f

−1(XP )) . We take the values of these

complexes on an object v : P/H → P/K of DP and look at stalks over a

point x ∈ XP . Our hypotheses guarantee that x has arbitrarily small open

neighbourhoods V in XP and U in XK , contractible to {x} , and there

are K-fibre homotopy equivalences f−1(V ) � V × f−1(x) and f−1(U) �
U × f−1(x) , inducing f−1(U)K � U × f−1(x)K and f−1(V )K � V ×
f−1(x)K . Using 4.3 we see that our morphism induces a quasi-isomorphism

on the stalks over x , the cohomology of both stalks being isomorphic to

H̄·(f−1(x)K ;m(G/H)) . �

Let V ⊂ XP be an open set. By Remark 4.3 above and Propositions

2.9 and 2.10 of [5] we have

Γ(V, lim←−
DP

q(fP )∗C·(mP /f
−1(XP ))) ∼= lim←−

DP

qΓ(V, (fP )∗C·(mP /f
−1(XP )))

∼= lim←−
DP

qĀ·(f−1(V );mP )

∼= H̄q
P (f−1(V );mP ) .
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If V is contractible to x ∈ V , there is a P -fibre homotopy equivalence

f−1(V ) � V × f−1(x) and so H̄q
P (f−1(V );mP ) ∼= H̄q

P (f−1(x);mP ) in this

case. This completes the proof of Proposition 4.1.

Let us now add the assumption that all fixed point subspaces XP of

X are non-empty and simply connected. Fix a point x0 ∈ XG and de-

note F = f−1(x0) . Then, for any P ≤ G , the locally constant sheaf

RqΛ∗(f∗C·(m/Y ))P on XP is isomorphic to the constant sheaf

H̄q
P (F ;mP ) , and the object RqΛ∗(f∗C·(m/Y )) ∈ Mod Σ(X) is essentially

a contravariant coefficient system Cop → Ab . To finish the proof of the

Theorem, we therefore only have to prove the following

Proposition 4.4. Under the above assumptions, if m : Cop → Ab is

a contravariant coefficient system, then

Hp(Σ(X);m) ∼= H̄p
G(X;m) .

Proof. Proposition 4.1 applied to the G-fibration id : X → X gives

RΛ∗(m/X) ∼= m , so

RΓΣ(X)(m) ∼= (RΓΣ(X) ◦RΛ∗)(m/X) ∼= RΓX(m/X) .

The claim follows from the main result of [5], which says that RpΓ(m/X) ∼=
H̄p

G(X;m) . �
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