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The Thermodynamic Limit of the

Magnetic Thomas-Fermi Energy

By Fumihiko Nakano

Abstract. We prove the existence of the thermodynamic limit of
the magnetic Thomas-Fermi energy and its density functions.

§1. Introduction

In [LS1], where the Thomas-Fermi theory is studied, Lieb and Simon

proved the existence and property of the thermodynamic limit (namely, the

energy per volume of solids) of the Thomas-Fermi energy and discussed

its application to the screening problem. In this paper, we will study the

analog of this in the magnetic Thomas-Fermi(MTF) theory.

Let us recall about MTF energy[FGPY, LSY2, Y]. This comes from

seeking the ground state energy of the atomic Hamiltonian in a magnetic

field:

HN :=
N∑
i=1

{
(pi + A(xi))2 + σi · B − Z |xi|−1

}
(1.1)

+
∑

1≤i<j≤N

|xi − xj |−1,

on HN :=
∧N L2(R3;C2) (the anti-symmetric spinor valued functions).

(1.2) EQ(N,Z,B) := inf{(Ψ, HNΨ) : Ψ ∈ domain of HN , (Ψ,Ψ) = 1},
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where xi(resp. pi) is the position(resp. momentum) operator of the i-th

particle, A := 1
2B × x is a vector potential corresponding to the constant

magnetic field B = (0, 0, B) (B > 0), σ is the Pauli spin matrix and Z > 0

is the charge of nucleus.

We approximate EQ(N,Z,B) by the infimum of a density functional

(called MTF functional):

(1.3) EMTF (N,Z,B) := inf{EMTF [ρ] : ρ ∈ CB,

∫
ρ(x)dx = N},

(1.4) where EMTF [ρ] :=

∫
τB(ρ(x))dx − Z

∫
ρ(x) |x|−1dx + D(ρ, ρ),

(
∫

=
∫
R3 unless stated otherwise). We need the definitions of notations.

τB(ρ(x)) represents the kinetic energy per volume defined as

(1.5) τB(ρ(x)) := sup
ω

(ρω − PB(ω)) ,

which is the Legendre transform of PB(ω), where PB(ω) is the pressure of

the free Landau gas, as a function of the chemical potential, ω:

(1.6) PB(ω) :=
B

3π2
(ω3/2 + 2

∞∑
ν=1

|ω − 2νB|3/2+ ),

where |f |+ is the positive part of f . D(ρ, ρ) is the repulsion energy of

particles:

(1.7) D(f, g) :=
1

2

∫∫
f(x)g(y) |x − y|−1dxdy.

CB is the natural domain of EMTF [ρ]:

(1.8) CB := {ρ ∈ L1(R3), ρ(x) ≥ 0 a.e.,

∫
τB(ρ(x)) < ∞, D(ρ, ρ) < ∞}.

In this case, CB is written explicitly as [LSY2]

CB = {ρ ∈ L1(R3) ∩ L5/3(R3), ρ(x) ≥ 0 a.e.}.
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The existence and uniqueness of the minimizer of (1.3) are proved in [LSY2].

Moreover,

Fact. ([LSY2])

(1) Let ρMTF be the minimizer of (1.3). If we set

(1.9) φ(x) := Z|x|−1 − ρMTF ∗ |x|−1,

(which is -(effective potential)) then it satisfies the MTF equation:

(1.10) τ ′
B(ρMTF (x)) = |φ(x) − µ|+,

for a constant µ(the chemical potential)> 0 . It is equivalent to

(1.11) ρMTF (x) = P ′
B(|φ(x) − µ|+),

since τ ′
B is the inverse of P ′

B.

(2) ρMTF has compact support, that is, if we set Rmax := inf{R : ρ(x) =

0 a.e. for |x| ≥ R}, Rmax obeys the following bound:

(1.12) Rmax ≤ max{5

2
ZB−1, 3.3π2/5Z1/5B−2/5}.

(3) If λ := N/Z > 0 fixed and B/Z3 → 0 as Z → ∞,

(1.13) EQ(N,Z,B)/EMTF (N,Z,B) → 1.

The motivation to study the large field asymptotics in (1.13) is to investi-

gate the surface structure of neutron star([LSY1, 2] and references therein).

In [LSY1, 2], molecule of finite nuclei is considered. But on the other hand,

in B = 0 case, Lieb and Simon proved that the Thomas-Fermi energy has

the thermodynamic limit. Hence our problem is related to consider the same

problem of [LSY1, 2] in solids. We should remark that the numerical cal-

culation using the Hartree-Fock approximation of infinite nuclei(called the

“molecular chain”) has done[NKL] to study whether the molecular binding

occurs.
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To state the results, we shall define the notation. We define Λ to be a

finite subset of Z3 and for any y ∈ Λ, we set the elementary cube:

(1.14) Γy := {x ∈ R3 : −1

2
≤ xi − yi ≤

1

2
, i = 1, 2, 3}.

And we let Γ(Λ) := ∪y∈ΛΓy. We define VΛ to be the potential made by

nuclei put on each point of Λ:

(1.15) VΛ(x) := −Z
∑
y∈Λ

|x − y|−1.

Let EMTF
Λ be the MTF energy when the attraction energy −Z|x|−1 in (1.3)

is replaced by VΛ and plus the repulsion energy between nuclei (|Λ| := "Λ):

(1.16) EMTF
Λ := inf{EMTF

Λ : ρ ∈ CB,

∫
ρ(x)dx = Z|Λ| },

EMTF
Λ [ρ] :=

∫
τB(ρ(x)) dx +

∫
VΛ(x) ρ(x) dx(1.17)

+ D(ρ, ρ) +
Z2

2

∑
y,z∈Λ
y �=z

|y − z|−1.

On the above setting, only the neutral molecules are considered and we

have put N = Z|Λ|. Next, we want to let Λ to be large. To clarify it, we

recall the definition used in [LS1].

Definition. Let {Λi}∞i=1 be a sequence of finite subsets of Z3. We

define Λi → ∞ if and only if

(1) ∪∞
i=1Γ(Λi) = R3.

(2) Γ(Λi) ⊂ Γ(Λi+1).

(3) If Λh denotes the subset of Λ whose distance to ∂Λ is less than h,

then

lim
i→∞

|Λh
i |

|Λi|
= 0 for arbitrary h > 0.
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As an analog to (1.9), we set

(1.18) φΛ(x) := −VΛ(x) − ρMTF
Λ ∗ |x|−1,

where ρMTF
Λ is the minimizer of (1.16). The main theorem describes the

limit of φΛ(x) and ρMTF
Λ (x).

Theorem 1.1.

(1) There exists φ(x) := limΛ→∞ φΛ(x), x ∈ R3 \ Z3 and it does not

depend on the choice of the form of {Λi}∞i=1. This convergence is

monotone and uniform on the compact set of R3 \ Z3.

(2) More generally, if K is a compact set of R3,

φΛ(x) −
∑

y∈K∩Z3

Z |x − y|−1 → φ(x) −
∑

y∈K∩Z3

Z |x − y|−1

uniformly on K.

(3) φ(x) is periodic of period 1, and ρMTF (x)(:= P ′
B(|φ(x)|+)) satisfies

(1.19)

∫
Γ0

ρMTF (x) dx = lim
Λ→∞

∫
Γ0

ρMTF
Λ (x) dx = Z,

(1.20)

∫
Γ0

τB(ρMTF (x)) dx = lim
Λ→∞

|Λ|−1

∫
τB(ρMTF

Λ (x)) dx,

(1.21)

∫
Γ0

φ(x) ρMTF (x) dx = lim
Λ→∞

|Λ|−1

∫
φΛ(x) ρMTF

Λ (x) dx.

(4)

(1.22) φ(x) = lim
Λ→∞

|Λ|−1
∑
y∈Λ

φΛ(x + y),

and the following limit exists and satisfies:

(1.23) lim
x→0

{φ(x) − Z|x|−1} = lim
Λ→∞

|Λ|−1
∑
y∈Λ

lim
x→y

{φΛ(x) − Z |x − y|−1}.
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Using this theorem, we obtain the existence of the thermodynamic limit:

Theorem 1.2. There exists limΛ→∞ EMTF
Λ /|Λ| =: EMTF and it sat-

isfies

EMTF =

∫
Γ0

τB(ρMTF (x)) dx −−1

2

∫
Γ0

ρMTF (x) φ(x) dx(1.24)

+
Z

2
lim
x→0

{φ(x) − Z |x|−1}.

The above theorems state that almost the same results as [LS1] hold.

Instead of Z3, we can consider more general lattice, Λa which is a finite

subset of Z(a), where

(1.25) Z(a) := {(na, na, na) ∈ R3 : n ∈ Z }, a ∈ R3.

And corresponding elementary cube is:

(1.26) Γa
y := {x ∈ R3 : −a

2
≤ xi − yi ≤

a

2
, i = 1, 2, 3 }, y ∈ R3.

We define VΛa(x), φΛa(x), ρMTF
Λa (x) and EMTF

Λa similarly. Theorem 1.1,1.2

are still applicable in this case and we denote φa(x) by the thermodynamic

limit of φΛa(x) and we define ρMTF
a (x) and EMTF

a similarly. Then, we can

easily confirm from (1.12) and Lemma 2.4 in the next section that ρMTF
a is

a sum of compactly supported functions:

Proposition 1.3. If a ≥ 2Rmax, then there exists a compactly sup-

ported function ρ(x) such that

(1.27) ρMTF
a (x) =

∑
y∈Z(a)

ρ(x − y)

And if y, z ∈ Z(a), y �= z, then supp ρ(x − y) ∩ supp ρ(x − z) = ∅.

In ordinary Thomas-Fermi theory(in the case of B = 0), the TF-mini-

mizer ρTF (x) of a single atom(the Hamiltonian is (1.1) with B = 0) sat-

isfies ρTF (x) ≥ (const.)|x|−6 for |x| large[LS1] which is never compactly

supported. Hence Proposition 1.3 implies that, when the magnetic field is

turned on, the matter would vary from metal to insulator.

The next section is devoted to prove the above theorems.
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§2. Proof of theorems

To prove above theorems, we show some properties about MTF equa-

tions. At first we notice that, in the neutral case (N = Z|Λ|), the chemical

potential µ = 0 in (1.10).

Lemma 2.1. φΛ(x) ≥ 0 on x ∈ R3 \ Λ.

Proof. From Lemma II. 25 of [LS1], ρMTF
Λ ∗ |x|−1 is bounded, contin-

uous and vanishes at infinity. Let A := {x ∈ R3 : φΛ < 0}.
It is open and disjoint from Λ. φΛ(x) and ρMTF

Λ (x) satisfy the MTF

equation:

(2.1) ρMTF
Λ (x) = P ′

B(|φΛ(x)|+),

where

(2.2) P ′
B(ω) =

B

2π2
(ω1/2 + 2

∞∑
ν=1

|ω − 2νB|1/2+ ).

It follows that ρMTF
Λ (x) = 0 on A. From the definition of φΛ(x)(1.18), it

implies φΛ(x) is harmonic on A. Since φΛ(x) = 0 on ∂A and at infinity,

φΛ(x) ≡ 0 on A. �

The following lemma is called the “Teller’s Lemma” which follows from

the superharmonic argument. It imply that if Λ ⊂ Λ′, then φΛ(x) ≤ φΛ′(x)

on x ∈ R3 \ Z3.

Lemma 2.2. Let φ1(x), ρ1(x) be the -(effective potential) defined in

(1.9) and the MTF minimizer corresponding to V1(x) =
∑K

i=1 ai |x−Ri|−1

respectively. And we let φ2(x), ρ2(x) similarly corresponding to V2(x) =∑K
i=1 bi |x − Ri|−1. We assume bi ≥ ai ≥ 0 for i = 1, · · · ,K. Then

φ2(x) ≥ φ1(x) on R3 \ {Ri}Ki=1.

Proof. Let S := {x ∈ R3 : φ2(x) < φ1(x)}. Since φ1(x) |x − Ri|−1 →
ai and φ2(x) |x−Ri|−1 → bi as x → Ri, S is disjoint from the neighborhoods

of each Ri. Since φ1(x), φ2(x) are bounded and continuous away from
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{Ri}Ki=1, S is open. Let ψ(x) := φ2(x) − φ1(x)(< 0 on S). From the

definition of φ(x) (1.9) and the MTF equation,

(2.3) (4π)−1�ψ = P ′
B(|φ2|+) − P ′

B(|φ1|+).

Since P ′
B(ω) is monotone, �ψ < 0 on S which implies ψ is superharmonic

on S. Hence ψ takes its minimum on ∂S which contradicts the definition

of S since ψ ≡ 0 on ∂S and at infinity. �

The next lemma is a important step of Lemma 2.4.

Lemma 2.3. If 0 ≤ a + b ≤ c, then

(2.4) P ′
B(a) + P ′

B(b) ≤ 2P ′
B(c).

Proof. We first fix c and vary a, b under the condition 0 ≤ a + b ≤ c.

Since P ′
B(·) ≥ 0 is monotone increasing and f(t) := t1/2 +(c− t)1/2 achieves

its maximum at t = c/2, we may assume a = b, c = 2a. We consider several

cases.

(1) if a ≤ 2B

Then, P ′
B(a) = B

2π2 a
1/2 and we can easily confirm (2.4).

(2) if 2B ≤ a ≤ 4B

Then, P ′
B(a) = B

2π2 {a1/2 + 2(a − 2B)1/2}, and P ′
B(2a) =

B
2π2 {(2a)1/2 +2

∑2
ν=1(2a−2νB)1/2}. We estimate P ′

B(2a)−2P ′
B(a)

and obtain (2.4).

(3) Otherwise

The number of terms of
∑∞

ν=1 increases. But the increase of

P ′
B(2a) is always more than that of 2P ′

B(a). �

The above lemma enables us to prove another type of the Teller’s lemma.

It will imply that φΛ ≤
∑

y∈Λ φ(x − y), and it and (1.12) guarantee the

uniform boundedness(with respect to Λ) and the uniform convergence of

φΛ(x).
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Lemma 2.4. Let φi(x), ρi(x)(i = 1, 2) be the same as Lemma 2.2 and

φ̃(x), ρ̃(x) be the -(effective potential) and the MTF minimizer correspond-

ing to V1(x) + V2(x) respectively. Then it follows that

(2.5) φ̃(x) ≤ φ1(x) + φ2(x), x ∈ R3 \ Z3.

Proof. Let S := {x ∈ R3 : ψ := 2φ̃(x) − φ1(x) − φ2(x) > 0}. As

before, it is open and ψ = 0 on ∂S. From Lemma 2.3, �ψ = 2P ′
B(|φ̃|+) −

P ′
B(|φ1|+) − −P ′

B(|φ2|+) > 0, and it implies ψ is subharmonic on S and

thus achieves its maximum on ∂S. It is a contradiction. Using Lemma 2.1,

we obtain (2.5). �

The above lemmas imply the Theorem 1.1 (it is the same argument as

the proof of Theorem VI.2 in [LS1]). We turn to prove Theorem 1.2.

Proof of Theorem 1.2. We write:

EMTF
Λ =

∫
τB(ρMTF

Λ (x))dx +
1

2

∫
VΛ(x) ρMTF

Λ (x) dx(2.6)

+
1

2

∫
VΛ(x) ρMTF

Λ (x) dx

+ D(ρMTF
Λ , ρMTF

Λ ) +
Z2

2

∑
y,z∈Λ
y �=z

|y − z|−1.

By direct calculation:

1

2

∫
VΛ(x) ρMTF

Λ (x) dx + D(ρMTF
Λ , ρMTF

Λ ) = −1

2

∫
φΛ(x) ρMTF

Λ (x) dx.

On the other hand,

1

2

∫
VΛ(x) ρMTF

Λ (x) dx +
Z2

2

∑
y∈Λ

∑
z∈Λ
z �=y

|z − y|−1

=
Z

2

∑
y∈Λ



∑
x∈Λ
x �=y

Z |x − y|−1 −−
∫

ρMTF
Λ (x) |x − y|−1 dx




=
Z

2

∑
y∈Λ

lim
y′→y

(φMTF
Λ (y′) −−Z|y′ − y|−1).
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Together with Theorem 1.1, we obtain Theorem 1.2. �
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