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Global Theta Liftings of General Linear Groups

By Takao Watanabe

Abstract. A global theta lifting of some irreducible type 2 dual
reductive pair is studied. It is proved that the image of a global theta
lifting of a given irreducible automorphic cuspidal representation is non-
vanishing if and only if its standard L-function is nonzero at the point
1/2, and then the image coincides with the initial automorphic cuspidal
representation. As a corollary of this result, the global Howe correspon-
dence is obtained.

Introduction

Let k be a global field and A the adele ring of k. The pair (GLn(k),

GLn(k)) is a type 2 dual reductive pair in the symplectic group Spn2(k)

of size 2n2 ([3]). If ω′ denotes the Weil representation of the metaplectic

group Mpn2(A) of Spn2(A), then the restriction of ω′ to GLn(A)×GLn(A)

is described as follows. Let S(Mn(A)) be the space of Schwartz - Bruhat

functions on the set Mn(A) of all n × n matrices with entries in A. Then,

for f ∈ S(Mn(A)) and h, g ∈ GLn(A),

ω′(h, g)f(x) = |deth|n/2
A

|det g|n/2
A

f(thxg) .

Let ω be the representation of GLn(A) × GLn(A) defined by ω(h, g) =

ω′(th−1, g). We use ω instead of ω′ for convenience. The purpose of this

paper is to study the theta lifting and the Howe correspondence of the

irreducible automorphic cuspidal representations of GLn(A) with respect

to ω.

In order to mention our results, we denote by Hn = ⊗′
vHn,v the global

Hecke algebra of GLn(A) (cf. [1, Section 3]) and Kn the standard maximal
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compact subgroup of GLn(A). Let S0(Mn(A)) be the subspace of S(Mn(A))

consisting of all Kn×Kn-finite functions. We consider ω as a representation

of Hn⊗Hn acting on S0(Mn(A)). Let π be an irreducible automorphic cus-

pidal representation of GLn(A). We always assume that the representation

space Hπ of π is contained in the space of cusp forms on GLn(A). Thus Hπ

is an Hn-module, but not a GLn(A)-module. For ϕ ∈ Hπ, f ∈ S0(Mn(A))

and a complex number s ∈ C, the theta lifting ϕs
f of ϕ is defined to be

ϕs
f (h) =

∫
GLn(k)\GLn(A)

ϕ(g)|det g|sA
∑

x∈Mn(k)
x �=0

ω(h, g)f(x)dg .

This integral is absolutely convergent for Re(s) >> 0 and analytically con-

tinued to the whole s-plane as an entire function (see Lemma 3). For a fixed

s ∈ C, we denote by Θs(π) the space spanned by functions ϕs
f , (ϕ ∈ Hπ,

f ∈ S0(Mn(A))) on GLn(A). Then we prove the following theorem.

Theorem 1. Let π be an irreducible automorphic cuspidal represen-

tation of GLn(A) and L(s, π) its standard automorphic L-function. Then,

the space Θ0(π) is nonzero if and only if L(1/2, π) is nonzero. In this case,

Θ0(π) coincides with Hπ.

We write π∨ for the contragredient representation of π. Next theorem is

obtained as a corollary of the proof of Theorem 1 and the strong multiplicity

one theorem.

Theorem 2. For any irreducible automorphic cuspidal representation

π of GLn(A), one has HomHn⊗Hn(ω, π⊗π∨) �= 0. Furthermore, if σ is an ir-

reducible automorphic cuspidal representation satisfying HomHn⊗Hn(ω, σ⊗
π∨) �= 0, then σ is isomorphic to π.

It should be noted that the explicit local theta correspondence of (GLn,

GLn) was implicitly proved by Godement and Jacquet ([2], [12]). Thus one

can formally prove the first assertion of Theorem 2 for any irreducible ad-

missible representation of GLn(A) (see Remark after the proof of Theorem

2). However, it seems for the author that there is no article described these

facts and the global theta liftings (cf. [10, Section 4.6.5]).
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We will use the following notations. For an associative ring R with

identity element, we denote by Mn(R) the set of all n × n matrices with

entries in R. For A ∈ Mn(R), detA stands for its determinant. The

identity matrix in Mn(R) is denoted by 1n. When a base field F is given,

we set Gn = GLn(F ). We denote by Un the groups consisting of all upper

triangular matrices with ones in the diagonals and by Zn the center of Gn.

If F is a local field, then | · |F denotes the normalized absolute value on

F and αF denotes the character of Gn defined as αF (g) = |det g|F for

g ∈ Gn. If G is a locally compact abelian group, then S(G) denotes the

space of Schwartz - Bruhat functions on G.

1. The local theta correspondence: Non-archimedean case

Let F be a local non-archimedean field and q the order of the residual

field of F . We fix a non-trivial additive character ψF of F . The character

ψn,F of Un is defined to be

(1.1) ψn,F (u) = ψF (u12 + u23 + · · · + un−1n), (u = (uij) ∈ Un) .

Let W(ψn,F ) be the space of all locally constant functions W on Gn satis-

fying W (ug) = ψn,F (u)W (g) for any u ∈ Un and g ∈ Gn. Then g ∈ Gn acts

on W(ψn,F ) by right translation; ρ(g)W (g′) = W (g′g). For an irreducible

admissible generic representation π of Gn, we denote by W(π, ψn,F ) the

Whittaker model of π in W(ψn,F ).

We define the smooth representation (ωF ,S(Mn(F ))) of Gn × Gn as

follows: for f ∈ S(Mn(F )) and h, g ∈ Gn,

(1.2) ωF (h, g)f(x) = αF (h)−n/2αF (g)n/2f(h−1xg) .

For f ∈ S(Mn(F )), W ∈ W(π, ψn,F ) and a complex number s ∈ C, we

consider the integral

V s
(W,f)(h) =

∫
Gn

W (g)ωF (h, g)f(1n)αF (g)s−1/2dg , (h ∈ Gn)

= αF (h)−n/2

∫
Gn

W (g)f(h−1g)αF (g)s+n/2−1/2dg .(1.3)

This integral converges absolutely for Re(s) large and becomes a rational

function of q−s (cf. [7, (5.2)]). Let I(π) be the linear span of rational
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functions V s
(W,f)(h), (W ∈ W(π, ψn,F ), f ∈ S(Mn(F )), h ∈ Gn). It is

known by [2, Theorem 3.3] and [7, (5.2)] that I(π) equals a fractional ideal

L(s, π)C[q−s, qs] of the polynomial ring C[q−s, qs], where L(s, π) stands for

the local factor of π defined by Godement and Jacquet. Therefore, as a

function in s, L(s, π)−1V s
(W,f)(h) is holomorphic on C and is denoted by

Ṽ s
(W,f)(h). On the other hand, as a function in h ∈ Gn, V s

(W,f) is con-

tained in W(ψn,F ). We denote by Vs(π, ψn,F ) the linear span of functions

Ṽ s
(W,f), (W ∈ W(π, ψn,F ), f ∈ S(Mn(F ))). By the uniqueness of analytic

continuation , we have

ρ(g1)Ṽ
s
(π(g2)W,f) = αF (g2)

−s+1/2Ṽ s
(W,ω(g1,g

−1
2 )f)

, (g1, g2 ∈ Gn)

for all s ∈ C. Therefore, Vs(π, ψn,F ) is a nonzero Gn-submodule of

W(ψn,F ) for each s.

Lemma 1. The space Vs(π, ψn,F ) coincides with the space α
s−1/2
F ⊗

W(π, ψn,F ) for all s ∈ C.

Proof. We first assume Re(s) >> 0. By changing g to hg in the

integral (1.3), we obtain

V s
(W,f)(h) = αF (h)s−1/2

∫
Gn

W (hg)f(g)αF (g)s+n/2−1/2dg .

We take an open compact subgroup Ω in Gn such that f(kg) = f(g) for any

k ∈ Ω. Let dk be the Haar measure on Ω normalized so that the volume of

Ω equals 1. Then, we have∫
Gn

W (hg)f(g)αF (g)s+n/2−1/2dg

=

∫
Ω

∫
Gn

W (hkg)f(kg)αF (kg)s+n/2−1/2dgdk

=

∫
Gn

(∫
Ω
W (hkg)dk

)
f(g)αF (g)s+n/2−1/2dg .

Let W(π, ψn,F )Ω be the subspace of W(π, ψn,F ) consisting of all elements

fixed by Ω. The admissibility of π implies that W(π, ψn,F )Ω is of finite
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dimension. Thus we can take a basis {W1, · · · ,Wm} of W(π, ψn,F )Ω. Then,

by the same argument as in [7, page 434], there exist matrix coefficients

φ1, · · · , φm of π such that

∫
Ω
W (hkg)dk =

m∑
j=1

Wj(h)φj(g) .

Therefore, if we set

(1.4) Z(f, s+ n/2 − 1/2;φj) =

∫
Gn

φj(g)f(g)αF (g)s+n/2−1/2dg ,

then we have

(1.5) Ṽ s
(W,f)(h) = αF (h)s−1/2

m∑
j=1

Z(f, s+ n/2 − 1/2;φj)

L(s, π)
Wj(h) .

Since the right-hand side is holomorphic on C by [2, Theorem 3.3], (1.5)

holds for all s ∈ C, and hence Ṽ s
(W,f) is contained in α

s−1/2
F ⊗ W(π, ψn,F ).

The irreducibility of π concludes that Vs(π, ψn,F ) = α
s−1/2
F ⊗W(π, ψn,F ). �

As we mentioned in Introduction, Godement and Jacquet ([2]) essentially

proved that HomGn×Gn(ωF , π⊗π∨) �= 0 for any irreducible admissible repre-

sentation π of Gn. Furthermore, Weil ([12]) noted that dim HomGn×Gn(ωF ,

π ⊗ π∨) = 1 if π is a supercuspidal representation.

2. The local theta correspondence: Archimedean case

In this section, we denote by F a local archimedean field. Let Gn be the

Lie algebra of Gn as a real Lie group and K the standard maximal compact

subgroup of Gn. We define a non-trivial additive character ψF of F as

ψF (a) =

{
exp(2π

√
−1aλ) if F = R

exp(2π
√
−1(aλ+ aλ)) if F = C

,

where λ ∈ F is a nonzero constant. The character ψn,F of Un is defined

similarly as (1.1).
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Let (π,H∞) be an irreducible admissible representation of Gn realized

as a smooth Fréchet representation of moderate growth (cf. [9, Section 2]).

We denote by H the space of K-finite vectors in the Fréchet space H∞.

We assume that π is generic, i.e. there exists a nonzero continuous linear

functional λ on H∞ satisfying

λ(π(u)v) = ψn,F (u)λ(v)

for all u ∈ Un and v ∈ H∞. Such a λ is unique up to constant ([11, Theorem

3.1]). Then we denote by W∞(π, ψn,F ) the space of functions Wv on Gn of

the form

Wv(g) = λ(π(g)v), (v ∈ H∞).

We also denote by W(π, ψn,F ) the subspace of W∞(π, ψn,F ) consisting of

Wv with v ∈ H, so that W(π, ψn,F ) is an underlying irreducible (Gn,K)-

module of π. We write L(s, π) for the local factor of π defined by Godement

and Jacquet ([2, Theorem 8.7]).

We define the smooth representation (ωF ,S(Mn(F ))) of Gn×Gn by the

same way as (1.2). Let S0(Mn(F )) be the subspace of S(Mn(F )) consisting

of all K ×K-finite functions. Then (ω,S0(Mn(F ))) is a (Gn ⊕Gn,K ×K)-

module. For W ∈ W∞(π, ψn,F ), f ∈ S(Mn(F )) and s ∈ C, we set

V s
(W,f)(h) =

∫
Gn

W (g)ωF (h, g)f(1n)αF (g)s−1/2dg .

By [9, Section 6] (or [6, Section 9]), this integral is absolutely convergent

for Re(s) >> 0 and extends to a meromorphic function on the whole C.

Furthermore, if we set Ṽ s
(W,f)(h) = L(s, π)−1V s

(W,f)(h), it becomes an entire

function in s. By the uniqueness of analytic continuation, Ṽ s
(W,f) satisfies

the following for all s ∈ C:

Ṽ s
(W,f)(uh) = ψn,F (u)Ṽ s

(W,f)(h), (u ∈ Un),

Ṽ s
(π(g2)W,f)(hg1) = αF (g2)

−s+1/2Ṽ s
(W,ω(g1,g

−1
2 )f)

(h), (g1, g2 ∈ Gn).

Let Vs(π, ψn,F ) denote the linear span of Ṽ s
(W,f), (W ∈ W(π, ψn,F ), f ∈

S0(Mn(F ))). Since the linear span of functions Ṽ s
(W,f)(1n), (W ∈
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W(π, ψn,F ), f ∈ S0(Mn(F ))) in s contains the set {P (s)|λ|−ns/2
F : P (s) ∈

C[s]} (cf. [2, Theorem 8.7]), the space Vs(π, ψn,F ) is nonzero for all s ∈ C.

Lemma 2. The space Vs(π, ψn,F ) coincides with the space α
s−1/2
F ⊗

W(π, ψn,F ) for all s ∈ C.

Proof. For f ∈ S0(Mn(F )), there exists an elementary idempotent ξ

in the Hecke algebra of Gn ([2, Section 8]) such that

∫
K
f(k−1x)ξ(k)dk = f(x) .

The admissibility of π implies that the image π(ξ)W(π, ψn,F ) of π(ξ) is of fi-

nite dimension. Let {W1, · · · ,Wm} be a basis of π(ξ)W(π, ψn,F ). From the

similar argument as in the proof of [6, Proposition 9.2], it follows that, for

each W ∈ W(π, ψn,F ), there exist bi-K-finite matrix coefficients φ1, · · · , φm
of π such that

π(ξ)(π(g)W )(h) =

∫
K
W (hkg)ξ(k)dk =

m∑
j=1

Wj(h)φj(g) .

Then, by the analogous calculation as in the proof of Lemma 1, we have

(2.1) Ṽ s
(W,f)(h) = αF (h)s−1/2

m∑
j=1

Z(f, s+ n/2 − 1/2, φj)

L(s, π)
Wj(h) ,

if Re(s) >> 0. Here Z(f, s+n/2−1/2, φj) is defined similarly as (1.4). It is

known by [2, Theorem 8.7] or [5, Proof of Proposition 4.5] that

L(s, π)−1Z(f, s+n/2−1/2, φj) extends to an entire function of s. Thus the

assertion follows from the same argument as in the proof of Lemma 1. �

3. The global theta correspondence

In the rest of this paper, we denote by k a global field and by A =
∏′

v kv
the adele ring of k. For a k-subgroup G of Gn = GLn(k), G(A) =

∏′
v G(kv)

denotes the corresponding adele group. We fix a non-trivial additive char-

acter ψ of k\A and define the character ψn of Un(A) similarly as (1.1). The
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restriction of ψn to Un(kv) is denoted by ψn,v. We define the character α

of Gn(A) by α(g) = |det g|A. Let π = ⊗′
vπv be an irreducible automorphic

cuspidal representation of Gn(A). There exists a unique real number t so

that α−tϕ is square integrable on Z(A)Gn\Gn(A) for any ϕ ∈ Hπ. Thus

α−t ⊗ π becomes a unitary cuspidal representation. For each ϕ ∈ Hπ, we

set

Wϕ(g) =

∫
Un\Un(A)

ψn(u)−1ϕ(ug)du .

The space W(π, ψn) of all Wϕ (ϕ ∈ H) is decomposed into the restricted

tensor product of local Whittaker models W(πv, ψn,v), i.e.

W(π, ψn) = ⊗′
vW(πv, ψn,v) .

Let µπ be the central character of π. For f ∈ S(Mn(A)) and s ∈ C, we

define a modified theta series θ(s, µπ, f) as

θ(s, µπ, f) =

∫
Zn\Zn(A)

µπ(z)α(z)s+n/2
∑

x∈Mn(k)
x�=0

f(zx)dz .

From [2, Lemmas 11.5 and 11.6], it follows that the integral of the right-

hand side is absolutely convergent for Re(s) > n/2 − t and the function

(h, g) �→ θ(s, µ, ω(h, g)f) is slowly increasing on Gn\Gn(A) × Gn\Gn(A).

By using θ(s, µπ, f), the theta lifting ϕs
f of ϕ ∈ Hπ is written as

ϕs
f (h) =

∫
Zn(A)Gn\Gn(A)

ϕ(g)α(g)sθ(s, µπ, ω(h, g)f)dg .

Since ϕ(h) is rapidly decreasing on Zn(A)Gn\Gn(A), this integral is abso-

lutely convergent for Re(s) > n/2 − t.

Lemma 3. ϕs
f (h) is analytically continued to an entire function of s.

Proof. If Re(s) > n/2 − t, we have

ϕs
f (h) =

n∑
j=1

∫
Gn\Gn(A)

ϕ(g)α(g)s
∑

x∈Mn(k)
rank(x)=j

ω(h, g)f(x)dg .
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It follows from [2, Lemma 12.13] that the sum over 1 ≤ j ≤ n− 1 is equal

to zero. Thus, ϕs
f (h) equals

∫
Gn\Gn(A)

ϕ(g)α(g)s
∑
x∈Gn

ω(h, g)f(x)dg

= α(h)−n/2

∫
Gn(A)

ϕ(g)α(g)s+n/2f(h−1g)dg .

By [2, Theorem 12.4], the last integral can be continued analytically to the

whole s-plane as an entire function. �

By the above expression of ϕs
f , it is known that the space Θs(π) is

contained in the space of cusp forms on Gn(A) if Re(s) > n/2 − t.

Proof of Theorem 1. First we assume Re(s) >> 0. For ϕ
s−1/2
f ∈

Θs−1/2(π), we set

V s
(ϕ,f)(h) =

∫
Un\Un(A)

ψn(u)−1ϕ
s−1/2
f (uh)du

= α(h)s−1/2

∫
Gn(A)

Wϕ(hg)α(g)s+n/2−1/2f(g)dg .

We may assume that Wϕ and f are decomposable, i.e. they are of the forms

Wϕ(g) =
∏
v

Wv(gv), f(g) =
∏
v

fv(gv) .

Then we set

V s
(Wv ,fv)(hv) = |dethv|s−1/2

v

∫
Gn(kv)

Wv(hvgv)|det gv|s+n/2−1/2
v fv(gv)dgv .

Let S(ϕ, f) be the finite set of places of k such that Wv is a class one

Whittaker function and fv the characteristic function of the set Mn(Ov)

consisting of integral matrices if v �∈ S(ϕ, f). It follows from [2, Lemma

6.10], (1.5) and (2.1) that if v �∈ S(ϕ, f), then

V s
(Wv ,fv)(hv) = L(s, πv)|dethv|s−1/2

v Wv(hv),
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and if v ∈ S(ϕ, f), then V s
(Wv ,fv) is of the form

V s
(Wv ,fv)(hv) = L(s, πv)|dethv|s−1/2

v

∑
j

Ξv,j(s)Wv,j(hv) ,

where Ξv,j(s) are entire functions of s and Wv,j are elements in W(πv, ψn,v).

We have

V s
(ϕ,f)(h) = L(s, π)α(h)s−1/2

×
∏

v∈S(ϕ,f)



∑
j

Ξv,j(s)Wv,j(hv)




∏
v �∈S(ϕ,f)

Wv(hv) .

Consequently, we can take a finite number of entire functions Ξj(s) and

cusp forms ϕj ∈ Hπ such that

(3.1) V s
(ϕ,f)(h) = L(s, π)α(h)s−1/2

∑
j

Ξj(s)Wϕj (h) .

It is known by [11, Theorem 5.9] that

ϕ
s−1/2
f (h) =

∑
γ∈Un−1\Gn−1

V s
(ϕ,f)(γh)

ϕj(h) =
∑

γ∈Un−1\Gn−1

Wϕj (γh) .

Here we regard Gn−1 as a subgroup of Gn by the embedding

g �→
(
g 0

0 1

)
.

Therefore, when Re(s) is sufficiently large, we obtain

ϕs
f (h) = L(s+ 1/2, π)α(h)s

∑
j

Ξj(s+ 1/2)ϕj(h) .

Since the right-hand side is an entire function of s, this expression holds for

all s ∈ C. This implies the first assertion of Theorem. Furthermore, by the

irreducibility of π, we have Θ0(π) = Hπ if Θ0(π) �= 0. �
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Proof of Theorem 2. For ϕ ∈ Hπ, f ∈ S0(Mn(A)) and s ∈ C with

Re(s) >> 0, we set

Ṽ s
(ϕ,f)(h) = L(s, π)−1

∫
Gn(A)

Wϕ(g)α(g)s−1/2ω(h, g)f(1n)dg .

By (3.1), Ṽ s
(ϕ,f)(h) extends to an entire function of s, and as a function in

h, Ṽ s
(ϕ,f) is contained in αs−1/2 ⊗W (π, ψn). Thus we can consider

θ(ϕ, f)(h) =
∑

γ∈Un−1\Gn−1

Ṽ
1/2
(ϕ,f)(γh) .

The space spanned by θ(ϕ, f), (ϕ ∈ Hπ, f ∈ S0(Mn(A))) equals Hπ. We

identify the dual space H∨
π of Hπ with the space of functions α−2tϕ, (ϕ ∈

Hπ) by the pairing

< α−2tϕ1, ϕ2 >=

∫
Zn(A)Gn\Gn(A)

ϕ1(g)ϕ2(g)α(g)−2tdg .

Then the pairing (α−2tϕ1⊗ϕ2)⊗f �→< α−2tϕ1, θ(ϕ2, f) > on (H∨
π ⊗Hπ)⊗

S0(Mn(A)) gives rise to a nonzero Hn⊗Hn-morphism from ω to the contra-

gredient representation (π∨⊗π)∨ of π∨⊗π. Next, let σ = ⊗′
vσv be an irre-

ducible autormophic cuspidal representation satisfying HomHn⊗Hn(ω, σ ⊗
π∨) �= 0. Then we have

(3.2)
HomHn,v⊗Hn,v(ωv, σv ⊗ π∨

v ) �= 0 and

HomHn,v⊗Hn,v(ωv, πv ⊗ π∨
v ) �= 0

for each place v. We denote by S(π) the finite set of finite places v where πv
is not a spherical representation. Since the local Howe duality conjecture is

true for the case of real reductive dual pairs ([4, Theorem 1]) and the case

of spherical representations of unramified reductive dual pairs ([3, Theorem

7.1]), we have σv ∼= πv for all v �∈ S(π) by (3.2). Then the strong multiplicity

one theorem ([8, Corollary 4.10]) implies σ ∼= π. �

Remark. We prove HomHn⊗Hn(ω, π ⊗ π∨) �= 0 for any irreducible

admissible representation π of Gn(A). Let S be the finite set of places
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containing all archimedean places and all finite places v where πv is not

a spherical representation. We take nonzero spherical vectors ev ∈ Hπv

and e∨v ∈ H∨
πv

for each v �∈ S. Then Hπ and H∨
π are decomposed into

restricted tensor products of the Hπv and the H∨
πv

with respect to {ev}v �∈S
and {e∨v }v �∈S , respectively. It is known by [2, Theorems 3.3 and 8.7] that

HomHn,v⊗Hn,v(ωv, πv ⊗ π∨
v ) �= 0 for each v. If v �∈ S, we can take a nonzero

Tv ∈ HomHn,v⊗Hn,v(ωv, πv⊗π∨
v ) normalized so that Tv(fv) = ev⊗e∨v for the

characteristic function fv of Mn(Ov) (cf. [3, Theorem 10.2]). If v ∈ S, we

take an arbitrary nonzero Tv ∈ HomHn,v⊗Hn,v(ωv, πv⊗π∨
v ). Then T = ⊗vTv

gives a nonzero element in HomHn⊗Hn(ω, π ⊗ π∨).
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