A Compact Imbedding of Semisimple Symmetric Spaces

By Nobukazu Shimeno

Abstract

A realization of a ε-family of semisimple symmetric spaces $\left\{G / H_{\varepsilon}\right\}$ in a compact real analytic manifold \mathbb{X} is constructed. The realization \mathbb{X} has the following properties: a) The action of G on \mathbb{X} is real analytic; b) There exist open G-orbits that are isomorphic to G / H_{ε} for each signature of roots ε; c) The system \mathcal{M}_{λ} of invariant differential equations on G / H_{ε} extends analytically on \mathbb{X} and has regular singularities in the weak sense along the boundaries.

Introduction

Let $X=G / H$ be a semisimple symmetric space of split rank l. The purpose of this paper is to construct an imbedding of X into a compact real analytic manifold \mathbb{X} without boundary. Our construction is similar to those in Kosters[K], Oshima[O1], [O2], Oshima and Sekiguchi[OS1], and Sekiguchi[Se]. The main idea of construction was first presented in [O1].

In [O1] and [O2] Oshima constructed an imbedding of X in a real analytic manifold \mathbb{X}^{\prime}. The number of open G-orbits in \mathbb{X}^{\prime} is 2^{l} and all open orbits are isomorphic to X. For example, if $X=S L(2, \mathbb{R}) / S O(2)$, then \mathbb{X}^{\prime} is $\mathbb{P}_{\mathbb{C}}^{1}$; there are two open orbits that are isomorphic to X and one compact orbit that is isomorphic to $G / P \simeq\{z \in \mathbb{C} ;|z|=1\}$, where P is the set of the lower triangular matrices in $G=S L(2, \mathbb{R})$. The idea of construction is as follows. By the Cartan decomposition $G=K A H$, we must compactify A. We choose a coordinate system on $A \simeq(0, \infty)^{l}$ so that the coefficients of vector fields that correspond to local one parameter groups of transformations of G / H continue real analytically to \mathbb{R}^{l}. In [O1] and [O2], Oshima

[^0]used the coordinate system $\left(t_{1}, \cdots, t_{l}\right)=\left(a^{-\alpha_{1}}, \cdots, a^{-\alpha_{l}}\right)(a \in A)$, where $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ is the set of simple restricted roots.

When $X=G / K$ is a Riemannian symmetric space, Oshima and Sekiguchi[OS1] used the coordinate system $\left(t_{1}, \cdots, t_{l}\right)=\left(a^{-2 \alpha_{1}}, \cdots\right.$, $\left.a^{-2 \alpha_{l}}\right)(a \in A)$ and constructed a compact real analytic manifold \mathbb{X}. There exists a family of open orbits $\left\{G / K_{\varepsilon} ; \varepsilon \in\{-1,1\}^{l}\right\}$, where G / K_{ε} are semisimple symmetric spaces. For example, if $X=S L(2, \mathbb{R}) / S O(2)$, then there are three open orbits in \mathbb{X}, one of which is isomorphic to $S L(2, \mathbb{R}) / S O(1,1)$ and the other two open orbits are isomorphic to X. The two orbits that are not open are isomorphic to G / P.

We shall generalize the construction in [OS1] for a semisimple symmetric space $X=G / H$ and construct a real analytic manifold \mathbb{X}. The main result is given in Theorem 2.6. There exists a family of open orbits $\left\{G / H_{\varepsilon} ; \varepsilon \in\right.$ $\left.\{-1,1\}^{l}\right\}$, where G / H_{ε} are semisimple symmetric spaces such that $\left(H_{\varepsilon}\right)_{\mathbb{C}} \simeq$ $H_{\mathbb{C}}$ for all ε. If G / H_{ε} is a Riemannian symmetric space for some ε, \mathbb{X} is identical with that was constructed by Oshima and Sekiguchi.

$\S 1 . \quad$ Semisimple symmetric spaces

In this section we define a family of semisimple symmetric spaces and establish some results about it, to be used later.

1.1. Symmetric pairs

First we review some notation and results of Oshima and Sekiguchi[OS2] concerning symmetric pairs. Let \mathfrak{g} be a noncompact real semisimple Lie algebra and let σ be an involution (i.e. an automorphism of order 2) of \mathfrak{g}. Denoting by \mathfrak{h} (resp. \mathfrak{q}) the +1 (resp. -1) eigenspace of σ, we have a direct sum decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{q}$. We call $(\mathfrak{g}, \mathfrak{h})$ a semisimple symmetric pair or symmetric pair for brevity. We define that two symmetric pairs ($\mathfrak{g}, \mathfrak{h}$) and $\left(\mathfrak{g}^{\prime}, \mathfrak{h}^{\prime}\right)$ are isomorphic if there exists a Lie algebra isomorphism ϕ of \mathfrak{g} to \mathfrak{g}^{\prime} such that $\phi(\mathfrak{h})=\mathfrak{h}^{\prime}$.

There exists a Cartan involution θ of \mathfrak{g} which commutes with σ. Hereafter we fix $\operatorname{such} \theta$. Denoting by \mathfrak{k} (resp. \mathfrak{p}) the +1 (resp. -1) eigenspace of θ, we have a direct sum decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$. We call ($\mathfrak{g}, \mathfrak{k}$) a Riemannian symmetric pair. Since σ and θ commute, we have the direct sum decomposition

$$
\mathfrak{g}=\mathfrak{k} \cap \mathfrak{h} \oplus \mathfrak{k} \cap \mathfrak{q} \oplus \mathfrak{p} \cap \mathfrak{h} \oplus \mathfrak{p} \cap \mathfrak{q}
$$

Let \mathfrak{a} be a maximal abelian subspace of $\mathfrak{p} \cap \mathfrak{q}$ and let \mathfrak{a}^{*} be its dual space. For $\alpha \in \mathfrak{a}^{*}$, let \mathfrak{g}^{α} denote the linear subspace of \mathfrak{g} given by

$$
\mathfrak{g}^{\alpha}=\left\{X \in \mathfrak{a}^{*} ;[Y, X]=\alpha(Y) X \quad \text { for all } Y \in \mathfrak{a}\right\}
$$

Then the set $\Sigma=\left\{\alpha \in \mathfrak{a}^{*} ; \mathfrak{g}^{\alpha} \neq\{0\}, \alpha \neq 0\right\}$ becomes a root system. We call Σ the restricted root system of the symmetric pair $(\mathfrak{g}, \mathfrak{h})$. Put

$$
\Sigma_{0}=\{\alpha \in \Sigma ; \alpha / 2 \notin \Sigma\}
$$

Let W denote the Weyl group of Σ. For $\alpha \in \Sigma$ let $s_{\alpha} \in W$ denote the reflection in the hyperplane $\alpha=0$. Fix a linear order in \mathfrak{a}^{*} and let Σ^{+} be the set of positive elements in Σ. Let $\Psi=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ be the set of simple roots in Σ^{+}, where the number $l=\operatorname{dim} \mathfrak{a}$ is called the split rank of the symmetric pair $(\mathfrak{g}, \mathfrak{h})$. Let $\left\{H_{1}, \ldots, H_{l}\right\}$ be the basis of \mathfrak{a} dual to $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$.

Definition 1.1.

(i) A mapping $\varepsilon: \Sigma \rightarrow\{1,-1\}$ is called a signature of roots if it satisfies the following conditions:

$$
\begin{cases}\varepsilon(-\alpha)=\varepsilon(\alpha) & \text { for any } \alpha \in \Sigma, \\ \varepsilon(\alpha+\beta)=\varepsilon(\alpha) \varepsilon(\beta) & \text { if } \alpha, \beta \quad \text { and } \quad \alpha+\beta \in \Sigma\end{cases}
$$

(ii) For a signature of roots ε of Σ, we define an involution σ_{ε} of \mathfrak{g} by

$$
\sigma_{\varepsilon}(X)= \begin{cases}\sigma(X) & \text { for } X \in Z_{\mathfrak{g}}(\mathfrak{a}) \\ \varepsilon(\alpha) \sigma(X) & \text { for } X \in \mathfrak{g}^{\alpha}, \alpha \in \Sigma\end{cases}
$$

where $Z_{\mathfrak{g}}(\mathfrak{a})=\{X \in \mathfrak{g} ;[X, \mathfrak{a}]=0\}$.
Denoting by $\mathfrak{h}_{\varepsilon}$ (resp. $\mathfrak{q}_{\varepsilon}$) the +1 (resp. -1) eigenspace of σ_{ε}, we have a direct sum decomposition $\mathfrak{g}=\mathfrak{h}_{\varepsilon} \oplus \mathfrak{q}_{\varepsilon}$. By definition, σ_{ε} commutes with θ and σ, and \mathfrak{a} is also a maximal abelian subspace of $\mathfrak{p} \cap \mathfrak{q}_{\varepsilon}$. This implies that Σ is also the restricted root system of the symmetric pair $\left(\mathfrak{g}, \mathfrak{h}_{\varepsilon}\right)$. For a real Lie algebra \mathfrak{u} let $\mathfrak{u}_{\mathbb{C}}$ denote its complexification. The following lemma can be proved easily in the same way as the proof of Lemma 1.3 in [OS1].

Lemma 1.2. The automorphism

$$
f_{\varepsilon}=\operatorname{Ad}\left(\exp \left(\sum_{j=1}^{l} \frac{\pi \sqrt{-1}}{4}\left(1-\varepsilon\left(\alpha_{j}\right)\right) H_{j}\right)\right)
$$

of $\mathfrak{g}_{\mathbb{C}}$ maps $\mathfrak{h}_{\mathbb{C}}$ onto $\left(\mathfrak{h}_{\varepsilon}\right)_{\mathbb{C}}$. Hence the complexifications of \mathfrak{h} and $\mathfrak{h}_{\varepsilon}$ are isomorphic in $\mathfrak{g}_{\mathbb{C}}$.

For a symmetric pair $(\mathfrak{g}, \mathfrak{h})$, let $F((\mathfrak{g}, \mathfrak{h}))$ denote the totality of symmetric pairs $\left(\mathfrak{g}, \mathfrak{h}_{\varepsilon}\right)$ for all signatures ε of roots and we call it an ε-family of symmetric pairs (obtained from $(\mathfrak{g}, \mathfrak{h})$).

For each $\alpha \in \Sigma, \theta \sigma$ leaves \mathfrak{g}^{α} invariant. Denoting by $\mathfrak{g}_{+}^{\alpha}$ (resp. $\mathfrak{g}_{-}^{\alpha}$) the +1 (resp. -1) eigenspace of $\theta \sigma$ in \mathfrak{g}^{α}, we have a direct sum decomposition $\mathfrak{g}^{\alpha}=\mathfrak{g}_{+}^{\alpha} \oplus \mathfrak{g}_{-}^{\alpha}$. The number $m(\alpha)=\operatorname{dim} \mathfrak{g}^{\alpha}$ is called the multiplicity of α and the pair $\left(m^{+}(\alpha), m^{-}(\alpha)\right)=\left(\operatorname{dim} \mathfrak{g}_{+}^{\alpha}, \operatorname{dim} \mathfrak{g}_{-}^{\alpha}\right)$ is called the signature of α. If we denote by $\left(m^{+}(\alpha, \varepsilon), m^{-}(\alpha, \varepsilon)\right)$ the signature of α as a restricted root of $\left(\mathfrak{g}, \mathfrak{h}_{\varepsilon}\right)$, then

$$
\left(\left(m^{+}(\alpha, \varepsilon), m^{-}(\alpha, \varepsilon)\right)= \begin{cases}\left(m^{+}(\alpha), m^{-}(\alpha)\right) & \text { if } \varepsilon(\alpha)=1 \tag{1.1}\\ \left(m^{-}(\alpha), m^{+}(\alpha)\right) & \text { if } \varepsilon(\alpha)=-1\end{cases}\right.
$$

Definition 1.3. A symmetric pair $(\mathfrak{g}, \mathfrak{h})$ is called basic if

$$
m^{+}(\alpha) \geq m^{-}(\alpha) \quad \text { for any } \quad \alpha \in \Sigma_{0}
$$

Proposition 1.4. ([OS2, Proposition 6.5])Let F be an ε-family of symmetric pairs. Then there exists a basic symmetric pair in F that is unique up to isomorphism.

Example 1.5.

(i) Riemannian symmetric pairs are basic. If an ε-family F contains a Riemannian symmetric pair, then the mutually non-isomorphic symmetric pairs contained in F are determined in [OS1, Appendix]. For a Riemannian symmetric pair $(\mathfrak{g}, \mathfrak{k})=(\mathfrak{s l}(2, \mathbb{R}), \mathfrak{s o}(2))$, the ε family is up to isomorphism given by

$$
F((\mathfrak{g}, \mathfrak{k}))=\{(\mathfrak{s l}(2, \mathbb{R}), \mathfrak{s o}(2)),(\mathfrak{s l}(2, \mathbb{R}), \mathfrak{s o}(1,1))\}
$$

(ii) For a real semisimple Lie algebra \mathfrak{g}^{\prime} let $\mathfrak{g}=\mathfrak{g}^{\prime} \oplus \mathfrak{g}^{\prime}$ and $\mathfrak{h}=\{(X, X)$; $\left.X \in \mathfrak{g}^{\prime}\right\} \simeq \mathfrak{g}^{\prime}$. In this case $m^{+}(\alpha)=m^{-}(\alpha)$ for any $\alpha \in \Sigma$ and hence the pair $(\mathfrak{g}, \mathfrak{h})$ is basic.
(iii) The ε-families obtained from irreducible symmetric pairs such that they are neither of type (i) nor (ii) are determined in [OS2, Table V]. For example, the symmetric pair $(\mathfrak{g}, \mathfrak{h})=(\mathfrak{s o}(3,6), \mathfrak{s o}(3,1)+\mathfrak{s o}(5))$ is basic and the ε-family is up to isomorphism given by

$$
F=\{(\mathfrak{s o}(3,6), \mathfrak{s o}(3-k, 1+k)+\mathfrak{s o}(k, 5-k)) ; 0 \leq k \leq 2\} .
$$

1.2. Definition of symmetric spaces G / H_{ε}

For an ε-family of symmetric pairs, we will define a family of symmetric spaces. Hereafter we assume that $(\mathfrak{g}, \mathfrak{h})$ is a basic symmetric pair and consider the ε-family obtained from $(\mathfrak{g}, \mathfrak{h})$.

For a Lie group L with Lie algebra \mathfrak{l} and a subalgebra \mathfrak{t} of \mathfrak{l}, let $Z_{L}(\mathfrak{t})$ and $Z_{\mathfrak{l}}(\mathfrak{t})$ denote the centralizer of \mathfrak{t} in L and that of \mathfrak{t} in \mathfrak{l} respectively and let L_{0} denote the connected component of the identity element in L.

Let $G_{\mathbb{C}}$ be a connected complex Lie group whose Lie algebra is $\mathfrak{g}_{\mathbb{C}}$ and let G be the analytic subgroup of $G_{\mathbb{C}}$ corresponding to \mathfrak{g}. We extend σ and θ to $\mathfrak{g}_{\mathbb{C}}$ as \mathbb{C}-linear involutions.

We assume that the involution σ is lifted to G (i.e. there exists an analytic automorphism $\tilde{\sigma}$ of G such that $\tilde{\sigma}(\exp X)=\exp \sigma(X)$ for any $X \in \mathfrak{g})$ and denote the lifting by the same letter. If $G_{\mathbb{C}}$ is simply connected or is the adjoint group of $\mathfrak{g}_{\mathbb{C}}$, then any involution of \mathfrak{g} is lifted to G (c.f. [OS2, Lemma 1.5]).

LEMMA 1.6. Under the above assumption, the involution σ_{ε} of \mathfrak{g} is lifted to G for each signature of roots ε.

Proof. We fix a signature of roots ε. Let $\widetilde{G}_{\mathbb{C}}$ denote the universal covering group of $G_{\mathbb{C}}$ and let \widetilde{G} be the analytic subgroup of $\widetilde{G}_{\mathbb{C}}$ corresponding to \mathfrak{g} and let π denote the covering map $\pi: \widetilde{G} \rightarrow G$. The involutions σ and σ_{ε} are lifted to $\widetilde{G}_{\mathbb{C}}$.

Let U be the analytic subgroup of $\widetilde{G}_{\mathbb{C}}$ corresponding to $\mathfrak{u}=\mathfrak{k}+\sqrt{-1} \mathfrak{p}$. Then the center \widetilde{Z} of $\widetilde{G}_{\mathbb{C}}$ is contained in $Z_{U}(\sqrt{-1} \mathfrak{a})$. It follows from $[\mathrm{H}$, Chapter VII, Corollary 2.8] that $Z_{U}(\sqrt{-1} \mathfrak{a})$ is connected. By definition, σ
and σ_{ε} coincide on $Z_{\mathfrak{u}}(\sqrt{-1} \mathfrak{a})$, hence their liftings to $\widetilde{G}_{\mathbb{C}}$ coincide on the connected Lie group $Z_{U}(\sqrt{-1} \mathfrak{a})$. Since σ is lifted to G, ker $\pi \subset Z_{U}(\sqrt{-1} \mathfrak{a})$ is σ-stable, hence it is σ_{ε}-stable. It follows from [H, Chapter VII, Lemma 1.3] that σ_{ε} is lifted to G.

We define $G^{\sigma}=\{g \in G ; \sigma(g)=g\}$ and let H be a closed subgroup of G between G^{σ} and its identity component $\left(G^{\sigma}\right)_{0}$. The homogeneous space G / H is called a semisimple symmetric space associated with the symmetric pair $(\mathfrak{g}, \mathfrak{h})$. Hereafter we fix a symmetric space G / H associated with $(\mathfrak{g}, \mathfrak{h})$.

Let K be the analytic subgroup of G corresponding to \mathfrak{k}. The Weyl group W of the restricted root system Σ can be identified with $N_{K}(\mathfrak{a}) / Z_{K}(\mathfrak{a})$, where $N_{K}(\mathfrak{a})$ is the normalizer of \mathfrak{a} in K. For a signature of roots ε, we put $H_{\varepsilon}=\left(G^{\sigma_{\varepsilon}}\right)_{0} Z_{K \cap H}(\mathfrak{a})$.

Lemma 1.7. H_{ε} is a closed subgroup of G that is contained in $G^{\sigma_{\varepsilon}}$.
Proof. It follows from the proof of Lemma 1.6 that σ and σ_{ε} coincide on $Z_{K \cap H}(\mathfrak{a})$, hence $H_{\varepsilon} \subset G^{\sigma_{\varepsilon}}$.

For any $z \in Z_{K \cap H}(\mathfrak{a})$ we have $\sigma_{\varepsilon} \circ \operatorname{Ad}(z)=\operatorname{Ad}\left(\sigma_{\varepsilon} z\right) \circ \sigma_{\varepsilon}=\operatorname{Ad}(z) \circ \sigma_{\varepsilon}$, hence $\operatorname{Ad}(z)\left(\mathfrak{h}_{\varepsilon}\right)=\mathfrak{h}_{\varepsilon}$. It shows that H_{ε} is a group with Lie algebra $\mathfrak{h}_{\varepsilon}$. Since $\left(G^{\sigma_{\varepsilon}}\right)_{0}$ is a closed subgroup of G and H_{ε} has finitely many connected components, H_{ε} is a closed subgroup of G.

The above lemma shows that G / H_{ε} is a semisimple symmetric space associated with the symmetric pair $\left(\mathfrak{g}, \mathfrak{h}_{\varepsilon}\right)$. We give an important lemma that will be used later;

Lemma 1.8. For each signature of roots ε,
(i) $Z_{K \cap\left(G^{\sigma \varepsilon}\right)_{0}}(\mathfrak{a}) \subset Z_{K \cap\left(G^{\sigma}\right)_{0}}(\mathfrak{a})$
(ii) $Z_{K \cap H}(\mathfrak{a})=Z_{K \cap H_{\varepsilon}}(\mathfrak{a})$

Proof. (i) Let ε be a signature of roots. We put $\mathfrak{h}_{\varepsilon}^{a}=\mathfrak{k} \cap \mathfrak{h}_{\varepsilon}+\mathfrak{p} \cap \mathfrak{q}_{\varepsilon}$ and let $\left(H_{\varepsilon}^{a}\right)_{0}$ be the analytic subgroups of G corresponding to $\mathfrak{h}_{\varepsilon}^{a}$. If $\varepsilon=$ $(1, \cdots, 1)$, then we drop ε in our notation and write $\mathfrak{h}^{a}, H_{0}^{a}$ etc. Then $\left(\mathfrak{h}_{\varepsilon}^{a}, \mathfrak{h}_{\varepsilon}^{a} \cap \mathfrak{k}\right)$ is a Riemannian symmetric pair and \mathfrak{a} is a maximal abelian subspace of $\mathfrak{h}_{\varepsilon}^{a} \cap \mathfrak{p}$. The groups $K \cap\left(G^{\sigma_{\varepsilon}}\right)_{0}$ and $K \cap\left(H_{\varepsilon}^{a}\right)_{0}$ are maximal compact subgroups of $\left(G^{\sigma_{\varepsilon}}\right)_{0}$ and $\left(H_{\varepsilon}^{a}\right)_{0}$ respectively, thus $K \cap\left(G^{\sigma_{\varepsilon}}\right)_{0}$ and
$K \cap\left(H_{\varepsilon}^{a}\right)_{0}$ are connected. Moreover $K \cap\left(G^{\sigma_{\varepsilon}}\right)_{0}$ and $K \cap\left(H_{\varepsilon}^{a}\right)_{0}$ have same Lie algebra $\mathfrak{k} \cap \mathfrak{h}_{\varepsilon}$. Therefore they coincide. It follows from [W, Lemma 1.1.3.8] and its proof that

$$
Z_{K \cap\left(G^{\sigma_{\varepsilon}}\right)_{0}}(\mathfrak{a})=Z_{K \cap\left(H_{\varepsilon}^{a}\right)_{0}}(\mathfrak{a})=\left(Z_{K \cap\left(H_{\varepsilon}^{a}\right)_{0}}(\mathfrak{a})\right)_{0}\left(K \cap\left(H_{\varepsilon}^{a}\right)_{0} \cap \exp \sqrt{-1} \mathfrak{a}\right)
$$

Since $\left(Z_{K \cap\left(H_{\varepsilon}^{a}\right)_{0}}(\mathfrak{a})\right)_{0}=\left(Z_{K \cap H_{0}^{a}}(\mathfrak{a})\right)_{0}$ for each ε, it suffices to prove

$$
\begin{equation*}
K \cap\left(H_{\varepsilon}^{a}\right)_{0} \cap \exp \sqrt{-1} \mathfrak{a} \subset K \cap H_{0}^{a} \cap \exp \sqrt{-1} \mathfrak{a} \tag{1.2}
\end{equation*}
$$

for each signature of roots ε.
Let $\left(\widetilde{H}_{\varepsilon}^{a}\right)_{\mathbb{C}}$ be the simply connected connected Lie group with Lie algebra $\left(\mathfrak{h}_{\varepsilon}^{a}\right)_{\mathbb{C}}$. Let $\widetilde{H}_{\varepsilon}^{a}$ and $K\left(\widetilde{H}_{\varepsilon}^{a}\right)$ be the analytic subgroups of $\left(\widetilde{H}_{\varepsilon}^{a}\right)_{\mathbb{C}}$ corresponding to $\mathfrak{h}_{\varepsilon}^{a}$ and $\mathfrak{k} \cap \mathfrak{h}_{\varepsilon}$ respectively. By [H, Chapter VII, Theorem 8.5], the lattice

$$
\mathfrak{a}_{K\left(\widetilde{H}_{\varepsilon}^{a}\right)}=\left\{X \in \mathfrak{a} ; \exp \sqrt{-1} X \in K\left(\widetilde{H}_{\varepsilon}^{a}\right)\right\}
$$

in \mathfrak{a} is spanned by

$$
\frac{2 \pi \sqrt{-1}}{\langle\alpha, \alpha\rangle} A_{\alpha} \quad\left(\alpha \in \Sigma\left(\mathfrak{h}_{\varepsilon}^{a}, \mathfrak{a}\right)\right)
$$

where $A_{\alpha} \in \mathfrak{a}$ is determined by $\alpha(X)=B\left(A_{\alpha}, X\right)$ for all $X \in \mathfrak{a}$. Here B denotes the Killing form of $\mathfrak{h}_{\varepsilon}^{a}$ and $\Sigma\left(\mathfrak{h}_{\varepsilon}^{a}, \mathfrak{a}\right)$ is the restricted root system for the symmetric pair $\left(\mathfrak{h}_{\varepsilon}^{a}, \mathfrak{k} \cap \mathfrak{h}_{\varepsilon}\right)$. Notice that $m^{+}(\alpha, \varepsilon)$ is the multiplicity of $\alpha \in \Sigma$ considered as an element of $\Sigma\left(\mathfrak{h}_{\varepsilon}^{a}, \mathfrak{a}\right)$. By (1.1) and Definition 1.3, $m^{+}(\alpha) \geq m^{+}(\alpha, \varepsilon)$ for any $\alpha \in \Sigma_{0}$ and $\varepsilon(\alpha)=\varepsilon(\alpha / 2)^{2}=1$ for $\alpha \in \Sigma \backslash \Sigma_{0}$. Therefore we have $\Sigma\left(\mathfrak{h}_{\varepsilon}^{a}, \mathfrak{a}\right) \subset \Sigma\left(\mathfrak{h}^{a}, \mathfrak{a}\right)$, hence $\mathfrak{a}_{K\left(\widetilde{H}_{\varepsilon}^{a}\right)} \subset \mathfrak{a}_{K\left(\widetilde{H}^{a}\right)}$. By Lemma 1.2 , the center of $\left(\widetilde{H}_{\varepsilon}^{a}\right)_{\mathbb{C}}$ coincides with that of $\left(\widetilde{H}^{a}\right)_{\mathbb{C}}$ and σ_{ε} coincides with σ on it, hence (1.2) follows.

Since we have $Z_{K \cap H_{\varepsilon}}(\mathfrak{a})=Z_{K \cap\left(G^{\left.\sigma_{\varepsilon}\right)_{0}}\right.}(\mathfrak{a}) Z_{K \cap H}(\mathfrak{a})$ by the definition of H_{ε}, (ii) follows from (i).

§2. Construction of compact imbedding

2.1. Parabolic subgroups

We assume that $(\mathfrak{g}, \mathfrak{h})$ is a basic symmetric pair. We define a standard parabolic subalgebra \mathfrak{p}_{σ} of \mathfrak{g} by $\mathfrak{p}_{\sigma}=Z_{\mathfrak{k}}(\mathfrak{a})+\mathfrak{n}_{\sigma}$, where $\mathfrak{n}_{\sigma}=\sum_{\alpha \in \Sigma^{+}} \mathfrak{g}^{\alpha}$. Let $\mathfrak{p}_{\sigma}=\mathfrak{m}_{\sigma}+\mathfrak{a}_{\sigma}+\mathfrak{n}_{\sigma}$ be a Langlands decomposition of \mathfrak{p}_{σ} (c.f. [OS2,

Section 8]). Let P_{σ} denote the parabolic subgroup of G with Lie algebra \mathfrak{p}_{σ} and let $P_{\sigma}=M_{\sigma} A_{\sigma} N_{\sigma}$ be the Langlands decomposition corresponding to $\mathfrak{p}_{\sigma}=\mathfrak{m}_{\sigma}+\mathfrak{a}_{\sigma}+\mathfrak{n}_{\sigma}$. Let N_{σ}^{-}be the analytic subgroup of G corresponding to $\mathfrak{n}_{\sigma}^{-}=\theta\left(\mathfrak{n}_{\sigma}\right)$. If $(\mathfrak{g}, \mathfrak{h})$ is a Riemannian symmetric pair, then \mathfrak{p}_{σ} is a minimal parabolic subalgebra of \mathfrak{g}.

Definition 2.1. A mapping $\varepsilon: \Sigma \rightarrow\{-1,0,1\}$ is called an extended signature of roots when it satisfies the condition:

$$
\begin{equation*}
\varepsilon(\alpha)=\prod_{i=1}^{l} \varepsilon\left(\alpha_{i}\right)^{\left|m_{i}\right|} \quad \text { for } \alpha=\sum_{i=1}^{l} m_{i} \alpha_{i} \in \Sigma \tag{2.1}
\end{equation*}
$$

Note that any mapping of $\Psi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ to $\{-1,0,1\}$ is uniquely extended to a mapping of Σ to $\{-1,0,1\}$ which satisfies (2.1). Therefore we can identify the set of all extended signatures of roots with $\{-1,0,1\}^{l}$ by $\varepsilon \mapsto\left(\varepsilon\left(\alpha_{1}\right), \ldots, \varepsilon\left(\alpha_{l}\right)\right)$. For an extended signature of roots ε, we define a signature of roots $\tilde{\varepsilon}$ by

$$
\tilde{\varepsilon}\left(\alpha_{j}\right)= \begin{cases}\varepsilon\left(\alpha_{j}\right) & \text { if } \varepsilon\left(\alpha_{j}\right) \neq 0 \tag{2.2}\\ 1 & \text { if } \varepsilon\left(\alpha_{j}\right)=0\end{cases}
$$

For an extended signature of roots we define $\Theta_{\varepsilon}=\{\alpha \in \Psi ; \varepsilon(\alpha) \neq 0\}$, $\left\langle\Theta_{\varepsilon}\right\rangle=\Sigma \cap \sum_{\alpha \in \Theta_{\varepsilon}} \mathbb{R} \alpha$ and $\langle\Theta\rangle^{+}=\Sigma^{+} \cap\langle\Theta\rangle$. Let $W_{\Theta_{\varepsilon}}$ be the subgroup of W generated by the reflections with respect to the elements of $\left\langle\Theta_{\varepsilon}\right\rangle$. Notice that $\left\langle\Theta_{\varepsilon}\right\rangle$ become a root system and $W_{\Theta_{\varepsilon}}$ is its Weyl group.

We define a parabolic subalgebra $\mathfrak{p}_{\varepsilon}$ by

$$
\mathfrak{p}_{\varepsilon}=\mathfrak{m}_{\sigma}+\mathfrak{a}_{\sigma}+\sum_{\alpha \in\left\langle\Theta_{\varepsilon}\right\rangle} \mathfrak{g}^{\alpha}+\sum_{\left.\alpha \in \Sigma^{+} \backslash \backslash \Theta_{\varepsilon}\right\rangle} \mathfrak{g}^{\alpha}
$$

and let $\mathfrak{p}_{\varepsilon}=\mathfrak{m}_{\varepsilon}+\mathfrak{a}_{\varepsilon}+\mathfrak{n}_{\varepsilon}$ be the Langlands decomposition of $\mathfrak{p}_{\varepsilon}$ such that $\mathfrak{a}_{\varepsilon} \subset \mathfrak{a}_{\sigma}$. Let P_{ε} be the parabolic subgroup of G with Lie algebra $\mathfrak{p}_{\varepsilon}$ and let $P_{\varepsilon}=M_{\varepsilon} A_{\varepsilon} N_{\varepsilon}$ be the Langlands decomposition of P_{ε} corresponding to $\mathfrak{p}_{\varepsilon}=\mathfrak{m}_{\varepsilon}+\mathfrak{a}_{\varepsilon}+\mathfrak{n}_{\varepsilon}$. We define subalgebras $\mathfrak{a}^{\varepsilon}, \mathfrak{m}(\varepsilon)$ and $\mathfrak{p}(\varepsilon)$ of \mathfrak{g} by $\mathfrak{a}^{\varepsilon}=\sum_{\alpha_{j} \in \Theta_{\varepsilon}} \mathbb{R} H_{j}, \mathfrak{m}(\varepsilon)=\mathfrak{m}_{\varepsilon} \cap \mathfrak{h}_{\tilde{\varepsilon}}=Z_{\mathfrak{h} \tilde{\varepsilon}}\left(\mathfrak{a}_{\varepsilon}\right)$ and $\mathfrak{p}(\varepsilon)=\mathfrak{m}(\varepsilon)+\mathfrak{a}_{\varepsilon}+\mathfrak{n}_{\varepsilon}$. We have a direct sum decomposition $\mathfrak{a}_{\sigma}=\mathfrak{a}^{\varepsilon}+\mathfrak{a}_{\varepsilon}$.

Let A, A^{ε} and $M(\varepsilon)_{0}$ be analytic subgroup of G corresponding to \mathfrak{a}, $\mathfrak{a}^{\varepsilon}$ and $\mathfrak{m}(\varepsilon)$ respectively. We define $M(\varepsilon)=M(\varepsilon)_{0} Z_{K \cap H}(\mathfrak{a})$ and $P(\varepsilon)=$ $M(\varepsilon) A_{\varepsilon} N_{\varepsilon}$. If ε is a signature of roots, $\Theta_{\varepsilon}=\Psi, W_{\Theta_{\varepsilon}}=W$ and $P(\varepsilon)=H_{\varepsilon}$. On the other hand, if $\varepsilon=(0, \ldots, 0), \Theta_{\varepsilon}=\varnothing, W_{\Theta_{\varepsilon}}=\{e\}$ and $P_{\varepsilon}=P_{\sigma}$.

Lemma 2.2. $\quad M(\varepsilon)$ and $P(\varepsilon)$ are closed subgroups of G.
Proof. Since $\operatorname{Ad}(z) \sigma_{\tilde{\varepsilon}}(X)=\sigma_{\tilde{\varepsilon}}(\operatorname{Ad}(z) X)$ for all $z \in Z_{K \cap H}(\mathfrak{a})=$ $Z_{K \cap H_{\tilde{\varepsilon}}}(\mathfrak{a})$ and $X \in \mathfrak{g}$, we have $\operatorname{Ad}(z)(\mathfrak{m}(\varepsilon))=\mathfrak{m}(\varepsilon)$ for all $z \in Z_{K \cap H}(\mathfrak{a})$. Therefore $M(\varepsilon)$ is a group. It is closed, because $M(\varepsilon)_{0}$ is a connected component of $H_{\tilde{\varepsilon}} \cap M_{\varepsilon}$ and $Z_{K \cap H}(\mathfrak{a})$ is compact.

Owing to the Langlands decomposition, $P(\varepsilon)$ is closed because $M(\varepsilon)$ is closed in M_{ε}. It is easy to see that $M(\varepsilon)$ and A_{ε} normalize N_{ε}. Thus $P(\varepsilon)$ is a group.

2.2. Root systems and Weyl groups

Let

$$
\begin{equation*}
\Psi^{\prime}=\left\{\alpha \in \Psi ; 2 \alpha \notin \Sigma \text { and } m^{-}(\alpha)=0\right\} \tag{2.3}
\end{equation*}
$$

and $\Sigma^{\prime}=\Sigma \cap \sum_{\alpha \in \Psi^{\prime}} \mathbb{R} \alpha$. For an extended signature of roots ε, we define $\Sigma_{\varepsilon}^{\prime}=\left\{\alpha \in \Sigma^{\prime} ; \varepsilon(\alpha)=1\right\}$ and $\Sigma_{\varepsilon}=\left\{\alpha \in\left\langle\Theta_{\varepsilon}\right\rangle ; \varepsilon(\alpha)=1\right.$ or $\left.m^{-}(\alpha)>0\right\}$. By [B, Chapter IV, Proposition 23], Σ_{ε} and $\Sigma_{\varepsilon}^{\prime}$ are root systems. Let W^{\prime}, $W_{\varepsilon}, W_{\varepsilon}^{\prime}$ and $W_{\Theta_{\varepsilon}}^{\prime}$ denote the subgroups of W generated by the reflections with respect to the roots in $\Sigma^{\prime}, \Sigma_{\varepsilon}, \Sigma_{\varepsilon}^{\prime}$ and $\Sigma^{\prime} \cap\left\langle\Theta_{\varepsilon}\right\rangle$ respectively. We put

$$
W(\varepsilon)=\left\{w \in W_{\Theta_{\varepsilon}} ; \Sigma_{\varepsilon} \cap w \Sigma^{+}=\Sigma_{\varepsilon} \cap \Sigma^{+}\right\}
$$

Lemma 2.3.
(i) $W(\varepsilon)=\left\{w \in W_{\Theta_{\varepsilon}} ; \Sigma_{\varepsilon} \cap \Phi_{w}=\varnothing\right\}$. Here $\Phi_{w}=\left\{\alpha \in \Sigma^{+} ; w^{-1} \alpha \in\right.$ $\left.-\Sigma^{+}\right\}$.
(ii) $W(\varepsilon)=\left\{w \in W_{\Theta_{\varepsilon}}^{\prime} ; \Sigma_{\varepsilon}^{\prime} \cap w \Sigma^{+}=\Sigma_{\varepsilon}^{\prime} \cap \Sigma^{+}\right\}$.
(iii) Let the pair $\left(W_{\Theta_{\varepsilon}}^{*}, W_{\varepsilon}^{*}\right)$ be equal to $\left(W_{\Theta_{\varepsilon}}, W_{\varepsilon}\right)$ or $\left(W_{\Theta_{\varepsilon}}^{\prime}, W_{\varepsilon}^{\prime}\right)$. Then every element $w \in W_{\Theta_{\varepsilon}}^{*}$ can be written in a unique way in the form

$$
w=w_{\varepsilon} w(\varepsilon) \quad\left(w_{\varepsilon} \in W_{\varepsilon}^{*}, w(\varepsilon) \in W(\varepsilon)\right)
$$

Proof. The proof is almost the same as that of [OS1, Lemma 2.5]. So we omit it.

Let ε be a signature of roots. Let $W\left(\mathfrak{a} ; H_{\varepsilon}\right)$ be the set of all elements w in W such that the representative \bar{w} of w can be taken from $N_{K \cap H_{\varepsilon}}(\mathfrak{a})$. We have $W\left(\mathfrak{a} ; H_{\varepsilon}\right) \simeq N_{K \cap H_{\varepsilon}}(\mathfrak{a}) / Z_{K \cap H_{\varepsilon}}(\mathfrak{a})$. We put $W\left(\mathfrak{a} ;\left(H_{\varepsilon}\right)_{0}\right)=$ $N_{K \cap\left(H_{\varepsilon}\right)_{0}}(\mathfrak{a}) / Z_{K \cap\left(H_{\varepsilon}\right)_{0}}(\mathfrak{a})$. For $\alpha \in \Sigma_{0}$, let $\mathfrak{g}(\alpha)$ denote the Lie subalgebra of \mathfrak{g} that is generated by \mathfrak{g}^{α} and $\theta \mathfrak{g}^{\alpha}$.

Proposition 2.4. Let ε be a signature of roots.
(i) Let $\alpha \in \Sigma_{0}$. Then $\mathfrak{h}_{\varepsilon}^{a} \cap \mathfrak{g}(\alpha) \neq\{0\}$ if and only if $s_{\alpha} \in W\left(\mathfrak{a} ;\left(H_{\varepsilon}\right)_{0}\right)$.
(ii) $W\left(\mathfrak{a} ; H_{\varepsilon}\right)=W_{\varepsilon}$.

Proof. We use the method of rank one reduction. Let $\alpha \in \Sigma_{0}$. If $\mathfrak{h}_{\varepsilon}^{a} \cap \mathfrak{g}^{\alpha} \neq\{0\}$, then α can be considered as an element of the restricted root system $\Sigma\left(\mathfrak{h}_{\varepsilon}^{a}, \mathfrak{a}\right)$ of the symmetric pair $\left(\mathfrak{h}_{\varepsilon}^{a}, \mathfrak{k} \cap \mathfrak{h}_{\varepsilon}^{a}\right)$. Thus there exists $X_{\alpha} \in \mathfrak{g}^{\alpha} \cap \mathfrak{h}_{\varepsilon}^{a}$ such that $\exp \left(X_{\alpha}+\theta X_{\alpha}\right)=\bar{s}_{\alpha}$ (c.f. [H, Chapter VII]).

If $\mathfrak{h}_{\varepsilon}^{a} \cap \mathfrak{g}^{\alpha}=\{0\}$, then by [OS2, Remark 7.4], $(\mathfrak{g}(\alpha), \mathfrak{g}(\alpha) \cap \mathfrak{h})=(\mathfrak{s o}(n+$ $1,1), \mathfrak{s o}(n, 1))$ for some n. Thus $s_{\alpha} \notin W\left(\mathfrak{a} ;\left(H_{\varepsilon}\right)_{0}\right)$.

Since $W\left(\mathfrak{a} ;\left(H_{\varepsilon}\right)_{0}\right)$ is generated by the reflections $s_{\alpha}(\alpha \in \Sigma)$ such that $s_{\alpha} \in W\left(\mathfrak{a} ;\left(H_{\varepsilon}\right)_{0}\right), W\left(\mathfrak{a} ;\left(H_{\varepsilon}\right)_{0}\right)$ is the Weyl group of the root system

$$
\Sigma_{\varepsilon}=\{\alpha \in \Sigma ;(\mathfrak{g}(\alpha), \mathfrak{g}(\alpha) \cap \mathfrak{h}) \neq(\mathfrak{s o}(n+1,1), \mathfrak{s o}(n, 1)) \text { for any } n\}
$$

Thus $W\left(\mathfrak{a} ;\left(H_{\varepsilon}\right)_{0}\right)=W_{\varepsilon}$. Since $H_{\varepsilon}=\left(H_{\varepsilon}\right)_{0} Z_{K \cap H}(\mathfrak{a})$, we have $W\left(\mathfrak{a} ; H_{\varepsilon}\right)=$ W_{ε}.

By Proposition 2.4, we have $W(\mathfrak{a} ; H)=W$. Hereafter we fix representatives $\bar{w} \in N_{K \cap H}(\mathfrak{a})$ for all w in W.

2.3. Construction of compact imbedding

Let $\tilde{\mathbb{X}}$ denote the product manifold $G \times \mathbb{R}^{l} \times W^{\prime}$. For $s \in \mathbb{R}$ define sgn s to be 1 if $s>0,0$ if $s=0$ and -1 if $s<0$. For $x=(g, t, w) \in \tilde{\mathbb{X}}$ we define an extended signature of roots ε_{x} by $\varepsilon_{x}\left(\alpha_{j}\right)=\operatorname{sgn} t_{j}(j=1, \ldots, l)$. We have
$A_{\varepsilon_{x}}, W_{\varepsilon_{x}}, \Theta_{\varepsilon_{x}}, P_{\varepsilon_{x}}, P\left(\varepsilon_{x}\right)$ etc., which we write $A_{x}, W_{x}, \Theta_{x}, P_{x}, P(x)$ etc. for short. For $(x, t, w) \in \tilde{\mathbb{X}}$ we define $a(x) \in A^{x}$ by

$$
\begin{equation*}
a(x)=\exp \left(-\frac{1}{2} \sum_{t_{j} \neq 0} \log \left|t_{j}\right| H_{j}\right) \tag{2.3}
\end{equation*}
$$

Definition 2.5. We say that two elements $x=(g, t, w)$ and $x^{\prime}=$ $\left(g^{\prime}, t^{\prime}, w^{\prime}\right)$ of $\tilde{\mathbb{X}}$ are equivalent if and only if the following conditions hold.
(i) $\varepsilon_{x}\left(w^{-1} \alpha\right)=\varepsilon_{x^{\prime}}\left(w^{\prime-1} \alpha\right)$ for any $\alpha \in \Sigma$.
(ii) $w^{-1} w^{\prime} \in W(x)$.
(iii) $g a(x) P(x) \bar{w}^{-1}=g^{\prime} a\left(x^{\prime}\right) P\left(x^{\prime}\right) \bar{w}^{\prime-1}$.

The condition (i) implies $w \Theta_{x}=w^{\prime} \Theta_{x^{\prime}}, w \Sigma_{x}^{\prime}=w^{\prime} \Sigma_{x^{\prime}}^{\prime}$, and $w W_{\Theta_{x}}^{\prime} w^{-1}=$ $w^{\prime} W_{\Theta_{x^{\prime}}}^{\prime} w^{\prime-1}$. Therefore, under the condition (i), the condition (ii) is equivalent to

$$
w^{-1} w^{\prime} \in W_{\Theta_{x}}^{\prime}=W_{\Theta_{x^{\prime}}}^{\prime} \quad \text { and } \quad w\left(\Sigma_{x}^{\prime} \cap \Sigma^{+}\right)=w^{\prime}\left(\Sigma_{x^{\prime}}^{\prime} \cap \Sigma^{+}\right)
$$

Therefore this is in fact an equivalent relation, which we write $x \sim x^{\prime}$.
Assume that $x, x^{\prime} \in \tilde{\mathbb{X}}$ satisfy the conditions (i) and (ii). The Lie algebra $\mathfrak{p}(x)=\mathfrak{p}\left(\varepsilon_{x}\right)$ equals

$$
Z_{\mathfrak{h}}(\mathfrak{a})+\sum_{\alpha_{j} \in \Psi \backslash \Theta_{x}} \mathbb{R} H_{j}+\sum_{\alpha \in \Sigma}\left\{X+\varepsilon_{x}(\alpha) \sigma(X) ; X \in \mathfrak{g}^{\alpha}\right\}
$$

where $Z_{\mathfrak{h}}(\mathfrak{a})$ is a centralizer of \mathfrak{a} in \mathfrak{h}. Since $\bar{w}^{\prime-1} \bar{w} \in H$, it is easy to see that $\operatorname{Ad}\left(\bar{w}^{\prime-1} \bar{w}\right) \mathfrak{p}(x)=\mathfrak{p}\left(x^{\prime}\right)$. Moreover since $\bar{w}^{\prime-1} \bar{w} Z_{K \cap H}(\mathfrak{a}) \bar{w}^{-1} \bar{w}^{\prime}=$ $Z_{K \cap H}(\mathfrak{a})$, we have $\bar{w} P(x) \bar{w}^{-1}=\bar{w}^{\prime} P\left(x^{\prime}\right) \bar{w}^{\prime-1}$. Therefore the condition (iii) is equivalent to

$$
g a(x) P(x)=g^{\prime} a\left(x^{\prime}\right) \bar{w}^{\prime-1} \bar{w} P(x) \quad \text { in } G / P(x)
$$

Therefore the equivalent relation is compatible with an action of G on $\tilde{\mathbb{X}}$ given by $g^{\prime}(g, t, w)=\left(g^{\prime} g, t, w\right)\left(g^{\prime} \in G\right)$.

Let \mathbb{X} denote the topological space $\tilde{\mathbb{X}} / \sim$ and let $\pi: \tilde{\mathbb{X}} \rightarrow \mathbb{X}$ be the projection. The space \mathbb{X} inherits from $\tilde{\mathbb{X}}$ a continuous action of G, given by $g \pi(x)=\pi(g x)$.

We state the main theorem of this paper:

Theorem 2.6.
(i) \mathbb{X} is a compact connected real analytic manifold without boundary.
(ii) The action of G on \mathbb{X} is analytic and the G-orbit structure is normal crossing type in the sense of [O1, Remark 6].
(iii) For a point x in $\tilde{\mathbb{X}}$, the orbit $G \pi(x)$ is isomorphic to $G / P(x)$ and \mathbb{X} has the orbital decomposition

$$
\mathbb{X}=\bigsqcup_{\substack{\varepsilon \in\{-1,0,1\}^{l} \\ w \in W_{\varepsilon}^{\prime}}} G \pi(e, \varepsilon, w)
$$

(iv) There are $\left|W^{\prime}\right|$ orbits which are isomorphic to G / H (also to $G / P((e, 0,1)))$. For a signature of roots ε and $w \in W_{\varepsilon}^{\prime}$, the number of compact orbits in \mathbb{X} that is contained in the closure of the open orbit $G \pi(e, \varepsilon, w) \simeq G / H_{\varepsilon}$ equals $|W(\varepsilon)|$.

Remark 2.7.

(i) If $(\mathfrak{g}, \mathfrak{h})$ is a Riemannian symmetric pair, then the space \mathbb{X} was constructed in [OS1, Section 2] and the above theorem was proved there ([OS1, Theorem 2.6]).
(ii) In [O2, Section 1] Oshima studies a realization of semisimple symmetric spaces. Let X be a semisimple symmetric space and let \mathbb{X}^{\prime} denote the compact real analytic manifold that is constructed in [O2]. All open orbits in \mathbb{X}^{\prime} are isomorphic to X. The construction of \mathbb{X} is similar to that of \mathbb{X}^{\prime}. The difference is that $a(x)$ is defined by $\exp \left(-\sum_{t} \log \left|t_{j}\right| H_{j}\right)$ in [O2] in place of (2.3).

Example 2.8. For the \mathbb{R}-, \mathbb{C} - and \mathbb{H}-hyperbolic spaces, the space \mathbb{X} is constructed by Sekiguchi [Se, Section 3]. For example, consider the case of the real hyperbolic space. Let $G=S O_{0}(p, q)$ and $H=S O_{0}(p, q-$ 1) $(p \geq q \geq 1)$. We take $K=S O(p) \times S O(q)$ and $\mathfrak{a}=\mathbb{R} Y$ where $Y=$ $E_{1, p+q}+E_{p+q, 1}$, then \mathfrak{a} is a maximal abelian subspace in $\mathfrak{p} \cap \mathfrak{q}$. We have $\Sigma=\{ \pm \alpha\}$ where $\alpha(Y)=1$ with signature $\left(m^{+}(\alpha), m^{-}(\alpha)\right)=(p-1, q-1)$. Therefore the rank one symmetric space $X=G / H$ is basic. The space \mathbb{X} has the orbital decomposition $\mathbb{X}=X^{+} \cup X^{0} \cup X^{-}$, where $X^{+} \simeq X$ and $X^{-} \simeq S O_{0}(p, q) / S O_{0}(p-1, q)$.

§3. Proof of Theorem 2.6

In this section we prove Theorem 2.6. The proof goes in a similar way as the proof of [OS1, Theorem 2.7]. We will give an outline of the proof here.

Let $\mathfrak{a}_{\mathfrak{p}}$ be a maximal abelian subspace of \mathfrak{p} containing \mathfrak{a}. Let $\Sigma\left(\mathfrak{a}_{\mathfrak{p}}\right)$ be the restricted root system of $\left(\mathfrak{g}, \mathfrak{a}_{\mathfrak{p}}\right)$. Let $\mathfrak{g}(\sigma)$ be the reductive Lie algebra generated by

$$
\left\{\mathfrak{g}\left(\mathfrak{a}_{\mathfrak{p}} ; \lambda\right) ; \lambda \in \Sigma\left(\mathfrak{a}_{\mathfrak{p}}\right) \text { with } \lambda \mid \mathfrak{a}=0\right\}
$$

where $\mathfrak{g}\left(\mathfrak{a}_{\mathfrak{p}} ; \lambda\right)$ denotes the root space for $\lambda \in \Sigma\left(\mathfrak{a}_{\mathfrak{p}}\right)$. Put

$$
\mathfrak{m}(\sigma)=\left\{X \in \mathfrak{m}_{\sigma} ;[X, Y]=0 \text { for all } Y \in \mathfrak{g}(\sigma)\right\}
$$

Let $G(\sigma)$ and $M(\sigma)_{0}$ denote the analytic subgroups of G corresponding to $\mathfrak{g}(\sigma)$ and $\mathfrak{m}(\sigma)$ respectively and put

$$
M(\sigma)=M(\sigma)_{0}\left(K \cap \exp \sqrt{-1} \mathfrak{a}_{\mathfrak{p}}\right)
$$

By [O2, Lemma 1.4] we may assume that the representative \bar{w} of $w \in W$ in $N_{K}(\mathfrak{a})$ normalize $G(\sigma)$ and $M(\sigma)$ for all $w \in W$.

We fix a basis $\left\{X_{1}, \cdots, X_{L}\right\}$ so that $X_{i} \in \mathfrak{g}^{\alpha(i)}$ for some $\alpha(i) \in \Sigma^{+}$, where $L=\operatorname{dim} \mathfrak{n}_{\sigma}$. We fix an basis $\left\{Z_{1}, \cdots, Z_{L^{\prime}}\right\}$ of \mathfrak{m}_{σ} so that $\left\{Z_{1}, \cdots, Z_{L^{\prime \prime}}\right\}$ is a basis of $\mathfrak{m}(\sigma)$ and $\left\{Z_{L^{\prime \prime}+1}, \cdots, Z_{L^{\prime}}\right\}$ is a basis of $\mathfrak{g}(\sigma)$, where $L^{\prime}=$ $\operatorname{dim} \mathfrak{m}_{\sigma}$ and $L^{\prime \prime}=\operatorname{dim} \mathfrak{m}(\sigma)$. Moreover we put $l^{\prime \prime}=\operatorname{dim} \mathfrak{a}_{\sigma}$ and choose $H_{l+1}, \cdots, H_{l^{\prime \prime}} \in \mathfrak{a}_{\sigma} \cap \mathfrak{h}$ so that $\left\{H_{1}, \cdots, H_{l}, H_{l+1}, \cdots, H_{l^{\prime \prime}}\right\}$ is a basis of \mathfrak{a}_{σ}. We put $X_{-i}=\sigma\left(X_{i}\right)$. Then $\left\{X_{-1}, \cdots, X_{-L}\right\}$ is a basis of $\mathfrak{n}_{\sigma}^{-}$and

$$
\left\{X_{1}, \cdots, X_{L}, X_{-1}, \cdots, X_{-L}, Z_{1}, \cdots, Z_{L^{\prime}}, H_{1}, \cdots, H_{l^{\prime \prime}}\right\}
$$

forms a basis of \mathfrak{g}.
Lemma 3.1. Fix an element g of G and consider the map

$$
\tilde{\pi}_{g}: N_{\sigma}^{-} \times M(\sigma) \times A^{\varepsilon} \rightarrow G / P(\varepsilon)
$$

defined by $\tilde{\pi}_{g}(n, m, a)=\operatorname{gnmaP}(\varepsilon)$.
(i) The map $\tilde{\pi}_{g}$ induces an analytic diffeomorphism of $N_{\sigma}^{-} \times$ $M(\sigma) /(M(\sigma) \cap H) \times A^{\varepsilon}$ onto an open subset of $G / P(\varepsilon)$.
(ii) For an element Y in \mathfrak{g} let Y_{ε} be the vector field on $G / P(\varepsilon)$ corresponding to the 1-parameter group which is defined by the action $\exp (t Y)(t \in \mathbb{R})$ on $G / P(\varepsilon)$. For $p=(n, m, a) \in N_{\sigma}^{-} \times M(\sigma) \times A^{\varepsilon}$, we have

$$
\begin{array}{r}
\left(Y_{\varepsilon}\right)_{\tilde{\pi}(p)}=d \tilde{\pi}_{p}\left(\left(\sum_{i=1}^{L}\left(\varepsilon\left(\alpha_{i}\right) c_{i}^{+}(n m) a^{-2 \alpha_{i}}+c_{i}^{-}(n m)\right) \operatorname{Ad}(m) X_{-i}\right.\right. \\
\left.\left.+\sum_{j=1}^{L^{\prime \prime}} c_{j}^{0}(n m) Z_{j}+\sum_{k=1}^{l} c_{k}(n m) H_{k}\right)_{p}\right)
\end{array}
$$

Here X_{-i}, Z_{j} and H_{k} are identified with left invariant vector fields on $N_{\sigma}^{-}, M(\sigma)$ and A^{ε} respectively. Moreover the analytic functions $c_{i}^{+}, c_{i}^{-}, c_{j}^{0}$ and c_{k} on G are defined by

$$
\operatorname{Ad}(g)^{-1} Y=\sum_{i=1}^{L}\left(c_{i}^{+}(g) X_{i}+c_{i}^{-}(g) X_{-i}\right)+\sum_{j=1}^{L^{\prime \prime}} c_{j}^{0}(g) Z_{j}+\sum_{k=1}^{l} c_{k}(g) H_{k}
$$

for $g \in G$.

Proof. Notice that $\sigma=\sigma_{\varepsilon}$ on $M(\sigma)$. We have

$$
M(\sigma) \cap H \subset Z_{K \cap H}(\mathfrak{a})=Z_{K \cap H_{\varepsilon}}(\mathfrak{a}) \subset H_{\varepsilon}
$$

Thus $M(\sigma) \cap H \subset M(\sigma) \cap H_{\varepsilon}$. The inclusion $M(\sigma) \cap H_{\varepsilon} \subset M(\sigma) \cap H$ can be proved in the same way. Therefore we have $M(\sigma) \cap H=M(\sigma) \cap H_{\varepsilon}$. Now (i) follows from [O2, Lemma 1.6].

The proof of (ii) can be done in the same way as that of [O2, Lemma 1.6 (ii)], where the statement is proved when ε does not take the value -1 . So we omit it.

For $g \in G$ and $w \in W^{\prime}$, we define the set U_{g}^{w} by

$$
U_{g}^{w}=\pi\left(\left(g N_{\sigma}^{-} \times M(\sigma)\right) \times \mathbb{R}^{l} \times\{w\}\right)
$$

Then Lemma 3.1 shows that the map

$$
\phi_{g}^{w}: N_{\sigma}^{-} \times M(\sigma) /(M(\sigma) \cap H) \times \mathbb{R}^{l} \rightarrow U_{g}^{w} \subset \mathbb{X}
$$

defined by $(n, m, t) \mapsto \pi((g n \bar{m}, t, w))$ is bijective. We put $U=N_{\sigma}^{-} \times$ $M(\sigma) /(M(\sigma) \cap H) \times \mathbb{R}^{l}$.

Lemma 3.2. Fix $g, g^{\prime} \in G$ and $w, w^{\prime} \in W^{\prime}$.
(i) For an element Y of \mathfrak{g} the local one parameter group of transformation $\left(\phi_{g}^{w}\right)^{-1} \circ \exp (t Y) \circ \phi_{g}^{w}(t \in \mathbb{R})$ defines an analytic vector field on U.
(ii) The $\operatorname{map}\left(\phi_{g^{\prime}}^{w^{\prime}}\right)^{-1} \circ \phi_{g}^{w}$ of $\left(\phi_{g}^{w}\right)^{-1}\left(U_{g}^{w} \cap U_{g^{\prime}}^{w^{\prime}}\right)$ onto $\left(\phi_{g^{\prime}}^{w^{\prime}}\right)^{-1}\left(U_{g}^{w} \cap U_{g^{\prime}}^{w^{\prime}}\right)$ defines an analytic diffeomorphism between these open subsets of \mathbb{R}^{l}.
(iii) ϕ_{g}^{w} is a homeomorphism onto an open subset U_{g}^{w} of \mathbb{X}.

Proof. To prove (i), we may assume that $w=e$. By Lemma 3.1, $Y \in \mathfrak{g}$ determines an analytic vector field on $N_{\sigma}^{-} \times M(\sigma) /(M(\sigma) \cap H) \times \mathbb{R}_{\varepsilon}^{l}$, because H_{k} determines the vector field $-2 t_{k} \frac{\partial}{\partial t_{k}}$ on $\mathbb{R}_{\varepsilon}^{l}$ by the correspondence $t \mapsto a(t)$. Here $\mathbb{R}_{\varepsilon}^{l}$ denotes the set $\left\{t \in \mathbb{R}^{l} ; t_{j}=0 \quad\right.$ if $\left.\varepsilon\left(\alpha_{j}\right)=0\right\}$. They piece together and define an analytic vector field on U.

We can prove (ii) and (iii) in the same way as the proof of [O2, Lemma 1.9] and [OS1, Lemma 2.8]. So we omit it.

We put $V=\left\{t \in \mathbb{R}^{l} ; t^{\alpha}<1\right.$ for all $\left.\alpha \in \Sigma^{+}\right\}$. Since $(g k m, t, w) \sim$ $(g k, t, w)$ for any $g \in G, k \in K, m \in Z_{K \cap H}(\mathfrak{a}), t \in \mathbb{R}^{l}$ and $w \in W^{\prime}$, we can define the map

$$
\psi_{g}^{w}: K / Z_{K \cap H}(\mathfrak{a}) \times V \rightarrow \mathbb{X}
$$

by $\left(k Z_{K \cap H}(\mathfrak{a}), t\right) \mapsto \pi((g k, t, w))$.
Lemma 3.3. For any $g, g^{\prime} \in G$ and $w \in W^{\prime}$, the map

$$
\left(\phi_{g^{\prime}}^{w^{\prime}}\right)^{-1} \circ \psi_{g}^{w}:\left(\psi_{g}^{w}\right)^{-1}\left(\operatorname{Im} \psi_{g}^{w} \cap U_{g^{\prime}}^{w^{\prime}}\right) \mapsto\left(\phi_{g^{\prime}}^{w^{\prime}}\right)^{-1}\left(\operatorname{Im} \psi_{g}^{w} \cap U_{g^{\prime}}^{w^{\prime}}\right)
$$

is an analytic diffeomorphism between the open subsets of $K / Z_{K \cap H}(\mathfrak{a}) \times V$ and U.

Proof. We fix an arbitrary point x in $\left(\psi_{g}^{w}\right)^{-1}\left(\operatorname{Im} \psi_{g}^{w} \cap U_{g^{\prime}}^{w^{\prime}}\right)$. We can prove in the same way as the proof of [OS1, Lemma 2.9] that the differential of the map $\left(\phi_{g^{\prime}}^{w^{\prime}}\right)^{-1} \circ \psi_{g}^{w}$ at x is bijective, hence the map $\left(\phi_{g^{\prime}}^{w^{\prime}}\right)^{-1} \circ \psi_{g}^{w}$ is an analytic local isomorphism between open subsets. The injectivity of the map also can be proved in the same way as the proof of [OS1, Lemma 2.9] by using the Cartan decomposition [Sc, Proposition 7.1.3]. So we do not give the proof in detail here.

Proof of Theorem 2.6. It remains to prove that \mathbb{X} is connected, compact and Hausdorff. The proof can be done in the same way as the proof of [OS1, Theorem 2.7] by using Lemma 2.3, Lemma 3.2, Lemma 3.3 and the Cartan decomposition [Sc, Proposition 7.1.3]. So we omit it.

The following are easy consequences of Theorem 2.6 and Lemma 3.3.
Corollary 3.4. For a signature ε of roots and an element w of W^{\prime}, we put $\mathbb{X}_{\varepsilon}^{w}=\pi\left(G \times\left\{\varepsilon\left(\alpha_{1}\right), \cdots, \varepsilon\left(\alpha_{l}\right)\right\} \times\{w\}\right)$ and $B_{w}=\pi(G \times\{0\} \times$ $\{w\})$. Then we have natural identifications $G / H_{\varepsilon} \simeq \mathbb{X}_{\varepsilon}^{w}$ and $G / P_{\sigma} \simeq B_{w}$. Moreover B_{w} is contained in the closure of $\mathbb{X}_{\varepsilon}^{1}$ if and only if $w \in W(\varepsilon)$.

Corollary 3.5. The map

$$
\psi_{g}^{w}: K / Z_{K \cap H}(\mathfrak{a}) \times V \ni\left(k Z_{K \cap H}(\mathfrak{a}), t\right) \mapsto \pi((g k, t, w)) \in \mathbb{X}
$$

is an analytic diffeomorphism and $\underset{g \in G, w \in W^{\prime}}{\bigcup} \operatorname{Im} \psi_{g}^{w}$ is an open covering of \mathbb{X}.

§4. Invariant differential operators

In this section we shall show that the system of invariant differential equations on G / H_{ε} extends analytically on \mathbb{X} and has regular singularities in the weak sense along the boundaries. For the notion of the systems of differential equations with regular singularities we refer [KO], [OS1] and $[\mathrm{Sc}]$. First we recall after $[\mathrm{O} 2]$ and $[\mathrm{Sc}]$ on the structure of the algebra of invariant differential operators on G / H_{ε}.

For a real or complex Lie subalgebra \mathfrak{u} of $\mathfrak{g}_{\mathbb{C}}$ let $U(\mathfrak{u})$ denote the universal enveloping algebra of \mathfrak{u}^{\prime}, where \mathfrak{u}^{\prime} is the complex subalgebra of $\mathfrak{g}_{\mathbb{C}}$ generated by \mathfrak{u}.

Retain the notation of Section 1. Let \mathfrak{j} be a maximal abelian subspace of \mathfrak{q} containing \mathfrak{a}. Then by the definition of $\sigma_{\varepsilon}, \mathfrak{j}$ is also a maximal abelian subspace of $\mathfrak{q}_{\varepsilon}$. Let $\Sigma(\mathfrak{j})$ denote the root system for the pair $\left(\mathfrak{g}_{\mathbb{C}}, \mathfrak{j}_{\mathbb{C}}\right)$. Let $\Sigma(\mathfrak{j})^{+}$denote the set of positive roots with respect to a compatible orders for $\Sigma(\mathfrak{j})$ and Σ. Put $\rho=\frac{1}{2} \sum_{\alpha \in \Sigma(\mathfrak{j})+} \alpha$. Let $\mathfrak{n}_{\mathbb{C}}$ be the nilpotent subalgebra of $\mathfrak{g}_{\mathbb{C}}$ corresponding to $\Sigma\left(\mathfrak{j}_{\mathbb{C}}\right)^{+}$and put $\mathfrak{n}_{\mathbb{C}}^{-}=\sigma\left(\mathfrak{n}_{\mathbb{C}}\right)$.

From the Iwasawa decomposition $\mathfrak{g}_{\mathbb{C}}=\mathfrak{n}_{\mathbb{C}}^{-} \oplus \mathfrak{j}_{\mathbb{C}} \oplus\left(\mathfrak{h}_{\varepsilon}\right)_{\mathbb{C}}$ and the Poincaré-Birkoff-Witt theorem it follows that

$$
U(\mathfrak{g})=\left(\mathfrak{n}_{\mathbb{C}}^{-} U(\mathfrak{g})+U(\mathfrak{g})\left(\mathfrak{h}_{\varepsilon}\right)_{\mathbb{C}}\right) \oplus U(\mathfrak{j})
$$

Let δ_{ε} be the projection of $U(\mathfrak{g})$ to $U(\mathfrak{j})$ with respect to this decomposition. Let η be the algebra automorphism of $U(\mathfrak{j})$ generated by $\eta(Y)=Y-\rho(Y)$ for $Y \in \mathfrak{j}$ and put $\tilde{\gamma}_{\varepsilon}=\eta \circ \delta_{\varepsilon}$. Then the map $\tilde{\gamma}_{\varepsilon}$ induces an isomorphism:

$$
\gamma_{\varepsilon}: U(\mathfrak{g})^{\mathfrak{h}_{\varepsilon}} /\left(U(\mathfrak{g})^{\mathfrak{h}_{\varepsilon}} \cap U(\mathfrak{g})\left(\mathfrak{h}_{\varepsilon}\right)_{\mathbb{C}}\right) \xrightarrow{\sim} U(\mathfrak{j})^{W(\mathfrak{j})}
$$

where $U(\mathfrak{g})^{\mathfrak{h}_{\varepsilon}}$ is the set of $\mathfrak{h}_{\varepsilon}$-invariant elements in $U\left(\mathfrak{h}_{\varepsilon}\right)$ and $U(\mathfrak{j})^{W(\mathfrak{j})}$ is the set of the elements in $U(\mathfrak{j})$ that are invariant under the Weyl group $W(\mathfrak{j})$ of $\Sigma(\mathfrak{j})$.

Let $\mathbb{D}\left(G / H_{\varepsilon}\right)$ denote the algebra of invariant differential operators on G / H_{ε}. Since $\mathbb{D}\left(G / H_{\varepsilon}\right) \simeq U(\mathfrak{g})^{\mathfrak{h}_{\varepsilon}} /\left(U(\mathfrak{g})^{\mathfrak{h}_{\varepsilon}} \cap U(\mathfrak{g})\left(\mathfrak{h}_{\varepsilon}\right)_{\mathbb{C}}\right)$ (c.f. [O2, P 618]), we have the algebra isomorphism:

$$
\begin{equation*}
\gamma_{\varepsilon}: \mathbb{D}\left(G / H_{\varepsilon}\right) \xrightarrow{\sim} U(\mathfrak{j})^{W(j)} \tag{4.1}
\end{equation*}
$$

Let w be an element in W^{\prime} and ε be a signature of roots. Put $\mathbb{X}_{\varepsilon}^{w}=$ $G \pi(e, \varepsilon, w)$ and let

$$
\iota_{\varepsilon}^{w}: G / H_{\varepsilon} \xrightarrow{\sim} \mathbb{X}_{\varepsilon}^{w}
$$

be the natural isomorphism. Let $\mathbb{D}(\mathbb{X})$ denote the algebra of G-invariant differential operators on \mathbb{X} whose coefficients are analytic.

Proposition 4.1.
(i) There exists a surjective algebra isomorphism

$$
\gamma: \mathbb{D}(\mathbb{X}) \rightarrow U(\mathfrak{j})^{W(\mathrm{j})}
$$

that is given by $\gamma(D)=\gamma_{\varepsilon} \circ\left(\iota_{\varepsilon}^{w}\right)^{-1}\left(D \mid \mathbb{X}_{\varepsilon}^{w}\right)$, which does not depend on the choice of $w \in W^{\prime}$ and $\varepsilon \in\{ \pm 1\}^{l}$.
(ii) The system of invariant differential equations

$$
\mathcal{M}_{\lambda}:(D-\gamma(D)(\lambda)) u=0 \quad \text { for all } D \in \mathbb{D}(\mathbb{X})
$$

has regular singularities in the weak sense along the set of walls $\left\{\pi\left(G\left\{(e, t, w) ; t_{j}=0\right\} ; j=1, \ldots, l\right\}\right.$ with the edge $\pi(G(e, 0, w))$ for each $w \in W^{\prime}$. The set of characteristic exponents of \mathcal{M}_{λ} is $\left\{s_{w \lambda}=\left(s_{w \lambda, i}\right)_{1 \leq i \leq l}\right\}$, where $s_{w \lambda, i}=\frac{1}{2}(\rho-\lambda)\left(H_{i}\right)$.

Proof. The proof can be done in a similar way with the proof of Proposition 2.26 and Lemma 2.28 in [OS1] (c.f. [O2]). So we omit it.

Acknowledgements. This paper is a part of the author's master thesis[Sh]. The author is greatly indebted to Professor Toshio Oshima for introducing him the problem. The author also thanks Professor Toshiyuki Kobayashi for helpful discussions.

References

[B] Bourbaki, N., Éléments de mathématique, Groupes et algèbres de Lie, Chapter IV-VI, Herman, Paris, 1968.
[H] Helgason, S., Differential Geometry, Lie Groups and Symmetric spaces, Academic Press, New York, 1978.
[K] Kosters, W. A., Eigenspaces of the Laplace-Beltrami operator on $S L(n, \mathbb{R}) / S(G L(1) \times G L(n-1))$. Part I, Indag. Math. 47 (1985), 99-123.
[KO] Kashiwara, M. and T. Oshima, Systems of differential equations with regular singularities and their boundary value problems, Ann. of Math. 106 (1977), 145-200.
[O1] Oshima, T., A realization of Riemannian symmetric spaces, J. Math. Soc. Japan 30 (1978), 117-132.
[O2] Oshima, T., A realization of semisimple symmetric spaces and constructions of boundary value maps, Advanced Studies in Pure Math. 14, Kinokuniya, Tokyo, 1988, pp. 603-650.
[OS1] Oshima, T. and J. Sekiguchi, Eigenspaces of invariant differential operators on an affine symmetric space, Invent. Math. 57 (1980), 1-81.
[OS2] Oshima, T. and J. Sekiguchi, The restricted root system of a semisimple symmetric pair, Advanced Studies in Pure Math. 4, Kinokuniya, Tokyo, 1984, pp. 433-497.
[Sc] Schlichtkrull, H., Hyperfunctions and Harmonic Analysis on Symmetric Spaces, Birkhäuser, Boston, 1984.
[Se] Sekiguchi, J., Eigenspaces of Laplace-Beltrami operator on a hyperboloid, Nagoya Math. J. 79 (1980), 151-185.
[Sh] Shimeno, N., A compact imbedding of semisimple symmetric spaces (in Japanese), Master Thesis, University of Tokyo, 1988.
[W] Warner, G., Harmonic Analysis on Semi-Simple Lie Groups I, SpringerVerlag, Berlin Heiderberg New York, 1972.
(Received August 28, 1995)
Department of Mathematics
Tokyo Metropolitan University
Present address
Department of Applied Mathematics Okayama University of Science
Okayama 700
Japan

[^0]: 1991 Mathematics Subject Classification. Primary 53C35; Secondary 22E46.

