A Compact Imbedding of Semisimple Symmetric Spaces

By Nobukazu Shimeno

Abstract. A realization of a ε -family of semisimple symmetric spaces $\{G/H_{\varepsilon}\}$ in a compact real analytic manifold X is constructed. The realization X has the following properties: a) The action of G on X is real analytic; b) There exist open G-orbits that are isomorphic to G/H_{ε} for each signature of roots ε ; c) The system \mathcal{M}_{λ} of invariant differential equations on G/H_{ε} extends analytically on X and has regular singularities in the weak sense along the boundaries.

Introduction

Let X = G/H be a semisimple symmetric space of split rank l. The purpose of this paper is to construct an imbedding of X into a compact real analytic manifold X without boundary. Our construction is similar to those in Kosters[K], Oshima[O1], [O2], Oshima and Sekiguchi[OS1], and Sekiguchi[Se]. The main idea of construction was first presented in [O1].

In [O1] and [O2] Oshima constructed an imbedding of X in a real analytic manifold X'. The number of open G-orbits in X' is 2^l and all open orbits are isomorphic to X. For example, if $X = SL(2, \mathbb{R})/SO(2)$, then X' is $\mathbb{P}^1_{\mathbb{C}}$; there are two open orbits that are isomorphic to X and one compact orbit that is isomorphic to $G/P \simeq \{z \in \mathbb{C} ; |z| = 1\}$, where P is the set of the lower triangular matrices in $G = SL(2, \mathbb{R})$. The idea of construction is as follows. By the Cartan decomposition G = KAH, we must compactify A. We choose a coordinate system on $A \simeq (0, \infty)^l$ so that the coefficients of vector fields that correspond to local one parameter groups of transformations of G/H continue real analytically to \mathbb{R}^l . In [O1] and [O2], Oshima

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C35; Secondary 22E46.

used the coordinate system $(t_1, \dots, t_l) = (a^{-\alpha_1}, \dots, a^{-\alpha_l}) (a \in A)$, where $\{\alpha_1, \dots, \alpha_l\}$ is the set of simple restricted roots.

When X = G/K is a Riemannian symmetric space, Oshima and Sekiguchi[OS1] used the coordinate system $(t_1, \dots, t_l) = (a^{-2\alpha_1}, \dots, a^{-2\alpha_l})$ $(a \in A)$ and constructed a compact real analytic manifold X. There exists a family of open orbits $\{G/K_{\varepsilon}; \varepsilon \in \{-1,1\}^l\}$, where G/K_{ε} are semisimple symmetric spaces. For example, if $X = SL(2, \mathbb{R})/SO(2)$, then there are three open orbits in X, one of which is isomorphic to $SL(2, \mathbb{R})/SO(1, 1)$ and the other two open orbits are isomorphic to X. The two orbits that are not open are isomorphic to G/P.

We shall generalize the construction in [OS1] for a semisimple symmetric space X = G/H and construct a real analytic manifold X. The main result is given in Theorem 2.6. There exists a family of open orbits $\{G/H_{\varepsilon}; \varepsilon \in \{-1,1\}^l\}$, where G/H_{ε} are semisimple symmetric spaces such that $(H_{\varepsilon})_{\mathbb{C}} \simeq H_{\mathbb{C}}$ for all ε . If G/H_{ε} is a Riemannian symmetric space for some ε , X is identical with that was constructed by Oshima and Sekiguchi.

$\S1$. Semisimple symmetric spaces

In this section we define a family of semisimple symmetric spaces and establish some results about it, to be used later.

1.1. Symmetric pairs

First we review some notation and results of Oshima and Sekiguchi[OS2] concerning symmetric pairs. Let \mathfrak{g} be a noncompact real semisimple Lie algebra and let σ be an involution (i.e. an automorphism of order 2) of \mathfrak{g} . Denoting by \mathfrak{h} (resp. \mathfrak{q}) the +1 (resp. -1) eigenspace of σ , we have a direct sum decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{q}$. We call $(\mathfrak{g}, \mathfrak{h})$ a *semisimple symmetric pair* or *symmetric pair* for brevity. We define that two symmetric pairs $(\mathfrak{g}, \mathfrak{h})$ and $(\mathfrak{g}', \mathfrak{h}')$ are isomorphic if there exists a Lie algebra isomorphism ϕ of \mathfrak{g} to \mathfrak{g}' such that $\phi(\mathfrak{h}) = \mathfrak{h}'$.

There exists a Cartan involution θ of \mathfrak{g} which commutes with σ . Hereafter we fix such θ . Denoting by \mathfrak{k} (resp. \mathfrak{p}) the +1 (resp. -1) eigenspace of θ , we have a direct sum decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. We call $(\mathfrak{g}, \mathfrak{k})$ a Riemannian symmetric pair. Since σ and θ commute, we have the direct sum decomposition

$$\mathfrak{g} = \mathfrak{k} \cap \mathfrak{h} \oplus \mathfrak{k} \cap \mathfrak{q} \oplus \mathfrak{p} \cap \mathfrak{h} \oplus \mathfrak{p} \cap \mathfrak{q}.$$

Let \mathfrak{a} be a maximal abelian subspace of $\mathfrak{p} \cap \mathfrak{q}$ and let \mathfrak{a}^* be its dual space. For $\alpha \in \mathfrak{a}^*$, let \mathfrak{g}^{α} denote the linear subspace of \mathfrak{g} given by

$$\mathfrak{g}^{\alpha} = \{ X \in \mathfrak{a}^* ; [Y, X] = \alpha(Y) X \text{ for all } Y \in \mathfrak{a} \}.$$

Then the set $\Sigma = \{ \alpha \in \mathfrak{a}^* ; \mathfrak{g}^{\alpha} \neq \{0\}, \alpha \neq 0 \}$ becomes a root system. We call Σ the restricted root system of the symmetric pair $(\mathfrak{g}, \mathfrak{h})$. Put

$$\Sigma_0 = \{ \alpha \in \Sigma \, ; \, \alpha/2 \notin \Sigma \}$$

Let W denote the Weyl group of Σ . For $\alpha \in \Sigma$ let $s_{\alpha} \in W$ denote the reflection in the hyperplane $\alpha = 0$. Fix a linear order in \mathfrak{a}^* and let Σ^+ be the set of positive elements in Σ . Let $\Psi = \{\alpha_1, \ldots, \alpha_l\}$ be the set of simple roots in Σ^+ , where the number $l = \dim \mathfrak{a}$ is called the split rank of the symmetric pair $(\mathfrak{g}, \mathfrak{h})$. Let $\{H_1, \ldots, H_l\}$ be the basis of \mathfrak{a} dual to $\{\alpha_1, \ldots, \alpha_l\}$.

Definition 1.1.

(i) A mapping $\varepsilon : \Sigma \to \{1, -1\}$ is called a *signature of roots* if it satisfies the following conditions:

$$\left\{ \begin{array}{ll} \varepsilon(-\alpha) = \varepsilon(\alpha) & \text{ for any } \alpha \in \Sigma, \\ \varepsilon(\alpha + \beta) = \varepsilon(\alpha)\varepsilon(\beta) & \text{ if } \alpha, \beta \quad \text{and} \quad \alpha + \beta \in \Sigma. \end{array} \right.$$

(ii) For a signature of roots ε of Σ , we define an involution σ_{ε} of \mathfrak{g} by

$$\sigma_{\varepsilon}(X) = \begin{cases} \sigma(X) & \text{for } X \in Z_{\mathfrak{g}}(\mathfrak{a}) \\ \varepsilon(\alpha)\sigma(X) & \text{for } X \in \mathfrak{g}^{\alpha}, \alpha \in \Sigma \end{cases}$$

where $Z_{\mathfrak{g}}(\mathfrak{a}) = \{ X \in \mathfrak{g} ; [X, \mathfrak{a}] = 0 \}.$

Denoting by $\mathfrak{h}_{\varepsilon}$ (resp. $\mathfrak{q}_{\varepsilon}$) the +1 (resp. -1) eigenspace of σ_{ε} , we have a direct sum decomposition $\mathfrak{g} = \mathfrak{h}_{\varepsilon} \oplus \mathfrak{q}_{\varepsilon}$. By definition, σ_{ε} commutes with θ and σ , and \mathfrak{a} is also a maximal abelian subspace of $\mathfrak{p} \cap \mathfrak{q}_{\varepsilon}$. This implies that Σ is also the restricted root system of the symmetric pair $(\mathfrak{g}, \mathfrak{h}_{\varepsilon})$. For a real Lie algebra \mathfrak{u} let $\mathfrak{u}_{\mathbb{C}}$ denote its complexification. The following lemma can be proved easily in the same way as the proof of Lemma 1.3 in [OS1].

LEMMA 1.2. The automorphism

$$f_{\varepsilon} = \operatorname{Ad}\left(\exp\left(\sum_{j=1}^{l} \frac{\pi\sqrt{-1}}{4} (1 - \varepsilon(\alpha_j))H_j\right)\right)$$

of $\mathfrak{g}_{\mathbb{C}}$ maps $\mathfrak{h}_{\mathbb{C}}$ onto $(\mathfrak{h}_{\varepsilon})_{\mathbb{C}}$. Hence the complexifications of \mathfrak{h} and $\mathfrak{h}_{\varepsilon}$ are isomorphic in $\mathfrak{g}_{\mathbb{C}}$.

For a symmetric pair $(\mathfrak{g}, \mathfrak{h})$, let $F((\mathfrak{g}, \mathfrak{h}))$ denote the totality of symmetric pairs $(\mathfrak{g}, \mathfrak{h}_{\varepsilon})$ for all signatures ε of roots and we call it an ε -family of symmetric pairs (obtained from $(\mathfrak{g}, \mathfrak{h})$).

For each $\alpha \in \Sigma$, $\theta \sigma$ leaves \mathfrak{g}^{α} invariant. Denoting by $\mathfrak{g}^{\alpha}_{+}$ (resp. $\mathfrak{g}^{\alpha}_{-}$) the +1 (resp. -1) eigenspace of $\theta \sigma$ in \mathfrak{g}^{α} , we have a direct sum decomposition $\mathfrak{g}^{\alpha} = \mathfrak{g}^{\alpha}_{+} \oplus \mathfrak{g}^{\alpha}_{-}$. The number $m(\alpha) = \dim \mathfrak{g}^{\alpha}$ is called the *multiplicity* of α and the pair $(m^{+}(\alpha), m^{-}(\alpha)) = (\dim \mathfrak{g}^{\alpha}_{+}, \dim \mathfrak{g}^{\alpha}_{-})$ is called the signature of α . If we denote by $(m^{+}(\alpha, \varepsilon), m^{-}(\alpha, \varepsilon))$ the signature of α as a restricted root of $(\mathfrak{g}, \mathfrak{h}_{\varepsilon})$, then

(1.1)
$$((m^+(\alpha,\varepsilon),m^-(\alpha,\varepsilon)) = \begin{cases} (m^+(\alpha),m^-(\alpha)) & \text{if } \varepsilon(\alpha) = 1\\ (m^-(\alpha),m^+(\alpha)) & \text{if } \varepsilon(\alpha) = -1. \end{cases}$$

DEFINITION 1.3. A symmetric pair $(\mathfrak{g}, \mathfrak{h})$ is called *basic* if

 $m^+(\alpha) \ge m^-(\alpha)$ for any $\alpha \in \Sigma_0$.

PROPOSITION 1.4. ([OS2, Proposition 6.5])Let F be an ε -family of symmetric pairs. Then there exists a basic symmetric pair in F that is unique up to isomorphism.

Example 1.5.

(i) Riemannian symmetric pairs are basic. If an ε-family F contains a Riemannian symmetric pair, then the mutually non-isomorphic symmetric pairs contained in F are determined in [OS1, Appendix]. For a Riemannian symmetric pair (g, t) = (sl(2, R), so(2)), the ε-family is up to isomorphism given by

$$F((\mathfrak{g},\mathfrak{k})) = \{(\mathfrak{sl}(2,\mathbb{R}),\mathfrak{so}(2)), (\mathfrak{sl}(2,\mathbb{R}),\mathfrak{so}(1,1))\}.$$

- (ii) For a real semisimple Lie algebra \mathfrak{g}' let $\mathfrak{g} = \mathfrak{g}' \oplus \mathfrak{g}'$ and $\mathfrak{h} = \{(X, X); X \in \mathfrak{g}'\} \simeq \mathfrak{g}'$. In this case $m^+(\alpha) = m^-(\alpha)$ for any $\alpha \in \Sigma$ and hence the pair $(\mathfrak{g}, \mathfrak{h})$ is basic.
- (iii) The ε-families obtained from irreducible symmetric pairs such that they are neither of type (i) nor (ii) are determined in [OS2, Table V]. For example, the symmetric pair (g, h) = (so(3, 6), so(3, 1) + so(5)) is basic and the ε-family is up to isomorphism given by

$$F = \{(\mathfrak{so}(3,6), \mathfrak{so}(3-k,1+k) + \mathfrak{so}(k,5-k)); 0 \le k \le 2\}.$$

1.2. Definition of symmetric spaces G/H_{ε}

For an ε -family of symmetric pairs, we will define a family of symmetric spaces. Hereafter we assume that $(\mathfrak{g}, \mathfrak{h})$ is a basic symmetric pair and consider the ε -family obtained from $(\mathfrak{g}, \mathfrak{h})$.

For a Lie group L with Lie algebra \mathfrak{l} and a subalgebra \mathfrak{t} of \mathfrak{l} , let $Z_L(\mathfrak{t})$ and $Z_{\mathfrak{l}}(\mathfrak{t})$ denote the centralizer of \mathfrak{t} in L and that of \mathfrak{t} in \mathfrak{l} respectively and let L_0 denote the connected component of the identity element in L.

Let $G_{\mathbb{C}}$ be a connected complex Lie group whose Lie algebra is $\mathfrak{g}_{\mathbb{C}}$ and let G be the analytic subgroup of $G_{\mathbb{C}}$ corresponding to \mathfrak{g} . We extend σ and θ to $\mathfrak{g}_{\mathbb{C}}$ as \mathbb{C} -linear involutions.

We assume that the involution σ is lifted to G (i.e. there exists an analytic automorphism $\tilde{\sigma}$ of G such that $\tilde{\sigma}(\exp X) = \exp \sigma(X)$ for any $X \in \mathfrak{g}$) and denote the lifting by the same letter. If $G_{\mathbb{C}}$ is simply connected or is the adjoint group of $\mathfrak{g}_{\mathbb{C}}$, then any involution of \mathfrak{g} is lifted to G (c.f. [OS2, Lemma 1.5]).

LEMMA 1.6. Under the above assumption, the involution σ_{ε} of \mathfrak{g} is lifted to G for each signature of roots ε .

PROOF. We fix a signature of roots ε . Let $\widetilde{G}_{\mathbb{C}}$ denote the universal covering group of $G_{\mathbb{C}}$ and let \widetilde{G} be the analytic subgroup of $\widetilde{G}_{\mathbb{C}}$ corresponding to \mathfrak{g} and let π denote the covering map $\pi : \widetilde{G} \to G$. The involutions σ and σ_{ε} are lifted to $\widetilde{G}_{\mathbb{C}}$.

Let U be the analytic subgroup of $\widetilde{G}_{\mathbb{C}}$ corresponding to $\mathfrak{u} = \mathfrak{k} + \sqrt{-1}\mathfrak{p}$. Then the center \widetilde{Z} of $\widetilde{G}_{\mathbb{C}}$ is contained in $Z_U(\sqrt{-1}\mathfrak{a})$. It follows from [H, Chapter VII, Corollary 2.8] that $Z_U(\sqrt{-1}\mathfrak{a})$ is connected. By definition, σ and σ_{ε} coincide on $Z_{\mathfrak{u}}(\sqrt{-1}\mathfrak{a})$, hence their liftings to $\widetilde{G}_{\mathbb{C}}$ coincide on the connected Lie group $Z_U(\sqrt{-1}\mathfrak{a})$. Since σ is lifted to G, ker $\pi \subset Z_U(\sqrt{-1}\mathfrak{a})$ is σ -stable, hence it is σ_{ε} -stable. It follows from [H, Chapter VII, Lemma 1.3] that σ_{ε} is lifted to G. \Box

We define $G^{\sigma} = \{g \in G; \sigma(g) = g\}$ and let H be a closed subgroup of G between G^{σ} and its identity component $(G^{\sigma})_0$. The homogeneous space G/H is called a *semisimple symmetric space* associated with the symmetric pair $(\mathfrak{g}, \mathfrak{h})$. Hereafter we fix a symmetric space G/H associated with $(\mathfrak{g}, \mathfrak{h})$.

Let K be the analytic subgroup of G corresponding to \mathfrak{k} . The Weyl group W of the restricted root system Σ can be identified with $N_K(\mathfrak{a})/Z_K(\mathfrak{a})$, where $N_K(\mathfrak{a})$ is the normalizer of \mathfrak{a} in K. For a signature of roots ε , we put $H_{\varepsilon} = (G^{\sigma_{\varepsilon}})_0 Z_{K \cap H}(\mathfrak{a})$.

LEMMA 1.7. H_{ε} is a closed subgroup of G that is contained in $G^{\sigma_{\varepsilon}}$.

PROOF. It follows from the proof of Lemma 1.6 that σ and σ_{ε} coincide on $Z_{K \cap H}(\mathfrak{a})$, hence $H_{\varepsilon} \subset G^{\sigma_{\varepsilon}}$.

For any $z \in Z_{K \cap H}(\mathfrak{a})$ we have $\sigma_{\varepsilon} \circ \operatorname{Ad}(z) = \operatorname{Ad}(\sigma_{\varepsilon}z) \circ \sigma_{\varepsilon} = \operatorname{Ad}(z) \circ \sigma_{\varepsilon}$, hence $\operatorname{Ad}(z)(\mathfrak{h}_{\varepsilon}) = \mathfrak{h}_{\varepsilon}$. It shows that H_{ε} is a group with Lie algebra $\mathfrak{h}_{\varepsilon}$. Since $(G^{\sigma_{\varepsilon}})_0$ is a closed subgroup of G and H_{ε} has finitely many connected components, H_{ε} is a closed subgroup of G. \Box

The above lemma shows that G/H_{ε} is a semisimple symmetric space associated with the symmetric pair $(\mathfrak{g}, \mathfrak{h}_{\varepsilon})$. We give an important lemma that will be used later;

LEMMA 1.8. For each signature of roots ε , (i) $Z_{K\cap(G^{\sigma_{\varepsilon}})_0}(\mathfrak{a}) \subset Z_{K\cap(G^{\sigma})_0}(\mathfrak{a})$ (ii) $Z_{K\cap H}(\mathfrak{a}) = Z_{K\cap H_{\varepsilon}}(\mathfrak{a})$

PROOF. (i) Let ε be a signature of roots. We put $\mathfrak{h}_{\varepsilon}^{a} = \mathfrak{k} \cap \mathfrak{h}_{\varepsilon} + \mathfrak{p} \cap \mathfrak{q}_{\varepsilon}$ and let $(H_{\varepsilon}^{a})_{0}$ be the analytic subgroups of G corresponding to $\mathfrak{h}_{\varepsilon}^{a}$. If $\varepsilon = (1, \dots, 1)$, then we drop ε in our notation and write \mathfrak{h}^{a} , H_{0}^{a} etc. Then $(\mathfrak{h}_{\varepsilon}^{a}, \mathfrak{h}_{\varepsilon}^{a} \cap \mathfrak{k})$ is a Riemannian symmetric pair and \mathfrak{a} is a maximal abelian subspace of $\mathfrak{h}_{\varepsilon}^{a} \cap \mathfrak{p}$. The groups $K \cap (G^{\sigma_{\varepsilon}})_{0}$ and $K \cap (H_{\varepsilon}^{a})_{0}$ are maximal compact subgroups of $(G^{\sigma_{\varepsilon}})_{0}$ and $(H_{\varepsilon}^{a})_{0}$ respectively, thus $K \cap (G^{\sigma_{\varepsilon}})_{0}$ and $K \cap (H^a_{\varepsilon})_0$ are connected. Moreover $K \cap (G^{\sigma_{\varepsilon}})_0$ and $K \cap (H^a_{\varepsilon})_0$ have same Lie algebra $\mathfrak{k} \cap \mathfrak{h}_{\varepsilon}$. Therefore they coincide. It follows from [W, Lemma 1.1.3.8] and its proof that

$$Z_{K\cap (G^{\sigma_{\varepsilon}})_{0}}(\mathfrak{a}) = Z_{K\cap (H^{a}_{\varepsilon})_{0}}(\mathfrak{a}) = (Z_{K\cap (H^{a}_{\varepsilon})_{0}}(\mathfrak{a}))_{0}(K\cap (H^{a}_{\varepsilon})_{0}\cap \exp\sqrt{-1}\mathfrak{a})$$

Since $(Z_{K\cap(H^a_{\varepsilon})_0}(\mathfrak{a}))_0 = (Z_{K\cap H^a_0}(\mathfrak{a}))_0$ for each ε , it suffices to prove

(1.2)
$$K \cap (H^a_{\varepsilon})_0 \cap \exp\sqrt{-1}\mathfrak{a} \subset K \cap H^a_0 \cap \exp\sqrt{-1}\mathfrak{a},$$

for each signature of roots ε .

Let $(\tilde{H}^a_{\varepsilon})_{\mathbb{C}}$ be the simply connected connected Lie group with Lie algebra $(\mathfrak{h}^a_{\varepsilon})_{\mathbb{C}}$. Let $\tilde{H}^a_{\varepsilon}$ and $K(\tilde{H}^a_{\varepsilon})$ be the analytic subgroups of $(\tilde{H}^a_{\varepsilon})_{\mathbb{C}}$ corresponding to $\mathfrak{h}^a_{\varepsilon}$ and $\mathfrak{k} \cap \mathfrak{h}_{\varepsilon}$ respectively. By [H, Chapter VII, Theorem 8.5], the lattice

$$\mathfrak{a}_{K(\widetilde{H}^a_{\varepsilon})} = \{ X \in \mathfrak{a} \, ; \, \exp \sqrt{-1} X \in K(H^a_{\varepsilon}) \}$$

in \mathfrak{a} is spanned by

$$\frac{2\pi\sqrt{-1}}{\langle \alpha, \alpha \rangle} A_{\alpha} \quad (\alpha \in \Sigma(\mathfrak{h}^a_{\varepsilon}, \mathfrak{a})),$$

where $A_{\alpha} \in \mathfrak{a}$ is determined by $\alpha(X) = B(A_{\alpha}, X)$ for all $X \in \mathfrak{a}$. Here B denotes the Killing form of $\mathfrak{h}_{\varepsilon}^{a}$ and $\Sigma(\mathfrak{h}_{\varepsilon}^{a}, \mathfrak{a})$ is the restricted root system for the symmetric pair $(\mathfrak{h}_{\varepsilon}^{a}, \mathfrak{k} \cap \mathfrak{h}_{\varepsilon})$. Notice that $m^{+}(\alpha, \varepsilon)$ is the multiplicity of $\alpha \in \Sigma$ considered as an element of $\Sigma(\mathfrak{h}_{\varepsilon}^{a}, \mathfrak{a})$. By (1.1) and Definition 1.3, $m^{+}(\alpha) \geq m^{+}(\alpha, \varepsilon)$ for any $\alpha \in \Sigma_{0}$ and $\varepsilon(\alpha) = \varepsilon(\alpha/2)^{2} = 1$ for $\alpha \in \Sigma \setminus \Sigma_{0}$. Therefore we have $\Sigma(\mathfrak{h}_{\varepsilon}^{a}, \mathfrak{a}) \subset \Sigma(\mathfrak{h}^{a}, \mathfrak{a})$, hence $\mathfrak{a}_{K(\widetilde{H}_{\varepsilon}^{a})} \subset \mathfrak{a}_{K(\widetilde{H}^{a})}$. By Lemma 1.2, the center of $(\widetilde{H}_{\varepsilon}^{a})_{\mathbb{C}}$ coincides with that of $(\widetilde{H}^{a})_{\mathbb{C}}$ and σ_{ε} coincides with σ on it, hence (1.2) follows.

Since we have $Z_{K\cap H_{\varepsilon}}(\mathfrak{a}) = Z_{K\cap (G^{\sigma_{\varepsilon}})_0}(\mathfrak{a})Z_{K\cap H}(\mathfrak{a})$ by the definition of H_{ε} , (ii) follows from (i). \Box

$\S 2.$ Construction of compact imbedding

2.1. Parabolic subgroups

We assume that $(\mathfrak{g}, \mathfrak{h})$ is a basic symmetric pair. We define a standard parabolic subalgebra \mathfrak{p}_{σ} of \mathfrak{g} by $\mathfrak{p}_{\sigma} = Z_{\mathfrak{k}}(\mathfrak{a}) + \mathfrak{n}_{\sigma}$, where $\mathfrak{n}_{\sigma} = \sum_{\alpha \in \Sigma^+} \mathfrak{g}^{\alpha}$. Let $\mathfrak{p}_{\sigma} = \mathfrak{m}_{\sigma} + \mathfrak{a}_{\sigma} + \mathfrak{n}_{\sigma}$ be a Langlands decomposition of \mathfrak{p}_{σ} (c.f. [OS2,

Section 8]). Let P_{σ} denote the parabolic subgroup of G with Lie algebra \mathfrak{p}_{σ} and let $P_{\sigma} = M_{\sigma}A_{\sigma}N_{\sigma}$ be the Langlands decomposition corresponding to $\mathfrak{p}_{\sigma} = \mathfrak{m}_{\sigma} + \mathfrak{a}_{\sigma} + \mathfrak{n}_{\sigma}$. Let N_{σ}^{-} be the analytic subgroup of G corresponding to $\mathfrak{n}_{\sigma}^{-} = \theta(\mathfrak{n}_{\sigma})$. If $(\mathfrak{g}, \mathfrak{h})$ is a Riemannian symmetric pair, then \mathfrak{p}_{σ} is a minimal parabolic subalgebra of \mathfrak{g} .

DEFINITION 2.1. A mapping $\varepsilon : \Sigma \to \{-1, 0, 1\}$ is called an *extended* signature of roots when it satisfies the condition:

(2.1)
$$\varepsilon(\alpha) = \prod_{i=1}^{l} \varepsilon(\alpha_i)^{|m_i|} \text{ for } \alpha = \sum_{i=1}^{l} m_i \alpha_i \in \Sigma.$$

Note that any mapping of $\Psi = \{\alpha_1, \dots, \alpha_l\}$ to $\{-1, 0, 1\}$ is uniquely extended to a mapping of Σ to $\{-1, 0, 1\}$ which satisfies (2.1). Therefore we can identify the set of all extended signatures of roots with $\{-1, 0, 1\}^l$ by $\varepsilon \mapsto (\varepsilon(\alpha_1), \dots, \varepsilon(\alpha_l))$. For an extended signature of roots ε , we define a signature of roots $\tilde{\varepsilon}$ by

(2.2)
$$\tilde{\varepsilon}(\alpha_j) = \begin{cases} \varepsilon(\alpha_j) & \text{if } \varepsilon(\alpha_j) \neq 0\\ 1 & \text{if } \varepsilon(\alpha_j) = 0. \end{cases}$$

For an extended signature of roots we define $\Theta_{\varepsilon} = \{\alpha \in \Psi; \varepsilon(\alpha) \neq 0\},\$ $\langle \Theta_{\varepsilon} \rangle = \Sigma \cap \sum_{\alpha \in \Theta_{\varepsilon}} \mathbb{R}\alpha \text{ and } \langle \Theta \rangle^+ = \Sigma^+ \cap \langle \Theta \rangle.$ Let $W_{\Theta_{\varepsilon}}$ be the subgroup of W generated by the reflections with respect to the elements of $\langle \Theta_{\varepsilon} \rangle$. Notice that $\langle \Theta_{\varepsilon} \rangle$ become a root system and $W_{\Theta_{\varepsilon}}$ is its Weyl group.

We define a parabolic subalgebra $\mathfrak{p}_{\varepsilon}$ by

$$\mathfrak{p}_{\varepsilon} = \mathfrak{m}_{\sigma} + \mathfrak{a}_{\sigma} + \sum_{\alpha \in \langle \Theta_{\varepsilon} \rangle} \mathfrak{g}^{\alpha} + \sum_{\alpha \in \Sigma^+ \setminus \langle \Theta_{\varepsilon} \rangle} \mathfrak{g}^{\alpha}$$

and let $\mathfrak{p}_{\varepsilon} = \mathfrak{m}_{\varepsilon} + \mathfrak{a}_{\varepsilon} + \mathfrak{n}_{\varepsilon}$ be the Langlands decomposition of $\mathfrak{p}_{\varepsilon}$ such that $\mathfrak{a}_{\varepsilon} \subset \mathfrak{a}_{\sigma}$. Let P_{ε} be the parabolic subgroup of G with Lie algebra $\mathfrak{p}_{\varepsilon}$ and let $P_{\varepsilon} = M_{\varepsilon}A_{\varepsilon}N_{\varepsilon}$ be the Langlands decomposition of P_{ε} corresponding to $\mathfrak{p}_{\varepsilon} = \mathfrak{m}_{\varepsilon} + \mathfrak{a}_{\varepsilon} + \mathfrak{n}_{\varepsilon}$. We define subalgebras $\mathfrak{a}^{\varepsilon}$, $\mathfrak{m}(\varepsilon)$ and $\mathfrak{p}(\varepsilon)$ of \mathfrak{g} by $\mathfrak{a}^{\varepsilon} = \sum_{\alpha_{j}\in\Theta_{\varepsilon}} \mathbb{R}H_{j}$, $\mathfrak{m}(\varepsilon) = \mathfrak{m}_{\varepsilon} \cap \mathfrak{h}_{\varepsilon} = Z_{\mathfrak{h}_{\varepsilon}}(\mathfrak{a}_{\varepsilon})$ and $\mathfrak{p}(\varepsilon) = \mathfrak{m}(\varepsilon) + \mathfrak{a}_{\varepsilon} + \mathfrak{n}_{\varepsilon}$. We have a direct sum decomposition $\mathfrak{a}_{\sigma} = \mathfrak{a}^{\varepsilon} + \mathfrak{a}_{\varepsilon}$. Let A, A^{ε} and $M(\varepsilon)_0$ be analytic subgroup of G corresponding to \mathfrak{a} , $\mathfrak{a}^{\varepsilon}$ and $\mathfrak{m}(\varepsilon)$ respectively. We define $M(\varepsilon) = M(\varepsilon)_0 Z_{K\cap H}(\mathfrak{a})$ and $P(\varepsilon) = M(\varepsilon)A_{\varepsilon}N_{\varepsilon}$. If ε is a signature of roots, $\Theta_{\varepsilon} = \Psi$, $W_{\Theta_{\varepsilon}} = W$ and $P(\varepsilon) = H_{\varepsilon}$. On the other hand, if $\varepsilon = (0, \ldots, 0)$, $\Theta_{\varepsilon} = \emptyset$, $W_{\Theta_{\varepsilon}} = \{e\}$ and $P_{\varepsilon} = P_{\sigma}$.

LEMMA 2.2. $M(\varepsilon)$ and $P(\varepsilon)$ are closed subgroups of G.

PROOF. Since $\operatorname{Ad}(z)\sigma_{\tilde{\varepsilon}}(X) = \sigma_{\tilde{\varepsilon}}(\operatorname{Ad}(z)X)$ for all $z \in Z_{K\cap H}(\mathfrak{a}) = Z_{K\cap H_{\tilde{\varepsilon}}}(\mathfrak{a})$ and $X \in \mathfrak{g}$, we have $\operatorname{Ad}(z)(\mathfrak{m}(\varepsilon)) = \mathfrak{m}(\varepsilon)$ for all $z \in Z_{K\cap H}(\mathfrak{a})$. Therefore $M(\varepsilon)$ is a group. It is closed, because $M(\varepsilon)_0$ is a connected component of $H_{\tilde{\varepsilon}} \cap M_{\varepsilon}$ and $Z_{K\cap H}(\mathfrak{a})$ is compact.

Owing to the Langlands decomposition, $P(\varepsilon)$ is closed because $M(\varepsilon)$ is closed in M_{ε} . It is easy to see that $M(\varepsilon)$ and A_{ε} normalize N_{ε} . Thus $P(\varepsilon)$ is a group. \Box

2.2. Root systems and Weyl groups

Let

(2.3)
$$\Psi' = \{ \alpha \in \Psi \, ; \, 2\alpha \notin \Sigma \text{ and } m^-(\alpha) = 0 \}$$

and $\Sigma' = \Sigma \cap \sum_{\alpha \in \Psi'} \mathbb{R}\alpha$. For an extended signature of roots ε , we define $\Sigma'_{\varepsilon} = \{\alpha \in \Sigma'; \varepsilon(\alpha) = 1\}$ and $\Sigma_{\varepsilon} = \{\alpha \in \langle \Theta_{\varepsilon} \rangle; \varepsilon(\alpha) = 1 \text{ or } m^{-}(\alpha) > 0\}$. By [B, Chapter IV, Proposition 23], Σ_{ε} and Σ'_{ε} are root systems. Let W', W_{ε} , W'_{ε} and $W'_{\Theta_{\varepsilon}}$ denote the subgroups of W generated by the reflections with respect to the roots in $\Sigma', \Sigma_{\varepsilon}, \Sigma'_{\varepsilon}$ and $\Sigma' \cap \langle \Theta_{\varepsilon} \rangle$ respectively. We put

$$W(\varepsilon) = \{ w \in W_{\Theta_{\varepsilon}} ; \Sigma_{\varepsilon} \cap w\Sigma^+ = \Sigma_{\varepsilon} \cap \Sigma^+ \}.$$

Lemma 2.3.

- (i) $W(\varepsilon) = \{ w \in W_{\Theta_{\varepsilon}} ; \Sigma_{\varepsilon} \cap \Phi_w = \emptyset \}$. Here $\Phi_w = \{ \alpha \in \Sigma^+ ; w^{-1}\alpha \in -\Sigma^+ \}$.
- (ii) $W(\varepsilon) = \{ w \in W'_{\Theta_{\varepsilon}} ; \Sigma'_{\varepsilon} \cap w\Sigma^+ = \Sigma'_{\varepsilon} \cap \Sigma^+ \}.$
- (iii) Let the pair $(W^*_{\Theta_{\varepsilon}}, W^*_{\varepsilon})$ be equal to $(W_{\Theta_{\varepsilon}}, W_{\varepsilon})$ or $(W'_{\Theta_{\varepsilon}}, W'_{\varepsilon})$. Then every element $w \in W^*_{\Theta_{\varepsilon}}$ can be written in a unique way in the form

$$w = w_{\varepsilon}w(\varepsilon) \quad (w_{\varepsilon} \in W_{\varepsilon}^*, \ w(\varepsilon) \in W(\varepsilon)).$$

PROOF. The proof is almost the same as that of [OS1, Lemma 2.5]. So we omit it. \Box

Let ε be a signature of roots. Let $W(\mathfrak{a}; H_{\varepsilon})$ be the set of all elements win W such that the representative \overline{w} of w can be taken from $N_{K\cap H_{\varepsilon}}(\mathfrak{a})$. We have $W(\mathfrak{a}; H_{\varepsilon}) \simeq N_{K\cap H_{\varepsilon}}(\mathfrak{a})/Z_{K\cap H_{\varepsilon}}(\mathfrak{a})$. We put $W(\mathfrak{a}; (H_{\varepsilon})_0) =$ $N_{K\cap (H_{\varepsilon})_0}(\mathfrak{a})/Z_{K\cap (H_{\varepsilon})_0}(\mathfrak{a})$. For $\alpha \in \Sigma_0$, let $\mathfrak{g}(\alpha)$ denote the Lie subalgebra of \mathfrak{g} that is generated by \mathfrak{g}^{α} and $\theta \mathfrak{g}^{\alpha}$.

PROPOSITION 2.4. Let ε be a signature of roots.

- (i) Let $\alpha \in \Sigma_0$. Then $\mathfrak{h}^a_{\varepsilon} \cap \mathfrak{g}(\alpha) \neq \{0\}$ if and only if $s_{\alpha} \in W(\mathfrak{a}; (H_{\varepsilon})_0)$.
- (ii) $W(\mathfrak{a}; H_{\varepsilon}) = W_{\varepsilon}.$

PROOF. We use the method of rank one reduction. Let $\alpha \in \Sigma_0$. If $\mathfrak{h}_{\varepsilon}^a \cap \mathfrak{g}^{\alpha} \neq \{0\}$, then α can be considered as an element of the restricted root system $\Sigma(\mathfrak{h}_{\varepsilon}^a, \mathfrak{a})$ of the symmetric pair $(\mathfrak{h}_{\varepsilon}^a, \mathfrak{k} \cap \mathfrak{h}_{\varepsilon}^a)$. Thus there exists $X_{\alpha} \in \mathfrak{g}^{\alpha} \cap \mathfrak{h}_{\varepsilon}^a$ such that $\exp(X_{\alpha} + \theta X_{\alpha}) = \bar{s}_{\alpha}$ (c.f. [H, Chapter VII]).

If $\mathfrak{h}^a_{\varepsilon} \cap \mathfrak{g}^{\alpha} = \{0\}$, then by [OS2, Remark 7.4], $(\mathfrak{g}(\alpha), \mathfrak{g}(\alpha) \cap \mathfrak{h}) = (\mathfrak{so}(n+1,1), \mathfrak{so}(n,1))$ for some n. Thus $s_{\alpha} \notin W(\mathfrak{a}; (H_{\varepsilon})_0)$.

Since $W(\mathfrak{a}; (H_{\varepsilon})_0)$ is generated by the reflections $s_{\alpha} (\alpha \in \Sigma)$ such that $s_{\alpha} \in W(\mathfrak{a}; (H_{\varepsilon})_0), W(\mathfrak{a}; (H_{\varepsilon})_0)$ is the Weyl group of the root system

$$\Sigma_{\varepsilon} = \{ \alpha \in \Sigma \, ; \, (\mathfrak{g}(\alpha), \mathfrak{g}(\alpha) \cap \mathfrak{h}) \neq (\mathfrak{so}(n+1, 1), \mathfrak{so}(n, 1)) \text{ for any } n \}.$$

Thus $W(\mathfrak{a}; (H_{\varepsilon})_0) = W_{\varepsilon}$. Since $H_{\varepsilon} = (H_{\varepsilon})_0 Z_{K \cap H}(\mathfrak{a})$, we have $W(\mathfrak{a}; H_{\varepsilon}) = W_{\varepsilon}$. \Box

By Proposition 2.4, we have $W(\mathfrak{a}; H) = W$. Hereafter we fix representatives $\bar{w} \in N_{K \cap H}(\mathfrak{a})$ for all w in W.

2.3. Construction of compact imbedding

Let $\tilde{\mathbb{X}}$ denote the product manifold $G \times \mathbb{R}^l \times W'$. For $s \in \mathbb{R}$ define sgn s to be 1 if s > 0, 0 if s = 0 and -1 if s < 0. For $x = (g, t, w) \in \tilde{\mathbb{X}}$ we define an extended signature of roots ε_x by $\varepsilon_x(\alpha_j) = \operatorname{sgn} t_j \ (j = 1, \ldots, l)$. We have

 $A_{\varepsilon_x}, W_{\varepsilon_x}, \Theta_{\varepsilon_x}, P_{\varepsilon_x}, P(\varepsilon_x)$ etc., which we write $A_x, W_x, \Theta_x, P_x, P(x)$ etc. for short. For $(x, t, w) \in \tilde{\mathbb{X}}$ we define $a(x) \in A^x$ by

(2.3)
$$a(x) = \exp(-\frac{1}{2}\sum_{t_j \neq 0} \log |t_j| H_j).$$

DEFINITION 2.5. We say that two elements x = (g, t, w) and x' = (g', t', w') of $\tilde{\mathbb{X}}$ are equivalent if and only if the following conditions hold.

- (i) $\varepsilon_x(w^{-1}\alpha) = \varepsilon_{x'}(w'^{-1}\alpha)$ for any $\alpha \in \Sigma$.
- (ii) $w^{-1}w' \in W(x)$.

(iii) $ga(x)P(x)\bar{w}^{-1} = g'a(x')P(x')\bar{w}'^{-1}$.

The condition (i) implies $w\Theta_x = w'\Theta_{x'}$, $w\Sigma'_x = w'\Sigma'_{x'}$, and $wW'_{\Theta_x}w^{-1} = w'W'_{\Theta_{x'}}w'^{-1}$. Therefore, under the condition (i), the condition (ii) is equivalent to

$$w^{-1}w' \in W'_{\Theta_x} = W'_{\Theta_{x'}}$$
 and $w(\Sigma'_x \cap \Sigma^+) = w'(\Sigma'_{x'} \cap \Sigma^+).$

Therefore this is in fact an equivalent relation, which we write $x \sim x'$.

Assume that $x, x' \in \tilde{\mathbb{X}}$ satisfy the conditions (i) and (ii). The Lie algebra $\mathfrak{p}(x) = \mathfrak{p}(\varepsilon_x)$ equals

$$Z_{\mathfrak{h}}(\mathfrak{a}) + \sum_{\alpha_j \in \Psi \setminus \Theta_x} \mathbb{R}H_j + \sum_{\alpha \in \Sigma} \{ X + \varepsilon_x(\alpha)\sigma(X) \, ; \, X \in \mathfrak{g}^{\alpha} \},\$$

where $Z_{\mathfrak{h}}(\mathfrak{a})$ is a centralizer of \mathfrak{a} in \mathfrak{h} . Since $\bar{w}'^{-1}\bar{w} \in H$, it is easy to see that $\operatorname{Ad}(\bar{w}'^{-1}\bar{w})\mathfrak{p}(x) = \mathfrak{p}(x')$. Moreover since $\bar{w}'^{-1}\bar{w}Z_{K\cap H}(\mathfrak{a})\bar{w}^{-1}\bar{w}' = Z_{K\cap H}(\mathfrak{a})$, we have $\bar{w}P(x)\bar{w}^{-1} = \bar{w}'P(x')\bar{w}'^{-1}$. Therefore the condition (iii) is equivalent to

$$ga(x)P(x) = g'a(x')\overline{w}'^{-1}\overline{w}P(x) \quad \text{in } G/P(x).$$

Therefore the equivalent relation is compatible with an action of G on \mathbb{X} given by $g'(g, t, w) = (g'g, t, w) \ (g' \in G)$.

Let X denote the topological space \tilde{X}/\sim and let $\pi: \tilde{X} \to X$ be the projection. The space X inherits from \tilde{X} a continuous action of G, given by $g\pi(x) = \pi(gx)$.

We state the main theorem of this paper:

Theorem 2.6.

- (i) X is a compact connected real analytic manifold without boundary.
- (ii) The action of G on X is analytic and the G-orbit structure is normal crossing type in the sense of [O1, Remark 6].
- (iii) For a point x in X, the orbit Gπ(x) is isomorphic to G/P(x) and X has the orbital decomposition

$$\mathbb{X} = \bigsqcup_{\substack{\varepsilon \in \{-1,0,1\}^l \\ w \in W'_{\varepsilon}}} G\pi(e,\varepsilon,w).$$

(iv) There are |W'| orbits which are isomorphic to G/H (also to G/P((e, 0, 1))). For a signature of roots ε and $w \in W'_{\varepsilon}$, the number of compact orbits in X that is contained in the closure of the open orbit $G\pi(e, \varepsilon, w) \simeq G/H_{\varepsilon}$ equals $|W(\varepsilon)|$.

Remark 2.7.

- (i) If (g, h) is a Riemannian symmetric pair, then the space X was constructed in [OS1, Section 2] and the above theorem was proved there ([OS1, Theorem 2.6]).
- (ii) In [O2, Section 1] Oshima studies a realization of semisimple symmetric spaces. Let X be a semisimple symmetric space and let X' denote the compact real analytic manifold that is constructed in [O2]. All open orbits in X' are isomorphic to X. The construction of X is similar to that of X'. The difference is that a(x) is defined by $\exp(-\sum_t \log |t_j|H_j)$ in [O2] in place of (2.3).

Example 2.8. For the \mathbb{R} -, \mathbb{C} - and \mathbb{H} -hyperbolic spaces, the space \mathbb{X} is constructed by Sekiguchi [Se, Section 3]. For example, consider the case of the real hyperbolic space. Let $G = SO_0(p,q)$ and $H = SO_0(p,q - 1)$ $(p \ge q \ge 1)$. We take $K = SO(p) \times SO(q)$ and $\mathfrak{a} = \mathbb{R}Y$ where $Y = E_{1,p+q} + E_{p+q,1}$, then \mathfrak{a} is a maximal abelian subspace in $\mathfrak{p} \cap \mathfrak{q}$. We have $\Sigma = \{\pm \alpha\}$ where $\alpha(Y) = 1$ with signature $(m^+(\alpha), m^-(\alpha)) = (p-1, q-1)$. Therefore the rank one symmetric space X = G/H is basic. The space \mathbb{X} has the orbital decomposition $\mathbb{X} = X^+ \cup X^0 \cup X^-$, where $X^+ \simeq X$ and $X^- \simeq SO_0(p,q)/SO_0(p-1,q)$.

$\S3.$ Proof of Theorem 2.6

In this section we prove Theorem 2.6. The proof goes in a similar way as the proof of [OS1, Theorem 2.7]. We will give an outline of the proof here.

Let $\mathfrak{a}_{\mathfrak{p}}$ be a maximal abelian subspace of \mathfrak{p} containing \mathfrak{a} . Let $\Sigma(\mathfrak{a}_{\mathfrak{p}})$ be the restricted root system of $(\mathfrak{g}, \mathfrak{a}_{\mathfrak{p}})$. Let $\mathfrak{g}(\sigma)$ be the reductive Lie algebra generated by

$$\{\mathfrak{g}(\mathfrak{a}_{\mathfrak{p}};\lambda);\lambda\in\Sigma(\mathfrak{a}_{\mathfrak{p}})\text{ with }\lambda|\mathfrak{a}=0\},\$$

where $\mathfrak{g}(\mathfrak{a}_{\mathfrak{p}};\lambda)$ denotes the root space for $\lambda \in \Sigma(\mathfrak{a}_{\mathfrak{p}})$. Put

$$\mathfrak{m}(\sigma) = \{ X \in \mathfrak{m}_{\sigma} ; [X, Y] = 0 \text{ for all } Y \in \mathfrak{g}(\sigma) \}.$$

Let $G(\sigma)$ and $M(\sigma)_0$ denote the analytic subgroups of G corresponding to $\mathfrak{g}(\sigma)$ and $\mathfrak{m}(\sigma)$ respectively and put

$$M(\sigma) = M(\sigma)_0 (K \cap \exp \sqrt{-1}\mathfrak{a}_{\mathfrak{p}}).$$

By [O2, Lemma 1.4] we may assume that the representative \bar{w} of $w \in W$ in $N_K(\mathfrak{a})$ normalize $G(\sigma)$ and $M(\sigma)$ for all $w \in W$.

We fix a basis $\{X_1, \dots, X_L\}$ so that $X_i \in \mathfrak{g}^{\alpha(i)}$ for some $\alpha(i) \in \Sigma^+$, where $L = \dim \mathfrak{n}_{\sigma}$. We fix an basis $\{Z_1, \dots, Z_{L'}\}$ of \mathfrak{m}_{σ} so that $\{Z_1, \dots, Z_{L''}\}$ is a basis of $\mathfrak{m}(\sigma)$ and $\{Z_{L''+1}, \dots, Z_{L'}\}$ is a basis of $\mathfrak{g}(\sigma)$, where $L' = \dim \mathfrak{m}_{\sigma}$ and $L'' = \dim \mathfrak{m}(\sigma)$. Moreover we put $l'' = \dim \mathfrak{a}_{\sigma}$ and choose $H_{l+1}, \dots, H_{l''} \in \mathfrak{a}_{\sigma} \cap \mathfrak{h}$ so that $\{H_1, \dots, H_l, H_{l+1}, \dots, H_{l''}\}$ is a basis of \mathfrak{a}_{σ} . We put $X_{-i} = \sigma(X_i)$. Then $\{X_{-1}, \dots, X_{-L}\}$ is a basis of \mathfrak{n}_{σ}^- and

$$\{X_1, \cdots, X_L, X_{-1}, \cdots, X_{-L}, Z_1, \cdots, Z_{L'}, H_1, \cdots, H_{l''}\}$$

forms a basis of \mathfrak{g} .

LEMMA 3.1. Fix an element g of G and consider the map

$$\tilde{\pi}_q: N_{\sigma}^- \times M(\sigma) \times A^{\varepsilon} \to G/P(\varepsilon)$$

defined by $\tilde{\pi}_g(n, m, a) = gnmaP(\varepsilon)$.

(i) The map $\tilde{\pi}_g$ induces an analytic diffeomorphism of $N_{\sigma}^- \times M(\sigma)/(M(\sigma) \cap H) \times A^{\varepsilon}$ onto an open subset of $G/P(\varepsilon)$.

(ii) For an element Y in g let Y_ε be the vector field on G/P(ε) corresponding to the 1-parameter group which is defined by the action exp(tY) (t ∈ ℝ) on G/P(ε). For p = (n, m, a) ∈ N_σ⁻ × M(σ) × A^ε, we have

$$(Y_{\varepsilon})_{\tilde{\pi}(p)} = d\tilde{\pi}_p \left(\left(\sum_{i=1}^{L} (\varepsilon(\alpha_i) c_i^+(nm) a^{-2\alpha_i} + c_i^-(nm)) \operatorname{Ad}(m) X_{-i} + \sum_{j=1}^{L''} c_j^0(nm) Z_j + \sum_{k=1}^{l} c_k(nm) H_k \right)_p \right).$$

Here X_{-i} , Z_j and H_k are identified with left invariant vector fields on N_{σ}^- , $M(\sigma)$ and A^{ε} respectively. Moreover the analytic functions c_i^+ , c_i^- , c_j^0 and c_k on G are defined by

$$\operatorname{Ad}(g)^{-1}Y = \sum_{i=1}^{L} (c_i^+(g)X_i + c_i^-(g)X_{-i}) + \sum_{j=1}^{L''} c_j^0(g)Z_j + \sum_{k=1}^{l} c_k(g)H_k$$

for $g \in G$.

PROOF. Notice that $\sigma = \sigma_{\varepsilon}$ on $M(\sigma)$. We have

$$M(\sigma) \cap H \subset Z_{K \cap H}(\mathfrak{a}) = Z_{K \cap H_{\varepsilon}}(\mathfrak{a}) \subset H_{\varepsilon}.$$

Thus $M(\sigma) \cap H \subset M(\sigma) \cap H_{\varepsilon}$. The inclusion $M(\sigma) \cap H_{\varepsilon} \subset M(\sigma) \cap H$ can be proved in the same way. Therefore we have $M(\sigma) \cap H = M(\sigma) \cap H_{\varepsilon}$. Now (i) follows from [O2, Lemma 1.6].

The proof of (ii) can be done in the same way as that of [O2, Lemma 1.6 (ii)], where the statement is proved when ε does not take the value -1. So we omit it. \Box

For $g \in G$ and $w \in W'$, we define the set U_q^w by

$$U_q^w = \pi((gN_\sigma^- \times M(\sigma)) \times \mathbb{R}^l \times \{w\}).$$

Then Lemma 3.1 shows that the map

$$\phi_q^w: N_\sigma^- \times M(\sigma) / (M(\sigma) \cap H) \times \mathbb{R}^l \to U_q^w \subset \mathbb{X}$$

defined by $(n, m, t) \mapsto \pi((gn\bar{m}, t, w))$ is bijective. We put $U = N_{\sigma}^{-} \times M(\sigma)/(M(\sigma) \cap H) \times \mathbb{R}^{l}$.

LEMMA 3.2. Fix $g, g' \in G$ and $w, w' \in W'$.

- (i) For an element Y of g the local one parameter group of transformation (φ^w_g)⁻¹ ∘ exp(tY) ∘ φ^w_g (t ∈ ℝ) defines an analytic vector field on U.
- (ii) The map $(\phi_{g'}^{w'})^{-1} \circ \phi_g^w$ of $(\phi_g^w)^{-1}(U_g^w \cap U_{g'}^{w'})$ onto $(\phi_{g'}^{w'})^{-1}(U_g^w \cap U_{g'}^{w'})$ defines an analytic diffeomorphism between these open subsets of \mathbb{R}^l .
- (iii) ϕ_g^w is a homeomorphism onto an open subset U_g^w of X.

PROOF. To prove (i), we may assume that w = e. By Lemma 3.1, $Y \in \mathfrak{g}$ determines an analytic vector field on $N_{\sigma}^{-} \times M(\sigma)/(M(\sigma) \cap H) \times \mathbb{R}_{\varepsilon}^{l}$, because H_{k} determines the vector field $-2t_{k}\frac{\partial}{\partial t_{k}}$ on $\mathbb{R}_{\varepsilon}^{l}$ by the correspondence $t \mapsto a(t)$. Here $\mathbb{R}_{\varepsilon}^{l}$ denotes the set $\{t \in \mathbb{R}^{l} : t_{j} = 0 \text{ if } \varepsilon(\alpha_{j}) = 0\}$. They piece together and define an analytic vector field on U.

We can prove (ii) and (iii) in the same way as the proof of [O2, Lemma 1.9] and [OS1, Lemma 2.8]. So we omit it. \Box

We put $V = \{t \in \mathbb{R}^l; t^{\alpha} < 1 \text{ for all } \alpha \in \Sigma^+\}$. Since $(gkm, t, w) \sim (gk, t, w)$ for any $g \in G, k \in K, m \in Z_{K \cap H}(\mathfrak{a}), t \in \mathbb{R}^l$ and $w \in W'$, we can define the map

$$\psi_q^w : K/Z_{K\cap H}(\mathfrak{a}) \times V \to \mathbb{X}$$

by $(kZ_{K\cap H}(\mathfrak{a}), t) \mapsto \pi((gk, t, w)).$

LEMMA 3.3. For any $g, g' \in G$ and $w \in W'$, the map

$$(\phi_{g'}^{w'})^{-1} \circ \psi_g^w : \ (\psi_g^w)^{-1} (\operatorname{Im} \psi_g^w \cap U_{g'}^{w'}) \mapsto (\phi_{g'}^{w'})^{-1} (\operatorname{Im} \psi_g^w \cap U_{g'}^{w'})$$

is an analytic diffeomorphism between the open subsets of $K/Z_{K\cap H}(\mathfrak{a}) \times V$ and U. PROOF. We fix an arbitrary point x in $(\psi_g^w)^{-1}(\operatorname{Im} \psi_g^w \cap U_{g'}^{w'})$. We can prove in the same way as the proof of [OS1, Lemma 2.9] that the differential of the map $(\phi_{g'}^{w'})^{-1} \circ \psi_g^w$ at x is bijective, hence the map $(\phi_{g'}^{w'})^{-1} \circ \psi_g^w$ is an analytic local isomorphism between open subsets. The injectivity of the map also can be proved in the same way as the proof of [OS1, Lemma 2.9] by using the Cartan decomposition [Sc, Proposition 7.1.3]. So we do not give the proof in detail here. \Box

PROOF OF THEOREM 2.6. It remains to prove that X is connected, compact and Hausdorff. The proof can be done in the same way as the proof of [OS1, Theorem 2.7] by using Lemma 2.3, Lemma 3.2, Lemma 3.3 and the Cartan decomposition [Sc, Proposition 7.1.3]. So we omit it. \Box

The following are easy consequences of Theorem 2.6 and Lemma 3.3.

COROLLARY 3.4. For a signature ε of roots and an element w of W', we put $\mathbb{X}_{\varepsilon}^{w} = \pi(G \times \{\varepsilon(\alpha_{1}), \cdots, \varepsilon(\alpha_{l})\} \times \{w\})$ and $B_{w} = \pi(G \times \{0\} \times \{w\})$. Then we have natural identifications $G/H_{\varepsilon} \simeq \mathbb{X}_{\varepsilon}^{w}$ and $G/P_{\sigma} \simeq B_{w}$. Moreover B_{w} is contained in the closure of $\mathbb{X}_{\varepsilon}^{1}$ if and only if $w \in W(\varepsilon)$.

COROLLARY 3.5. The map

$$\psi_q^w: K/Z_{K\cap H}(\mathfrak{a}) \times V \ni (kZ_{K\cap H}(\mathfrak{a}), t) \mapsto \pi((gk, t, w)) \in \mathbb{X}$$

is an analytic diffeomorphism and $\bigcup_{g \in G, w \in W'} \operatorname{Im} \psi_g^w$ is an open covering of \mathbb{X} .

$\S4$. Invariant differential operators

In this section we shall show that the system of invariant differential equations on G/H_{ε} extends analytically on \mathbb{X} and has regular singularities in the weak sense along the boundaries. For the notion of the systems of differential equations with regular singularities we refer [KO], [OS1] and [Sc]. First we recall after [O2] and [Sc] on the structure of the algebra of invariant differential operators on G/H_{ε} .

For a real or complex Lie subalgebra \mathfrak{u} of $\mathfrak{g}_{\mathbb{C}}$ let $U(\mathfrak{u})$ denote the universal enveloping algebra of \mathfrak{u}' , where \mathfrak{u}' is the complex subalgebra of $\mathfrak{g}_{\mathbb{C}}$ generated by \mathfrak{u} .

Retain the notation of Section 1. Let j be a maximal abelian subspace of \mathfrak{q} containing \mathfrak{a} . Then by the definition of σ_{ε} , j is also a maximal abelian subspace of $\mathfrak{q}_{\varepsilon}$. Let $\Sigma(j)$ denote the root system for the pair $(\mathfrak{g}_{\mathbb{C}}, \mathfrak{j}_{\mathbb{C}})$. Let $\Sigma(j)^+$ denote the set of positive roots with respect to a compatible orders for $\Sigma(j)$ and Σ . Put $\rho = \frac{1}{2} \sum_{\alpha \in \Sigma(j)^+} \alpha$. Let $\mathfrak{n}_{\mathbb{C}}$ be the nilpotent subalgebra of $\mathfrak{g}_{\mathbb{C}}$ corresponding to $\Sigma(\mathfrak{j}_{\mathbb{C}})^+$ and put $\mathfrak{n}_{\mathbb{C}}^- = \sigma(\mathfrak{n}_{\mathbb{C}})$.

From the Iwasawa decomposition $\mathfrak{g}_{\mathbb{C}} = \mathfrak{n}_{\mathbb{C}}^- \oplus \mathfrak{j}_{\mathbb{C}} \oplus (\mathfrak{h}_{\varepsilon})_{\mathbb{C}}$ and the Poincaré-Birkoff-Witt theorem it follows that

$$U(\mathfrak{g}) = (\mathfrak{n}_{\mathbb{C}}^{-} U(\mathfrak{g}) + U(\mathfrak{g})(\mathfrak{h}_{\varepsilon})_{\mathbb{C}}) \oplus U(\mathfrak{j}).$$

Let δ_{ε} be the projection of $U(\mathfrak{g})$ to $U(\mathfrak{j})$ with respect to this decomposition. Let η be the algebra automorphism of $U(\mathfrak{j})$ generated by $\eta(Y) = Y - \rho(Y)$ for $Y \in \mathfrak{j}$ and put $\tilde{\gamma}_{\varepsilon} = \eta \circ \delta_{\varepsilon}$. Then the map $\tilde{\gamma}_{\varepsilon}$ induces an isomorphism:

$$\gamma_{\varepsilon} \,:\, U(\mathfrak{g})^{\mathfrak{h}_{\varepsilon}}/(U(\mathfrak{g})^{\mathfrak{h}_{\varepsilon}} \cap U(\mathfrak{g})(\mathfrak{h}_{\varepsilon})_{\mathbb{C}}) \stackrel{\sim}{\longrightarrow} U(\mathfrak{j})^{W(\mathfrak{j})},$$

where $U(\mathfrak{g})^{\mathfrak{h}_{\varepsilon}}$ is the set of $\mathfrak{h}_{\varepsilon}$ -invariant elements in $U(\mathfrak{h}_{\varepsilon})$ and $U(\mathfrak{j})^{W(\mathfrak{j})}$ is the set of the elements in $U(\mathfrak{j})$ that are invariant under the Weyl group $W(\mathfrak{j})$ of $\Sigma(\mathfrak{j})$.

Let $\mathbb{D}(G/H_{\varepsilon})$ denote the algebra of invariant differential operators on G/H_{ε} . Since $\mathbb{D}(G/H_{\varepsilon}) \simeq U(\mathfrak{g})^{\mathfrak{h}_{\varepsilon}}/(U(\mathfrak{g})^{\mathfrak{h}_{\varepsilon}} \cap U(\mathfrak{g})(\mathfrak{h}_{\varepsilon})_{\mathbb{C}})$ (c.f. [O2, P 618]), we have the algebra isomorphism:

(4.1)
$$\gamma_{\varepsilon} : \mathbb{D}(G/H_{\varepsilon}) \xrightarrow{\sim} U(\mathfrak{j})^{W(\mathfrak{j})}$$

Let w be an element in W' and ε be a signature of roots. Put $\mathbb{X}^w_{\varepsilon} = G\pi(e,\varepsilon,w)$ and let

$$\iota_{\varepsilon}^{w} : G/H_{\varepsilon} \xrightarrow{\sim} \mathbb{X}_{\varepsilon}^{w}$$

be the natural isomorphism. Let $\mathbb{D}(\mathbb{X})$ denote the algebra of *G*-invariant differential operators on \mathbb{X} whose coefficients are analytic.

Proposition 4.1.

(i) There exists a surjective algebra isomorphism

$$\gamma : \mathbb{D}(\mathbb{X}) \to U(\mathfrak{j})^{W(\mathfrak{j})}$$

that is given by $\gamma(D) = \gamma_{\varepsilon} \circ (\iota_{\varepsilon}^w)^{-1}(D|\mathbb{X}_{\varepsilon}^w)$, which does not depend on the choice of $w \in W'$ and $\varepsilon \in \{\pm 1\}^l$.

(ii) The system of invariant differential equations

$$\mathcal{M}_{\lambda}$$
: $(D - \gamma(D)(\lambda))u = 0$ for all $D \in \mathbb{D}(\mathbb{X})$

has regular singularities in the weak sense along the set of walls $\{\pi(G\{(e,t,w); t_j = 0\}; j = 1,...,l\}$ with the edge $\pi(G(e,0,w))$ for each $w \in W'$. The set of characteristic exponents of \mathcal{M}_{λ} is $\{s_{w\lambda} = (s_{w\lambda,i})_{1 \leq i \leq l}\}$, where $s_{w\lambda,i} = \frac{1}{2}(\rho - \lambda)(H_i)$.

PROOF. The proof can be done in a similar way with the proof of Proposition 2.26 and Lemma 2.28 in [OS1] (c.f. [O2]). So we omit it. \Box

Acknowledgements. This paper is a part of the author's master thesis[Sh]. The author is greatly indebted to Professor Toshio Oshima for introducing him the problem. The author also thanks Professor Toshiyuki Kobayashi for helpful discussions.

References

- [B] Bourbaki, N., Éléments de mathématique, Groupes et algèbres de Lie, Chapter IV-VI, Herman, Paris, 1968.
- [H] Helgason, S., Differential Geometry, Lie Groups and Symmetric spaces, Academic Press, New York, 1978.
- [K] Kosters, W. A., Eigenspaces of the Laplace-Beltrami operator on $SL(n, \mathbb{R})/S(GL(1) \times GL(n-1))$. Part I, Indag. Math. **47** (1985), 99–123.
- [KO] Kashiwara, M. and T. Oshima, Systems of differential equations with regular singularities and their boundary value problems, Ann. of Math. 106 (1977), 145–200.
- [O1] Oshima, T., A realization of Riemannian symmetric spaces, J. Math. Soc. Japan **30** (1978), 117–132.
- [O2] Oshima, T., A realization of semisimple symmetric spaces and constructions of boundary value maps, Advanced Studies in Pure Math. 14, Kinokuniya, Tokyo, 1988, pp. 603–650.
- [OS1] Oshima, T. and J. Sekiguchi, Eigenspaces of invariant differential operators on an affine symmetric space, Invent. Math. 57 (1980), 1–81.

- [OS2] Oshima, T. and J. Sekiguchi, The restricted root system of a semisimple symmetric pair, Advanced Studies in Pure Math. 4, Kinokuniya, Tokyo, 1984, pp. 433–497.
- [Sc] Schlichtkrull, H., Hyperfunctions and Harmonic Analysis on Symmetric Spaces, Birkhäuser, Boston, 1984.
- [Se] Sekiguchi, J., Eigenspaces of Laplace-Beltrami operator on a hyperboloid, Nagoya Math. J. 79 (1980), 151–185.
- [Sh] Shimeno, N., A compact imbedding of semisimple symmetric spaces (in Japanese), Master Thesis, University of Tokyo, 1988.
- [W] Warner, G., Harmonic Analysis on Semi-Simple Lie Groups I, Springer-Verlag, Berlin Heiderberg New York, 1972.

(Received August 28, 1995)

Department of Mathematics Tokyo Metropolitan University

Present address

Department of Applied Mathematics Okayama University of Science Okayama 700 Japan