A Brooks Type Integral with Respect to a Set-Valued Measure

By Anca-Maria Precupanu

Abstract. A generalization of the set–valued Brooks integral [3] with respect to a set–valued measure whose values are subsets of a Hausdorff locally convex topological vector space is presented.

The construction of this new kind of integral is based on Weber's result [19] concerning the existence of a family of semi-invariant pseudometrics which generates the uniformity of a uniform semigroup (in our case, the semigroup of convex, bounded, closed subsets of a Hausdorff locally convex topological vector space).

Several properties of the new integral are given and also a theorem of Vitali type is established.

1. Introduction

In recent years, the study of set-valued measures has been developed extensively because of their applications in the mathematical economics, optimization and optimal control [11],[16],[17].

Significant contributions in this area were made by Artstein [2], Castaing–Valadier [4], Costé [5], Alò, de Korvin and Roberts [1], Brooks [3], Drewnowski [7], Godet–Thobie [9], Papageorgiou [13],[14], Hiai [10].

We recall that, recently, Papageorgiou [14] introduced a set-valued integral with respect to a h-set-valued measure in the sense of Alò, de Korvin and Roberts [1], of bounded variation using the set of Bochner integrals of a Banach valued function with respect to measure selectors of the given multimeasure.

Our purpose is to define a new kind of integral using Brooks' procedure [3] adapted in the setting of a set-valued measure whose values are subsets of a Hausdorff locally convex topological vector space X and with respect to the Γ_{μ} -convergence in submeasure defined with the aid of a family of

¹⁹⁹¹ Mathematics Subject Classification. Primary 28B20; Secondary 28A25, 28B10.

pseudometrics which generates the uniformity of the semigroup $\mathcal{K}(X)$ of the convex, closed, bounded subsets of X.

Very briefly the organization of the paper is as follows. In section 2 we precise the terminology and notations, recall some properties of multimeasures and some basic results concerning the Γ_{μ} -convergence in submeasure. In section 3 we define and study some basic properties of the integral of simple functions and in section 4 we present our set-valued integral with some natural properties and we prove a theorem of Vitaly-type for this kind of integral.

2. Terminology and notations

Let X be a Hausdorff locally convex topological vector space (briefly H.l.c.t.v.s.), τ its topology and \mathcal{V} a base of absolutely convex closed neighborhoods of the origin 0 in X. $\mathcal{A}(X)$ is the family of all nonvoid subsets of X, $\mathcal{C}(X)$ is the subfamily of $\mathcal{A}(X)$ of all closed subsets of X and $\mathcal{K}(X)$ is the subfamily of $\mathcal{A}(X)$ of convex, closed, bounded subsets of X.

On $\mathcal{A}(X)$ we define the equivalence relation " ρ " by $A\rho B$ iff $\overline{A} = \overline{B}$, where \overline{A} denotes the closure of $A \subset X$ with respect to τ .

The quotient $\mathcal{A}(X)/\rho$ may be identified with $\mathcal{C}(X)$. It is easy to see that the addition $(A, B) \longrightarrow A + B$ in $\mathcal{A}(X)$ is compatible with ρ . Hence $(\mathcal{A}(X), +)$ admits a factorization by ρ and the resulting quotient semigroup may be identified with $(\mathcal{C}(X), +)$, where + is the Minkowski addition that is

 $A + B = \overline{A + B}$, for every $A, B \in \mathcal{A}(X)$

(see [7]).

Now let \mathcal{U} be the invariant uniformity on X compatible with τ and $\tilde{\mathcal{U}}$ the exponential extension of \mathcal{U} to $\mathcal{A}(X)$, that is the uniformity $\tilde{\mathcal{U}}$ defined by the following base of vicinities:

$$\mathcal{W}(U) = \{ (A, B) \in \mathcal{A}(X) \times \mathcal{A}(X); \ A \subset B + U, \ B \subset A + U \}, \ (\forall) U \in \mathcal{U}.$$

The topology on $\mathcal{A}(X)$ induced by $\tilde{\mathcal{U}}$ will be denoted by $\tilde{\tau}$.

Using the equivalence relation ρ we may identify $(\mathcal{A}(X), \tilde{\tau})/\rho$ with $(\mathcal{C}(X), \tilde{\tau})$ and the separated uniform space associated with $(\mathcal{A}(X), \tilde{\mathcal{U}})/\rho$ with $(\mathcal{C}(X), \tilde{\mathcal{U}})$.

534

In particular, if X is metrizable, then $(\mathcal{A}(X), \tilde{\mathcal{U}})$ becomes a semimetrizable space for the Hausdorff semimetric between sets; if, besides, X is complete, then so is $\mathcal{C}(X)$.

When τ is determined by a norm $\|\cdot\|$, the Hausdorff semimetric is given by

$$d(A,B) = \inf\{t > 0; \ A \subset B + tU_1, \ B \subset A + tU_1\},\$$

where $U_1 = \{x \in X; \|x\| \le 1\}.$

If (X, \mathcal{U}) is a complete uniform space, then so is $(\mathcal{C}(X), \hat{\mathcal{U}})$. It is easy to see that $(\mathcal{C}(X), \dot{+}, \tilde{\mathcal{U}})$ is a Hausdorff uniform commutative semigroup with the unit $\{0\}$ and $\mathcal{K}(X)$ is a closed subsemigroup in which the cancellation law

$$A \dot{+} C = B \dot{+} C \implies A = B$$

holds in it.

Instead of $\{0\}$ we will usually write simply 0. According to a result of Weber [19] there exists a family $\mathcal{P} = \{p\}$ of semiinvariant pseudometrics on $\mathcal{C}(X)$ taking values in [0,1], which generates the uniformity $\tilde{\mathcal{U}}$. (A pseudometric p is semiinvariant if $p(A \dotplus C, B \dotplus C) \leq p(A, B)$ for every $A, B, C \in \mathcal{C}(X)$.)

If
$$p \in \mathcal{P}$$
 we denote by

(2)
$$|A|_p = p(A, 0),$$

where 0 represents the set $\{0\}$.

From the semiinvariance of $p \in \mathcal{P}$ we easily obtain the following properties:

(3)
$$|A + B|_p \le |A|_p + |B|_p, \quad (\forall) A, B \in \mathcal{C}(X),$$

(4)
$$|A + B|_p \ge |A|_p - |B|_p, \quad (\forall) A, B \in \mathcal{C}(X).$$

Beside X we consider S a nonvoid set, $\mathcal{P}(S)$ the family of all subsets of S and \mathcal{R} a ring of subsets of S.

In the following we shall consider set-valued maps μ from S to X, that is set-valued functions μ defined on \mathcal{R} taking values in the semigroup $\mathcal{K}(X)$ with the supplementary property $\mu(\emptyset) = 0$.

DEFINITION 2.1. A set-valued map μ from \mathcal{R} to X is said to be:

I. an additive set-valued measure (multimeasure) if

(5)
$$\mu(A \cup B) = \mu(A) \dot{+} \mu(B), \quad (\forall)A, B \in \mathcal{R} \text{ with } A \cap B = \emptyset;$$

II. a σ -additive multimeasure if for every sequence $(A_n)_{n\geq 1} \subset \mathcal{R}$ with $A_i \cap A_j = \emptyset \ (i \neq j)$ and $\bigcup_{n=1}^{\infty} A_n \in \mathcal{R}$ holds

(6)
$$\mu\left(\bigcup_{n=1}^{\infty}A_n\right) = \sum_{n=1}^{\infty}\mu(A_n)$$

(the sum from the right side of the equality is considered with respect to the topology $\tilde{\tau}$ and the Minkowski addition +).

In what follows by a set–valued measure or a multimeasure we shall mean an additive set–valued measure.

DEFINITION 2.2. Let μ be a set-valued measure from \mathcal{R} to X and $p \in \mathcal{P}$ an arbitrary pseudometric from the family \mathcal{P} .

The function $\tilde{\mu}_p : \mathcal{R} \longrightarrow \overline{\mathbb{R}}_+$ defined by

(7)
$$\tilde{\mu}_p(A) = \sup\left\{\sum_{i=1}^n |\mu(A_i)|_p\right\},$$

where the supremum is taken on all finite partitions $(A_i)_{i=1}^n$ of $A \in \mathcal{R}$ with $A_i \in \mathcal{R}$ is said to be the *p*-variation of μ .

It is easy to see that if μ is additive (respectively σ -additive) so is $\tilde{\mu}_p$. $\tilde{\mu}_p$ may be extended to $\mathcal{P}(S)$ by

(8)
$$\tilde{\mu}_p(E) = \inf\{\tilde{\mu}_p(A); E \subseteq A \in \mathcal{R}\}, \quad (\forall) E \in \mathcal{P}(S)$$

which is a submeasure in Drewnowski sense [6].

Now $\mathcal{P}(S)$ may be organized as a ring with respect to symmetrical difference Δ as addition and the intersection \cap as product.

Furthermore the family $\Gamma_{\mu} = \{\tilde{\mu}_{p}^{*}; p \in \mathcal{P}\}\$ of submeasures on $\mathcal{P}(S)$ generates a topology $\tau_{\Gamma_{\mu}}$ on $\mathcal{P}(S)$ such that $(\mathcal{P}(S), \Delta, \cap; \tau_{\Gamma_{\mu}})$ becomes a topological ring for which the family $\mathcal{B}_{\Gamma_{\mu}}$ of subsets $V_{k,\varepsilon} = \{A \subset S; \tilde{\mu}_{p}^{*}(A) < \varepsilon, p \in K\}$, where K is a finite subset in \mathcal{P} and $\varepsilon > 0$, is a base of neighborhoods of \emptyset for this topology [6].

In what follows we shall write $\mathcal{P}(S)(\Gamma_{\mu})$ for $(\mathcal{P}(S), \Delta, \cap; \tau_{\Gamma_{\mu}})$ and $\mathcal{R}(\Gamma_{\mu})$ for a topological subring \mathcal{R} of $\mathcal{P}(S)(\Gamma_{\mu})$.

536

We shall also denote by \mathcal{R}_{μ} the hereditary subring of \mathcal{R} of all Γ_{μ} integrable members of \mathcal{R} that is the family of all sets $A \in \mathcal{R}$ such that $\tilde{\mu}_p(A) < \infty$ for every $p \in \mathcal{P}$.

If μ is a set-valued measure from \mathcal{R} to X, then μ satisfies the following property:

(α) For every $B \in \mathcal{R}_{\mu}$ and for every vicinity W from $\tilde{\mathcal{U}}$ in $\mathcal{K}(X)$ there exists $\varepsilon > 0$ such that for every finite family $\{(\alpha_i, \beta_i)\}_{i=1}^n$ of real numbers such that $|\alpha_i - \beta_i| < \varepsilon$, $(\forall)i = 1, 2, ..., n$ and for every finite disjoint sequence $(A_i)_{i=1}^n$ of subsets of \mathcal{R} , the following relation holds

$$\left(\sum_{i=1}^n \alpha_i \mu(A_i \cap B), \sum_{i=1}^n \beta_i \mu(A_i \cap B)\right) \in W.$$

Next we denote by $\mathbb{I}\!\!R^S$ the set of all functions f from S to $\mathbb{I}\!\!R$. For every finite $K \subset \mathcal{P}$ and $\varepsilon > 0$ we consider

$$W_K(\varepsilon) = \{ (f,g) \in \mathbb{R}^S \times \mathbb{R}^S; \ \tilde{\mu}_p^* (\{s \in S; |f(s) - g(s)| \ge \varepsilon\}) < \varepsilon, p \in K \}.$$

The family of all subsets $W_k(\varepsilon)$ constitutes a base of vicinities for a uniformity $\mathcal{U}_{\Gamma_{\mu}}$ on \mathbb{R}^S .

We shall also use the notation $I\!\!R^S(\Gamma_\mu)$ for $(I\!\!R^S, \mathcal{U}_{\Gamma_\mu})$.

DEFINITION 2.3. A net (f_{α}) from \mathbb{R}^{S} is said to be *convergent in* Γ_{μ} submeasure to $f \in \mathbb{R}^{S}$, denoted $f_{\alpha} \xrightarrow{\Gamma_{\mu}} f$, if f_{α} converges to f in $\mathbb{R}^{S}(\Gamma_{\mu})$.

Remarking that the function φ which associates to every $E \in \mathcal{P}(S)$ its indicatrice function is an isomorphism between the uniform space $\mathcal{P}(S)(\Gamma_{\mu})$ and the uniform subspace Y of $\mathbb{R}^{S}(\Gamma_{\mu})$ of all indicatrice functions of subsets of S, where \mathbb{R} is endowed with its natural uniform structure, it is legitimate to use the notation $E_{\alpha} \xrightarrow{\Gamma_{\mu}} E$ for the convergence in $\mathcal{P}(S)(\Gamma_{\mu})$.

3. Integration of simple functions

DEFINITION 3.1. A function $f \in \mathbb{R}^S$ is said to be a simple Γ_{μ} -integrable function if: a) it assumes only a finite number of distinct values $a_i \in \mathbb{R}$; b) $f^{-1}(\{a_i\}) = A_i \in \mathbb{R}$; c) if $a_i \neq 0$ then $A_i \in \mathbb{R}_{\mu}$.

In this case if $T \in \mathcal{R}$ the integral of f over T is defined by

(9)
$$\int_{T} f d\mu = \sum_{i=1}^{n} a_{i} \mu(T \cap A_{i}).$$

We remark that if χ_T denotes the characteristic function of T, then $f = \sum_{i=1}^n a_i \chi_{A_i}$.

It is easy to see that the integral of f is independent of the representation of f as a finite combination of this type.

In what follows we shall denote by $\mathcal{E}(\Gamma_{\mu}, X)$, or briefly $\mathcal{E}(\Gamma_{\mu})$, the set of all Γ_{μ} -integrable simple functions.

From the definition 3.1 we immediately obtain

THEOREM 3.2. If $f, g \in \mathcal{E}(\Gamma_{\mu})$, then:

I.
$$f + g \in \mathcal{E}(\Gamma_{\mu})$$
 and $\int_{T} (f + g) d\mu = \int_{T} f d\mu + \int_{T} g d\mu$, $(\forall) T \in \mathcal{R}$;

- II. for every $p \in \mathcal{P}$, $p(\int_{\mathcal{T}} f d\mu, \int_{\mathcal{T}} g d\mu) \leq \int_{\mathcal{T}} |f g| d\mu_p$, $(\forall) T \in \mathcal{R}$.
- III. the set-valued map $\nu(T) = \int_T f d\mu$, $(\forall)T \in \mathcal{R}$, is a multimeasure and if moreover μ is σ -additive then so is ν .

IV.
$$\lim_{T \xrightarrow{\Gamma_{\mu}} \emptyset} \int_{T} f d\mu = 0.$$

PROOF. I), III) and IV) may be immediately obtained from the definition 3.1.

To prove II) let $f = \sum_{i=1}^{n} a_i \chi_{A_i}$ and $g = \sum_{j=1}^{m} b_j \chi_{B_j}$. We observe that it is possible to find a finite family $(E_k)_{k=1}^s \subset \mathcal{R}$ such that $f = \sum_{k=1}^{s} a_k \chi_{E_k}$ and $g = \sum_{k=1}^{s} b_k \chi_{E_k}$. Next, for every $p \in \mathcal{P}$ we have

$$p\left(\int_{T} f d\mu, \int_{T} g d\mu\right) = p\left(\sum_{k=1}^{s} a_{k}\mu(T \cap E_{k}), \sum_{k=1}^{s} b_{k}\mu(T \cap E_{k})\right) \leq \\ \leq \sum_{k=1}^{s} p(a_{k}\mu(T \cap E_{k}), b_{k}\mu(T \cap E_{k})) \leq \\ \leq \sum_{k=1}^{s} |a_{k} - b_{k}| \mu(T \cap E_{k})|_{p} \leq$$

$$\leq \sum_{k=1}^{s} |a_k - b_k| \tilde{\mu}_p(T \cap E_k). \square$$

THEOREM 3.3. Let $(f_{\alpha})_{\alpha \in I}$ be a Cauchy net in $\mathbb{R}^{S}(\Gamma_{\mu})$ of simple Γ_{μ} integrable functions.

The net $(\int_T f_\alpha d\mu)_{\alpha \in I}$ is uniformly Cauchy with respect to $T \in \mathcal{R}$ if and only if the following two conditions hold:

- I. for every neighborhood V of the origin in $\mathcal{K}(X)$ there exists $\alpha_0 \in I$ and a neighborhood \mathcal{V}_{μ} of \emptyset in $\mathcal{R}(\Gamma_{\mu})$ such that $\int_T f_{\alpha} d\mu \in V$ for every $\alpha \geq \alpha_0$ and every $T \in \mathcal{V}_{\mu}$;
- II. for every neighborhood V of the origin in $\mathcal{K}(X)$ there exist $\alpha_0 \in I$ and $M \in \mathcal{R}_{\mu}$ such that $\int_T f_{\alpha} d\mu \in V$ for every $\alpha \geq \alpha_0$ and every $T \in \mathcal{R}$ with $T \subset S \setminus M$.

PROOF. First let us assume that the net $(\int_T f_\alpha d\mu)_{\alpha \in I}$ is uniform Cauchy with respect to $T \in \mathcal{R}$ and let V be an arbitrary neighborhood of the origin in $\mathcal{K}(X)$. Then there exists a symmetrical vicinity W from $\tilde{\mathcal{U}}$ such that $W^2(0) \subset V$. By virtue of hypothesis there exists $\alpha_0 \in I$ such that $(\int_T f_\alpha d\mu, \int_T f_{\alpha_0} d\mu) \in W$ for every $T \in \mathcal{R}$ and $\alpha \geq \alpha_0$. Now, from the theorem 3.2, IV), there exists a neighborhood \mathcal{V}_μ of \emptyset in $\mathcal{R}(\Gamma_\mu)$ such that $\int_T f_{\alpha_0} d\mu \in W(0)$ for $T \in \mathcal{V}_\mu$. Hence $\int_T f_\alpha d\mu \in V$ for $\alpha \geq \alpha_0$ and $T \in \mathcal{V}_\mu$ that is I) is satisfied. To obtain II) it is sufficient to take $M = \{s \in S; f_{\alpha_0} \neq 0\}$. We see that $M \in \mathcal{R}_\mu$ and $\int_T f_{\alpha_0} d\mu = 0$ for every $T \in \mathcal{R}$ with $T \subset S \setminus M$, that is II) is proved.

Conversely, let W_1 be a vicinity of $\tilde{\mathcal{U}}$ and W a symmetrical vicinity of $\tilde{\mathcal{U}}$ such that that $W^2 + W^2 + W^2 \subset W_1$ (W exists because of the uniform continuity of the addition in $\mathcal{K}(X)$.)

Let $j_0 \in J$, \mathcal{V}_{μ} and $M \in \mathcal{R}_{\mu}$ corresponding to W(0) by virtue of hypotheses I) and II). (α_0 can be chosen to satisfy simultaneously I) and II).

According to (α) from section 1, to M and W it corresponds $\delta > 0$ such that for every $n \in N$, every $\{(\alpha_i, \beta_i)\}_{i=0}^n$ with $\alpha_i, \beta_i \in \mathbb{R}$ such that $|\alpha_i - \beta_i| < \delta, i = 0, 1, 2, ..., n$ and $(E_i)_{i=0}^n$, a finite disjoint sequence of members of \mathcal{R} , the following relation holds

$$\left(\sum_{i=0}^{n} \alpha_{i} \mu(E_{i} \cap M), \sum_{i=0}^{n} \beta_{i} \mu(E_{i} \cap M)\right) \in W.$$

Let $M_{\alpha,\alpha'} = \{s \in S; |f_\alpha(s) - f_{\alpha'}(s)| \ge \delta\}.$

We see that $M_{\alpha,\alpha'} \in \mathcal{R}$ for every $\alpha, \alpha' \in J$ and since (f_{α}) is a Cauchy net in $\mathbb{R}^{S}(\Gamma_{\mu})$ there exists $\alpha_{1} \geq \alpha_{0}$ such that $M_{\alpha,\alpha'} \in \mathcal{V}_{\mu}$ for $\alpha \geq \alpha_{1}$ and $\alpha' \geq \alpha_{1}$.

Now, taking into account that $W^2 + W^2 + W^2 \subset W_1$ we obtain for every $T \in \mathcal{R}$,

$$\begin{split} \left(\int_{T} f_{\alpha} d\mu, \int_{T} f_{\alpha'} d\mu \right) &= \left(\int_{T \cap M_{\alpha,\alpha'}} f_{\alpha} d\mu, \int_{T \cap M_{\alpha,\alpha'}} f_{\alpha'} d\mu \right) + \\ &+ \left(\int_{T \setminus (M_{\alpha,\alpha'} \cup M)} f_{\alpha} d\mu, \int_{T \setminus (M_{\alpha,\alpha'} \cup M)} f_{\alpha'} d\mu \right) + \\ &+ \left(\int_{(T \setminus M_{\alpha,\alpha'}) \cap M} f_{\alpha} d\mu, \int_{(T \setminus M_{\alpha,\alpha'}) \cap M} f_{\alpha'} d\mu \right) \in \\ &\in W(0) \times W(0) + W(0) \times W(0) + W^{2} \subseteq \\ &\subseteq W^{2} + W^{2} + W^{2} \subset W_{1} \end{split}$$

for every $\alpha \geq \alpha_1, \alpha' \geq \alpha_1$; hence the net $\{\int_T f_\alpha d\mu\}$ is uniform Cauchy with respect to $T \in \mathcal{R}$. \Box

4. Integration with respect to a multimeasure

LEMMA 4.1. Let $\{f_{\alpha}\}_{\alpha \in I}$ and $\{g_{\beta}\}_{\beta \in J}$ be two nets in $\mathcal{E}(\Gamma_{\mu}, X)$ both convergent in $\mathbb{R}^{S}(\Gamma_{\mu})$ to the same function. If $(\int_{T} f_{\alpha} d\mu)$ and $(\int_{T} g_{\beta} d\mu)$ are Cauchy nets uniformly with respect to $T \in \mathcal{R}$, then for every vicinity W from $\tilde{\mathcal{U}}$, there are α_{0} and β_{0} such that for every $\alpha \geq \alpha_{0}$ and $\beta \geq \beta_{0}$, $(\int_{T} f_{\alpha} d\mu, \int_{T} g_{\beta} d\mu) \in W$ uniformly in $T \in \mathcal{R}$.

PROOF. Let W be a vicinity from $\tilde{\mathcal{U}}$ and let W_1 be a symmetrical vicinity of $\tilde{\mathcal{U}}$ such that $W^2 + W^2 + W^2 \subset W_1$.

Let $\delta > 0$ corresponding to W_1 by virtue of the condition (α).

We denote by $M_{\alpha,\beta} = \{s \in S; |f_{\alpha}(s) - g_{\beta}(s)| > \delta\}.$

Using the theorem 3.3 we obtain α_0, β_0 , a Γ_{μ} -integrable set M in S and a neighborhood \mathcal{V}_{μ} of \emptyset in $\mathcal{R}(\Gamma_{\mu})$ such that $\int_T f_{\alpha} d\mu \in W_1(0)$ and $\int_T g_{\beta} d\mu \in$ $W_1(0)$ for $\alpha \geq \alpha_0, \beta \geq \beta_0, T \in \mathcal{V}_{\mu}$ with $T \subset S \setminus M, T \in \mathcal{R}$.

540

By virtue of hypotheses there exist $\alpha_1 \geq \alpha_0$ and $\beta_1 \geq \beta_0$ such that $M_{\alpha,\beta} \in \mathcal{V}_{\mu}$ for $\alpha \geq \alpha_1$ and $\beta \geq \beta_1$ and every $T \in \mathcal{R}$.

In the same way as in theorem 3.3 we find that $(\int_T f_\alpha d\mu, \int_T g_\beta d\mu) \in W$ for $\alpha \ge \alpha_1, \beta \ge \beta_1$ and every $T \in \mathcal{R}$. \Box

DEFINITION 4.2. A function $f \in \mathbb{R}^S$ is said to be Γ_{μ} -integrable if there exists a net $\{f_{\alpha}\}$ in $\mathcal{E}(\Gamma_{\mu})$ such that $f_{\alpha} \xrightarrow{\Gamma_{\mu}} f$ and $\{\int_T f_{\alpha} d\mu\}$ is a Cauchy net in $\mathcal{K}(X)$ uniform with respect to $T \in \mathcal{R}$.

In this case the element of the completion $\mathcal{K}(X)$ of $\mathcal{K}(X)$ defined by $\int_T f d\mu = \lim_{\alpha} \int_T f_{\alpha} d\mu$ is said to be the Γ_{μ} -integral of f on $T \in \mathcal{R}$.

By virtue of Lemma 4.1 the notion of Γ_{μ} -integral is well-defined.

REMARK. If X is a Banach space and $\mathcal{C}(X)$ is endowed with Hausdorff distance, then $\mathcal{C}(X)$ becomes a complete metric space in which $\mathcal{K}(X)$ is a closed subspace, that is also complete.

Now, let μ be a multimeasure from S to X, ν its variation and ν^* the corresponding submeasure defined as in (8). Then the Γ_{μ} -integral of a function $f \in \mathbb{R}^S$, defined as in definition 4.2 is just the integral studied by Brooks in [3].

In what follows we shall denote by $\mathcal{L}(\Gamma_{\mu}, X)$ the set of all Γ_{μ} -integrable functions.

Evidently $\mathcal{E}(\Gamma_{\mu}, X) \subset \mathcal{L}(\Gamma_{\mu}, X)$.

Now we can obtain some remarkable properties of Γ_{μ} -integrable functions.

THEOREM 4.3. If $f, g \in \mathcal{L}(\Gamma_{\mu}, X)$ we have:

- I. $f + g \in \mathcal{L}(\Gamma_{\mu}, X)$ and $\int_{T} (f + g) d\mu = \int_{T} f d\mu + \int_{T} g d\mu$, $(\forall) T \in \mathcal{R}$;
- II. the set-valued map defined by $\nu(T) = \int_T f d\mu$, $(\forall)T \in \mathcal{R}$, is a multimeasure and if moreover μ is σ -additive then so is ν ;
- III. $\lim_{\substack{E \xrightarrow{\Gamma_{\mu}}\\ E \in \mathcal{R}}} \nu(E) = 0;$

Anca-Maria Precupanu

IV. if
$$S \notin \mathcal{R}_{\mu}$$
, then the family $\{B_M\}_{M \in \mathcal{R}_{\mu}}$, where the nonvoid set B_M is
associated to $M \in \mathcal{R}_{\mu}$ by $B_M = \{T \in \mathcal{R}; T \cap M = \emptyset\}$ constitutes a
filterbase \mathcal{F} on \mathcal{R} and for every $f \in \mathcal{L}(\Gamma_{\mu}, X)$, $\lim_{\mathcal{F}} \int_T f d\mu = 0$.

PROOF. We immediately obtain I) and II) from the definition 4.2 and the analogous properties for simple integrable functions (see theorem 3.2).

To prove III) let W be a symmetrical vicinity of $\mathcal{K}(X)$, the completion of $\mathcal{K}(X)$, and let $g \in \mathcal{E}(\Gamma_{\mu}, X)$ such that $(\int_{T} f d\mu, \int_{T} g d\mu) \in W$ for every $T \in \mathcal{R}$.

Let \mathcal{V}_{μ} be a neighborhood of \emptyset in $\mathcal{R}(\Gamma_{\mu})$ such that $\int_{T} g d\mu \in W(0)$ for $T \in \mathcal{V}_{\mu}$. But $\int_{T} f d\mu \in W^{2}(0)$ for $T \in \mathcal{V}_{\mu}$ that is III) is satisfied.

To prove IV) it is sufficient to remark that $M = \{s \in S; g(s) \neq 0\}$ is Γ_{μ} -integrable and then for $T \in B_M$ we have $\int_T f d\mu \in W(0)$ that is IV). \Box

THEOREM 4.4. Let $\{f_{\alpha}\}_{\alpha\in D}$ be a net of Γ_{μ} -integrable functions, Cauchy in $\mathbb{R}^{S}(\Gamma_{\mu})$. The net $\{\int_{T} f_{\alpha}d\mu\}_{\alpha\in D}$ is uniform Cauchy with respect to $T \in \mathcal{R}$ if and only if the following two conditions are satisfied:

- I. for every neighborhood V of the origin in $\tilde{K}(X)$ there exist an index α_0 and a neighborhood \mathcal{V}_{μ} of \emptyset in $\mathcal{R}(\Gamma_{\mu})$ such that $\int_T f_{\alpha} d\mu \in V$ for $\alpha \geq \alpha_0$ and $T \in \mathcal{V}_{\mu}$;
- II. for every neighborhood V of the origin in $\tilde{K}(X)$ there exist an index $\alpha_0 \in D$ and a Γ_{μ} -integrable set M such that $\int_T f_{\alpha} d\mu \in V$ for $\alpha \geq \alpha_0$, and $T \in \mathcal{R}, T \subset S \setminus M$.

PROOF. The necessity can be obtained in the same way as in the theorem 3.3 using the theorem 4.3, III) and IV).

Conversely, let $\{f_{\alpha}\}_{\alpha \in D}$ be a Cauchy net in $\mathbb{R}^{S}(\Gamma_{\mu})$ of Γ_{μ} -integrable functions which satisfies the conditions I) and II) from theorem.

By virtue of the Γ_{μ} -integrability of f_{α} , for every $\alpha \in D$, there exists a net $\{f_{\alpha,\beta}\}_{\beta\in D_{\alpha}}$ in $\mathcal{E}(\Gamma_{\mu}, X)$ such that $f_{\alpha,\beta} \xrightarrow{\Gamma_{\mu}} f_{\alpha}$ and $\lim_{\beta} \int_{T} f_{\alpha,\beta} d\mu = \int_{T} f_{\alpha} d\mu$ uniformly in $T \in \mathcal{R}$.

Now let us consider $\{f_{\alpha,\varphi(\alpha)}; (\alpha,\varphi) \in D \times \prod_{\alpha} D_{\alpha}\}$ the diagonal approximation associated to $\{f_{\alpha,\beta}; \alpha \in D, \beta \in D_{\alpha}\}$ (see Kelley [12], Chap.II). If U is a symmetrical vicinity in $\mathbb{R}^{S}(\Gamma_{\mu})$ there exists $\varphi_{U} \in \prod_{\alpha} D_{\alpha}$ such that for every $\varphi \in \prod_{\alpha} D_{\alpha}$ with $\varphi \geq \varphi_{U}$ we obtain $(f_{\alpha}, f_{\alpha,\varphi(\alpha)}) \in U$ for every $\alpha \in D$. But $\{f_{\alpha}\}_{\alpha \in D}$ is a Cauchy net in $\mathbb{R}^{S}(\Gamma_{\mu})$ and then for U there exists $\alpha_{1} \in D$ such that $(f_{\alpha}, f_{\alpha'}) \in U$ for $\alpha \geq \alpha_{1}$ and $\alpha' \geq \alpha_{1}$. From here we obtain $(f_{\alpha,\varphi(\alpha)}, f_{\alpha',\varphi(\alpha')}) \in U^{3}$ for $(\alpha,\varphi) \geq (\alpha_{1},\varphi_{U})$ and $(\alpha',\varphi') \geq (\alpha_{1},\varphi_{U})$, that is $\{f_{\alpha,\varphi(\alpha)}\}_{\alpha \in D}$ is a net in $\mathcal{E}(\Gamma_{\mu}, X)$ which is Cauchy in $\mathbb{R}^{S}(\Gamma_{\mu})$.

Now let V_0 be a neighborhood of the origin in $\tilde{\mathcal{K}}(X)$ and let W be a symmetrical vicinity of $\tilde{\mathcal{K}}(X)$ such that $W^2(0) \in V_0$.

For this W(0) there exist $\alpha_0, \mathcal{V}_{\mu}$ and M such that the conditions I) and II) of theorem are simultaneously satisfied.

Then there exists $\varphi_1 \in \prod_{\alpha \in D} D_\alpha$ such that for every $\varphi \in \prod_{\alpha} D_\alpha$ with $\varphi \geq \varphi_1$ we have $(\int_T f_{\alpha,\varphi(\alpha)} d\mu, \int_T f_\alpha d\mu) \in W$ for every $\alpha \in D$ and every $T \in \mathcal{R}$.

Now if $(\alpha, \varphi) \geq (\alpha_0, \varphi_1)$ we obtain $\int_T f_{\alpha,\varphi(\alpha)} d\mu \in V_0$ for $T \in \mathcal{V}_{\mu}$ or $T \in \mathcal{R}$ with $T \subset S \setminus M$, that is the net $\{\int_T f_{\alpha,\varphi(\alpha)} d\mu\}$ is a Cauchy net uniform with respect to $T \in \mathcal{R}$. Consequently, there exists α_1 such that for $\alpha \geq \alpha_1$ and $\alpha' \geq \alpha_1$ we have $(\int_T f_{\alpha} d\mu, \int_T f_{\alpha'} d\mu) \in W^2$ uniformly in $T \in \mathcal{R}$ whence the theorem follows. \Box

REMARK. On $\mathcal{L}(\Gamma_{\mu}, X)$ we can introduce a uniform structure which we shall call the uniform structure of the Γ_{μ} -mean.

To see this let \mathcal{W} be the uniform structure on $\mathcal{K}(X)$. For every $W \in \mathcal{W}$ we consider

$$E_W = \{ (f,g) \in \mathcal{L}(\Gamma_\mu, X) \times \mathcal{L}(\Gamma_\mu, X); (\int_T f d\mu, \int_T g d\mu) \in W, \ (\forall) T \in \mathcal{R} \}.$$

It is easy to see that the family $\{E_W\}_{W \in \mathcal{W}}$ is a base of vicinities for a uniform structure \mathcal{T}_W on $\mathcal{L}(\Gamma_{\mu}, X)$.

Let $\mathcal{M}(\mathcal{L}(\Gamma_{\mu}, X))$ be the uniform structure induced on $\mathcal{L}(\Gamma_{\mu}, X)$ by $\mathbb{R}^{S}(\Gamma_{\mu})$.

The uniform structure on $\mathcal{L}(\Gamma_{\mu}, X)$ defined by $\sup\{\mathcal{M}(\mathcal{L}(\Gamma_{\mu}, X)), \mathcal{T}_W\}$ is said to be the uniform structure of the Γ_{μ} -mean convergence.

The convergence of a net $\{f_{\alpha}\}_{\alpha \in D}$ to f with respect to this uniformity considered on $\mathcal{L}(\Gamma_{\mu}, X)$ is called then *convergence in* Γ_{μ} -mean and we denote it by $f_{\alpha} \longrightarrow f$ (Γ_{μ} -mean). DEFINITION 4.5. A net $\{f_{\alpha}\}_{\alpha \in D}$ of Γ_{μ} -integrable functions is said to be Γ_{μ} -equiintegrable if $\{f_{\alpha}\}$ satisfies the conditions I) and II) of theorem 4.4.

Now, we can prove a Vitali type theorem.

THEOREM 4.6. Let $\{f_{\alpha}\}_{\alpha \in D}$ be a net of $\mathcal{L}(\Gamma_{\mu}, X)$. Then a function $f \in \mathbb{R}^{S}$ is Γ_{μ} -integrable and $f_{\alpha} \longrightarrow f$ (Γ_{μ} -mean) if and only if the following two conditions hold:

- I. $f_{\alpha} \xrightarrow{\Gamma_{\mu}} f;$
- II. $\{f_{\alpha}\}_{\alpha \in D}$ is a Γ_{μ} -equiintegrable net.

PROOF. The necessity may be easily obtained from the theorem 4.4.

Conversely, let $\{f_{\alpha}\}_{\alpha \in D}$ be a net of $\mathcal{L}(\Gamma_{\mu}, X)$ which satisfies the conditions I) and II) of the theorem. For every $\alpha \in D$ there exists a net $\{f_{\alpha,\beta}\}_{\beta \in D_{\alpha}}$ of $\mathcal{E}(\Gamma_{\mu}, X)$ such that $f_{\alpha,\beta} \longrightarrow f(\Gamma_{\mu}\text{-mean})$.

Let $\{f_{\alpha,\varphi(\alpha)}; \alpha \in D, \varphi \in \prod_{\alpha} D_{\alpha}\}$ be the corresponding diagonale approximation. As in the proof of the theorem 4.4 we obtain that $f_{\alpha,\varphi(\alpha)} \longrightarrow f(\Gamma_{\mu}$ -mean) and then $f \in \mathcal{L}(\Gamma_{\mu}, X)$.

Moreover $\lim_{\alpha,\varphi} \int_T f_{\alpha,\varphi(\alpha)} d\mu = \int_T f d\mu$ uniformly with respect to $T \in \mathcal{R}$. Now let W be a summatrical visibility of $\tilde{\mathcal{K}}(X)$

Now let W be a symmetrical vicinity of $\mathcal{K}(X)$.

There exists $(\alpha_1, \varphi_1) \in D \times \prod_{\alpha} D_{\alpha}$ such that for every $(\alpha, \varphi) \ge (\alpha_1, \varphi_1)$, $(\int_T f d\mu, \int_T f_{\alpha,\varphi(\alpha)} d\mu) \in W$ and $\int_T f_{\alpha,\varphi(\alpha)} d\mu, \int_T f_{\alpha} d\mu) \in W$, uniformly in $T \in \mathcal{R}$.

If $\alpha \geq \alpha_1$, then $(\int_T f_\alpha d\mu, \int_T f d_\mu) \in W^3$ uniformly in T whence the theorem follows. \Box

References

- Alo, R., de Korvin, A. and C. Roberts, Jr., On some properties of continuous multimeasures, J. Math. Anal. Appl. 75 (1980), 402–410.
- [2] Artstein, Z., Set valued measures, Trans. Amer. Math. Soc. 165 (1972), 103– 125.
- [3] Brooks, J. K., An integration theory for set valued measures, Bull. Soc. Roy. de Sci. Liège **37** N°. 5–8 (1968), 312–319, 375–380.
- [4] Castaing, C. and M. Valadier, Convex Analysis and Multifunctions, Lect. Notes in Math. N^o. 560, Springer–Verlag, Berlin, 1977.
- [5] Costé, A., Sur l'intégration par rapport à une multimesure de Radon, C. R. Acad. Sci. 278 (1974), 545–548.
- [6] Drewnowski, L., Topological rings of sets, continuous set functions, integration, I, II, Bull. Acad. Polon. Sci. Sér. Math. Astron. Phys. 20 (1972), 269– 276, 277–286.
- [7] Drewnowski, L., Additive and countably additive correspondences, Comment. Math. 19 (1976), 25–53.
- [8] Dinculeanu, N., Vector Measures, Pergamon, New-York, 1967.
- [9] Godet-Thobie, C., Sélections de multimesures. Application à un théorème de Radon-Nikodym multivoque, C. R. Acad. Sci. 279 (1974), 603–606.
- [10] Hiai, F., Radon–Nikodym theorems for set–valued measures, J. Multivar. Anal. 8 (1978), 96–118.
- [11] Hildenbrand, W., Core and Equilibria of a Large Economy, Princeton Univ. Press, Princeton, N.Y., 1974.
- [12] Kelley, J., General Topology, Van Nostrand, Princeton, 1955.
- [13] Papageorgiou, N. S., On the theory of Banach space valued multifunctions, I., J. Multiv. Anal. 17 (1985), 185–206.
- [14] Papageorgiou, N. S., On the theory of Banach space valued multifunctions, II., J. Multiv. Anal. 17 (1985), 207–227.
- [15] Precupanu, A. M., On the set valued additive and subadditive functions, An. St. Univ. Iaşi 29 (1984), 41–48.
- [16] Rockafellar, R. T., Integral functional, normal integrands and measurable selectors, Lecture Notes in Math. N^o. 543, Springer–Verlag, Berlin, 1976.
- [17] Strassen, V., The existence of probability measures with given marginals, Ann. Math. Statist. 36 (1965), 423–439.
- [18] Thiam, D. S., Intégrales multivoques monotones, C. R. Acad. Sci. Paris 282 (1976), 263–265.
- [19] Weber, H., Fortsetzung von Massen mit Werten in uniformen Halbgruppen, Arch. Math. 27 (1976), 412–423.

(Received April 12, 1995)

Anca-Maria Precupanu

Faculty of Mathematics "Al.I.Cuza" University 6600 Iaşi Romania