Minimal Discrepancy for a Terminal cDV Singularity Is 1

By Dimitri Markushevich

Abstract. An answer to a question raised by Shokurov on the minimal discrepancy of a terminal singularity of index 1 is given. It is proved that the minimal discrepancy is 1 (it is 2 for a non-singular point and 0 for all other canonical singularities of index 1). A rough classification of terminal singularities of index 1 based on finding certain low degree monomials in their equations, and the toric techniques of weighted blow ups are used. This result has been generalized to terminal singularities of index r > 1 by Y.Kawamata; his theorem states that the minimal discrepancy is 1/r.

This note provides a proof for the following fact cited by Shokurov in [Sho], Remark (4.10.2), with a reference to my verbal communication.

THEOREM 0.1. Let (Y, P) be a three-dimensional isolated compound Du Val (cDV) singularity. For any resolution $\pi : (\tilde{Y}, P) \longrightarrow (Y, P)$, let $E = \bigcup_{i=1}^{i=m} E_i$ denote its exceptional locus, $(E = \pi^{-1}(P))$, $E_i(i = 1, ..., m)$ being its irreducible components. The discrepancy coefficients a_j are determined by the formula

$$K_{\tilde{Y}} = \pi^* K_Y + \sum_{\operatorname{codim}_{\tilde{Y}} E_j = 1} a_j E_j ,$$

and when $\operatorname{codim}_{\tilde{V}} E$ is 1

$$\operatorname{mdc}(\pi) = \min_{\operatorname{codim}_{\tilde{Y}}E_j=1} a_j$$

denotes the minimal discrepancy coefficient of π . Then there exists a resolution π with at least one exceptional component of codimension 1, such that $mdc(\pi) = 1$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 14E30; Secondary 14J30.

The author is grateful to the referee, who pointed out numerous inaccuracies in the first version of the paper.

A generalization of this theorem to terminal singularities of index r > 1 was obtained by Kawamata [Kaw]. It states that any resolution contains an exceptional divisor of discrepancy 1/r.

1. Reminder on terminal singularities

DEFINITION 1.1. A cDV singularity is a germ of an algebraic variety (or of an analytic space) (Y, P) which is formally equivalent to the germ of a hypersurface singularity ($\{f = 0\}, 0$) in the affine space \mathbf{A}^4 , where

(1.1)
$$f(t, x, y, z) = f_{X_n}(t, x, y) + zg(t, x, y, z),$$

where X_n stands for A_n, D_n or E_n , and f_{X_n} is one of the following polynomials:

$$f_{A_n} = t^2 + x^2 + y^{n+1} \quad (n \ge 1)$$

$$f_{D_n} = t^2 + x^2 y + y^{n-1} \quad (n \ge 4)$$

$$f_{E_6} = t^2 + x^3 + y^4$$

$$f_{E_7} = t^2 + x^3 + xy^3$$

$$f_{E_8} = t^2 + x^3 + y^5 .$$

Let us order the symbols A_n, D_k, E_l by

$$\begin{aligned} A_n < D_k < E_l \ \forall \ n \geq 1 \ \forall \ k \geq 4 \ \forall \ l = 6, 7, 8 \\ X_n < X_m \ \forall \ n < m \ \forall \ X = A, D, E. \end{aligned}$$

The singularity (Y, P) is said to be cX_n if X_n is minimal in a representation of (Y, P) by equation (1.1).

According to Reid [Reid-1], the isolated cDV-points are exactly terminal singularities of index 1; this implies in particular that the minimal discrepancy coefficient is positive in any resolution having at least one exceptional divisor. Remark, that the singularities $f_{X_n} = 0$, where X_n runs over the symbols $A_n (n \ge 1), D_n (n \ge 4), E_6, E_7, E_8$, are exactly canonical singularities in dimension 2 up to analytic equivalence; 'canonical' means that all the discrepancies a_j are non-negative. Look [Reid-2] for further properties of these and related classes of singularities. We state here for future use a criterion for a hypersurface singularity to be canonical.

THEOREM 1.2. A necessary condition for a hypersurface $\{f = 0\} \subset k^n$, $f = \sum a_m x^m$, to have a canonical singularity at zero is that the point

 $(1,\ldots,1)$ lies above the Newton diagram $\Delta(f)$ of the function f. The condition is also sufficient provided f is a non-degenerate series in the sense of Khovanskii, that is for any face $\Delta \prec \Delta(f)$, the polynomial $f_{\Delta} = \sum_{m \in \Delta} a_m x^m$ defines a non-singular (maybe empty) hypersurface in $(k^*)^n$.

PROOF. See [Mar-2], Theorem 3, and also [Reid-2] for the "necessary" part. In fact, the sufficiency follows immediately from the structure of the Khovanskiĭ embedded toric resolution of a non-degenerate singularity [Kho]: in any coordinate patch of this resolution the exceptional locus Γ is either empty, or its irreducible components Γ satisfy the hypotheses of Proposition 2.3 below, and $d_{\Gamma} = 1$ since the intersection $\Gamma \cap (k^*)^n$ is non-singular by the non-degeneracy assumption. So the non-negativity of the discrepancy a_{Γ} implies $a_{\alpha} \geq 0$ (in the notation of Proposition 2.3), which is equivalent to saying that the point $(1, \ldots, 1)$ lies above the face Δ . \Box

PROPOSITION 1.3. Let (Y, P) be an isolated cDV singularity. Then it is formally equivalent to a hypersurface singularity ($\{f = 0\}, 0$), where f is one of the following polynomials:

(i) $f = t^2 + x^2 + y^2 + z^n$ $(n \ge 2)$ if (Y, P) is cA_1 ;

(ii) $f = t^2 + x^2 + g(y, z)$, where $j_2g = 0$, if (Y, P) is $cA_n \ (n \ge 2)$;

(iii) $f = t^2 + g(x, y, z)$, where $j_2g = 0$ and $g_3(x, y, z)$ is not divisible by a square of a linear form, if (Y, P) is cD_4 ;

(iv) $f = t^2 + x^2y + g(x, y, z)$, where $j_3g = 0$, if (Y, P) is $cD_n (n \ge 5)$;

(v) $f = t^2 + x^3 + g(x, y, z)$, where $j_3g = 0$ and $j_5g = g_4 + g_5$ contains at least one of the monomials

(1.2)
$$z^4, yz^3, y^2z^2, z^5, yz^4, y^2z^3, xz^3, xyz^2$$

with a non-zero coefficient, if (Y, P) is cE_n (n = 6, 7, 8).

(We denote by j_kg the k-th jet of g, and by g_k the homogeneous component of degree k of g).

PROOF. (i), (ii), (iii) and (iv) are easy consequencies of the Morse Lemma and Definition 1.1. (v) follows from the following Proposition. \Box

PROPOSITION 1.4. Assume that the equation f = 0, where

(1.3)
$$f = t^2 + x^3 + g(x, y, z) \quad (j_3 g = 0)$$

defines an isolated singularity at $0 \in A^4$. Then it is a cE_n point, if and only if g contains, possibly after a permutation of y, z, one of the monomials (1.2).

PROOF. For reader's convenience, I reproduce the proof given in [Mar-1]; see also Corollary 3 in [Mar-2]. \Box

Sufficiency. By a change of variables $y \to y + az$, one can reduce the problem to the case when g contains one of the monomials z^4, xz^3, z^5 . If the coefficient of z^4 is non-zero, then after a homothety, we have

(1.4)
$$t^{2} + x^{3} + g(x, 0, z) = t^{2} + x^{3} + z^{4} + \eta(t, x, z),$$

where the exponents of all the monomials of η lie above the Newton diagram of $f_{E_6}(t, x, z) = t^2 + x^3 + z^4$. By Lemma in Sect. 2 of [Mar-2], the function (1.4) is formally equivalent to f_{E_6} , hence (1.3) defines a cDV singularity whose hyperplane section y = 0 is E_6 , hence it is of type $\leq cE_6$. As it is neither cA_n , nor cD_n , it is cE_6 . The cases when g contains the sum $c_1z^4 + c_2xz^3 + c_3z^5$ with $c_1 = 0, c_2 \neq 0$ or $c_1 = c_2 = 0, c_3 \neq 0$ are considered in a similar way.

Necessity. Suppose that all the monomials (1.2) and those obtained by the permutation $y \leftrightarrow z$ have zero coefficients in g. Then f has the following form:

(1.5)
$$f = t^2 + x^3 + \sum_{k=4}^{5} \sum_{\substack{a+b+c=k\\a \ge 6-k}} A_{abc} x^a y^b z^c + f_{>5}(x, y, z)$$

We should verify that the generic section of the hypersurface f = 0 by a plane u = 0, where $u = \alpha_1 t + \alpha_2 x + \alpha_3 y + \alpha_4 z$ is a linear form, is a non-canonical singularity. Apply the coordinate change $t \to t, x \to x, y \to \frac{1}{\alpha_3}u, z \to z$ in (1.5). In new coordinates,

(1.6)
$$f = t^{2} + x^{3} + \sum_{k \ge 4} \sum_{\substack{a+b+c+d=k\\a \ge \max\{0, 6-k\}}} A_{abcd} x^{a} y^{b} z^{c} t^{d}$$

The hyperplane section u = 0 becomes y = 0 in new coordinates, and substituting y = 0 into (1.6), we obtain the surface singularity $\phi(t, x, z) = 0$, where

(1.7)
$$\phi = t^{2} + x^{3} + \sum_{k \ge 4} \sum_{\substack{a+c+d=k\\a \ge \max\{0, 6-k\}}} A_{a0cd} x^{a} z^{c} t^{d}.$$

Hence, there exists a face Δ of the Newton diagram of f spanned by the exponents of three monomials t^2 , x^3 and $x^a z^c t^d$ such that $A_{a0cd} \neq 0$. Let $w = (w_1, w_2, w_3)$ be the normal of Δ normalized so that $\langle w, m \rangle = 1$ for $m \in \Delta$. Then we have $w_1 = 1/2, w_2 = 1/3, w_3 = \frac{1}{c}(1 - \frac{a}{3} - \frac{d}{2})$. As w_3 should be positive, we have very few possibilities for the values of a, d. In the case when a = d = 0, we have $k = a + c + d \geq 6$, hence $c = k \geq 6$, and $|w| = w_1 + w_2 + w_3 \leq \frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1$. This is equivalent to say that the point $(1, \ldots, 1)$ lies on or under Δ , hence, by Theorem 1.2, the singularity is non-canonical. If d = 1, a = 0, then $k \geq 6, c = k - 1 \geq 5$, and $w_3 \leq \frac{1}{10}$. If a = 1, d = 0, we have $k \geq 5$, and $w_3 \leq \frac{2}{3c} \leq \frac{1}{6}$. If a = 1, d = 1, we have $k \geq 5, c = k - 2 \geq 3$, and $w_3 \leq \frac{1}{6c} \leq \frac{1}{18}$. If a = 2, d = 0, then $k \geq 4, c \geq 2$, and $w_3 \leq \frac{1}{3c} \leq \frac{1}{6}$. In all the cases, $|w| \leq 1$, hence the singularity is non-canonical.

2. Weighted blow ups

We fix the lattice $N = \mathbf{Z}^n \subset V = \mathbf{R}^n$ and the coordinate octant $\tau = \mathbf{R}^n_+ = \{(y_1, \ldots, y_n) \in \mathbf{R}^n | y_i \ge 0 \forall i\}$. Then the affine space \mathbf{A}^n can be thought of as the toric variety

$$X_{\tau} = X_{V,N,\tau} := \operatorname{Spec} k[\tau^* \cap N^*],$$

where τ^* , N^* denote the dual objects in the dual **R**-vector space $W = V^* \simeq \mathbf{R}^n$:

$$M = N^* = \{ w \in W | w(N) \subset \mathbf{Z} \}$$

$$\tau^* = \{ w \in W | w_{|\tau} \ge 0 \}.$$

See, e.g. [Da] for more details on toric varieties.

DEFINITION 2.1. Let $\alpha = (\alpha_1, \ldots, \alpha_n) \in N \cap \text{Int}(\tau)$ be a primitive lattice vector in the interior of τ . The weighted blow up $\sigma_{\alpha} : \mathbf{A}^n_{\alpha} \longrightarrow \mathbf{A}^n$ is the toric morphism defined by the subdivision of the standard coordinate octant τ into a minimal fan having the ray $\mathbf{R}_+ \cdot \alpha$ as one of its edges. The *n*-dimensional cones of this fan are

$$\Sigma_n = \{ < \alpha, e_2, \dots, e_n >, < e_1, \alpha, \dots, e_n >, \dots, < e_1, e_2, \dots, \alpha > \},\$$

and the fan itself is the union of Σ_n and the set of all the faces of the cones from Σ_n .

The discrete valuation $v_{\alpha} = \operatorname{ord}_{E_{\alpha}}$ of the function field $k(\mathbf{A}^n) = k(y_1, \ldots, y_n)$ associated to the prime exceptional divisor E_{α} of σ_{α} is given by the formula

$$v_{\alpha}(y^m) = <\alpha, m>,$$

where $m \in M$, $y^m = y_1^{m_1} \cdots y_n^{m_n}$, and \langle , \rangle denotes the natural coupling between M and N. For a function $f = \sum_{m \in M} a_m y^m$ we have

(2.1)
$$v_{\alpha}(f) = \min_{a_m \neq 0} v_{\alpha}(x^m) = \min_{a_m \neq 0} < \alpha, m > .$$

Let $Y = \{f = 0\}$ be a hypersurface in \mathbf{A}^n , and $Y_\alpha \subset \mathbf{A}^n_\alpha$ its proper transform in \mathbf{A}^n_α . Let Γ be any component of $Y_\alpha \cap E_\alpha$ of dimension n-2such that Y_α is normal at the generic point of Γ . Then E_α is Cartier at the generic point of Γ , and the multiplicity $d = d_\Gamma$ in $E_\alpha|_{Y_\alpha} = d\Gamma$ is well defined. Let \tilde{v}_Γ be the valuation on $k(Y_\alpha)$ induced by v_α :

$$\tilde{v}_{\Gamma}(h) = \min_{\tilde{h}|_{Y_{\alpha}} = h, \tilde{h} \in k(\mathbf{A}_{\alpha}^{n})} v_{\alpha}(\tilde{h}), \ h \in k(Y_{\alpha}).$$

Then we have

LEMMA 2.2.
$$\tilde{v}_{\Gamma}(h) = \left[\frac{1}{d_{\Gamma}}v_{\Gamma}(h)\right].$$

PROOF. Let t be a local parameter of $\mathcal{O}_{Y_{\alpha},\Gamma}$, and z that of $\mathcal{O}_{\mathbf{A}_{\alpha},E_{\alpha}}$. One can choose z in such a way that $vz = t^{d_{\Gamma}}$ with v invertible in $\mathcal{O}_{\mathbf{A}_{\alpha},\Gamma}$. For any $h \in k(Y_{\alpha})$ we can write $h = ut^k$ with u invertible in $\mathcal{O}_{\mathbf{A}_{\alpha},\Gamma}$, then $k = v_{\Gamma}(h)$, and we are done. \Box

Now, let

$$\omega_0 = \operatorname{res}_Y\left(\frac{dy_1 \wedge \ldots \wedge dy_n}{f}\right)$$

be a base of $\Gamma(Y, \omega_Y)$. The valuation v_{α} , and hence \tilde{v}_{Γ} , extends in an obvious way to the canonical differentials. We have

PROPOSITION 2.3. If Γ is not a toric subvariety of \mathbf{A}^{n}_{α} , then the following formula holds:

$$v_{\Gamma}(\sigma_{\alpha}^*\omega_0) = a_{\alpha}d_{\Gamma},$$

where $\sigma_{\alpha}^*\omega_0$ is the lift of ω_0 to the weighted blow up, $a_{\alpha} = -v_{\alpha}(f) + |\alpha| - 1$, and $|\alpha| = \alpha_1 + \ldots + \alpha_n$.

PROOF. It is well-known that the form of the canonical differential

$$\nu = \frac{dy_1}{y_1} \wedge \ldots \wedge \frac{dy_n}{y_n}$$

is invariant up to a multiplicative constant under toric changes of variables. This implies that $\operatorname{ord}_D \nu = -1$ for any toric divisor D, in particular, for $D = E_{\alpha}$ we have $v_{\alpha}(\nu) = -1$. Hence

$$v_{\alpha}\left(\frac{dy_1\wedge\ldots\wedge dy_n}{f}\right) = -v_{\alpha}(f) + v_{\alpha}(y_1\cdots y_n) + v_{\alpha}(\nu) = a_{\alpha}.$$

Now, let $X_{\sigma} \simeq (\mathbf{A}^1 \setminus \{0\})^{n-1} \times \mathbf{A}^1 \subset X_{\Sigma}$ be the open subset corresponding to the one-dimensional cone $\sigma = \mathbf{R}_+ \cdot \alpha \in \Sigma$. The exceptional divisor $E_{\alpha} \cap X_{\sigma} = (\mathbf{A}^1 \setminus \{0\})^{n-1}$ is given by $z_n = 0$. We can choose any coordinate system $z_1 = x^{m^{(1)}}, \ldots, z_n = x^{m^{(n)}}$ associated to a basis of M of the following form: $m^{(1)}, \ldots, m^{(n-1)}$ is a basis of $M \cap \alpha^{\perp}$, and $m^{(n)} \in \operatorname{Int} \sigma^* \cap M$ completes it to a basis of M. Then

$$f = z_n^N f_0(z_1, \dots, z_n), \quad N = v_\alpha(f),$$

$$f_0(z_1, \dots, z_n) = g_0(z_1, \dots, z_{n-1}) + z_n g_1(z_1, \dots, z_{n-1}) + \dots$$

so, Y_{α} is defined by the equation $f_0 = 0$. As $X_{\sigma} \cap \{z_n = 0\}$ is an open subset of E_{α} whose complement in E_{α} is a union of toric subvarieties, we see that, by our hypotheses, the intersection

$$E_{\alpha} \cap Y_{\alpha} \cap X_{\sigma} = \{z_n = g_0(z_1, \dots, z_{n-1}) = 0\} \subset (\mathbf{A}^1 \setminus \{0\})^{n-1}$$

is non-empty and contains a component Γ of multiplicity d_{Γ} . We have

$$\frac{dy_1 \wedge \ldots \wedge dy_n}{f} = u \frac{z_n^{-N+|\alpha|-1}}{f_0} dz_1 \wedge \ldots \wedge dz_n$$

with u invertible on X_{σ} , which implies the result. \Box

REMARK 2.4. If the hyperplane $H = \{w \in W | < \alpha, m >= v_{\alpha}(f)\}$ contains a (n-1)-dimensional face of the Newton diagram of f, then all the components of $E_{\alpha} \cap Y_{\alpha}$ are non-toric.

3. Proof of Theorem 0.1

Let $(Y, P) = (\{f = 0\}, 0)$ be an isolated cDV singularity defined by one of the equations (i)–(v) of Proposition 1.3. We will use the notations of Section 2 in the case n = 4 with coordinates $(y_1, y_2, y_3, y_4) = (t, x, y, z)$.

DEFINITION 3.1. A vector $\alpha \in N \cap \operatorname{Int} \tau$ is called an admissible weight for the equation f, if $E_{\alpha} \cap Y_{\alpha}$ contains at least one simple non-toric component Γ and $a_{\alpha} = -v_{\alpha}(f) + |\alpha| - 1 = 1$.

If α is admissible, then Y is normal at the generic point of Γ , $d_{\Gamma} = 1$, and by Proposition 2.3, we have $v_{\Gamma}(\sigma_{\alpha}^*\omega_0) = 1$. But the orders of $\sigma_{\alpha}^*\omega_0$ on prime exceptional divisors are exactly the discrepancy coefficients, so for the partial resolution $\sigma_{\alpha} : Y_{\alpha} \longrightarrow Y$ we have an exceptional divisor Γ with discrepancy $a_{\Gamma} = 1$. Then any resolution of Y which dominates σ_{α} has an exceptional divisor of discrepancy 1.

The following theorem gives a list of admissible weights for all the cDV singularities.

THEOREM 3.2. The following weights are admissible for the singularity (Y, P) defined by one of the equations (i)-(v) of Proposition 1.3, after an eventual linear change of coordinates (y_2, y_3, y_4) :

(1) $\alpha = (1, 1, 1, 1)$ in the case $cA_n \ (n \ge 1)$;

(2) $\alpha = (2, 1, 1, 1)$ in the case cD_4 ;

(3) $\alpha = (2, 1, 2, 1)$ in the case $cD_n \ (n \ge 5)$;

(4) $\alpha = (3, 2, 1, 2)$ in the case cE_n , if f does not contain any one of the monomials y_3^4, y_3^5 ;

(5) $\alpha = (2, 2, 1, 1)$ in the case cE_n , if $g_4(0, y_3, y_4) \neq 0$;

(6) $\alpha = (3, 2, 1, \epsilon)$ with $\epsilon = 1$ or 2 in the case cE_n , if $g_4(0, y_3, y_4) = 0$ and g_5 contains y_3^5 . PROOF. (1) $f = t^2 + x^2 + y^2 + z^n$ $(n \ge 1)$ or $f = t^2 + x^2 + g(y, z)$ with $j_2g = 0$; $\alpha = (1, 1, 1, 1)$. Make an ordinary blow up $\sigma = \sigma_{(1,1,1,1)} : \tilde{\mathbf{A}}^4 \longrightarrow \mathbf{A}^4$:

$$y_1 = z_4 z_1, y_2 = z_4 z_2, y_3 = z_4 z_3, y_4 = z_4$$

We have:

$$\begin{aligned} \sigma^* f &= z_4^N f_0, \ N = v_\alpha(f) = 2, \ |\alpha| = 4, \ a_\alpha = -v_\alpha(f) + |\alpha| - 1 = 1, \\ f_0(z_1, z_2, z_3, z_4) &= z_1^2 + z_2^2 + z_3^2 + z_4^{n-2} \text{ or } z_1^2 + z_2^2 + z_4 \tilde{g}(z_3, z_4), \\ E_\alpha \cap Y_\alpha &= \{z_1^2 + z_2^2 + z_3^2 = z_4 = 0\} \text{ or } \{z_1^2 + z_2^2 = z_4 = 0\} \end{aligned}$$

In the first case the last intersection is a simple irreducible non-toric divisor, and in the second it is the union of two simple irreducible non-toric divisors $\Gamma_1 \cup \Gamma_2$.

(2) $f = y_1^2 + g(y_2, y_3, y_4)$, $g = g_3 + g_4 + \ldots$, g_3 is not divisible by the square of a linear form; $\alpha = (2, 1, 1, 1)$. Look at the open subset $X_{\sigma} \subset \mathbf{A}^4_{\alpha}$ defined in the proof of Proposition 2.3 and choose coordinates on X_{σ} as indicated there, for example,

$$z_1 = y_1 y_2^{-2}, z_2 = y_2 y_3^{-1}, z_3 = y_3 y_4^{-1}, z_4 = y_2$$
.

We have:

$$\sigma_{\alpha}^{*}f = z_{4}^{N}f_{0}, \ N = v_{\alpha}(f) = 3, \ |\alpha| = 5, \ a_{\alpha} = -v_{\alpha}(f) + |\alpha| - 1 = 1,$$

$$f_{0}(z_{1}, z_{2}, z_{3}, z_{4}) = g_{3}(1, z_{2}^{-1}, z_{2}^{-1}z_{3}^{-1}) + z_{4}(z_{1}^{2} + g_{4}(1, z_{2}^{-1}, z_{2}^{-1}z_{3}^{-1})) + \dots,$$

$$X_{\sigma} \cap E_{\alpha} \cap Y_{\alpha} = \{g_{3}(1, z_{2}^{-1}, z_{2}^{-1}z_{3}^{-1}) = z_{4} = 0\}.$$

The intersection is empty iff $g_3(y_2, y_3, y_4) = y_2 y_3 y_4$. In this case all the components of $E_{\alpha} \cap Y_{\alpha}$ are toric, and we should apply a linear change of coordinates, say $y_2 \to y_2, y_3 \to y_3, y_4 \to y_3 + y_4$, and repeat the same construction. Then the above intersection will contain a simple component $\Gamma = \{1 + z_3^{-1} = z_4 = 0\}.$

(3) $f = y_1^2 + y_2^2 y_3 + g(y_2, y_3, y_4), g = g_4 + g_5 + \dots; \alpha = (2, 1, 2, 1).$ We choose

$$z_1 = y_1 y_2^{-2}, z_2 = y_1 y_3^{-1}, z_3 = y_2 y_4^{-1}, z_4 = y_2.$$

We have:

$$\sigma_{\alpha}^{*}f = z_{4}^{N}f_{0}, N = v_{\alpha}(f) = 4, |\alpha| = 6, a_{\alpha} = -v_{\alpha}(f) + |\alpha| - 1 = 1,$$

$$f_{0}(z_{1}, z_{2}, z_{3}, z_{4}) = z_{1}^{2} + z_{1}z_{2}^{-1} + g_{4}(1, 0, z_{3}^{-1}) + z_{4}\tilde{g}(z_{1}, z_{2}, z_{3}),$$

$$X_{\sigma} \cap E_{\alpha} \cap Y_{\alpha} = \{z_{1}^{2} + z_{1}z_{2}^{-1} + g_{4}(1, 0, z_{3}^{-1}) = z_{4} = 0\}.$$

This intersection is non-empty and reduced irreducible independently of the vanishing or non-vanishing of $g_4(1, 0, z_3^{-1})$. If $g_4(1, 0, z_3^{-1}) = 0$, then the invertible factor z_1 cancels out and we have $X_{\sigma} \cap E_{\alpha} \cap Y_{\alpha} = \{z_1 + z_2^{-1} = z_4 = 0\}$.

(4) $f = y_1^2 + y_2^3 + g(y_2, y_3, y_4), j_3g = 0$, and g does not contain the monomials y_3^4, y_3^5 ; $\alpha = (3, 2, 1, 2)$. We choose

$$z_1 = y_1 y_3^{-3}, z_2 = y_2 y_3^{-2}, z_3 = y_2 y_4^{-1}, z_4 = y_3.$$

We have:

$$\begin{aligned} \sigma_{\alpha}^{*}f &= z_{4}^{N}f_{0}, \ N = v_{\alpha}(f) = 6, \ |\alpha| = 8, \ a_{\alpha} = -v_{\alpha}(f) + |\alpha| - 1 = 1, \\ f_{0}(z_{1}, z_{2}, z_{3}, z_{4}) &= z_{1}^{2} + z_{2}^{3} + c_{1}z_{2}^{2} + c_{2}z_{2} + c_{3}z_{2}^{2}z_{3}^{-1} \\ &+ c_{4}z_{2}z_{3}^{-1} + c_{5}z_{2}^{2}z_{3}^{-2} + c_{6}, \end{aligned}$$

where

$$c_1y_2^2y_3^2 + c_2y_2y_3^4 + c_3y_2y_3^2y_4 + c_4y_3^4y_4 + c_5y_3^2y_4^2 + c_6y_3^6 = g_{N,\alpha}(y_2, y_3, y_4)$$

is the α -principal part of g, and

$$X_{\sigma} \cap E_{\alpha} \cap Y_{\alpha} = \{z_1^2 + z_2(z_2^2 + (c_1 + \frac{c_3}{z_3} + \frac{c_5}{z_3^2})z_2 + c_2 + \frac{c_4}{z_3}) + c_6 = z_4 = 0\}.$$

This intersection is non-empty and reduced irreducible because all its slices $\{z_3 = 0\}$ are. Indeed, the equation $z_1^2 + z_2(z_2^2 + Az_2 + B) + C = 0$ is irreducible for any $A, B, C \in k$.

(5) $f = y_1^2 + y_2^3 + g(y_2, y_3, y_4), \ j_3g = 0, \ g_4(0, y_3, y_4) \neq 0$; take $\alpha = (2, 2, 1, 1)$. Choose coordinates

$$z_1 = y_1 y_2^{-1}, z_2 = y_1 y_3^{-2}, z_3 = y_3 y_4^{-1}, z_4 = y_3.$$

We have:

$$\begin{aligned} \sigma_{\alpha}^* f &= z_4^N f_0, \ N = v_{\alpha}(f) = 4, \ |\alpha| = 6, \ a_{\alpha} = -v_{\alpha}(f) + |\alpha| - 1 = 1, \\ f_0(z_1, z_2, z_3, z_4) &= z_2^2 + z_1^{-3} z_2^3 z_4^2 + g_4(0, 1, z_3^{-1}) + z_4 \tilde{g}(z_1, z_2, z_3, z_4), \\ X_{\sigma} \cap E_{\alpha} \cap Y_{\alpha} &= \{z_2^2 + g_4(0, 1, z_3^{-1}) = z_4 = 0\}. \end{aligned}$$

The last intersection has one or two irreducible components of multiplicity 1.

(6) $f = y_1^2 + y_2^3 + g(y_2, y_3, y_4), \ j_3g = 0, \ g_4(0, y_3, y_4) = 0, \ g_5 \text{ contains } y_3^5;$ take $\alpha = (3, 2, 1, 1)$. Choose coordinates

$$z_1 = y_1 y_3^{-3}, z_2 = y_2 y_3^{-2}, z_3 = y_3 y_4^{-1}, z_4 = y_3.$$

Remind, that in the case cE_n we should suppose that g contains one of the monomials (1.2). So,

$$g_5(0, y_3, y_4) = \sum_{i=0}^5 c_i y_3^{5-i} y_4^i, \ c_0 \neq 0,$$

and at least one of the coefficients c_3, c_4, c_5 is different from 0. We have:

$$\sigma_{\alpha}^{*}f = z_{4}^{N}f_{0}, \ N = v_{\alpha}(f) = 5, \ |\alpha| = 7, \ a_{\alpha} = -v_{\alpha}(f) + |\alpha| - 1 = 1,$$

$$f_{0}(z_{1}, z_{2}, z_{3}, z_{4}) = z_{1}^{2}z_{4} + z_{2}^{3}z_{4} + \sum_{i=0}^{5} c_{i}z_{3}^{-i} + z_{2}\sum_{i=0}^{3} c_{i}'z_{3}^{-i} + z_{4}\tilde{g}(z_{1}, z_{2}, z_{3}, z_{4}),$$

$$X_{\sigma} \cap E_{\alpha} \cap Y_{\alpha} = \{\sum_{i=0}^{5} c_{i}z_{3}^{-i} + z_{2}\sum_{i=0}^{3} c_{i}'z_{3}^{-i} = z_{4} = 0\}.$$

The above conditions on c_i imply that the intersection is always non-empty. But it may be multiple. There are no components of multiplicity 1 only if $c'_i = 0$ (i = 0, 1, 2, 3) and:

$$g_5(0, y_3, y_4) = y_3^k (y_3 - \gamma_1 y_4)^{5-k}, \ \gamma_1 \neq 0 \ (k = 0, 1, 2, 3),$$

or
$$g_5(0, y_3, y_4) = y_3 (y_3 - \gamma_1 y_4)^2 (y_3 - \gamma_2 y_4)^2, \ \gamma_1 \neq 0, \gamma_2 \neq 0, \gamma_1 \neq \gamma_2,$$

or
$$g_5(0, y_3, y_4) = (y_3 - \gamma_1 y_4)^3 (y_3 - \gamma_2 y_4)^2, \ \gamma_1 \neq 0, \gamma_2 \neq 0, \gamma_1 \neq \gamma_2.$$

In all the cases the change of variables $y_3 \to y_3, y_4 \to y_3 - \gamma_1 y_4$ brings us to the case (4), in which the existence of a simple non-toric component has been verified for the weight $\alpha = (3, 2, 1, 2)$.

Thus, we can suppose that the polynomial defining Y_{α} in $X_{\sigma} \cap E_{\alpha}$ has a simple factor of the form $1 - \gamma_1 z_3^{-1}$, giving rise to the wanted component of multiplicity 1. \Box

References

- [Da] Danilov, V. I., The geometry of toric varieties, Uspekhi Mat. Nauk **33** (1978), 97–154.
- [Kaw] Kawamata, Y., The minimal discrepancy of a 3-fold terminal singularity, Appendix to Shokurov, V. V., 3-fold log flips, Russian Acad. Sci. Izv. Math. 40(1) (1993), 93–202.

- [Kho] Khovanskii, A. G., Newton polyhedra and toroidal varieties, Funktsional. Anal. i Prolozhen. 11(4) (1977), 56–64; English transl. in Functional Anal. Appl. 11 (1978).
- [Mar-1] Markushevich, D. G., Canonical singularities of three-dimensional algebraic varieties, PhD Thesis, University of Moscow, 1985 (in Russian).
- [Mar-2] Markushevich, D. G., Canonical singularities of three-dimensional hypersurfaces, Math. USSR, Izv. 26 (1986), 315–345.
- [Reid-1] Reid, M., Minimal models of canonical 3-folds, In: Iitaka, S, and Morikawa, H. (Editors), *Algebraic Varieties and Analytic Varieties*, Adv. Stud. Pure Math. 1, Kinokuniya Book Store, Tokyo and North Holland, Amsterdam, 1983, 131–180.
- [Reid-2] Reid, M., Young person's guide to canonical singularities, Proc. Symp. Pure Math. 46(1) (1987), 345-414.
- [Sho] Shokurov, V. V., Semi-stable 3-fold flips, Russian Acad. Sci. Izv. Math. 42(2) (1994), 371–425.

(Received November 7, 1995)

URA CNRS GAT 751-Mathematiques Universite Lille 1 59655 Villeneuve d'Ascq Cedex FRANCE

E-mail: markushe@gat.univ-lille1.fr