# Minimal Discrepancy for <br> a Terminal cDV Singularity Is 1 

By Dimitri Markushevich


#### Abstract

An answer to a question raised by Shokurov on the minimal discrepancy of a terminal singularity of index 1 is given. It is proved that the minimal discrepancy is 1 (it is 2 for a non-singular point and 0 for all other canonical singularities of index 1). A rough classification of terminal singularities of index 1 based on finding certain low degree monomials in their equations, and the toric techniques of weighted blow ups are used. This result has been generalized to terminal singularities of index $r>1$ by Y.Kawamata; his theorem states that the minimal discrepancy is $1 / r$.


This note provides a proof for the following fact cited by Shokurov in [Sho], Remark (4.10.2), with a reference to my verbal communication.

THEOREM 0.1. Let $(Y, P)$ be a three-dimensional isolated compound $D u \operatorname{Val}(c D V)$ singularity. For any resolution $\pi:(\tilde{Y}, P) \longrightarrow(Y, P)$, let $E=$ $\bigcup_{i=1}^{i=m} E_{i}$ denote its exceptional locus, $\left(E=\pi^{-1}(P)\right), E_{i}(i=1, \ldots, m)$ being its irreducible components. The discrepancy coefficients $a_{j}$ are determined by the formula

$$
K_{\tilde{Y}}=\pi^{*} K_{Y}+\sum_{\operatorname{codim}_{\tilde{Y}} E_{j}=1} a_{j} E_{j}
$$

and when $\operatorname{codim}_{\tilde{Y}} E$ is 1

$$
\operatorname{mdc}(\pi)=\min _{\operatorname{codim}_{\tilde{Y}} E_{j}=1} a_{j}
$$

denotes the minimal discrepancy coefficient of $\pi$. Then there exists a resolution $\pi$ with at least one exceptional component of codimension 1, such that $\operatorname{mdc}(\pi)=1$.

1991 Mathematics Subject Classification. Primary 14E30; Secondary 14J30.
The author is grateful to the referee, who pointed out numerous inaccuracies in the first version of the paper.

A generalization of this theorem to terminal singularities of index $r>1$ was obtained by Kawamata [Kaw]. It states that any resolution contains an exceptional divisor of discrepancy $1 / r$.

## 1. Reminder on terminal singularities

Definition 1.1. A cDV singularity is a germ of an algebraic variety (or of an analytic space) $(Y, P)$ which is formally equivalent to the germ of a hypersurface singularity $(\{f=0\}, 0)$ in the affine space $\mathbf{A}^{4}$, where

$$
\begin{equation*}
f(t, x, y, z)=f_{X_{n}}(t, x, y)+z g(t, x, y, z) \tag{1.1}
\end{equation*}
$$

where $X_{n}$ stands for $A_{n}, D_{n}$ or $E_{n}$, and $f_{X_{n}}$ is one of the following polynomials:

$$
\begin{aligned}
& f_{A_{n}}=t^{2}+x^{2}+y^{n+1} \quad(n \geq 1) \\
& f_{D_{n}}=t^{2}+x^{2} y+y^{n-1} \quad(n \geq 4) \\
& f_{E_{6}}=t^{2}+x^{3}+y^{4} \\
& f_{E_{7}}=t^{2}+x^{3}+x y^{3} \\
& f_{E_{8}}=t^{2}+x^{3}+y^{5}
\end{aligned}
$$

Let us order the symbols $A_{n}, D_{k}, E_{l}$ by

$$
\begin{gathered}
A_{n}<D_{k}<E_{l} \forall n \geq 1 \forall k \geq 4 \forall l=6,7,8 \\
X_{n}<X_{m} \forall n<m \forall X=A, D, E .
\end{gathered}
$$

The singularity $(Y, P)$ is said to be $c X_{n}$ if $X_{n}$ is minimal in a representation of $(Y, P)$ by equation (1.1).

According to Reid [Reid-1], the isolated cDV-points are exactly terminal singularities of index 1 ; this implies in particular that the minimal discrepancy coefficient is positive in any resolution having at least one exceptional divisor. Remark, that the singularities $f_{X_{n}}=0$, where $X_{n}$ runs over the symbols $A_{n}(n \geq 1), D_{n}(n \geq 4), E_{6}, E_{7}, E_{8}$, are exactly canonical singularities in dimension 2 up to analytic equivalence; 'canonical' means that all the discrepancies $a_{j}$ are non-negative. Look [Reid-2] for further properties of these and related classes of singularities. We state here for future use a criterion for a hypersurface singularity to be canonical.

THEOREM 1.2. A necessary condition for a hypersurface $\{f=0\} \subset$ $k^{n}, f=\sum a_{m} x^{m}$, to have a canonical singularity at zero is that the point
$(1, \ldots, 1)$ lies above the Newton diagram $\Delta(f)$ of the function $f$. The condition is also sufficient provided $f$ is a non-degenerate series in the sense of Khovanskiǔ, that is for any face $\Delta \prec \Delta(f)$, the polynomial $f_{\Delta}=$ $\sum_{m \in \Delta} a_{m} x^{m}$ defines a non-singular (maybe empty) hypersurface in $\left(k^{*}\right)^{n}$.

Proof. See [Mar-2], Theorem 3, and also [Reid-2] for the "necessary" part. In fact, the sufficiency follows immediately from the structure of the Khovanskiĭ embedded toric resolution of a non-degenerate singularity [Kho]: in any coordinate patch of this resolution the exceptional locus $\Gamma$ is either empty, or its irreducible components $\Gamma$ satisfy the hypotheses of Proposition 2.3 below, and $d_{\Gamma}=1$ since the intersection $\Gamma \cap\left(k^{*}\right)^{n}$ is non-singular by the non-degeneracy assumption. So the non-negativity of the discrepancy $a_{\Gamma}$ implies $a_{\alpha} \geq 0$ (in the notation of Proposition 2.3), which is equivalent to saying that the point $(1, \ldots, 1)$ lies above the face $\Delta$.

Proposition 1.3. Let $(Y, P)$ be an isolated $c D V$ singularity. Then it is formally equivalent to a hypersurface singularity $(\{f=0\}, 0)$, where $f$ is one of the following polynomials:
(i) $f=t^{2}+x^{2}+y^{2}+z^{n}(n \geq 2)$ if $(Y, P)$ is $c A_{1}$;
(ii) $f=t^{2}+x^{2}+g(y, z)$, where $j_{2} g=0$, if $(Y, P)$ is $c A_{n}(n \geq 2)$;
(iii) $f=t^{2}+g(x, y, z)$, where $j_{2} g=0$ and $g_{3}(x, y, z)$ is not divisible by a square of a linear form, if $(Y, P)$ is $c D_{4}$;
(iv) $f=t^{2}+x^{2} y+g(x, y, z)$, where $j_{3} g=0$, if $(Y, P)$ is $c D_{n}(n \geq 5)$;
(v) $f=t^{2}+x^{3}+g(x, y, z)$, where $j_{3} g=0$ and $j_{5} g=g_{4}+g_{5}$ contains at least one of the monomials

$$
\begin{equation*}
z^{4}, y z^{3}, y^{2} z^{2}, z^{5}, y z^{4}, y^{2} z^{3}, x z^{3}, x y z^{2} \tag{1.2}
\end{equation*}
$$

with a non-zero coefficient, if $(Y, P)$ is $c E_{n}(n=6,7,8)$.
(We denote by $j_{k} g$ the $k$-th jet of $g$, and by $g_{k}$ the homogeneous component of degree $k$ of $g$ ).

Proof. (i), (ii), (iii) and (iv) are easy consequencies of the Morse Lemma and Definition 1.1. (v) follows from the following Proposition.

Proposition 1.4. Assume that the equation $f=0$, where

$$
\begin{equation*}
f=t^{2}+x^{3}+g(x, y, z) \quad\left(j_{3} g=0\right) \tag{1.3}
\end{equation*}
$$

defines an isolated singularity at $0 \in A^{4}$. Then it is a $c E_{n}$ point, if and only if $g$ contains, possibly after a permutation of $y, z$, one of the monomials (1.2).

Proof. For reader's convenience, I reproduce the proof given in [Mar1]; see also Corollary 3 in [Mar-2].

Sufficiency. By a change of variables $y \rightarrow y+a z$, one can reduce the problem to the case when $g$ contains one of the monomials $z^{4}, x z^{3}, z^{5}$. If the coefficient of $z^{4}$ is non-zero, then after a homothety, we have

$$
\begin{equation*}
t^{2}+x^{3}+g(x, 0, z)=t^{2}+x^{3}+z^{4}+\eta(t, x, z) \tag{1.4}
\end{equation*}
$$

where the exponents of all the monomials of $\eta$ lie above the Newton diagram of $f_{E_{6}}(t, x, z)=t^{2}+x^{3}+z^{4}$. By Lemma in Sect. 2 of [Mar-2], the function (1.4) is formally equivalent to $f_{E_{6}}$, hence (1.3) defines a $c D V$ singularity whose hyperplane section $y=0$ is $E_{6}$, hence it is of type $\leq c E_{6}$. As it is neither $c A_{n}$, nor $c D_{n}$, it is $c E_{6}$. The cases when $g$ contains the sum $c_{1} z^{4}+c_{2} x z^{3}+c_{3} z^{5}$ with $c_{1}=0, c_{2} \neq 0$ or $c_{1}=c_{2}=0, c_{3} \neq 0$ are considered in a similar way.

Necessity. Suppose that all the monomials (1.2) and those obtained by the permutation $y \leftrightarrow z$ have zero coefficients in $g$. Then $f$ has the following form:

$$
\begin{gather*}
f=t^{2}+x^{3}+\sum_{k=4}^{5} \sum_{\substack{a+b+c=k \\
a \geq 6-k}} A_{a b c} x^{a} y^{b} z^{c}+f_{>5}(x, y, z)  \tag{1.5}\\
a \geq 6
\end{gather*}
$$

We should verify that the generic section of the hypersurface $f=0$ by a plane $u=0$, where $u=\alpha_{1} t+\alpha_{2} x+\alpha_{3} y+\alpha_{4} z$ is a linear form, is a non-canonical singularity. Apply the coordinate change $t \rightarrow t, x \rightarrow x, y \rightarrow$ $\frac{1}{\alpha_{3}} u, z \rightarrow z$ in (1.5). In new coordinates,

$$
\begin{equation*}
f=t^{2}+x^{3}+\sum_{k \geq 4} \sum_{\substack{a+b+c+d=k \\ a \geq \max \{0,6-k\}}} A_{a b c d} x^{a} y^{b} z^{c} t^{d} \tag{1.6}
\end{equation*}
$$

The hyperplane section $u=0$ becomes $y=0$ in new coordinates, and substituting $y=0$ into (1.6), we obtain the surface singularity $\phi(t, x, z)=0$, where

$$
\begin{gather*}
\phi=t^{2}+x^{3}+\sum_{k \geq 4} \sum_{\substack{a+c+d=k \\
a \geq \max \{0,6-k\}}} A_{a 0 c d} x^{a} z^{c} t^{d} . \tag{1.7}
\end{gather*}
$$

Hence, there exists a face $\Delta$ of the Newton diagram of $f$ spanned by the exponents of three monomials $t^{2}, x^{3}$ and $x^{a} z^{c} t^{d}$ such that $A_{a 0 c d} \neq 0$. Let $w=\left(w_{1}, w_{2}, w_{3}\right)$ be the normal of $\Delta$ normalized so that $\left.<w, m\right\rangle=1$ for $m \in \Delta$. Then we have $w_{1}=1 / 2, w_{2}=1 / 3, w_{3}=\frac{1}{c}\left(1-\frac{a}{3}-\frac{d}{2}\right)$. As $w_{3}$ should be positive, we have very few possibilities for the values of $a, d$. In the case when $a=d=0$, we have $k=a+c+d \geq 6$, hence $c=k \geq 6$, and $|w|=w_{1}+w_{2}+w_{3} \leq \frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1$. This is equivalent to say that the point $(1, \ldots 1)$ lies on or under $\Delta$, hence, by Theorem 1.2 , the singularity is non-canonical. If $d=1, a=0$, then $k \geq 6, c=k-1 \geq 5$, and $w_{3} \leq \frac{1}{10}$. If $a=1, d=0$, we have $k \geq 5$, and $w_{3} \leq \frac{2}{3 c} \leq \frac{1}{6}$. If $a=1, d=1$, we have $k \geq 5, c=k-2 \geq 3$, and $w_{3} \leq \frac{1}{6 c} \leq \frac{1}{18}$. If $a=2, d=0$, then $k \geq 4, c \geq 2$, and $w_{3} \leq \frac{1}{3 c} \leq \frac{1}{6}$. In all the cases, $|w| \leq 1$, hence the singularity is non-canonical.

## 2. Weighted blow ups

We fix the lattice $N=\mathbf{Z}^{n} \subset V=\mathbf{R}^{n}$ and the coordinate octant $\tau=$ $\mathbf{R}_{+}^{n}=\left\{\left(y_{1}, \ldots, y_{n}\right) \in \mathbf{R}^{n} \mid y_{i} \geq 0 \forall i\right\}$. Then the affine space $\mathbf{A}^{n}$ can be thought of as the toric variety

$$
X_{\tau}=X_{V, N, \tau}:=\operatorname{Speck}\left[\tau^{*} \cap N^{*}\right]
$$

where $\tau^{*}, N^{*}$ denote the dual objects in the dual $\mathbf{R}$-vector space $W=V^{*} \simeq$ $\mathbf{R}^{n}$ :

$$
\begin{gathered}
M=N^{*}=\{w \in W \mid w(N) \subset \mathbf{Z}\} \\
\tau^{*}=\left\{w \in W \mid w_{\mid \tau} \geq 0\right\}
\end{gathered}
$$

See, e.g. [Da] for more details on toric varieties.
Definition 2.1. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in N \cap \operatorname{Int}(\tau)$ be a primitive lattice vector in the interior of $\tau$. The weighted blow up $\sigma_{\alpha}: \mathbf{A}_{\alpha}^{n} \longrightarrow \mathbf{A}^{n}$ is the toric morphism defined by the subdivision of the standard coordinate
octant $\tau$ into a minimal fan having the ray $\mathbf{R}_{+} \cdot \alpha$ as one of its edges. The $n$-dimensional cones of this fan are

$$
\Sigma_{n}=\left\{<\alpha, e_{2}, \ldots, e_{n}>,<e_{1}, \alpha, \ldots, e_{n}>, \ldots,<e_{1}, e_{2}, \ldots, \alpha>\right\}
$$

and the fan itself is the union of $\Sigma_{n}$ and the set of all the faces of the cones from $\Sigma_{n}$.

The discrete valuation $v_{\alpha}=\operatorname{ord}_{E_{\alpha}}$ of the function field $k\left(\mathbf{A}^{n}\right)=$ $k\left(y_{1}, \ldots y_{n}\right)$ associated to the prime exceptional divisor $E_{\alpha}$ of $\sigma_{\alpha}$ is given by the formula

$$
v_{\alpha}\left(y^{m}\right)=<\alpha, m>
$$

where $m \in M, y^{m}=y_{1}^{m_{1}} \cdots y_{n}^{m_{n}}$, and $<,>$ denotes the natural coupling between $M$ and $N$. For a function $f=\sum_{m \in M} a_{m} y^{m}$ we have

$$
\begin{equation*}
v_{\alpha}(f)=\min _{a_{m} \neq 0} v_{\alpha}\left(x^{m}\right)=\min _{a_{m} \neq 0}<\alpha, m> \tag{2.1}
\end{equation*}
$$

Let $Y=\{f=0\}$ be a hypersurface in $\mathbf{A}^{n}$, and $Y_{\alpha} \subset \mathbf{A}_{\alpha}^{n}$ its proper transform in $\mathbf{A}_{\alpha}^{n}$. Let $\Gamma$ be any component of $Y_{\alpha} \cap E_{\alpha}$ of dimension $n-2$ such that $Y_{\alpha}$ is normal at the generic point of $\Gamma$. Then $E_{\alpha}$ is Cartier at the generic point of $\Gamma$, and the multiplicity $d=d_{\Gamma}$ in $\left.E_{\alpha}\right|_{Y_{\alpha}}=d \Gamma$ is well defined. Let $\tilde{v}_{\Gamma}$ be the valuation on $k\left(Y_{\alpha}\right)$ induced by $v_{\alpha}$ :

$$
\tilde{v}_{\Gamma}(h)=\min _{\left.\tilde{h}\right|_{Y_{\alpha}}=h, \tilde{h} \in k\left(\mathbf{A}_{\alpha}^{n}\right)} v_{\alpha}(\tilde{h}), h \in k\left(Y_{\alpha}\right) .
$$

Then we have
LEMMA 2.2. $\quad \tilde{v}_{\Gamma}(h)=\left[\frac{1}{d_{\Gamma}} v_{\Gamma}(h)\right]$.
Proof. Let $t$ be a local parameter of $\mathcal{O}_{Y_{\alpha}, \Gamma}$, and $z$ that of $\mathcal{O}_{\mathbf{A}_{\alpha}, E_{\alpha}}$. One can choose $z$ in such a way that $v z=t^{d_{\Gamma}}$ with $v$ invertible in $\mathcal{O}_{\mathbf{A}_{\alpha}, \Gamma}$. For any $h \in k\left(Y_{\alpha}\right)$ we can write $h=u t^{k}$ with $u$ invertible in $\mathcal{O}_{\mathbf{A}_{\alpha}, \Gamma}$, then $k=v_{\Gamma}(h)$, and we are done.

Now, let

$$
\omega_{0}=\operatorname{res}_{Y}\left(\frac{d y_{1} \wedge \ldots \wedge d y_{n}}{f}\right)
$$

be a base of $\Gamma\left(Y, \omega_{Y}\right)$. The valuation $v_{\alpha}$, and hence $\tilde{v}_{\Gamma}$, extends in an obvious way to the canonical differentials. We have

Proposition 2.3. If $\Gamma$ is not a toric subvariety of $\mathbf{A}_{\alpha}^{n}$, then the following formula holds:

$$
v_{\Gamma}\left(\sigma_{\alpha}^{*} \omega_{0}\right)=a_{\alpha} d_{\Gamma},
$$

where $\sigma_{\alpha}^{*} \omega_{0}$ is the lift of $\omega_{0}$ to the weighted blow up, $a_{\alpha}=-v_{\alpha}(f)+|\alpha|-1$, and $|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$.

Proof. It is well-known that the form of the canonical differential

$$
\nu=\frac{d y_{1}}{y_{1}} \wedge \ldots \wedge \frac{d y_{n}}{y_{n}}
$$

is invariant up to a multiplicative constant under toric changes of variables. This implies that $\operatorname{ord}_{D} \nu=-1$ for any toric divisor $D$, in particular, for $D=E_{\alpha}$ we have $v_{\alpha}(\nu)=-1$. Hence

$$
v_{\alpha}\left(\frac{d y_{1} \wedge \ldots \wedge d y_{n}}{f}\right)=-v_{\alpha}(f)+v_{\alpha}\left(y_{1} \cdots y_{n}\right)+v_{\alpha}(\nu)=a_{\alpha}
$$

Now, let $X_{\sigma} \simeq\left(\mathbf{A}^{1} \backslash\{0\}\right)^{n-1} \times \mathbf{A}^{1} \subset X_{\Sigma}$ be the open subset corresponding to the one-dimensional cone $\sigma=\mathbf{R}_{+} \cdot \alpha \in \Sigma$. The exceptional divisor $E_{\alpha} \cap X_{\sigma}=\left(\mathbf{A}^{1} \backslash\{0\}\right)^{n-1}$ is given by $z_{n}=0$. We can choose any coordinate system $z_{1}=x^{m^{(1)}}, \ldots, z_{n}=x^{m^{(n)}}$ associated to a basis of $M$ of the following form: $m^{(1)}, \ldots, m^{(n-1)}$ is a basis of $M \cap \alpha^{\perp}$, and $m^{(n)} \in \operatorname{Int} \sigma^{*} \cap M$ completes it to a basis of $M$. Then

$$
\begin{aligned}
f & =z_{n}^{N} f_{0}\left(z_{1}, \ldots, z_{n}\right), \quad N=v_{\alpha}(f), \\
f_{0}\left(z_{1}, \ldots, z_{n}\right) & =g_{0}\left(z_{1}, \ldots, z_{n-1}\right)+z_{n} g_{1}\left(z_{1}, \ldots, z_{n-1}\right)+\ldots
\end{aligned}
$$

so, $Y_{\alpha}$ is defined by the equation $f_{0}=0$. As $X_{\sigma} \cap\left\{z_{n}=0\right\}$ is an open subset of $E_{\alpha}$ whose complement in $E_{\alpha}$ is a union of toric subvarieties, we see that, by our hypotheses, the intersection

$$
E_{\alpha} \cap Y_{\alpha} \cap X_{\sigma}=\left\{z_{n}=g_{0}\left(z_{1}, \ldots, z_{n-1}\right)=0\right\} \subset\left(\mathbf{A}^{1} \backslash\{0\}\right)^{n-1}
$$

is non-empty and contains a component $\Gamma$ of multiplicity $d_{\Gamma}$. We have

$$
\frac{d y_{1} \wedge \ldots \wedge d y_{n}}{f}=u \frac{z_{n}^{-N+|\alpha|-1}}{f_{0}} d z_{1} \wedge \ldots \wedge d z_{n}
$$

with $u$ invertible on $X_{\sigma}$, which implies the result.

REmark 2.4. If the hyperplane $H=\left\{w \in W \mid<\alpha, m>=v_{\alpha}(f)\right\}$ contains a $(n-1)$-dimensional face of the Newton diagram of $f$, then all the components of $E_{\alpha} \cap Y_{\alpha}$ are non-toric.

## 3. Proof of Theorem 0.1

Let $(Y, P)=(\{f=0\}, 0)$ be an isolated cDV singularity defined by one of the equations (i)-(v) of Proposition 1.3. We will use the notations of Section 2 in the case $n=4$ with coordinates $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=(t, x, y, z)$.

Definition 3.1. A vector $\alpha \in N \cap \operatorname{Int} \tau$ is called an admissible weight for the equation $f$, if $E_{\alpha} \cap Y_{\alpha}$ contains at least one simple non-toric component $\Gamma$ and $a_{\alpha}=-v_{\alpha}(f)+|\alpha|-1=1$.

If $\alpha$ is admissible, then $Y$ is normal at the generic point of $\Gamma, d_{\Gamma}=1$, and by Proposition 2.3, we have $v_{\Gamma}\left(\sigma_{\alpha}^{*} \omega_{0}\right)=1$. But the orders of $\sigma_{\alpha}^{*} \omega_{0}$ on prime exceptional divisors are exactly the discrepancy coefficients, so for the partial resolution $\sigma_{\alpha}: Y_{\alpha} \longrightarrow Y$ we have an exceptional divisor $\Gamma$ with discrepancy $a_{\Gamma}=1$. Then any resolution of $Y$ which dominates $\sigma_{\alpha}$ has an exceptional divisor of discrepancy 1.

The following theorem gives a list of admissible weights for all the cDV singularities.

ThEOREM 3.2. The following weights are admissible for the singularity $(Y, P)$ defined by one of the equations (i)-(v) of Proposition 1.3, after an eventual linear change of coordinates $\left(y_{2}, y_{3}, y_{4}\right)$ :
(1) $\alpha=(1,1,1,1)$ in the case $c A_{n}(n \geq 1)$;
(2) $\alpha=(2,1,1,1)$ in the case $c D_{4}$;
(3) $\alpha=(2,1,2,1)$ in the case $c D_{n}(n \geq 5)$;
(4) $\alpha=(3,2,1,2)$ in the case $c E_{n}$, if $f$ does not contain any one of the monomials $y_{3}^{4}, y_{3}^{5}$;
(5) $\alpha=(2,2,1,1)$ in the case $c E_{n}$, if $g_{4}\left(0, y_{3}, y_{4}\right) \neq 0$;
(6) $\alpha=(3,2,1, \epsilon)$ with $\epsilon=1$ or 2 in the case $c E_{n}$, if $g_{4}\left(0, y_{3}, y_{4}\right)=0$ and $g_{5}$ contains $y_{3}^{5}$.

Proof. (1) $f=t^{2}+x^{2}+y^{2}+z^{n} \quad(n \geq 1)$ or $f=t^{2}+x^{2}+g(y, z)$ with $j_{2} g=0 ; \alpha=(1,1,1,1)$. Make an ordinary blow up $\sigma=\sigma_{(1,1,1,1)}: \widetilde{\mathbf{A}}^{4} \longrightarrow$ $\mathbf{A}^{4}$ :

$$
y_{1}=z_{4} z_{1}, y_{2}=z_{4} z_{2}, y_{3}=z_{4} z_{3}, y_{4}=z_{4}
$$

We have:

$$
\begin{gathered}
\sigma^{*} f=z_{4}^{N} f_{0}, N=v_{\alpha}(f)=2,|\alpha|=4, a_{\alpha}=-v_{\alpha}(f)+|\alpha|-1=1 \\
f_{0}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{n-2} \text { or } z_{1}^{2}+z_{2}^{2}+z_{4} \tilde{g}\left(z_{3}, z_{4}\right) \\
E_{\alpha} \cap Y_{\alpha}=\left\{z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{4}=0\right\} \text { or }\left\{z_{1}^{2}+z_{2}^{2}=z_{4}=0\right\}
\end{gathered}
$$

In the first case the last intersection is a simple irreducible non-toric divisor, and in the second it is the union of two simple irreducible non-toric divisors $\Gamma_{1} \cup \Gamma_{2}$.
(2) $f=y_{1}^{2}+g\left(y_{2}, y_{3}, y_{4}\right), g=g_{3}+g_{4}+\ldots, g_{3}$ is not divisible by the square of a linear form; $\alpha=(2,1,1,1)$. Look at the open subset $X_{\sigma} \subset \mathbf{A}_{\alpha}^{4}$ defined in the proof of Proposition 2.3 and choose coordinates on $X_{\sigma}$ as indicated there, for example,

$$
z_{1}=y_{1} y_{2}^{-2}, z_{2}=y_{2} y_{3}^{-1}, z_{3}=y_{3} y_{4}^{-1}, z_{4}=y_{2}
$$

We have:

$$
\begin{gathered}
\sigma_{\alpha}^{*} f=z_{4}^{N} f_{0}, N=v_{\alpha}(f)=3,|\alpha|=5, a_{\alpha}=-v_{\alpha}(f)+|\alpha|-1=1, \\
f_{0}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=g_{3}\left(1, z_{2}^{-1}, z_{2}^{-1} z_{3}^{-1}\right)+z_{4}\left(z_{1}^{2}+g_{4}\left(1, z_{2}^{-1}, z_{2}^{-1} z_{3}^{-1}\right)\right)+\ldots, \\
X_{\sigma} \cap E_{\alpha} \cap Y_{\alpha}=\left\{g_{3}\left(1, z_{2}^{-1}, z_{2}^{-1} z_{3}^{-1}\right)=z_{4}=0\right\} .
\end{gathered}
$$

The intersection is empty iff $g_{3}\left(y_{2}, y_{3}, y_{4}\right)=y_{2} y_{3} y_{4}$. In this case all the components of $E_{\alpha} \cap Y_{\alpha}$ are toric, and we should apply a linear change of coordinates, say $y_{2} \rightarrow y_{2}, y_{3} \rightarrow y_{3}, y_{4} \rightarrow y_{3}+y_{4}$, and repeat the same construction. Then the above intersection will contain a simple component $\Gamma=\left\{1+z_{3}^{-1}=z_{4}=0\right\}$.
(3) $f=y_{1}^{2}+y_{2}^{2} y_{3}+g\left(y_{2}, y_{3}, y_{4}\right), g=g_{4}+g_{5}+\ldots ; \alpha=(2,1,2,1)$. We choose

$$
z_{1}=y_{1} y_{2}^{-2}, z_{2}=y_{1} y_{3}^{-1}, z_{3}=y_{2} y_{4}^{-1}, z_{4}=y_{2}
$$

We have:

$$
\begin{gathered}
\sigma_{\alpha}^{*} f=z_{4}^{N} f_{0}, N=v_{\alpha}(f)=4,|\alpha|=6, a_{\alpha}=-v_{\alpha}(f)+|\alpha|-1=1, \\
f_{0}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=z_{1}^{2}+z_{1} z_{2}^{-1}+g_{4}\left(1,0, z_{3}^{-1}\right)+z_{4} \tilde{g}\left(z_{1}, z_{2}, z_{3}\right) \\
X_{\sigma} \cap E_{\alpha} \cap Y_{\alpha}=\left\{z_{1}^{2}+z_{1} z_{2}^{-1}+g_{4}\left(1,0, z_{3}^{-1}\right)=z_{4}=0\right\} .
\end{gathered}
$$

This intersection is non-empty and reduced irreducible independently of the vanishing or non-vanishing of $g_{4}\left(1,0, z_{3}^{-1}\right)$. If $g_{4}\left(1,0, z_{3}^{-1}\right)=0$, then the invertible factor $z_{1}$ cancels out and we have $X_{\sigma} \cap E_{\alpha} \cap Y_{\alpha}=\left\{z_{1}+z_{2}^{-1}=\right.$ $\left.z_{4}=0\right\}$.
(4) $f=y_{1}^{2}+y_{2}^{3}+g\left(y_{2}, y_{3}, y_{4}\right), j_{3} g=0$, and $g$ does not contain the monomials $y_{3}^{4}, y_{3}^{5} ; \alpha=(3,2,1,2)$. We choose

$$
z_{1}=y_{1} y_{3}^{-3}, z_{2}=y_{2} y_{3}^{-2}, z_{3}=y_{2} y_{4}^{-1}, z_{4}=y_{3}
$$

We have:

$$
\begin{gathered}
\sigma_{\alpha}^{*} f=z_{4}^{N} f_{0}, N=v_{\alpha}(f)=6,|\alpha|=8, a_{\alpha}=-v_{\alpha}(f)+|\alpha|-1=1 \\
f_{0}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=z_{1}^{2}+z_{2}^{3}+c_{1} z_{2}^{2}+c_{2} z_{2}+c_{3} z_{2}^{2} z_{3}^{-1} \\
\\
+c_{4} z_{2} z_{3}^{-1}+c_{5} z_{2}^{2} z_{3}^{-2}+c_{6}
\end{gathered}
$$

where

$$
c_{1} y_{2}^{2} y_{3}^{2}+c_{2} y_{2} y_{3}^{4}+c_{3} y_{2} y_{3}^{2} y_{4}+c_{4} y_{3}^{4} y_{4}+c_{5} y_{3}^{2} y_{4}^{2}+c_{6} y_{3}^{6}=g_{N, \alpha}\left(y_{2}, y_{3}, y_{4}\right)
$$

is the $\alpha$-principal part of $g$, and

$$
X_{\sigma} \cap E_{\alpha} \cap Y_{\alpha}=\left\{z_{1}^{2}+z_{2}\left(z_{2}^{2}+\left(c_{1}+\frac{c_{3}}{z_{3}}+\frac{c_{5}}{z_{3}^{2}}\right) z_{2}+c_{2}+\frac{c_{4}}{z_{3}}\right)+c_{6}=z_{4}=0\right\}
$$

This intersection is non-empty and reduced irreducible because all its slices $\left\{z_{3}=0\right\}$ are. Indeed, the equation $z_{1}^{2}+z_{2}\left(z_{2}^{2}+A z_{2}+B\right)+C=0$ is irreducible for any $A, B, C \in k$.
(5) $f=y_{1}^{2}+y_{2}^{3}+g\left(y_{2}, y_{3}, y_{4}\right), j_{3} g=0, g_{4}\left(0, y_{3}, y_{4}\right) \neq 0 ;$ take $\alpha=$ (2, 2, 1, 1). Choose coordinates

$$
z_{1}=y_{1} y_{2}^{-1}, z_{2}=y_{1} y_{3}^{-2}, z_{3}=y_{3} y_{4}^{-1}, z_{4}=y_{3}
$$

We have:

$$
\begin{gathered}
\sigma_{\alpha}^{*} f=z_{4}^{N} f_{0}, N=v_{\alpha}(f)=4,|\alpha|=6, a_{\alpha}=-v_{\alpha}(f)+|\alpha|-1=1 \\
f_{0}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=z_{2}^{2}+z_{1}^{-3} z_{2}^{3} z_{4}^{2}+g_{4}\left(0,1, z_{3}^{-1}\right)+z_{4} \tilde{g}\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \\
X_{\sigma} \cap E_{\alpha} \cap Y_{\alpha}=\left\{z_{2}^{2}+g_{4}\left(0,1, z_{3}^{-1}\right)=z_{4}=0\right\}
\end{gathered}
$$

The last intersection has one or two irreducible components of multiplicity 1.
(6) $f=y_{1}^{2}+y_{2}^{3}+g\left(y_{2}, y_{3}, y_{4}\right), j_{3} g=0, g_{4}\left(0, y_{3}, y_{4}\right)=0, g_{5}$ contains $y_{3}^{5}$; take $\alpha=(3,2,1,1)$. Choose coordinates

$$
z_{1}=y_{1} y_{3}^{-3}, z_{2}=y_{2} y_{3}^{-2}, z_{3}=y_{3} y_{4}^{-1}, z_{4}=y_{3}
$$

Remind, that in the case $c E_{n}$ we should suppose that $g$ contains one of the monomials (1.2). So,

$$
g_{5}\left(0, y_{3}, y_{4}\right)=\sum_{i=0}^{5} c_{i} y_{3}^{5-i} y_{4}^{i}, c_{0} \neq 0
$$

and at least one of the coefficients $c_{3}, c_{4}, c_{5}$ is different from 0 . We have:

$$
\begin{gathered}
\sigma_{\alpha}^{*} f=z_{4}^{N} f_{0}, N=v_{\alpha}(f)=5,|\alpha|=7, a_{\alpha}=-v_{\alpha}(f)+|\alpha|-1=1 \\
f_{0}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=z_{1}^{2} z_{4}+z_{2}^{3} z_{4}+\sum_{i=0}^{5} c_{i} z_{3}^{-i}+z_{2} \sum_{i=0}^{3} c_{i}^{\prime} z_{3}^{-i} \\
\\
+z_{4} \tilde{g}\left(z_{1}, z_{2}, z_{3}, z_{4}\right), \\
X_{\sigma} \cap E_{\alpha} \cap Y_{\alpha}=\left\{\sum_{i=0}^{5} c_{i} z_{3}^{-i}+z_{2} \sum_{i=0}^{3} c_{i}^{\prime} z_{3}^{-i}=z_{4}=0\right\}
\end{gathered}
$$

The above conditions on $c_{i}$ imply that the intersection is always non-empty. But it may be multiple. There are no components of multiplicity 1 only if $c_{i}^{\prime}=0(i=0,1,2,3)$ and:

$$
\begin{array}{ll} 
& g_{5}\left(0, y_{3}, y_{4}\right)=y_{3}^{k}\left(y_{3}-\gamma_{1} y_{4}\right)^{5-k}, \gamma_{1} \neq 0(k=0,1,2,3), \\
\text { or } & g_{5}\left(0, y_{3}, y_{4}\right)=y_{3}\left(y_{3}-\gamma_{1} y_{4}\right)^{2}\left(y_{3}-\gamma_{2} y_{4}\right)^{2}, \gamma_{1} \neq 0, \gamma_{2} \neq 0, \gamma_{1} \neq \gamma_{2}, \\
\text { or } & g_{5}\left(0, y_{3}, y_{4}\right)=\left(y_{3}-\gamma_{1} y_{4}\right)^{3}\left(y_{3}-\gamma_{2} y_{4}\right)^{2}, \gamma_{1} \neq 0, \gamma_{2} \neq 0, \gamma_{1} \neq \gamma_{2}
\end{array}
$$

In all the cases the change of variables $y_{3} \rightarrow y_{3}, y_{4} \rightarrow y_{3}-\gamma_{1} y_{4}$ brings us to the case (4), in which the existence of a simple non-toric component has been verified for the weight $\alpha=(3,2,1,2)$.

Thus, we can suppose that the polynomial defining $Y_{\alpha}$ in $X_{\sigma} \cap E_{\alpha}$ has a simple factor of the form $1-\gamma_{1} z_{3}^{-1}$, giving rise to the wanted component of multiplicity 1.

## References

[Da] Danilov, V. I., The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), 97-154.
[Kaw] Kawamata, Y., The minimal discrepancy of a 3-fold terminal singularity, Appendix to Shokurov, V. V., 3-fold log flips, Russian Acad. Sci. Izv. Math. 40(1) (1993), 93-202.
[Kho] Khovanskiĭ, A. G., Newton polyhedra and toroidal varieties, Funktsional. Anal. i Prolozhen. 11(4) (1977), 56-64; English transl. in Functional Anal. Appl. 11 (1978).
[Mar-1] Markushevich, D. G., Canonical singularities of three-dimensional algebraic varieties, PhD Thesis, University of Moscow, 1985 (in Russian).
[Mar-2] Markushevich, D. G., Canonical singularities of three-dimensional hypersurfaces, Math. USSR, Izv. 26 (1986), 315-345.
[Reid-1] Reid, M., Minimal models of canonical 3 -folds, In: Iitaka, S, and Morikawa, H. (Editors), Algebraic Varieties and Analytic Varieties, Adv. Stud. Pure Math. 1, Kinokuniya Book Store, Tokyo and North Holland, Amsterdam, 1983, 131-180.
[Reid-2] Reid, M., Young person's guide to canonical singularities, Proc. Symp. Pure Math. 46(1) (1987), 345-414.
[Sho] Shokurov, V. V., Semi-stable 3-fold flips, Russian Acad. Sci. Izv. Math. 42(2) (1994), 371-425.
(Received November 7, 1995)
URA CNRS GAT 751-Mathematiques
Universite Lille 1
59655 Villeneuve d'Ascq Cedex FRANCE

E-mail: markushe@gat.univ-lille1.fr

