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Two Transforms of Plane Curves

and Their Fundamental Groups

By Mutsuo Oka

§1. Introduction

Let C = {(X;Y ;Z) ∈ P2;F (X,Y, Z) = 0} be a projective curve and

let Ca = {f(x, y) = 0} ⊂ C2 be the corresponding affine plane curve

with respect to the affine coordinate space C2 = P2 − {Z = 0}, x =

X/Z, y = Y/Z and f(x, y) = F (x, y, 1). In this paper, we study two basic

operations. First we consider an n-fold cyclic covering ϕn : C2 → C2,

ϕn(x, y) = (x, (y − β)n + β), branched along a line D = {y = β} for an

arbitrary positive integer n ≥ 2. Let Cn(C;D) be the projective closure

of the pull back ϕ−1
n (Ca) of Ca. The behavior of ϕn at infinity gives an

interesting effect on the fundamental group. In our previous paper [O6],

we have studied the double covering ϕ2 to construct some interesting plane

curves, such as a Zariski’s three cuspidal quartic and a conical six cuspidal

sextic.

Secondly we consider the following Jung transform of degree n, Jn :

C2 → C2, Jn(x, y) = (x + yn, y) and let Jn(C;L∞) be the projective

compactification of J−1
n (Ca). Though Jn is an automorphism of C2, the

behavior of Jn or Jn(C) at infinity is quite interesting.

Both of ϕn and Jn can be extended canonically to rational mapping from

P2 to P2 and they are not defined only at [1; 0; 0] and constant along the

line at infinity L∞ = {Z = 0}. They have also the following similarity. For

a generic ϕn and a generic Jn, there exist surjective homomorphisms

Φn : π1(P
2 − Cn(C)) → π1(P

2 − C),

Ψn : π1(P
2 − Jn(C)) → π1(P

2 − C)
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and both kernels Ker Φn and Ker Ψn are cyclic group of order n which are

subgroups of the respective centers of π1(P
2 −Cn(C)) and π1(P

2 −Jn(C))

(Theorem (3.7) and Theorem (4.7)).

Both operations are useful to construct examples of interesting plane

curves, starting from a simple plane curve. Applying this operation to

a Zariski’s three cuspidal quartic Z4, we obtain new examples of plane

curves Cn(Z4) and Jn(Z4) of degree 4n whose complement in P2 has a non-

commutative finite fundamental group of order 12n (§5). We will construct

a new example of Zariski pair {C3(Z4), C2} of curves of degree 12 (§5).

In §6, we study non-atypical curves and their Jung transforms. We use

a non-generic Jung transform to construct a rational curve C̃ of degree pq

for any p, q with gcd(p, q) = 1 such that C̃ has two irreducible singularities

and the fundamental group π1(P
2 − C̃) is isomorphic to the free product

Z/pZ ∗ Z/qZ (Corollary (6.7.1)). This paper is composed as follows.

§2. Basic properties of π1(P
2 − C) and Zariski’s pencil method.

§3. Cyclic transforms of plane curves.

§4. Jung transforms of plane curves.

§5. Zariski’s quartic and Zariski pairs.

§6. Non-atypical curves and some examples.

§2. Basic properties of π1(P2 −C) and Zariski’s pencil method

Let C be a reduced projective curve of degree d and let C1, . . . , Cr be

the irreducible components of C and let di be the degree of Ci. So d =

d1 + · · ·+ dr. First we recall that the first homology of the complement is

given by the Lefschetz duality and by the exact sequence of the pair (P2, C)

as follows.

(2.1) H1(P
2 − C) ∼= Zr/(d1, . . . , dr) ∼= Zr−1 ⊕ Z/d0Z

where d0 = gcd(d1, . . . , dr) and Zr = Z⊕· · ·⊕Z (r factors). In particular, if

C is irreducible (r = 1), we have H1(P
2−C) ∼= Z/dZ and H1(C

2−Ca) ∼= Z

where C2 := P2 − L∞ and Ca := C ∩ L∞.

(A) van Kampen-Zariski’s pencil method

We fix a point B0 ∈ P2 and we consider the pencil of lines {Lη, η ∈ P1}
through B0. Taking a linear change of coordinates if necessary, we may
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assume that Lη is defined by Lη = {X − ηZ = 0} and B0 = [0; 1; 0] in

homogeneous coordinates. Take L∞ = {Z = 0} as the line at infinity

and we write C2 = P2 − L∞. Note that L∞ = limη→∞ Lη. We assume

that L∞ �⊂ C. We consider the affine coordinates (x, y) = (X/Z, Y/Z)

on C2 and let F (X,Y, Z) be the defining homogeneous polynomial of C

and let f(x, y) := F (x, y, 1) be the affine equation of C. In this affine

coordinates, the pencil line Lη is simply defined by {x = η}. As we consider

two fundamental groups π1(P
2 −C) and π1(P

2 −C ∪L∞) simultaneously,

we use the notations : Ca = C ∩C2 and La
η = Lη ∩C2 ∼= C. We identify

hereafter Lη and La
η with P1 and C respectively by y : Lη

∼= P1 for η �= ∞.

Note that the base point of the pencil B0 corresponds to ∞ ∈ P1.

We say that the pencil {Lη = {x = η}, η ∈ C}, is admissible if there

exists an integer d′ ≤ d which is independent of η ∈ C such that Ca ∩ La
η

consists of d′ points counting the multiplicity. This is equivalent to : f(x, y)

has degree d′ in y and the coefficient of yd
′

is a non-zero constant. Note

that if B0 /∈ C, Lη is admissible and d′ = d. If d′ < d, B0 ∈ C and the

intersection multiplicity I(C,L∞;B0) = d− d′.

Hereafter we assume that the pencil {Lη} is admissible. A line L is

called generic with respect to C if C ∩ L consists of d distinct points. A

pencil line Lη is called non-generic with respect to C if Lη passes through a

singular point of Ca or Lη is tangent to Ca. Otherwise Lη is called generic.

Here we note that a generic pencil line Lη0 may not be generic as a line in

P2 if B0 ∈ C and d − d′ ≥ 2 but Lη0 intersects transversely with Ca at d′

points.

Let CB be the line of the parameters of the pencil (CB
∼= C) and Σ :=

{η1, . . . , η�} be parameters in CB which corresponds to non-generic pencil

lines. We fix a generic pencil line Lη0 and put La
η0
∩ Ca = {Q1, . . . , Qd′}.

The complement La
η0
− La

η0
∩ Ca is topologically C minus d′-points . We

take a base point b0 ∈ La
η0

on the imaginary axis which is sufficiently near

to B0 and b0 �= B0. We take a large disk ∆η0 in the generic pencil line La
η0

such that ∆η0 ⊃ C ∩ La
η0

and b0 /∈ ∆η0 . We orient the boundary of ∆η0

counter-clockwise and let Ω = ∂∆η0 . We join Ω to the base point by a path

L connecting b0 and Ω along the imaginary axis. Let ω be the class of this

loop L◦Ω◦L−1 in π1(L
a
η0
−La

η0
∩C; b0). We take free generators g1, . . . , gd′

of π1(L
a
η0
− La

η0
∩ C; b0) so that gi goes around Qi counter-clockwise along
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a small circle and

(2.2) ω = gd′ · · · g1

Put G = π1(L
a
η0
−La

η0
∩Ca; b0). Note that G is a free group of rank d′ with

generators g1, . . . , gd′ . The fundamental group π1(CB − Σ; η0) acts on G

which we refer by the monodromy action of π1(CB − Σ; η0). We recall this

action quickly.

Take a large disk ∆ ⊂ CB on the base space so that ∆ ⊃ Σ and η0 ∈ ∆.

So we have π1(CB − Σ; η0) ∼= π1(∆ − Σ; η0). We take a system of free

generators σ1, . . . , σ� of π1(∆−Σ; η0) which are represented by smooth loops

in ∆, so that the product σ� · · ·σ1 is homotopic to the counter-clockwise

oriented boundary of ∆. We take a large disk of radius R, B(R) := {y ∈
C; |y| ≤ R} so that B(R) ⊃

⋃
η∈∆ Ca ∩Lη under the identification y : La

η
∼=

C. We may assume that b0 ∈ Lη0 −B(2R). Take g ∈ π1(L
a
η0
−Ca∩La

η0
; b0)

and σ ∈ π1(CB − Σ; η0). Represent them by smooth loops α : (I, ∂I) →
(La

η0
− La

η0
∩ C; b0) and τ : (I, ∂I) → (∆ − Σ; η0) and construct a one-

parameter family of deffeomorphisms hθ : (Lη0 , C∩Lη0) → (Lτ(θ), C∩Lσ(θ)),

0 ≤ θ ≤ 1 such that the composition

C
y−1

−→ La
η0

hθ−→ La
τ(θ)

y−→ C

is identity on C − B(2R). The action of σ ∈ π1(CB − Σ; η0) on g ∈ G is

defined by (g, σ) �→ [h2π ◦α]. We denote this class by gσ. Note that ωg = ω

for any g ∈ π1(CB −Σ; η0). The normal subgroups of G which is normally

generated by {g−1gσ ; g ∈ G, σ ∈ π1(CB−Σ; η0)} is called the group of the

monodromy relations and we denote it by M. Let M(σi) = {gσi
j g−1

j ; j =

1, . . . , d}. Then the group of the monodromy relations M is the minimal

normal subgroup of G generated by
⋃�

i=1M(σi). By the definition, we have

the relation R(σi) : gj = gσi
j in the quotient group G/M. We call R(σi) the

monodromy relation for σi. The following is a reformulation of a theorem

of van-Kampen ([K]) to an affine situation with an admissible pencil. Let

j : La
η0
−Lη0 ∩Ca → C2 −Ca and ι : C2 −Ca → P2 −C be the respective

inclusions.

Proposition (2.3). (1) The canonical homomorphism j� : π1(L
a
η0
−

La
η0
∩ Ca; b0) → π1(C

2 − Ca; b0) is surjective and the kernel Ker j� is equal
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to M and therefore π1(C
2 − Ca; b0) is isomorphic to the quotient group

G/M.

(2) The canonical homomorphism ι� : π1(C
2 −Ca; b0) → π1(P

2 −C; b0) is

surjective. If B0 /∈ C (so d′ = d), the kernel Ker ι� is normally generated

by ω = gd · · · g1.

Assume further that B0 /∈ C and L∞ is generic. Then

(3) ([O3]) ω is in the center of π1(C
2 −Ca). Therefore Ker(ι�) = 〈ω〉 ∼= Z.

(4) ι� induces an isomorphism of the commutator groups: ι�D : D(π1(C
2 −

Ca))
∼=−→D(π1(P

2 − C)) and an exact sequence of first homologies: 0 →
〈ω〉 ∼= Z → H1(C

2 − C) → H1(P
2 − C) → 0.

Proof. The assertions are well-known except (4). So we only need

to show the assertion (4). First ι�D is surjective. As the homology class

[ω] of ω is given by [(0, d1, . . . , dr)] under the identification H1(C
2 −Ca) ∼=

Zr+1/(1, d1, . . . , dr), [ω] generates an infinite cyclic group. Thus the injec-

tivity of ι�D follows from D(π1(C
2−C))∩Ker ι� = {e}. The exact sequence

follows from the first isomorphism and the property: 〈ω〉∩D(π1(C
2−Ca)) =

{e}. �

We usually denote G/M as π1(C
2 − Ca; b0) = 〈g1, . . . , gd;R(σ1), . . . ,

R(σ�)〉. We call π1(C
2 − Ca) the fundamental group of a generic affine

complement of C if L∞ is generic. Note that if L∞ is generic, π1(C
2 −Ca)

does not depend on the choice of a line at infinity L∞.

(B) Bracelets and lassos

An element ρ ∈ π1(P
2−C; b0) is called a lasso for Ci if it is represented

by a loop L ◦ τ ◦ L−1 where τ is a counter-clockwise oriented boundary

of a small normal disk Di(P ) of Ci at a regular point P ∈ Ci such that

Di(P ) ∩ (C ∪ L∞) = {P} and L is a path connecting b0 and τ . We call

τ a bracelet for Ci. It is easy to see that any two bracelets τ and τ ′ for

the same irreducible component, say Ci, are free homotopic. Therefore the

homotopy class of a lasso for Ci (or L∞) is unique up to a conjugation. We

say that the line at infinity L∞ is central for C if there is a lasso ω for L∞
which is in the center of π1(C

2 −Ca) = π1(P
2 −C ∪L∞). If L∞ is generic

for C, L∞ is central by Proposition (2.3) but the converse is not always

true (see Corollary (3.3.1) and Theorem (4.3)).

Assume that L∞ is central for C and take an admissible pencil {Lη, η ∈
C} with the base point B0 /∈ C. Then d′ = d and ω defined by (2.2) is in
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the center of π1(C
2−Ca; b0) as ω−1 is a lasso for L∞. Thus we can replace

the homotopy deformation of ω by free homotopy deformation of Ω. This

viewpoint is quite useful in the later sections.

Remark (2.4). Suppose that B0 /∈ C and L∞ is not generic. Take

∆ = {η ∈ CB; |η| ≤ R} ⊂ CB as before and we may assume that η0 ∈ ∂∆

and let σ∞ := ∂∆. The monodromy relation g−1
i gσ∞

i is contained in the

group of monodromy relations M. We can also consider the monodromy

relation around η = ∞. For this purpose, we identify Lη
∼= P1 through

another rational function ϕ := Y/X for |η| ≥ R. For η �= 0, ϕ : Lη → C

is written as ϕ(η, y) = y/η. Let jθ : Lη0 → Lη0 exp(θi), 0 ≤ θ ≤ 2π be a

family of homeomorphisms which is identity outside of a big disk under this

identification ϕ : Lη → C. Then the base point b0 stays constant under the

identification by ϕ but under the first identification of y : Lη → P1, the

base point is rotated by θ �→ b0 exp(θi). Putting h′ = j2π, this implies that

the monodromy relation around L∞ is given by

(2.4.1) h′
�(g) = ωg−σ∞ω−1, g ∈ G

This gives the following corollary.

Corollary (2.5). Take another generic line Lη′0
for C with η′0 �= η0.

Let R1, . . . , R� be the monodromy relation along σi as before. Then the

fundamental group of a generic affine complement π1(P
2 − C ∪ Lη′0

; b0) is

isomorphic to the quotient group of π1(C
2 − Ca; b0) by the relation ωgi =

giω, i = 1, . . . , d. In particular, if ω is in the center of π1(C
2 − Ca; b0),

π1(C
2 −Ca; b0) is isomorphic to the fundamental group of a generic affine

complement π1(P
2 − C ∪ Lη′0

; b0).

Proof. Changing coordinates if necessary, we may assume that η′0 =

0. Using the second identification Y/X : Lη
∼= P1 for η �= 0, we can write

the monodromy relation R(∞) at η = ∞ as

R(∞) gj = h′
�(gj), for j = 1, . . . , d

and the other monodromy relations Ri, i = 1, . . . , . are the same with those

which are obtained from the first identification. Therefore we have π1(P
2−
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C ∪ Lη′0
; b0) ∼= 〈g1, . . . , gd;R1, . . . , R�, R(∞)〉. On the other hand, we know

that ω = gd · · · g1 is in the center of π1(P
2 − C ∪ Lη′0

; b0) ([O2]). Thus we

get

(/) ωgj = gjω, j = 1, . . . , d

in π1(P
2−C∪Lη′0

; b0). Conversely in the group 〈g1, . . . , gd;R1, . . . , R�, (/)〉,
we have the equality:

g−1
j h′

�(gj) = g−1
j ωg−σ∞

j ω−1 (�)
= g−1

j g−σ∞
j = e.

Thus we can replace R(∞) by (/) �

(C) Milnor fiber

Consider the affine hypersurface V (C) = {(x, y, z) ∈ C3;F (x, y, z) = 1}
where F (X,Y, Z) = Zdf(X/Z, Y/Z). The restriction of Hopf fibration to

V (C) is d-fold cyclic covering over P2−C. Thus we have an exact sequence:

(2.6) 1 → π1(V (C)) → π1(P
2 − C) → Z/dZ → 1

Comparing with Hurewicz homomorphism, we get

Proposition (2.7) ([O2]). If C is irreducible, π1(V (C)) is isomorphic

to the commutator group D(π1(P
2 − C)) of π1(P

2 − C).

§3. Cyclic transforms of plane curves

(A) Cyclic transforms

Let C ⊂ P2 be a projective curve of degree d. Fixing a line at infinity

L∞, we assume that the affine curve Ca := C ∩C2 is defined by f(x, y) = 0

in C2 = P2−L∞. We assume that f(x, y) is written with mutually distinct

non-zero α1, . . . , αk as

(2) f(x, y) =

k∏
i=1

(ya − αix
b)νi + (lower terms), gcd(a, b) = 1

Here (lower term) implies that it is a linear combination of monomials xαyβ

with aα + bβ < kab. This implies that degy f(x, y) = d′, degx f(x, y) = d′′
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where d′ := a
∑k

i=1 νi, d
′′ := b

∑k
i=1 νi and d = max(d′, d′′) and both pencils

{x = η}η∈C and {y = δ}δ∈C are admissible. Note that the assumption

(2) does not change by the change of coordinates of the type (x, y) �→
(x + α, y + β).

(1) If a = b = 1, then d = d′ = d′′ and L∞∩C = {[1;αi; 0]; i = 1, . . . , k}. In

particular, if νi = 1 for each i, L∞ is generic for C and thus L∞ intersects

transversely with C.

(2) If a > b (respectively a < b), we have d = d′, C ∩L∞ = {ρ∞ := [1; 0; 0]}
(resp. d = d′′, C ∩ L∞ = {ρ′∞ := [0; 1; 0]} ) and C has a singularity at ρ∞
(resp. at ρ′∞). The local equation of C at ρ∞ (resp. ρ′∞) takes the form:

(3.1)



∏k
i=1(ζ

a − αiξ
a−b)νi + (higher terms) = 0,

ζ = Y/X, ξ = Z/X, a > b∏k
i=1(ζ

′b−a − αiξ
′b)νi + (higher terms) = 0,

ζ ′ = Z/Y, ξ′ = X/Y, a < b

Here (higher terms) is defined similarly. For instance, in the first equality it

is a linear combinations of monomilas ζαξβ with (a− b)α+ aβ > ka(a− b).

Now we consider the horizontal pencil Mη = {y = η}, η ∈ C and let

D = Mβ be a generic pencil line. As β is generic, D ∩ Ca is d′′ distinct

points in C2. For an integer n ≥ 2, we consider the n-fold cyclic covering

ϕn : C2 → C2, defined by

ϕn : C2 → C2, ϕn(x, y) = (x, (y − β)n + β)

which is branched along D. Let Cn(C;D)a = ϕ−1
n (Ca) and let Cn(C;D) be

the closure of Cn(C;D)a in P2. We call Cn(C;D) the cyclic transform of

order n with respect to the line D. To avoid the confusion, we denote the

source space of ϕn by C̃2 and the coordinates of C̃2 by (x̃, ỹ). Thus the

line {ỹ = β} is equal to ϕ−1
n (D) and we denote it by D̃. We denote the

line at infinity P2 − C̃2 by L̃∞. Let f (n)(x̃, ỹ) be the defining polynomial

of Cn(C;D)a. As f (n)(x̃, ỹ) = f(x̃, (ỹ − β)n + β), f (n)(x̃, ỹ) takes the form:

(3.2) f (n)(x, y) =
k∏

i=1

(ỹna − αix̃
b)νi + (lower terms).

Observer that f (n)(x̃, ỹ) also satisfies (2).
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(B) Singularities of Cn(C;D)

Let a1, . . . ,as be the singular points of Ca and put L∞ ∩C = {a1
∞, . . . ,

a�
∞} and Cn(C;D)∩L̃∞ = {ãi

∞; i = 1, . . . , .̃} where L̃∞ is the line at infinity

of the projective compactification of the source space C̃2 of ϕn. Note that

. = k if a = b = 1 and . = 1 otherwise. Note also that .̃ = kb or 1

according to na = b or na �= b. Cn(C;D) ∩ L̃∞ is either {[1; 0; 0]} if na > b

or {[0; 1; 0]} if na < b. It is obvious that for each i = 1, . . . , s, Cn(C;D) has

n-copies of singularities ai,1, . . . ,ai,n which are locally isomorphic to ai. We

denote the local Milnor number at a ∈ C by µ(C;a). First we recall the

modified Plücker’s formula for the topological Euler characteristics (see, for

instance,[O2]):

(3.3.1) χ(C) = 3d− d2 +
s∑

j=1

µ(C;aj) +
�̃∑

i=1

µ(C;ai
∞)

Proposition (3.3.2). If the branching locus D is a generic pencil line,

the topological types of (C̃2, Cn(C;D)a) and (P2, Cn(C;D)) do not depend

on the choice of a generic β.

Proof. By an easy computation, we have χ(Cn(C;D)a) = n(χ(Ca)−
d′′) + d′′ which is independent of the choice of β. As χ(Cn(C;D)) =

χ(Cn(C;D)a) + .̃, χ(Cn(C;D)) is also independent of a generic β. On the

other hand, the Milnor number of Cn(C;D) at ai,j is equal to that of C at ai.

Therefore by the modified Plücker’s formula, the sum
∑�̃

i=1 µ(Cn(C;D); ãi
∞)

is also independent of β. This implies, by the upper semi-continuity1 of the

Milnor number the independentness of each µ(Cn(C;D); ãi
∞). The assertion

results immediately from this observation. �

Note that Cn(C;D) has further singularities, if the branching line D is

not generic.

(C) Main results of this section

Let G be an arbitrary group. We denote the commutator subgroup and

the center of G by D(G) and Z(G) respectively. The main result of this

section is :

1This easily follows from the mapping degree characterization of Milnor number ([M]).
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Theorem (3.4). Assume that (2) is satisfied and D is a generic hori-

zontal pencil line.

(1) The canonical homomorphism ϕn� : π1(C̃2−Cn(C;D)a) → π1(C
2−Ca)

is an isomorphism.

(2-a) Assume a ≥ b (so deg Cn(C;D) = nd). Then there is a surjective

homomorphism Φn : π1(P
2 − Cn(C;D)) → π1(P

2 − C) which gives the

following commutative diagram.

π1(P
2 − Cn(C;D))

Φn−→ π1(P
2 − C)�̃ι� �ι�

π1(C̃2 − Cn(C;D)a)
ϕn�−→ π1(C

2 − Ca)

where ι̃� and ι� are induced by the respective inclusions and the kernel of

Φn is normally generated by the class of ω′ := ϕ−1
n� (ω) where ω−1 is a lasso

for L∞ and ω′−n is a lasso for the line at infinity L̃∞ of C̃2.

(2-b) Assume that na ≤ b (so deg Cn(C;D) = degCa = d). Then ω̃ :=

ϕ−1
n� (ω) is a lasso for L̃∞ and we have an isomorphism: π1(P

2−Cn(C;D)) ∼=
π1(P

2 − C).

Corollary (3.4.1). Assume that a ≥ b and L∞ is central for C. Then

(1) L̃∞ is central for Cn(C;D) and there is a canonical central extension

of groups

1 → Z/nZ
ι−→π1(P

2 − Cn(C;D))
Φn−→π1(P

2 − C) → 1

(i.e., ι(Z/nZ) ⊂ Z(π1(P
2 − Cn(C;D)))) and Z/nZ is generated by ω′ =

ϕ−1
n� (ω).

(2) The restriction of Φn gives an isomorphism of commutator groups

Φn : D(π1(P
2 − Cn(C;D))) → D(π1(P

2 − C))

and the following exact sequences of the centers and the first homology
groups:

1 → Z/nZ → Z(π1(P
2 − Cn(C;D)))

Φn−→ Z(π1(P
2 − C)) → 1

1 → Z/nZ → H1(P
2 − Cn(C;D))

Φn−→ H1(P
2 − C) → 1
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Proof of Theorem (3.4). Taking the change of coordinates (x, y) �→
(x, y + β), we may assume D = {y = 0} for simplicity. We first prove the

assertion (1). We consider the horizontal pencil {Mη, η ∈ C} where Ma
η =

{y = η}. Let ∆ε = {η ∈ C; |η| ≤ ε}, E(ε) = ∪η∈∆ε(M
a
η − Ca ∩Ma

η ) and

E(ε)∗ = E(ε)−D. As M0 = D is a generic pencil line, E(ε) and E(ε)∗ are

homeomorphic to the products (Ma
ε−Ca∩Ma

ε )×∆ε and (Ma
ε−Ca∩Ma

ε )×∆∗
ε

respectively for a sufficiently small ε > 0. Thus we have the isomorphism

π1(E(ε)∗) = π1(M
a
ε − Ca ∩Ma

ε )× Z so that the canonical homomorphism

ι� : π1(M
a
ε −Ca∩Ma

ε ) → π1(E(ε)∗) is the canonical injection g �→ (g, 0). Let

τ be the generator of Z represented by a lasso for the branch locus D and let

ρ1, . . . , ρd′′ be the generators of π1(M
a
ε −Ca∩Ma

ε ). Then τ commutes with

every ρi and the monodromy relations for ρ1, . . . , ρd′′ in π1(C
2−Ca) and in

π1(C
2 − Ca ∪D) are the same. Therefore by Proposition (2.3), we can see

that π1(C
2−Ca∪D) ∼= π1(C

2−Ca)×Z and the canonical homomorphism

associated with the inclusion map a� : π1(C
2 − Ca ∪ D) → π1(C

2 − Ca)

is the first projection under this identification. For simplicity, we denote

Cn(C;D) by Cn(C) hereafter. We have the following exact sequence of the

covering:

1 → π1(C̃2 − Cn(C)a ∪ D̃)
ϕn�−→π1(C

2 − Ca ∪D) → Z/nZ → 1

As a subgroup of π1(C
2 − Ca ∪D) ∼= π1(C

2 − Ca)× Z, π1(C̃2 − Cn(C)a ∪
D̃) can be identified with π1(C

2 − Ca) × nZ by ϕn�. Note that ϕ−1
n� (e ×

n) is represented by a lasso τ̃ for D̃. Let us consider a subgroup H :=

ϕ−1
n� (π1(C

2 − Ca) × {e}) ⊂ π1(C̃2 − Cn(C)a ∪ D̃). Now we consider the

following commutative diagram:

π1(C̃2 − Cn(C)a ∪ D̃) ⊃ H
ã�−→ π1(C̃2 − Cn(C)a)�ϕn�

�ϕn�

π1(C
2 − Ca ∪D)

a�−→ π1(C
2 − Ca)

where ã and a are respective inclusion map. As ã� : π1(C̃2−Cn(C)a∪D̃) →
π1(C̃2 − Cn(C)a) is surjective and ϕ−1

n� (nZ) is included in the kernel of ã�,

the restriction ã� : H → π1(C̃2 − Cn(C)a) is surjective. On the other hand,

as the composition ϕn� ◦ ã� : H → π1(C
2 − Ca) is equal to a� ◦ ϕn�, it is

obviously bijective. Thus we conclude: ã� : H → π1(C̃2 − Cn(C)a) and
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ϕn� : π1(C̃2 − Cn(C)a) → π1(C
2 − Ca) are isomorphisms. This proves the

assertion (1).

We consider now the fundamental groups π1(P
2−Cn(C)) and π1(P

2−C).

First we consider the easy case : na ≤ b (Case (2-b)). In this case, d = d′′,
C ∩ L∞ = {ρ′∞ = [0, 1, 0]} and degx f(x, y) = degx̃ f

(n)(x̃, ỹ) = d. Take a

generic horizontal pencil line Mη0 := {y = η0} with η0 �= 0, a base point

b0 ∈ Ma
η0

and generators g1, . . . , gd of π1(M
a
η0
− Ma

η0
∩ Ca; b0) as before.

Let ω = gd · · · g1. We can assume that ω is homotopic to a big circle as

in Proposition (2.3). Take η̃0 ∈ C so that η̃n0 = η0. We also take a base

point b̃0 ∈ M̃a
η̃0

so that ϕn(̃b0) = b0. By the definition, the pencil line M̃η̃0
is

generic and ϕn : M̃a
η̃0
−M̃a

η̃0
∩Can(C;D) →Ma

η0
−Ma

η0
∩Ca is homeomorphism

which is simply given by (u, η̃0) → (u, η0). Thus we can take the pull-back

g̃j of gj for j = 1, . . . , d as generators of π1(M̃
a
η̃0
− M̃a

η̃0
∩ Can(C;D)). Let

ω̃ = g̃d · · · g̃1. Then ϕn,�(ω̃) = ω. Thus the assertion (2-b) follows from

π1(P
2 − Cn(C); b̃0) ∼= π1(C̃2 − Can(C;D); b0)/N (ω̃)

∼= π1(C
2 − Ca; b0)/N (ϕn,�(ω̃))

∼= π1(P
2 − C; b0) as ϕn,�(ω̃) = ω

where N (g) is the normal subgroup normally generated by g.

Now we consider the non-trivial case a ≥ b (Case (2-a)). Then d = d′

and deg f(x, y) = degy f(x, y) and nd = deg f (n)(x̃, ỹ) = degỹ f
(n)(x̃, ỹ).

Now we consider the vertical pencil Lη = {x = η} for the computation of

the monodromy relations for π1(C
2 − Ca). Take a generic pencil line Lη0

and let Ca ∩ Lη0 = {ξ1, . . . , ξd}. Now we take R > 0 sufficiently large so

that Ca ∩ Lη0 ⊂ { y > −R} and f(x,−R) has distinct d′′ roots. We can

assume that β = −R by Proposition (3.3.2). Taking a change coordinates

(x, y) �→ (x, y + R), we may assume from the beginning that

D = {y = 0}, Ca ∩ Lη0 ⊂ {y ∈ C; y > 0}

We take the base point b0 on the imaginary axis near the base point B0 of

the pencil as in §2 so that {|y| ≤ |b0|/2} ⊃ Ca ∩ Lη0 and we take a system

of generators g1, . . . , gd of π1(L
a
η0
−Ca; b0) represented as gj = [L◦σj ◦L−1]

where L is the segment from b0 to b0/2 and σj is a loop in { y > 0}∩{|y| ≤
|b0|/2} starting from b0/2 and ω = gd · · · g1 is homotopic to the big circle
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Ω : t �→ exp(2πti)b0. See the left side of Figure (3.4.A). Then by Proposition

(2.3), we have

(3.4.2) π1(P
2 − C) ∼= π1(C

2 − Ca; b0)/N (ω)

Now we consider the fundamental groups π1(C̃2 − Cn(C)a) and π1(P
2 −

Cn(C)) using the pencil L̃η = {x̃ = η} in the source space C̃2 of ϕn. We

identify L̃a
η0

with C by ỹ-coordinate. Then by the definition of Cn(C), the

intersection of Cn(C)a ∩ L̃η0 is n-th roots of ξj , for j = 1, . . . , d. As we have

assumed  ξj > 0, Cn(C)a ∩ L̃η0 consists of nd points. So L̃η0 is a generic

line for Cn(C). Consider the conical region

Dj := {(η0, ỹ) ∈ L̃η0 ; 2πj/2n < arg ỹ < π(2j + 1)/2n}, j = 0, . . . , n− 1

is biholomorphic onto H = {(η0, y) ∈ La
η0

; y > 0} by ϕn. Thus the inter-

section L̃a
η0
∩ Cn(C)a ∩Dj consists of d-points which correspond bijectively

to those La
η0
∩ Ca. Let b

(j)
0 ∈ Dj , j = 0, . . . , n − 1 be the inverse image of

the base point b0 by ϕn and we may assume b̃0 = b
(0)
0 for example. (As a

complex number, b
(j)
0 is an n-th root of b0 for j = 0, . . . , n − 1.) Let ω̃ be

the class of the big circle: ω̃ : [0, 1] → L̃a
η0

, ω̃(t) = b̃0 exp(2πti). We take the

pull-back g
(j)
1 , . . . , g

(j)
d of g1, . . . , gd, in each conical region Dj . They gives a

system of free generators of π1(Dj − Cn(C)a ∩ L̃a
η0

; b
(j)
0 ). Let .j be the arc :

t �→ eitb
(0)
0 , 0 ≤ t ≤ 2jπ/n which connects b

(0)
0 to b

(j)
0 . We associate g

(j)
i an

element gi,j of π1(L̃
a
η0
−Cn(C)a ∩ L̃a

η0
; b

(0)
0 ) by the change of the base point:

g
(j)
i �→ gi,j := .jg

(j)
i .−1

j . Thus {gi,j ; 1 ≤ i ≤ d, 0 ≤ j ≤ n− 1} is a system of

free generators of π1(L̃
a
η0
− Cn(C)a ∩ L̃a

η0
; b

(0)
0 ). See the right side of Figure

(3.4.A).

Let ωj = gd,j · · · g1,j for j = 0, . . . , n− 1. Then it is easy to see that

(3.4.3) ω̃ = ωn−1 · · ·ω0

and by Proposition (2.3), we have

(3.4.4) π1(P
2 − Cn(C); b

(0)
0 ) = π1(C̃2 − Cn(C)a; b

(0)
0 )/N (ω̃)
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Figure (3.4.A)

Now we examine the isomorphism: ϕn� : π1(C̃2 − Cn(C)a; b
(0)
0 ) → π1(C

2 −
Ca; b0) more carefully. Note first that ϕn(�j) is j-times the big circle Ω:

t �→ b0 exp(2πti), 0 ≤ t ≤ 1. Thus it is homotopic to ωj . Therefore we

obtain

(3.4.5) ϕn�(gi,j) = ωjgiω
−j , ϕn�(ωj) = ω

This implies that ω′ = ω1 = · · · = ωn and

(3.4.6) ϕn�(ω̃) = ωn

Thus the assertion follows immediately from the isomorphisms:

π1(P
2 − Cn(C); b

(0)
0 ) ∼= π1(C̃2 − Cn(C)a; b

(0)
0 )/N (ω̃)

∼= π1(C
2 − Ca; b0)/N (ϕn�(ω̃))

∼= π1(C
2 − Ca; b0)/N (ωn)

In fact, by this isomorphism and (3.4.2) we have the canonical surjective

homomorphism:

Φn : π1(P
2 − Cn(C); b

(0)
0 ) → π1(P

2 − C; b0)

which is defined by Φn(gi,j) = gi. It is obvious that Φn makes the diagram

in (2) of Theorem (3.4) commutative. This completes the proof of Theorem

(3.4). �
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Proof of Corollary (3.4.1). Assume that L∞ is central. Then ω ∈
Z(π1(C

2−Ca; b0)). As ϕn� is an isomorphism, ω′ ∈ Z(π1(C̃2−Cn(C); b
(0)
0 )).

Thus the normal subgroup N (ω′) of π1(C̃2 − Cn(C); b
(0)
0 ) is simply the

cyclic group 〈ω′〉 generated by ω′. We consider the Hurewicz image of

ω′ in H1(P
2 − Cn(C)). Suppose that C has r irreducible components Cj

of degree dj , j = 1, . . . , r. Then it is obvious that Cn(C) consists of r

irreducible components Cn(C1), . . . , Cn(Cr) of degree nd1, . . . , ndr respec-

tively. For any fixed j, dj-elements of {g1,j , . . . , gd,j} are lassos for Cn(Cj).

Thus ω′ corresponds to the class [ω′] = (d1, . . . , dr) of H1(P
2 − Cn(C)) ∼=

Zr/(nd1, . . . , ndr). Thus [ω′] has order n in the first homology group. As

ω′n = e already in π1(P
2 − Cn(C)), order(ω′) = n and the kernel of Φn is a

cyclic group of order n generated by ω′. This proves the first assertion (1).

As Φn is surjective, the commutator subgroup D(π1(P
2−Cn(C;D))) by

Φn is mapped surjectively onto the commutator subgroup D(π1(P
2 − C)).

On the other hand, the kernel Z/nZ is injectively mapped to the first

homology group H1(P
2 − Cn(C)). Thus D(π1(P

2 − Cn(C))) ∩ Z/nZ =

{e}. Therefore Φn induces an isomorphism of the commutator groups. The

sequence

1 → Z/nZ → Z(π1(P
2 − Cn(C)))

Ψ′
n−→Z(π1(P

2 − C))

is clearly exact. We show the surjectivity of Ψ′
n. Take h′ ∈ Z(π1(P

2 − C))

and choose h ∈ π1(P
2 − Cn(C)) so that Φn(h) = h′. For any g ∈ π1(P

2 −
Cn(C)), the image of the commutator hgh−1g−1 by Φn is trivial. Thus we

can write hgh−1g−1 = ω′a for some 0 ≤ a ≤ n−1. As [ω′] has order n in first

homology, this implies that a = 0 and thus hg = gh for any g. Therefore

h is in the center. The last exact sequence of the assertion (2) follows by a

similar argument. This completes the proof of Corollary (3.4.1). �

Remark (3.5). (1) We remark that the rational map ϕ′
n : P2 → P2

which is associated with ϕn is defined by ϕ′
n([X;Y ;Z]) = [XZn−1;Y n;Zn]

and thus ϕ′
n is not defined at ρ∞ := [1; 0; 0] ∈ Cn(C) and ϕ′

n(L̃∞−{ρ∞}) =

ρ′∞ = [0; 1; 0].

(2) In the case of na > b > a, there does not exist a surjective homomor-

phism Φn : π1(P
2 − Cn(C)) → π1(P

2 − C) in general. For example, take

C ′ a smooth curve of degree d′ and let C = C2(C
′;D′) a generic two fold

covering with respect to a generic line D′ := {x = α}. Then we take a
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covering C3(C;D) of degree 3 with respect to a generic D := {y = β}.
Then we know that degC = 2d′ and deg C3(C;D) = 3d′ and therefore

π1(P
2 − C3(C;D)) = Z/3d′Z and π1(P

2 − C2(C
′;D′)) = Z/2d′Z. Thus

there does not exist any surjective homomorphism.

(D) Generic cyclic covering

Now we consider the generic case:

f(x, y) =
d∏

i=1

(y − αix) + (lower terms),

α1, . . . , αd ∈ C∗, αi �= αj (i �= j)

(3.6)

This is always the case if we choose the line at infinity L∞ to be generic and

then generic affine coordinates (x, y). Take positive integers n ≥ m ≥ 1 and

we denote Cn(C;D) by Cn(C) and Cm(Cn(C;D);D′) by Cm,n(C) where D =

{y = β} and D′ = {x = α} with generic α, β. Note that Cn(C) = C1,n(C).

The topology of the complement of Cm,n(C) depends only on C and m,n.

We will refer Cn(C) and Cm,n(C) as a generic n-fold ( respectively a generic

(m,n)-fold ) covering transform of C. They are defined in C2 by

Cn(C)a = {(x̃, ỹ) ∈ C2; f(x̃, ỹn) = 0},
Cm,n(C)a = {(x̃, ỹ) ∈ C2; f(x̃m, ỹn) = 0}

taking a change of coordinate (x, y) �→ (x+α, y+β) if necessary. If n > m,

Cm,n(C) has only one singularity at ρ∞ = [1; 0; 0] and the local equation

takes the following form:

d∏
i=1

(ζn − αiξ
n−m) + (higher terms) = 0, ζ = Y/X, ξ = Z/X

Therefore Cm,n(C) is locally d × gcd(m,n) irreducible components at ρ∞.

(Cm,n(C), ρ∞) is topologically equivalent to the germ of a Brieskorn singu-

larity B((n−m)d, nd) where B(p, q) := {ξp − ζq} = 0. In the case m = n,

we have no singularity at infinity. By Theorem (3.4) and Corollary (3.4.1),

we have the following.
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Theorem (3.7). Let Cn(C) and Cm,n(C) be as above. Then the canon-

ical homomorphisms

π1(
˜̃
C2 − Cm,n(C)a)

ϕm�−→π1(C̃2 − Cn(C)a)
ϕn�−→π1(C

2 − Ca)

and Φm : π1(P
2 − Cm,n(C)) → π1(P

2 − Cn(C)) are isomorphisms. There

exist canonical central extensions of groups where the diagrams are commu-

tative.

1 → Z/nZ
ι−→ π1(P

2 − Cm,n(C))
Φm,n−→ π1(P

2 − C) → 1�id � ∼=
�Φm �

�id

1 → Z/nZ
ι′−→ π1(P

2 − Cn(C))
Φn−→ π1(P

2 − C) → 1

The kernel Ker Φn (respectively Ker Φm,n) is generated by an element ω′

(resp. ω′′ = Φ−1
m (ω′)) in the center such that ω′n (resp. ω′′n) is a lasso

for L̃∞ (resp. for
˜̃
L∞). The restriction of Φm,n, Φm and Φn give an

isomorphism of the respective commutator groups

Φm,n,D : D(π1(P
2 − Cm,n(C)))

Φm,D−→ D(π1(P
2 − Cn(C)))

Φn,D−→D(π1(P
2 − C))

and exact sequences of the centers and the first homology groups:

1 → Z/nZ → Z(π1(P
2 − Cm,n(C)))

Φm,n−→ Z(π1(P
2 − C)) → 1

1 → Z/nZ → H1(P
2 − Cm,n(C))

Φm,n−→ H1(P
2 − C) → 1

Let {a1, . . . ,as} be singular points as before. Then Cn(C) (respectively

Cm,n(C) ) has n copies (resp. nm copies ) of ai for each i = 1, . . . , s and

one singularity at ρ∞ := [1; 0; 0] except the case n = m. The curve Cn,n(C)

has no singularity at infinity. The similar assertion for Cn,n(C) is obtained

independently by Shimada [Sh].

Corollary (3.7.1). (1) π1(P
2 − Cm,n(C)) is abelian if and only if

π1(P
2 − C) is abelian.

(2) Assume that C is irreducible. Then the fundamental groups

π1(V (Cm,n(C))) and π1(V (C)) of the respective Milnor fibers V (Cm,n(C))

of Cm,n(C) and V (C) of C are isomorphic.
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Proof. The assertion (1) follows from Theorem (3.7). The assertion

(2) is immediate from Proposition (2.7) and Theorem (3.7). �

The following is also an immediate consequence of Theorem (3.7) and

Corollary (2.5).

Corollary (3.7.2).
˜̃
L∞ is central for Cm,n(C) i.e., π1(P

2−Cm,n(C)∪˜̃
L∞) is isomorphic to the fundamental group of the generic affine comple-

ment of Cm,n(C).

(E) Homologically injectivity condition of the center

The following is useful to produce Zariski pairs from a given Zariski pair

(See §5). First we consider the following condition for a group G:

(H.I.C) Z(G) ∩ D(G) = {e}

This is equivalent to the injectivity of the composition: Z(G) ↪→ G →
H1(G) := G/D(G). When this condition is satisfied, we say that G satis-

fies homological injectivity condition of the center (or (H.I.C)-condition in

short).

Theorem (3.8). Let C = C1 ∪ · · · ∪ Cr and C ′ = C ′
1 ∪ · · · ∪ C ′

r be

projective curves with the same number of irreducible components and as-

sume that degree(Ci) = degree(C ′
i) = di for i = 1, . . . , r and assume that

π1(P
2−C ′) satisfies (H.I.C)-condition. Assume that π1(P

2−Cm,n(C)) and

π1(P
2 − Cm,n(C ′)) are isomorphic for some integer m,n with 1 ≤ m ≤ n.

Then π1(P
2 − C) and π1(P

2 − C ′) are also isomorphic.

Proof. We may assume that m = 1 by Theorem (3.7). Suppose that

α : π1(P
2 − Cn(C)) → π1(P

2 − Cn(C ′)) is an isomorphism. This induces

isomorphisms of the respective commutator subgroups, centers and the first

homology groups. We consider the exact sequences given by Corollary

(3.4.1):

1 → Z/nZ → π1(P
2 − Cn(C))

Φn−→ π1(P
2 − C) → 1�α

1 → Z/nZ → π1(P
2 − Cn(C ′))

Φ′
n−→ π1(P

2 − C ′) → 1



Plane Curves 417

Let ω′ and ω′′ be the generator of the kernels of Φn and Φ′
n respectively. As

[ω′] = [(d1, . . . , dr)] ∈ H1(P
2 − Cn(C)) = Zr/(nd1, . . . , ndr) in the notation

of (2.1) and [ω′] has order n, the homology class [α(ω′)] corresponding to

α(ω′) has also order n in H1(P
2−Cn(C ′)), thus [α(ω′)] is also anihilated by

n. Therefore it is homologous to [(ad1, . . . , adr)] ∈ H1(P
2−Cn(C ′)) for some

a ∈ Z. This implies [Φ′
n(α(ω′))] = 0 ∈ H1(P

2 − C ′) and thus Φ′
n(α(ω′)) ∈

D(π1(P
2−C ′)). Therefore Φ′

n(α(ω′)) ∈ D(π1(P
2−C ′))∩Z(π1(P

2−C ′)). By

the (H.I.C)-condition, this implies that Φ′
n(α(ω′)) = e. Thus by the above

exact sequence, α(ω′) = (ω′′)β for some β ∈ N with gcd(β, n) = 1. Thus

the restriction of α to Ker(Φn) ∼= Z/nZ is an isomorphism onto Ker(Φ′
n) ∼=

Z/nZ. Thus it induces an isomorphism : ᾱ : π1(P
2−C) → π1(P

2−C ′). �

Remark (3.9). (1) Take a non-generic line D = {y = β} for C and

consider the corresponding cyclic covering branched along D, ϕn : C2 →
C2. Then the assertions in Theorem (3.4) and Corollary (3.4.1) for the pull

back C ′ = ϕ−1
n (C) may fail in general. For example, we can take the quartic

defined by (5.1.1) in §5. Then L∞ is central for C and π1(P
2−C) = Z/4Z.

Take D = {y = 0} and consider ϕ2 : C2 → C2, ϕ2(x, y) = (x, y2). Then

the pull back Z4 of C is a so called Zariski’s three cuspidal quartic and

π1(P
2 − Z4) ia a finite non-abelian group of order 12 ([Z1],[O5]). See also

§5.

(2) We do not have any example of a plane curve C such that π1(P
2 − C)

does not satisfy the (H.I.C)-condition.

§4. Jung transforms of plane curves

Let C be a projective curve of degree d in P2 and let f(x, y) = 0 be the

defining polynomial of C with respect to the affine space C2 = P2 − L∞.

In this section, we introduce another operation which produces a projective

curve Jn(C) of degree nd.

(A) Jung transform of degree n

First for any integer n ≥ 2 we consider the following automorphism of

C2 ([J]).

(4.1) Jn : C2 → C2, Jn(x, y) = (x + yn, y).

The inverse of Jn is given by J−1
n (x, y) = (x−yn, y). Let Jn(C;L∞) be the

projective closure of J−1
n (Ca). We call Jn(C;L∞) an Jung transform of C of
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degree n. By the definition, Jn(C;L∞) is birationally equivalent to C and

the affine complements C2 − Ca and C2 − Jn(C;L∞)a are biholomorphic.

We denote the source space of Jn by C̃2, the line at infinity by L̃∞ and the

affine coordinates by (x̃, ỹ) as in §3. By the definition, Jn(C;L∞) is defined

in C̃2 by

(4.2) f (n)(x̃, ỹ) = f(x̃ + ỹn, ỹ).

We say that Jn or the affine coordinates (x, y) is an admissible for C if

[1; 0; 0] /∈ C. We call Jn(C;L∞) an admissible Jung transform of C of

degree n if Jn is admissible. Note that the admissibility of Jn implies that

deg f (n)(x̃, ỹ) = nd. Finally we call Jn(C;L∞) a generic Jung transform of

C of degree n, if L∞ is generic with respect to C and Jn is admissible for

C. In this case, we denote Jn(C;L∞) simply by Jn(C).

(B) Singularities of Jn(C;L∞)

We consider the singularities of an admissible Jung transform

Jn(C;L∞). Let a1, . . . ,as be the singular points of Ca and let

{a1
∞, . . . ,ak

∞} = C ∩ L∞ be the points at infinity. Let ri be the num-

ber of local irreducible components of C at ai
∞. As Jn is biholomorphic,

the singularities of Jn(C;L∞) in C2 corresponds bijectively to a1, . . . ,as.

Let f(x, y) = fd(x, y) + fd−1(x, y) + · · · + f0 be the homogeneous decom-

position of f . By admissibility, we can write fd(x, y) =
∏k

i=1(x − αiy)
νi

where α1, . . . , αd ∈ C are mutually distinct and
∑k

i=1 νi = d. We may

assume that ai
∞ = (αi; 1; 0) in the homogeneous coordinates. Then the

homogeneous polynomial which defines Jn(C;L∞) is

F (n)(X,Y, Z) :=
k∏

i=1

(XZn−1 + Y n − αiY Zn−1)νi(4.3)

+
d∑

j=1

Zjnfd−j(XZn−1 + Y n, Y Zn−1)

Thus degJn(C;L∞) = nd and ρ∞ := [1; 0; 0] is the only intersection of

Jn(C;L∞) with the line at infinity L̃∞ and ρ∞ is a singular point of

Jn(C;L∞). The number of local irreducible components of Jn(C;L∞)
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at ρ∞ is
∑k

i=1 ri and the local Milnor number µ(Jn(C;L∞);a∞) can be

computed using the modified Plücker’s formula :

χ(Jn(C;L∞)) = 3nd− n2d2 +
s∑

i=1

µ(C;ai) + µ(Jn(C;L∞);a∞)(4.4)

= χ(C)− k + 1

Thus the Milnor number µ(Jn(C;L∞);a∞) is independent of the choice of

the admissible affine coordinate (x, y) of C2 = P2 − L∞. As the space of

the admissible affine coordinates are connected and a µ-constant family of

plane curves are topologically equivalent to each other, we have:

Proposition (4.5). The topological type of the pair (P2,Jn(C;L∞))

depend only on C and L∞ and it does not depend on the choice of the

admissible affine coordinates (x, y). If L∞ is generic, the topological type

of the pair (P2,Jn(C;L∞)) does not depend on L∞.

Let us study the structure of the singularity ρ∞ ∈ Jn(C) of a generic

admissible Jung transform of degree n in detail. Let ζ = Y/X, ξ = Z/X be

affine coordinates centered at ρ∞ of the affine space P2 − {X = 0}. Then

local defining polynomial takes the following form:

(4.6) h(ζ, ξ) =
d∏

i=1

(ξn−1 + ζn − αiζξ
n−1) +

d∑
j=1

ξjnfd−j(ξ
n−1 + ζn, ζξn−1)

Jn(C) has d irreducible components at ρ∞. Consider an admissible toric

modification

π : C2 → C2, π(u, v) = (ζ, ξ), ζ = uvn−1, ξ = uvn.

Then the defining polynomial changes into

π∗h(u, v) = v
dn(n−1)
1 (−1)d(n−1)

(
d∏

i=1

(u1 + αiv
n−1
1 ) + (higher terms)

)

where u1 := u+1, v1 := v are local coordinates at (u, v) = (−1, 0). Thus we

see that the Newton boundary of π∗h in (u1, v1) is non-degenerate. Thus
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the resolution complexity E(Jn(C); ρ∞) is two for n ≥ 3. See [Le-Oka] for

the definition of the resolution complexity. The Milnor number is given

by µ(Jn(C); ρ∞) = d2(n2 − 1) − d(3n − 2) + 1. (In the case of n = 2,

the resolution complexity E(Jn(C); ρ∞) is 1.) The germ (Jn(C); ρ∞) is

topologically determened by the first term of (4.6) and it is equivalent to

B(n− 1, n; d) := {(ξn−1 + ζn)d − (ζξn−1)d = 0}.

(C) Main results of this section

Now we state the main result of this section.

Theorem (4.7). Assume that L∞ is central for C and let Jn : C̃2 →
C2 be an admissible Jung transform of degree n of C. Then L̃∞ is central

for Jn(C;L∞) and there exists a unique surjective homomorphism Ψn :

π1(P
2 − Jn(C;L∞)) → π1(P

2 − C) which gives the following commutative

diagram
π1(P

2 − Jn(C;L∞))
Ψn−→ π1(P

2 − C)�̃ι� �ι�
π1(C̃2 − Jn(C;L∞)a)

Jn�−→ π1(C
2 − Ca)

where ι̃� and ι� are associated with the respective inclusion maps. Ψn has

the following property.

(1) The kernel of Ψn is a cyclic group of order n which is a subgroup of the

center. So we have a central exactension of groups:

1 → Z/nZ
α−→π1(P

2 − Jn(C;L∞))
Ψn−→π1(P

2 − C) → 1

The image α(Z/nZ) is generated by ι̃�(ω
′) where ω′ := J−1

n� (ω), ω is a lasso

for L∞ in the base space P2 ⊃ C, and ω′n is a lasso for the line at infinity

L̃∞.
(2) The restriction of Ψn gives an isomorphism Ψn : D(π1(P

2−Jn(C;L∞)))
→ D(π1(P

2 − C)) and the following exact sequences of the centers and the
first homology groups:

1 → Z/nZ → Z(π1(P
2 − Jn(C;L∞)))

Ψn−→ Z(π1(P
2 − C)) → 1

1 → Z/nZ → H1(P
2 − Jn(C;L∞))

Ψn−→ H1(P
2 − C) → 1

Proof. First we note that [1; 0; 0] /∈ C by admissibility and

(4.7.1) Jn� : π1(C̃2 − Jn(C;L∞)a) → π1(C
2 − Ca)
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is an isomorphism as Jn is an automorphism of C2. We consider the pencil

Lη = {Y = ηZ}, η ∈ C in the original affine space C2. The base point B0

of the pencil is [1; 0; 0]. We fix a generic η0 with |η0| large enough and we

take generators g1, . . . , gd of π1(L
a
η0
− La

η0
∩ Ca; b0) as before so that

(4.7.2) gd · · · g1 = ω, π1(P
2 − C; b0) ∼= π1(C

2 − C; b0)/〈ω〉

where ω is in the center of π1(C
2 − C; b0) and ω−1 is a lasso for L∞. We

choose base point b̃0 of C̃2 − Jn(C;L∞) so that Jn(̃b0) = b0. In C̃2, we

consider the pencil M̃ξ = {x̃ = ξ}. We may assume that b̃0 ∈ M̃ξ0 and M̃ξ0

is generic for Jn(C;L∞). By the definition, Jn(x̃, ỹ) = (x̃ + ỹn, ỹ). Thus

Jn(M̃ξ) = Mξ where Mξ is a rational curve defined by {x− yn = ξ}. Note

that Mξ ∩C2 is isomorphic to a line C and Mξ0 ∩Ca consists of nd distinct

points. Let ω̃ be the class of a big disk ∂∆̃ (counter-clockwise oriented)

in M̃ξ0 where ∆̃ = {(ξ0, ỹ); |ỹ| ≤ |ỹ0|} where b̃0 = (ξ0, ỹ0). By Proposition

(2.3) and (4.7.1), we have

π1(P
2 − Jn(C;L∞); b̃0) = π1(C̃2 − Jn(C;L∞)a; b̃0)/〈ω̃〉(4.7.3)

= π1(C
2 − Ca; b0)/〈Jn�(ω̃)〉

Thus we need to know the image Jn�(ω̃). Let ω′ = J−1
n� (ω) ∈ π1(C̃2 −

Jn(C;L∞); b̃0).

Lemma (4.7.4). Jn�(ω̃) = ωn, ω′n = ω̃ and the order of ι̃�(ω
′) in

π1(P
2 − Jn(C;L∞)) is n.

Assuming this for a moment, we complete the proof of Theorem (4.7).

As Jn� is an isomorphism, ω′ ∈ Z(π1(C̃2 − Jn(C;L∞); b̃0)) and π1(P
2 −

Jn(C;L∞); b̃0) ∼= π1(C
2 − Ca; b0)/〈ωn〉 by (4.7.3). Combining this with

(4.7.2), we get a central extension

1 → 〈̃ι�(ω′)〉 → π1(P
2 − Jn(C;L∞); b̃0)

Ψn−→π1(P
2 − C; b0) → 1

where Ψn is the quotient homomorphism which is associated with the above

identification. This proves (1). The assertion (2) can be proved by the exact

same way as in the proof of Corollary (3.4.1). �
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Proof of Lemma (4.7.4). The main difficulty is that the image of a

pencil line M̃ξ is not a pencil line but it is a smooth rational curve Mξ and

it is not so easy to see how ω′ and ω̃ are related. First observe that the base

point of the family of rational curves Mξ, ξ ∈ C is [1; 0; 0]. We take R > 0

sufficiently large so that Lη is generic for C for any η with |η| ≥ R, η �= ∞.

As we are going to study the behavior of Mξ and Lη for |ξ|, |η| → ∞, it

is convenient to take another affine coordinates s = X/Y, t = Z/Y for the

affine space P2 − {Y = 0}. We identify Lη, η �= 0 with P1 by the rational

mapping s : Lη
∼= P1. Note that B0 corresponds to ∞ ∈ P1 and Lη −{B0}

is identified with C = P1−{∞}. In this affine coordinates, Lη is defined by

Lη = {t = η−1}. We choose a positive number S so that DS(η) ⊃ Lη ∩ C

for any |η| ≥ R where

DS(η) := {(s, t) ∈ Lη; t = η−1, |s| ≤ S}.

We can assume that |η0| ≥ R and ω which is represented by a loop L◦Ω◦L−1

where L is a line segment on the imaginary axis connecting b0 and 2Si ∈
∂D2S(η0) and Ω = ∂D2S(η0) as before. To show the assertion, we look at

the behavior of Mξ when ξ →∞. Put ξ0 = 1/εn0 . Mξ0 is defined by

Mξ0 = {[X;Y ;Z] ∈ P2; ξ−1
0 (XZn−1 − Y n) = Zn}

and Mξ0 ∩ {Y = 0} = {[1; 0; 0], [ξ0; 0; 1]}. In the affine space P2−{Y = 0},
we have Mξ0 ∩ {Y �= 0} = {(s, t) ∈ C2; tn = εn0 (stn−1 − 1)}. The affine

equation can be rewritten as

(4.7.5) Mξ0 ∩ {Y �= 0} = {(s, t) ∈ C2; (t/ε0)
n = −1 + εn−1

0 s (t/ε0)
n−1}

Thus we see that limε0→0 t/ε0 = θj for some j = 0, . . . , n − 1 where θj =

exp((2j + 1)πi/n). Thus the curve Mξ0 behaves approximately like the

union of n lines Lξ0,0 ∪ · · · ∪ Lξ0,n−1 outside of B0 where ξ−1
0,j = ε0θj when

ε0 → 0. To see this assertion more precisely, we consider the projection

ϕξ0 : Mξ0 → L∞ ∼= P1, ϕξ0([X;Y ;Z]) = [X;Y ], ϕξ0(s, t) = (s, 0)

By an easy computation, we see that ϕξ0 is an n-fold covering branched

over

Σ(ϕξ0) := {s ∈ C; sn = ε
−n(n−1)
0 nn/(n− 1)n−1} ∪ {[1; 0; 0]}.
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Figure (4.7.A) (n = 2, M = Mξ0)

Here s ∈ C corresponds to [s; 1; 0]. Note that |Σ(ϕξ0)| = n + 1 and each

point of Σ(ϕξ0) goes to infinity when ε0 → 0. Thus Σ(ϕξ0) ∩ D2S = ∅ as

long as |ε0| is small enough where D2S := {(s, 0) ∈ La
∞; |s| ≤ 2S}.

Let ∆j(ξ0), j = 1, . . . , n be the connected components of ϕ−1
ξ0

(D2S) ∩
Mξ0 . Here we may assume that ∆j(ξ0) is sufficiently near to D2S(ξ0,j)

so that ∆j(ξ0) contains exactly d points of Mξ0 ∩ Ca in its interior which

are sufficiently near Lξ0,j ∩ Ca. Let Ωj := ∂∆j(ξ0). Then by the above

observation, Ωj is free homotopic to ∂D2S(ξ0,j) ⊂ La
ξ0,j

in C2 − Ca by the

homotopy H : ∆j × [0, 1] → C2 − Ca which is defined by H(s, t, τ) =

(1 − τ)(s, t) + τ(s, ε0θj). Recall that ∂D2S(ξ0,j) is free homotopic to a

bracelet of L∞. Therefore Ωj is also free homotopic to a bracelet of L∞. We

have assumed that b0 ∈ Mξ0∩Lη0 . Thus we can choose a point bj ∈ ∂∆j(ξ0)

and a simple path �j from b0 to bj in Mξ0 so that �j ∩ �k = {b0} and the

following property is satisfied. Let

ωj := [�j ◦ Ωj ◦ �−1
j ] ∈ π1(C

2 − C; b0),

ω̃j = J−1
n (ω̃j) ∈ π1(C̃2 − Jn(C;L∞); b̃0).

Then ωn · · ·ω1 is homotopic to the counter-clockwise oriented big circle

Ω := {(x, y) ∈ Mξ0 ; |y| = |y(b0)|} in Mξ0 and

(4.7.6) ω̃ = ω̃n · · · ω̃1 ∈ π1(C
2 − Jn(C̃;L∞); b̃0)

Figure (4.7.B) shows these loops in Ma
ξ0

∼= C. On the other hand, ωj = ω

as Ωj is free homotopic to Ω in C2 − Ca. As Jn	 is an isomorphism, we
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Figure (4.7.B) (d = 3)

conclude that ω′ = ω̃1 = · · · = ω̃n and Jn	(ω̃) = ωn. The order of ω̃j in

π1(P
2−Jn(C;L∞)) is n by the exact same homological argument as in the

proof of Theorem (3.4). This completes the proof of Lemma (4.7.4). �

(D) Corollaries

The proofs of the following Corollaries are given by the exact same way

as those of Corollaries (3.7.1), (3.7.2) and Theorem (3.8).

Corollary (4.8). Let Jn : C2 → C2 be an admissible Jung transform

of degree n with respect to a central line at infinity L∞. Then we have the

following.

(1) π1(P
2 − Jn(C;L∞)) is abelian if and only if π1(P

2 − C) is abelian.

(2) Assume that C is irreducible. Then π1(V (Jn(C;L∞))) ∼= π1(V (C))

where V (Jn(C;L∞)) and V (C) are respective Milnor fibers of Jn(C;L∞)

and C.

Corollary (4.9). Let Jn : C2 → C2 be an admissible Jung trans-

form of degree n with respect to a central line at infinity L∞. Then L̃∞ is

central for Jn(C;L∞) and π1(P
2 − Jn(C;L∞) ∪ L̃∞) is isomorphic to the

fundamental group of a generic affine complement of Jn(C;L∞).

Corollary (4.10). Let Jn : C2 → C2 be an admissible Jung trans-

form of degree n with respect to a central line at infinity L∞. Let C =
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C1∪· · ·∪Cr and C ′ = C ′
1∪· · ·∪C ′

r be projective curves with the same num-

ber of irreducible components and assume that degree(Ci) = degree(C ′
i) = di

for i = 1, . . . , r. We assume that either π1(P
2−C) or π1(P

2−C ′) satisfies

(H.I.C)-condition and that π1(P
2 − Jn(C;L∞)) and π1(P

2 − Jn(C ′)) are

isomorphic. Then π1(P
2 − C) and π1(P

2 − C ′) are isomorphic.

Remark (4.11). (1) In the definition of an admissible Jung transform,

we can take an affine automorphism

J ′
n : C2 → C2, (x, y) �→ (x + hn(y), y)

where hn(y) is an arbitrary polynomial of degree n. Let J ′
n(C;L∞) be the

closure of J ′
n
−1(Ca). Then the topological type of the pair (P2,J ′

n(C;L∞))

is equal to that of (P2,Jn(C;L∞)).

(2) If Jn : C2 → C2 is admissible but L∞ is not necessarily central, there

exists a surjective homomorphism Ψn : π1(P
2 − Jn(C;L∞)) → π1(P

2 −
C). In fact, assuming the admissibility [1; 0; 0] /∈ C, Jn ca be extended

a birational mapping J ′
n : P2 → P2 defined by J ′

n([X;Y ;Z]) = [XZn−1 +

Y n;Y Zn−1;Zn]. J ′
n is well-defined on P2−{[1; 0; 0]} and J ′

n(L̃∞−{[1; 0; 0]})
= [1; 0; 0]. So J ′

n : P2 − Jn(C;L∞)) → P2 − C is well-defined. However

Ker Ψn is not necessarily a cyclic group of order n. We will see an example

in Theorem (6.7) in §6.

§5. Zariski’s quartic and Zariski pairs

In this section, we apply the results of §3 and §4 to construct plane

curves whose complement have interesting fundamental groups.

(A) Zariski’s three cuspidal quartics

Let Z4 be an irreducible quartic with three cusps. Such a curve is a

rational curve. For example, we can take the following curve which is

defined in C2 by the following equation ([O6]):

(5.1) Za
4 = {(x, y) ∈ C2;x3(3x + 8)− 6x2(y2 − 1)− (y2 − 1)2 = 0}

We call such a curve a Zariski’s three cuspidal quartic. It is known that

the fundamental group π1(C
2 − Z4) and π1(P

2 − Z4) have the following

representations ([Z1],[O6]):

(5.2)

{
π1(C

2 − Z4) = 〈ρ, ξ; {ρ, ξ} = e, ρ2 = ξ2〉
π1(P

2 − Z4) = 〈ρ, ξ; {ρ, ξ} = e, ρ2 = ξ2, ρ4 = e〉
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where ρ and ξ are lassos for C and {ρ, ξ} := ρξρξ−1ρ−1ξ−1. The relation

{ρ, ξ} = e is equivalent to ρξρ = ξρξ. A lasso ω for L∞ is given by ρ2ξ2(=

ρ4). Recall that ω−1 is a lasso for L∞ and is contained in the center. A

Zariski’s three cuspidal quartic is the first example whose complement has

a non-abelian finite fundamental group. We first recall the proof of the

finiteness.

Lemma (5.3) ([Z1]). Put

G1 = 〈ρ, ξ; {ρ, ξ} = e, ρ2 = ξ2, ρ4 = e〉.

Then G1 is a finite group of order 12 such that D(G1) = 〈ρ2ξρ〉 ∼= Z/3Z,

Z(G1) = 〈ρ2〉 ∼= Z/2Z and H1(G1) ∼= Z/4Z and it is generated by the class

of ρ

Proof. Let g ∈ G1. First, using the relations ρ4 = ξ4 = e, ρ2 = ξ2 and

ρξρ = ξρξ, we can write g in one of the following expression: ρα, ραξ, ραξρ

for 0 ≤ α ≤ 3. This observation already shows that |G1| ≤ 12. Let G′
1

be the subgroup of S12 generated by σ := (1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12)

and τ := (1, 5, 3, 7)(2, 9, 4, 11)(6, 10, 8, 12). It is easy to see that σ and τ

satisfies the relations: στσ = τστ, σ2 = τ2 σ4 = e. Thus we have a

homomorphism ψ : G1 → G′
1 defined by ψ(ρ) = σ and ψ(ξ) = τ . By an

easy computation, we see that στ has order 6. As orderσ = 4, σ /∈ 〈στ〉.
This implies that |G′

1| ≥ 12. It is also easy to see |G′
1| = 12 directly.

Thus we conclude that |G1| = |G′
1| = 12 and ψ is an isomorphism. Taking

abelianization of the above relations, we get that ρ̄ = ξ̄, 4ρ̄ = 0 i.e., H1(G1)

is a cyclic group of order 4 which is generated by ρ̄ = ξ̄. This implies that

|D(G1)| = 3. Let β be the commutator [ρ, ξ]. Then β = ρξρ−1ξ−1 =

ρξρ3ξ3 = ρ2ξρ and ψ(β) = [σ, τ ] = (1, 8, 11)(2, 12, 5)(3, 6, 9)(4, 10, 7). Thus

β has order 3 and therefore β generates the commutator subgroup. We can

show by an easy computation that Z(G1) = 〈ρ2〉 ∼= Z/2Z. �

We consider the Hurewicz exact sequence:

(5.4) 1 → D(G1) ∼= Z/3
ι1−→G1

ψ−→H1(G1) ∼= Z/4Z → 1

This sequence splits by taking the section ρ̄ �→ ρ of ψ so that G1 has a

structure of a semi-direct product of Z/3Z and Z/4Z. More precisely, the

semi-direct structure is given by ρβρ−1 = β2 as ρβρ−1 = ρ(ρ2ξρ)ρ−1 =

ρ3ξ = β2.
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(B) Generic transforms of a Zariski’s quartic

Let Cn(Z4) (respectively Cn,n(Z4)) be a generic cyclic transform of de-

gree n (resp. of (n, n)) of the Zariski’s quartic Z4 and let Jn(Z4) be a

generic Jung transform of degree n of the Zariski’s quartic Z4. The sin-

gularities of Cn(Z4) (respectively of Cn,n(Z4)) are 3n cusps (resp. 3n2

cusps). Cn(Z4) has one more singularity at ρ∞ ∈ L∞ and (Cn(Z4), ρ∞)

is equal to B((n − 1)d, nd) := {ζnd − ξd(n−1)} = 0}. On the other hand,

Jn(Z4) is a rational curve which has 3 cusps and one more singularity

at infinity ρ∞ ∈ Jn(Z4) ∩ L∞. (Jn(Z4), ρ∞) is topologically equal to

B(n − 1, n; d) := {(ξn−1 + ζn)d − (ζξn−1)d = 0}. By Corollary (3.4.1)

and Theorem (4.7), we have the following:

Theorem (5.5). The affine fundamental groups π1(C
2 − Cn(Z4)

a),

π1(C
2 − Jn(Z4)

a) are isomorphic to π1(C
2 − Z4) ∼= 〈ρn, ξn; {ρn, ξn} =

e, ρ2
n = ξ2

n〉.
(1) The projective fundamental groups π1(P

2−Cn(Z4)) and π1(P
2−Jn(Z4))

are isomorphic to Gn where Gn is defined by Gn := 〈ρn, ξn; {ρn, ξn} =

e, ρ2
n = ξ2

n, ρ
4n
n = e〉. Moreover we have a central extension of groups:

(5.5.1) 1 → Z/nZ → Gn
Φn−→G1 → 1

defined by Φn(ρn) = ρ and Φn(ξn) = ξ and Ker Φn is generated by ρ4
n. In

particular, we have |Gn| = 12n, D(Gn) = 〈βn〉 ∼= Z/3Z where βn = [ρn, ξn]

and Z(Gn) = 〈ρ2
n〉 ∼= Z/2nZ.

(2) The Hurewicz sequence 1 → D(Gn) → Gn → H1(Gn) → 1 has a

canonical cross section θ : H1(Gn) → Gn which is given by θ(ρ̄n) = ρn.

This gives Gn a structure of semi-direct product Z/3 and Z/4nZ which is

determined by ρnβnρ
−1
n = β2

n.

(3) Gn is identified with the subgroup of the permutation group S12n of 12n

elements {xi, yj , zk; 1 ≤ i, j, k ≤ 4n} generated by two permutations: σn =

(x1, . . . , x4n)(y1, . . . , y4n)(z1, . . . , z4n) and τn = (x1, y1, x3, y3, . . . , x4n−1,

y4n−1)(x2, z1, x4, z3, . . . , x4n, z4n−1)(y2, z2, y4, z4, . . . , y4n, z4n).

Proof. The assertions (1) and (2) is due to Theorem (3.7) and The-

orem (4.7). We prove the assertion about the semi-direct structure in

(2). Note that any element of Gn can be uniquely written as one of

ρi, ρiξn, ρiξnρn for 0 ≤ i ≤ 4n − 1. Let βn = [ρn, ξn] ∈ D(Gn). Then
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by an easy computation, we have βn = ρ4n−2
n ξnρn, β2 = ρ4n−1

n ξn and and

ρnβnρ
−1
n = ρ4n−1

n ξn = β2
n. Finally we prove the assertion (3). It is easy to

see that {σn, τn} satisfies the relations: {σn, τn} = e, σ2
n = τ2

n, σ4n
n = e.

Thus we have a homomorphism φ : Gn → S12n which is defined by

φ(ρn) = σn and φ(ξn) = τn. Let G′
n be the image. As we know |Gn| = 12n

and ord(σn) = 4n, we have either |G′
n| = 4n or 12n. As τn /∈ 〈σn〉, we

must have |G′
n| = 12n, which implies that φ : Gn → G′

n ⊂ S12n is an

isomorphism. �

Remark (5.6). Composing the cyclic and Jung transformations, we

can produce many different types of singularities with the same fundamental

group. For example, there are at least 7 types of curves Ci, i = 1, . . . , 7 of

degree 12 whose complements have the fundamental group G3 as follows.

(In the list, Σ(Ci) is the singularities of Ci.)

1. C1 = C1,3(Z4) and Σ(C1) = {9B(2, 3) + B(8, 12)}. 2. C2 = C2,3(Z4)

and Σ(C2) = {18B(2, 3) + B(4, 12)}. 3. C3 = C3,3(Z4) and Σ(C3) =

{27B(2, 3)}. 4. C4 = J3(Z4) and Σ(C4) = {3B(2, 3) + B(2, 3; 4)}. 5. C5 =

C3(J3(Z4);D) where D = {x̃ = α} and Σ(C5) = {9B(2, 3) + 3B(4, 8)}. 6.

C6 = C2(J3(Z4);D) where D = {x̃ = α} and Σ(C5) = {6B(2, 3)+B(4, 28)}.
7. C7 = C3(J2(Z4);D) where D = {x̃ = α} and Σ(C7) = {9B(2, 3) +

B(4, 24)}.

(C) Zariski pairs

Let C and C ′ be plane curves of the same degree and let Σ(C) =

{a1, . . . ,am} and Σ(C ′) = {a′
1, . . . ,a

′
m′} be the singular points of C and

C ′ respectively. Assume that L∞ is generic for both of them. We say that

{C,C ′} is a Zariski pair if (1) m = m′ and the germ of the singularity

(C,aj) is topologically equivalent to (C ′,a′
j) for each j and (2) there exist

neighborhoods N(C) and N(C ′) of C and C ′ respectively so that (N(C), C)

and (N(C ′), C ′) are homeomorphic and (3) the pair (P2, C) is not homeo-

morphic to the pair (P2, C ′) ([Ba]).

The assumption (2) is not necessary if C and C ′ are irreducible. For our

purpose, we replace (3) by one of the following:

(Z-1) π1(P
2 − C) �∼= π1(P

2 − C ′),
(Z-2) π1(C

2−Ca) �∼= π1(C
2−C ′a), where C2 = P2−L∞ and L∞ is generic

for C and C ′,
(Z-3) D(π1(P

2 − C)) �∼= D(π1(P
2 − C ′)).
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We say that {C,C ′} is a strong Zariski pair if the conditions (1), (2) and

the condition (Z-1) are satisfied. Similarly we say {C,C ′} is a strong generic

affine Zariski pair ( respectively strong Milnor pair) if the conditions (1),

(2) and the condition (Z-2) (resp. (Z-3) ) are satisfied.

If C and C ′ are irreducible curves satisfying (1) and (2), {C,C ′} is a

strong Milnor pair if and only if the fundamental groups of the respective

Milnor fibers V (C) and V (C ′) are not isomorphic by Proposition (2.7). The

above three conditions (Z-1)∼ (Z-3) are related by the following.

Proposition (5.7). (1) If {C,C ′} is a strong Milnor pair, {C,C ′} is

a strong Zariski pair as well as a strong generic affine Zariski pair.

(2) Assume that C and C ′ are irreducible and assume that {C,C ′} is a

strong Zariski pair and either π1(C
2−Ca) or π1(C

2−C ′a) satisfies (H.I.C)-

condition. Then {C,C ′} is a strong generic affine Zariski pair.

Proof. The assertion (1) is immediate by Proposition (2.3). As-

sume that C and C ′ are irreducible and assume that π1(C
2 − C ′a) sat-

isfies (H.I.C)-condition and assume that φ : π1(C
2 − C) ∼= π1(C

2 − C ′)
is an isomorphism. Let ω, ω′ be the generators of the respective kernels

of the canonical homomorphisms: ι� : π1(C
2 − C) → π1(P

2 − C) and

ι′� : π1(C
2 − C ′a) → π1(P

2 − C ′). As the homology class of ω is divis-

ible by d = degree(C), the homology class of φ(ω) is also divisible by d

and therefore ι′�(φ(ω)) ∈ D(π1(P
2 − C ′)) ∩ Z(π1(P

2 − C ′)). By (H.I.C)-

condition, φ(ω) ∈ Ker(ι′�) and thus φ(ω) = ω′j for some j ∈ Z. As

H1(C
2 − C) ∼= H1(C

2 − C ′) ∼= Z and [ω] = d, [ω′] = d, we must have

j = ±1. Thus φ induces an isomorphism of Ker ι� and Ker ι′� and therefore

an isomorphism of π1(P
2 − C) ∼= π1(P

2 − C ′) by Proposition (2.3) and by

Five Lemma. �

The results of §3,4 can be restated as follows.

Theorem (5.8). Let C,C ′ be projective curves and let Cn,m(C),

Cn,m(C ′) (respectively Jn(C) and Jn(C ′)) be the generic (n,m)-fold cyclic

transforms (resp. generic Jung transform of degree n) of C and C ′ respec-

tively.

(1) Assume that {C,C ′} is a strong affine Zariski pair (respectively strong

Milnor pair). Then {Cn,m(C), Cn,m(C ′)} is a strong affine Zariski pair (resp.

strong Milnor pair).
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(2) Assume that {C,C ′} is a strong Zariski pair. We assume also either

C or C ′ satisfies (H.I.C)-condition. Then {Cn,m(C), Cn,m(C ′)} is a strong

Zariski pair.

The same assertion holds for Jn(C) and Jn(C ′).

Proof. The assertion (1) is due to Theorem (3.7) and Theorem (4.7).

The assertion (2) follows from Theorem (3.8) and Corollary (4.10). �

A well-known example is given by Zariski ([Z1]). Let Z6 be a curve

of degree 6 with 6 cusps which are on a conic and let Z ′
6 be a curve of

degree 6 with 6 cusps which are not on a conic. In [O6], such examples

are explicitly given. It is known that π1(P
2 − Z6) is isomorphic to the free

product Z/2Z ∗ Z/3Z and π1(P
2 − Z ′

6) is isomorphic to Z/6Z.

Example (5.9) (A new example of a Zariski pair). In (1) ∼ (4), we

apply generic 2-covering or (2, 2)-covering and generic Jung transform of

degree 2 to the pair {Z6, Z
′
6} to obtain three strong Zariski pairs of curves

of degree 12:

(1) Take {C2(Z6), C2(Z
′
6)}. Both curves have 12 cusps (= B(2, 3)) and one

B(6, 12) singularity at infinity. π1(P
2−C2(Z6)) is a central Z/2Z-extension

of Z/3Z ∗ Z/2Z and it is denoted by G(3; 2; 4) in [O5]. π1(P
2 − C2(Z

′
6)) is

isomorphic to a cyclic group Z/12Z.

(2) Take {C2,2(Z6), C2,2(Z
′
6)}. They have 24 cusps. The fundamental groups

are as above.

(3) Take {J2(Z6),J2(Z
′
6)}. Singularities are 6 cusps and one B(6, 18). The

fundamental groups are as in (1).

(4) Take {C2(J2(Z6)), C2(J2(Z
′
6))}. Singularities are 12 cusps and two

B(6, 6) singularities.

(5) We now propose a new strong Zariski pair {C1, C2} of degree 12. First

for C1, we take the generic cyclic transform C3(Z4) of degree 3 of a Zariski’s

three cuspidal quartic. Recall that C1 has 9 cusps and one B(8, 12) sin-

gularity at ρ∞ := [1; 0; 0]. We have seen that π1(P
2 − C1) is G3, a finite

group of order 36. We will construct below another irreducible curve C2

of degree 12 with 9 cusps and one B(8, 12) singularity at ρ∞ such that

π1(P
2−C2) ∼= G(3; 2; 4) where G(3; 2; 4) is introduced in [O5] (see also §6)

and it is a central extension of Z/3Z ∗ Z/2Z by Z/2Z.
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Figure (5.9.A)

(6) Take {C3,3(Z4), C3(C2;D)} where D = {x = α} is generic. They are

curves of degree 12 with 27 cusps. The fundamental groups π1(P
2−C3,3(Z4))

and π1(P
2 − C3(C2;D)) are isomorphic to the case (5).

Construction of C2. Let us consider a family of affine curves

Ka(τ) = {(x, y) ∈ C2;h(y)3 = τG(x)} (τ ∈ C∗) where h(y) = 3y4+4y3−1,

G(x) = −(x2 − 1)2. Let K(τ) be the projective compactification of Ka(τ).

Let a1, . . . , a4 be the solution of h(y) = 0. Here we assume that a1, a2

are real roots with a1 < a2 and a3 = a4. By a direct computation,

we see that K(τ) has 8 cusp singularities at {A1, A
′
1, . . . , A4, A

′
4} where

Ai := (1, ai), A′
i := (−1, ai) for i = 1, . . . , 4 and a B(8, 12) singularity at

ρ∞ = [1; 0; 0]. Putting τ = 1, K(1) has one more cusp at A0 := (−1, 0).

For C2, we take K(1). As π1(P
2−K(τ)) = G(3; 2; 4) by [O5]2, π1(P

2−C2)

is not smaller than G(3; 2; 4) as there exists a surjective morphism from

π1(P
2 − K(1)) to π1(P

2 − K(τ)) = G(3; 2; 4). In fact, we assert that

π1(P
2 − C2) = G(3; 2; 4).

Appendix : Proof of π1(P
2 − C2) = G(3; 2; 4). We use the pencil

Lη = {x = η} to compute the fundamental group. We use the same method

which was used in [O5]. Note that the critical values of H : C → C, H(y) =

h(y)3 is {0,−1,−8}. Let {a1, . . . , a4} be the root of h(y) = 0 and let

2In [O5], we have only considered the curves of type f(y) = g(x) with deg f = deg g.
However the same assertion holds if deg f(y) ≥ deg g(x).
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Figure (5.9.B) (ΓG)

Figure (5.9.C)

{ai,j ; i = 1, . . . , 4, j = 1, 2, 3} be the roots of H(y) = −1. We assume that

a1 < a2 are real solutions and a3, a4 are conjugate and �(a3) > 0. Let O be

the origin, P = −1 and Q = −8 in the complex plane and we consider the

oriented thin line segment OP and the oriented thick line PQ. We consider

Γ = OP∪PQ as an oriented graph with vertices O,P,Q. Put ΓH = H−1(Γ)

and ΓG = G−1(Γ) and we consider ΓH and ΓG. Let b1 > 0 and −b1 be the
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solution of G(x) = −1 and let b2 > 0,−b2, b3, b̄3 be the roots of G(x) = −8.

In the graph, A = 1, A′ = −1, B = b1, B
′ = −b1 and C,C ′, D,D′ correspond

to the roots of G(x) = −8. We move the pencil line Lη along ΓG. Then

the intersection Lη ∩ C2 moves along ΓH . We take generators gi,j , 1 ≤ i ≤
4, 1 ≤ j ≤ 3 of π1(Lε; b0), ε small and 0 < ε < 1, as in Figure (5.9.C). In

a small circle centered at ai, we have three intersections of C2 ∩ Lε and in

Figure (5.9.C), we find corresponding generators gi,1, gi,2, gi,3. We obtain

the monodromy relations by the deformation along Γ, turning counter-

clockwise near the vertices. The real graphs of h(y) and G(x) (Figure

(5.9.A)) and Figure (5.9.B) will be helpful to see the movement of the

intersection Lη ∩ C2.

At η = 1, we get the cusp relation: R(1) : gi,1 = gi,3, {gi,1gi,2} =

e, i = 1, . . . , 4. At η = b1 and b2, we obtain R(2) : g1,2 = g2,1 = g4,1 and

R(3) : g3,1 = g2,1. At η = 0, we obtain the relation R(4) : g−1
1,3g4,2g1,3 =

g2,2, {g1,3, g2,2} = e. Finally at η = b3 and b̄3, we obtain the relations:

R(5) : g2,2 = g3,2 and R(6) : g3,2 = g4,2. Therefore we get ρ := g1,2 =

g2,1 = g2,3 = g3,1 = g3,3 = g4,1 = g4,3 and ξ := g2,2 = g3,2 = g4,2. By R(4),

we get g1,3ξ = ξg1,3. Together with the relation R(1), we get g1,3 = ξ. Thus

we need two generators ρ, ξ and it has the braid relation: ρξρ = ξρξ. The

vanishing relation of the big circle is given by ω = (g2,3g2,2g2,1)·(g3,3g3,2g3,1)·
(g4,3g4,2g4,1) · (g1,3g1,2g1,1) = (ρξρ)4 = e. We know that 〈ρ, ξ; {ρ, ξ} =

(ρξρ)4 = e〉 is Z/2Z central extension of Z/3Z∗Z/2Z and we have denoted

by G(3; 2; 4). We can see easily that η = −1,−b1,−b2 do not give any

further relations. �

§6. Non-atypical curves and some examples

Let f(x, y) be a polynomial and we consider f as a mapping f : C2 → C

and let Ca
t := f−1(t) ⊂ C2 and let Ct be the compactification of Ca

t . Let

{a1
∞, . . . ,ak

∞} = L∞ ∩ C be the points at infinity as in §4. Recall that

τ ∈ C is not an atypical value if the embedded topological type of the germ

(Ct,a
i
∞) is stable at t = τ . This is also equivalent to the local constancy of

the Milnor number µ(Ct;a
i
∞) at t = τ for each i = 1, . . . , k ([H-L]). We say

that Ca
τ is a non-atypical affine curve if τ is not atypical value. We say that

a polynomial f(x, y) is non-atypical if f has no atypical values. Assume

that Ca
τ is a reduced affine curve and let {a1, . . . ,as} be the singular points

of Ca
τ . Define χ(Ca

τ )′ := χ(Ca
τ )−

∑s
i=1 µ(Ca

τ ;ai). By the formula (3.3.1) and
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by the upper semi-continuity of the Milnor number, we have the following

simple criterion for τ to be non-atypical value.

Proposition (6.1). Assume that Ca
τ is reduced. Then τ is not an

atypical value if and only if χ(Ca
τ )′ = χ(Ca

t0) where Ca
t0 is a smooth non-

atypical curve. This is equivalent to χ(Ca
τ )′ ≤ χ(Ca

t ) for any t such that Ca
t

is reduced.

A projective curve C is called non-atypical if there exists a line L∞ which

passes through all singular points of C such that Ca := C ∩ (P2 − L∞) is

a smooth non-atypical affine curve with respect to the affine space C2 :=

P2 − L∞. For a smooth non-atypical affine curve, we have the following

result.

Proposition (6.2). Let Ca
τ be a non-atypical smooth affine curve.

Then π1(C
2 − Ca

τ ) ∼= Z.

Proof. Let Σ be the finite set which is defined by the union of the

critical values and the atypical values of f . Then f : C2− f−1(Σ) → C−Σ

is a locally trivial topological fibration. Let D(τ) be a small disk centered

at τ such that D(τ)∩Σ = ∅ and let D(Σ) be a domain containing Σ which

is homeomorphic to a disk and D(Σ)∩D(τ) = ∅. We take a simple path L

which joins D(Σ) and D(τ). Let D′ = D(τ) ∪D(Σ) ∪ L. We may assume

that D(Σ), D(Σ) ∪ L and D′ are deformation retract of the base space C.

By the above fibration structure, we see that the following inclusions are

homotopy equivalences.

f−1(D(Σ)) ↪→ f−1(D(Σ) ∪ L) ↪→ f−1(D′) ↪→ C2,

f−1(D′ − {τ}) ↪→ C2 − Ca
τ

As f−1(D(τ) − {τ}) is diffeomorphic to the product Ca
τ ′ × (D(τ) − {τ})

where τ ′ is a point in the boundary ∂D(τ), we apply van Kampen theorem

to f−1(D′ − {τ}) = f−1(D(Σ) ∪ L) ∪ f−1(D(τ) − {τ}) and the assertion

follows immediately. �

Corollary (6.2.1). Let Cτ be a non-atypical projective curve. Then

π1(P
2 − Cτ ) ∼= Z/dZ where d is the degree of Cτ .
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By Proposition (6.1), we have the following application for Jung trans-

forms which are not necessarily central.

Theorem (6.3). Let f(x, y) be the defining irreducible polynomial and

let let Ca
t := f−1(t). Consider Jung map Jn : C2 → C2, (x, y) �→ (x+yn, y)

and let f (n)(x, y) = f(Jn(x, y)) and C̃a
t = J−1

n (Ca
t ) = f (n)−1

(t).

(i) If τ ∈ C is a non-atypical value for f , then τ is also a non-atypical value

for f (n). Thus if Ca
τ is a smooth non-atypical curve, so is C̃a

τ .

(ii) If f is a non-atypical polynomial, so is f (n).

Example (6.4). We give some examples of non-atypical curves. Let

Ca be an affine curve defined by Ca = {f(x, y) = 0} and let f(x, y) =

f0 + f1(x, y) + · · · + fd(x, y) be the homogeneous decomposition of f . Let

fd(x, y) = cxrys
∏k

i=1(y−αix)νi where αi �= 0 for i = 1, . . . , k and mutually

distinct.

1. (Generic line at infinity L∞) Assume that νi = 1 for any i = 1, . . . , k

and max(r, s) ≤ 1. Then C and L∞ intersect transversely and f is a non-

atypical polynomial.

2. Assume that f(x, y) is convenient, f(0, 0) = 0 and the outside faces of

the Newton diagram ∆(f) are non-degenerate. Then the toric degeneracy

νtor
∞ (f) is zero. Thus f is non-atypical ([L-O2,L-O3]).

3. We assume that C0 is smooth at [1;αi; 0] for any i = 1, . . . , k. By a linear

change of the affine coordinates, we assume that fd(x, y) = c
∏k

i=1(y −
αix)νi . For i with νi ≥ 2, the smoothness is equivalent to fd−1(1, αi) �= 0.

Then Ct is smooth at infinity for any t ∈ C and f is non-atypical.

4. (One place at infinity) Assume that fd(x, y) = yd and C0 is locally

irreducible at [1; 0; 0]. Then Ct is also irreducible at [1; 0; 0] for any t ∈ C

and f is non-atypical ([E], [A-O]).

5. Let f(x, y) be a weighted homogeneous polynomial. Then 0 is only

possible atypical value of f as f : C2 − f−1(0) → C∗ is a fibration. If

further the origin is an isolated singular point of f−1(0), f is non-atypical.

The following assertion can be proved by a standard argument.

Proposition (6.5). Let f(x, y) be a non-atypical polynomial and let

t0 be a regular value and let B1 be the first Betti number of the generic

fiber Ca
t0 := f−1(t0). Let Σ = {ρ1, . . . , ρs} be the critical points of f . Then
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∑s
i=1 µ(f ; ρi) = B1 and the vanishing cycles at ρ1, . . . , ρs are linearly inde-

pendent.

Example (6.6). We consider the following simple polynomial f(x, y) :=

qqyp − xq with p ≥ q ≥ 2. The constant qq is given by a technical reason.

Let Ct be the projective closure of f−1(t) for t ∈ C. Note that Ct is a

rational curve if gcd(p, q) = 1. By the criterion (2) or (5) in the Example

(6.4), f is a non-atypical polynomial. We denote the affine fundamental

group π1(C
2 − C0) by G(p; q). If p, q ≥ 2 and (p, q) �= (2, 2), G(p; q) is not

commutative and it has the following representation ([O5]):

G(p; q) = 〈ξ0, . . . , ξp−1; ξi = ξq+i, i ≤ p− q − 1,

ξi = ωξi+q−pω
−1, p− q ≤ i ≤ p− 1

〉
= 〈ξi (i ∈ Z), ω; ω = ξp−1ξp−2 · · · ξ0,(6.6.1)

ξi = ξq+i, ξi+p = ωξiω
−1, i ∈ Z,

〉
The second representation is useful for a systematical treatment of

G(p; q) ([O5]). We define G(p; q; r) = G(p; q)/〈ωr〉. Thus π1(P
2 − C0) ∼=

G(p; q; 1) := G(p; q)/〈ω〉 and we know

G(p; q; 1) = Z/p1Z ∗ F (s− 1), s = gcd(p, q), p = p1s

where F (s−1) is a free group of rank s−1 ([O5]). The assertion for the case

gcd(p, q) = 1 is also results from the simply connectedness of the Milnor

fiber V (f) ([O1]). Therefore L∞ is not central in this case. We consider

the Jung transform C̃t of Ct of degree p. The affine equation is given by:

C̃a
t = {(x, y) ∈ C2; f̃(x, y) = t}, f̃(x, y) = qqyp − (x + yp)q

C̃0 has two singularities. The origin O is a non-degenerate singularity which

consists of s cusps of type yp1 − xq1 = 0 where s = gcd(p, q), p = p1s and

q = q1s. So µ(C̃0;O) = (p− 1)(q − 1). Another singularity is a∞ = [1; 0; 0]

and µ(C̃0;a∞) = pq(pq−4)+p+ q+1. a∞ is also singular point of C̃t with

the same Milnor number. The local equation at a∞ is given by

qqζpξpq−p − (ξp−1 + ζp)q = tξpq, ζ = Y/X, ξ = Z/X
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C̃t has also s irreducible components at a∞.

We know that π1(P
2− C̃t) = Z/pqZ for t �= 0 by Corollary (6.2.1). Now

for C̃0, we assert:

Theorem (6.7). We have an isomorphism, π1(P
2 − C̃0) ∼= G(p; q; q)

and G(p; q; q) is a Z/sZ central extension of Z/p1Z∗Z/q1Z∗F (s−1) where

s = gcd(p, q) and p = sp1 and q = sq1.

This example shows that Theorem (4.7) does not hold in general with

a non-central line at infinity L∞. It has been proved that the fundamental

group of the complement of a projective curve of degree pq defined by

f q
p −fp

q = 0 for generic homogeneous polynomials fp and fq of degree p and

q respectively is isomorphic to G(p; q; q) ([O4]). However such a curve has

pq singularities of type yp−xq = 0. Our curve C̃ has only two singularities.

As a corollary, we have the following (cf.[Z2]).

Corollary (6.7.1). Let p, q ≥ 2 be positive integers with gcd(p, q) =

1. Then there exists an irreducible rational plane curve C of degree pq with

two irreducible singularities so that π1(P
2 − C) = Z/pZ ∗ Z/qZ.

Proof of Theorem (6.7). We compute the fundamental group using

the vertical pencil Lη = {x = η}. Put h(η, t) := qqt− (η+ t)q. As f̃(x, y) =

h(x, yp), Lη is a singular pencil if and only if either h(η, 0) = 0 or h(η, t)

has a non-simple solution. The first case occurs if and only if η = 0. The

second case occurs if and only if the following equations have a common

solution :

h(η, t) = qqt− (η + t)q = 0,
∂h

∂t
(η, t) = q(qq−1 − (η + t)q−1) = 0

Thus we have either η = 0 or

η = (q − 1)γj , j = 0, . . . , q − 2, t = γj ,(6.7.2)

where γ = exp 2πi/(q − 1).

Thus we have q − 1 singular pencil lines. Note that

h(0, t) = t(qq − tq−1), f̃(0, y) = yp(qq − yp(q−1))(6.7.3)

h(q − 1, t) = (t− 1)2hq−2(t), f̃(q − 1, y) = (yp − 1)2hq−2(y
p)(6.7.4)
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where hq−2(t) is a polynomial of degree q−2 and the solutions of hq−2(t) = 0

are all simple and non-zero and there is no positive solution. In particular,

f̃(q − 1, y) = 0 has {αj ; j = 0, . . . , p − 1}, α = exp 2πi/p, as solutions of

multiplicity 2 and there are q − 2 solutions in each angle region Ωa = {y ∈
C; 2aπ/p < arg y < 2(a + 1)π/p} for a = 0, . . . , p − 1. By the equalities

h(η, 0) = −ηq, h(η,−η+q) = qq(q−η−1), we can see easily that h(η, t) = 0

has two positive real solutions for t, for a fixed 0 < η < q−1, which approach

to 1 as η → q − 1 and no positive real solution for η > q − 1. We take a

small enough ε > 0. Let

Lε ∩ C̃ = {y0, . . . , yp−1, ya,b; 0 ≤ a ≤ p− 1, 0 ≤ b ≤ q − 2}

where the intersection points are characterized by the above observation as

|ya| � (ε/q)q/p, arg(ya) = 2πa/p

|ya,b| � qq/p(q−1), arg(ya,b) � 2π(a/p + b/p(q − 1))

and the strict equality arg(ya,0) = 2aπ/p for b = 0. Taking above obser-

vation into consideration, we choose generators ga, ga,b, 0 ≤ a ≤ p − 1,

0 ≤ b ≤ q− 2 of π1(Lε−Lε ∩ C̃) as in Figure (6.7.A). ga and ga,b go around

C̃0 at ya and ya,b respectively. By the choice of generators, they satisfy the

equality

(6.7.5) ω = (g0,0 · · · g0,q−2) · · · (gp−1,0 · · · gp−1,q−2)(gp−1 · · · g0)

where ω is represented by a big circle as before. We have q singular pencil

lines Lη, η = 0, (q − 1)γj , j = 0, . . . , q − 2. It is convenient to introduce

the elements θ := gp−1 · · · g0 and gkp+j := θkgjθ
−k for 0 ≤ j ≤ p − 1 and

k ∈ Z. Then

(R-1) θ = gp−1 · · · g0, gp+j = θgjθ
−1, j ∈ Z.

Recall that (R-1) implies (S) : θ = gj+p−1gj+p−2 · · · gj , j ∈ Z. This can

be proved by a two-side induction. See Proposition (2.6) in [O5]. Then the

monodromy relation at η = 0 can be simply written by (6.5.1) as

(R-2) gj+q = gj , ∀j ∈ Z.
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(p = 3, q = 2) (p = 4, q = 3)

Figure (6.7.A)

Now we study the monodromy relation at η = q − 1, by moving the pencil

line Lη from η = ε to η = q − 1 along the real axis. By the above consid-

eration, those intersections {ya, ya,0} approaches to exp(2aπi/p) along the

half line {y ∈ C; arg(y) = 2aπi/p}. The other intersections move in the

open angle region Ωa but their movement is topologically trivial. Thus we

get ga,0 = ga, a = 0, . . . , p − 1. Now we consider the monodromy relation

at η = (q− 1)γb for 0 < b ≤ q− 2 where γ = exp 2πi/(q− 1). We move the

line Lη

(1) first, along the small circle ε exp(2πτi/(q − 1)) for 0 ≤ τ ≤ b, and then

(2) along the half line {η ∈ C; arg(η) = arg(γb) = 2bπ/(q−1)} to (q−1)γb.

By the first movement, those p points {y0, . . . , yp−1} of Lη ∩ C̃ on the

small circle |y| � (ε/q)q/p are simply rotated by the angle 2bqπi/p(q − 1).

Thus ya is transformed to y′a which is approximately equal to yaδ
bq where

δ = exp(2πi/p(q − 1)). The points ya,c move to y′a,c in the same angle

region but this movement is sufficiently small. See Figure (6.7.A) for the

case p = 4, q = 3 and b = 1. Note that γ = δp and γbq = γb and therefore

f̃(ηγb, yδbq) = γb (qqyp − (η + yp)q). Thus (6.7.4) can be read as f̃((q −
1)γb, y) = γ−b(yp − γbq)2hq−2(γ

−bqyp), y′a = yaδ
bq and arg(y′a,b) = 2π((a +

b)/p + b/p(q − 1)). Thus by the observation of the case b = 0, two points

y′a and y′a+b,b on the half line {y ∈ C; arg(y) = 2π((a + b)/p + b/p(q − 1))}
approaches each other to the complex number γaδbq = exp(2πi((a+ b)/p+
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Figure (6.7.B) (p = 4, q = 3, b = 1)

b/p(q − 1))) along that line and other intersections moves topologically

trivially. See Figure (6.7.B). Thus we obtain the following relation as the

monodromy relation at η := (q − 1)γb is

(R-3) ga,b = ga−b, 0 ≤ a ≤ p− 1, 0 ≤ b ≤ q − 2

By this relation, we can eliminate the generators {ga,b; 0 ≤ a ≤ p−1, 0 ≤ b ≤
q − 2}. Finally as the vanishing relation at infinity, ω = (g0,0 · · · g0,q−1) · · ·
(gp−1,0 · · · gp−1,q−1)gp−1 · · · g0 = e. Using (R-3), we can rewrite this as

ω = (g0g−1 · · · g−q+2)(g1 · · · g3−q) · · · (gp−1 · · · gp−q+1)(gp−1 · · · g0)

(R-2)
= g0g−1 · · · g−p(q−1)+1θ

(S)
= θq

Therefore the vanishing relation ω = e implies

(R-4) θq = e.

Thus we have proved that π1(P
2 − C̃) is generated by gj , j ∈ Z, θ and

the generating relations are (R-1), (R-2) and (R-4). Thus π1(P
2 − C̃) ∼=

G(p; q; q). We know that θq1 ∈ Z(G(p; q; q)) and order(θq1) = s and the

quotient group G(p; q; q)/〈θq1〉 is isomorphic to Z/p1Z∗Z/q1Z∗F (s−1). See

Proposition (2.5) and Theorem (2.12) of [O5], or the following appendix. �
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Appendix . We recall the generators of Z/p1Z, Z/q1 and F (s−1). Let us

write 1 = ap1+bq1 for some integers a, b ∈ Z. Then s = ap+bq and we have

gj+sν = gj+νap+νbq = gj+νap = θνagjθ
−νa by (R-1) and (R-2). Therefore we

can write θ as

θ = gp−1 · · · g0

= (θ(p1−1)ags−1θ
−(p1−1)a)(θ(p1−1)ags−2θ

−(p1−1)a)

· · · (θ(p1−1)ag0θ
−(p1−1)a) · · · (gs−1 · · · g0)

= θap1(θ−aψ)p1 , where ψ = gs−1 · · · g0

Thus by (R-4), we have the relation

(R-5) (θ−aψ)p1 = e, ψ = gs−1 · · · g0.

We put ρ = θ−aψ. Then the above equality implies that ρp1 = e. The above

cyclic groups Z/p1Z and Z/q1Z are generated by ρ and θ and g1, . . . , gs−1

generate the free group F (s− 1).
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[J] Jung, H. W. E., Über ganze birationale Transformationen der Ebene, J.
Reine Angew. Math. 184 (1942), 1–15.

[K] van Kampen, E. R., On the fundamental group of an algebraic curve,
Amer. J. Math. 55 (1933), 255–260.
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