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Fractal Geometry of Self-avoiding Processes

By Kumiko Hattori

Abstract. We study a family of self-avoiding walks on the 2- and
3-dimensional Sierpinski gasket, respectively and give the complete clas-
sification of their limits.

1. Introduction

If you take the ‘continuum limit’ of random walks on fractals, you

get diffusions on fractals, which have been intensively studied in recent

years. Then how about the continuum limit of self-avoiding walks? In [5],

we studied the continuum limit of a family of self-avoiding walks on the

2-dimensional pre-Sierpinski gasket with path probability proportional to

exp{−βL(w)}, where β > 0 is a parameter and L(w) is the number of the

steps. It has been shown that for any values of β, the continuum limit

exists, with an appropriate time-scale transformation. We observe a phase

transition, that is, a drastic change in the limit process according to the

change in β. There is a critical value βc such that for β = βc the limit pro-

cess is almost surely self-avoiding and the Hausdorff dimension of the path

is almost surely

(
log

7 −
√

5

2

)
/ (log 2) . With β > βc, we have a constant

speed motion along a line as the limit, which is self-avoiding but uninterest-

ing. With β < βc, the limit is a ‘Peano curve’ motion with its path filling

all over the Sierpinski gasket, and intersecting with itself infinitely many

times. In [6], we considered a parallel model with a parameter β on the

3-dimensional Sierpinski gasket. It has been shown that for β = β
(3)
c , the

critical value, a non-trivial self-avoiding limit exists and the lower bound of

the path Hausdorff dimension has been given.

In this paper we consider another families of self-avoiding walks, which

we call the branching models, with different parametrizaions from the pre-

vious models and give the classification of their continuum limits in terms
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of self-avoiding property and the path Hausdorff dimension. On the 2-

dimensional Sierpinski gasket, the branching model has a parameter p. In

contrast with the previous model, the limit process is almost surely self-

avoiding for any value of p ( no phase transition ). The path Hausdorff

dimension is evaluated and it takes all the values between 1 and
log 3

log 2
(the

latter is the Hausdorff dimension of the gasket itself) as we vary p from 0 to

1. On the 3-dimensional Sierpinski gasket, we start with a two-parameter

family of self-avoiding walks. One parameter, r, controls the self-avoiding

property. The parameter space is divided into two regions. If r ≤ (34)−
1
4 ,

the limit is almost surely self-avoiding. If r > (34)−
1
4 , the limit is almost

surely self-intersecting but not space-filling. The path Hausdorff dimension

is also evaluated and it is controled by the other parameter. The difficulty

of the problem in 3 dimensions lies in the fact that while a self-avoiding

process is allowed to go through a triangle at most once, it can go through

a tetrahedron twice. This property makes the study of the self-avoiding

property in the 3-dimensional case more complex, in the sense that we are

obliged to study dynamical systems of more than one dimension. As for

the branching model, we can reduce the problem to a solvable dynamical

system, which leads to the complete classification of self-avoiding property.

The structure of this paper is as follows. In Section 2, we give defini-

tons and notations in a form common to both the 2-dimensional and 3-

dimensional gaskets. Section 3 is devoted to the branching model of the

self-avoiding processes on the 2-dimentional gasket. In Setion 4, which is

the main part of this paper, we give the classification of the continuum limit

processes of the branching model on the 3-dimensional gasket. In Section

5, we relate the results obtained here to our previous results in [5] and [6].

2. Notations and Definitions

We start with the definitions of the finite Sierpinski gaskets. In the

following d = 2, 3. For d = 2, let O = (0, 0), a = (1
2 ,

√
3

2 ), b = (1, 0),

G0 = {O, a, b } and let F0 be the set of all the points on the perimeter

of ∆Oab. For d = 3, let O = (0, 0, 0), a = (1
2 ,

√
3

6 ,
√

6
3 ), b = (1

2 ,
√

3
2 , 0),

c = (1, 0, 0), and let G0 = {O, a, b, c }. Let F0 be the set of all the points

on the edges of the tetrahedron Oabc.
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Let us define two sequences of sets recursively by,

Gn+1 =
1

2
{
⋃

y∈G0

(Gn + y)},

Fn+1 =
1

2
{
⋃

y∈G0

(Fn + y)} , n ∈ Z+
def
= N ∪ {0} ,

where, A+ y = {x+ y | x ∈ A} , y ∈ Rd, and k A = {k x | x ∈ A} , k ∈ R.

Let F =
∞⋃
n=0

Fn . F is the finite Sierpinski gasket. For d = 2, we define Tn to

be the set of closed triangles in R2 which are the translations of 2−n∆Oab,

with edges lying in F and for d = 3, the set of closed tetrahedrons in R3

which are the translations of the tetrahedron Oabc scaled by 2−n, with edges

lying in F .

Let

C = {w ∈ C([0,∞) → F ) | w(0) = O , lim
t→∞

w(t) = a} .

C is a complete separable metric space with the metric

d(v, w) = sup
t∈[0,∞)

|v(t) − w(t)| , v ∈ C , w ∈ C ,

where | · | denotes the Euclidean metiric in Rd.

For w ∈ C, define L(w) ∈ R+ ∪ {∞}, the arrival time at a by

L(w) = inf{0 ≤ t ≤ ∞ | w(t) = a}.

We define Wn, the set of self-avoiding paths on Fn starting from O and

ending at a, to be the set of paths w ∈ C such that, L(w) ∈ Z+, and

w(t) = a, t ≥ L(w) ,

|w(i) − w(i+ 1)| = 2−n, i = 0, 1, 2, · · · , L(w) − 1 ,

w(i)w(i+ 1) ⊂ Fn , i = 0, 1, 2, · · · , L(w) − 1 ,

w(i) �= w(j) , i, j = 0, 1, 2 · · · , L(w) , i �= j ,

and for t �∈ Z+ satisfying i < t < i+ 1 for some i ∈ Z+,

w(t) = (i+ 1 − t)w(i) + (t− i)w(i+ 1).
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w ∈Wn is self-avoiding in the sense that

w(t) �= w(s) , 0 ≤ t < s ≤ L(w) .

In this paper, we use the word ‘self-avoiding’ in this sense.

To describe the large-scale (decimated) behavior of each function w ∈ C,

we define the ‘hitting times’ Tn
i (w), n ∈ Z+, i ∈ Z+. Let Tn

0 (w) = 0, and

recursively,

Tn
i (w) = inf

{
t > Tn

i−1(w) | w(t) ∈ Gn \
{
w(Tn

i−1(w))
}}

, i ≥ 1 ,

if the right hand side is finite, otherwise, Tn
i (w) = ∞. Tn

i (w) is the time

when w hits the points in Gn for the i-th time on condition that if w hits

the same point more than once on end, we count it as ‘once’. Noting that

w(t) → a as t → ∞, and writing w(∞) = a, we obtain an integer M =

M(n, ω) and a sequence {Tn
i (w)}i=0,1,··· such that w(Tn

m(w)) = a, m ≥
M , w(Tn

M−1(w)) �= a. Let Sn
i (w) = Tn

i (w) − Tn
i−1(w), n = 0, 1, · · ·, i =

1, 2, · · · ,M , and call it the crossing time of the i-th Tn triangle/tetrahedron.

For n ∈ Z+, we define a ‘decimation’ map Qn : C → C, by

(Qnw)(i) = w (Tn
i (w)) ,

(Qnw)(t) = (i+ 1 − t) (Qnw)(i) + (t− i) (Qnw)(i+ 1), i < t < i+ 1 ,

for i = 0, 1, · · ·. Qnw shows the behavior of w on the scale of 2−n. Note

that if k ≤ n, we have Qk ◦Qn = Qk .

3. The Branching Model on the 2-dimensional Sierpinski Gasket

We start with the definition of the branching model, as a family of

probability measures on C. Let a = (1
2 ,

√
3

2 ), a1 = (1
2 , 0), a2 = (3

4 ,
√

3
4 ), and

l1 = Oa, l2 = Oa1 ∪ a1a2 ∪ a2a. For w ∈ C let

Nn,i(w) = &{∆ ∈ Tn | {(Qn+1w)(t) | 0 ≤ t <∞} ∩ ∆ is similar to li} ,
i ∈ {1, 2}, n ∈ Z+.

Define V n by

V n = {w ∈Wn | Nk,1(w) +Nk,2(w) = L(Qkw), k = 1, · · · , n− 1 } .
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Note that

QmV
n = V m, m ≤ n.(3.1)

Let 0 < p < 1 be a parameter and define a probability measure P1(p)

on C by,

P1(p)[w] =

{
p, if w ∈ V 1 and N0,1(w) = 1,

1 − p, if w ∈ V 1 and N0,2(w) = 1,

and for any Borel subset A of C,

P1(p)[A] = 0 if A ∩ V 1 = ∅.

For n = 2, 3, · · ·, we define Pn(p) recursively by,

Pn(p)[w] = Pn−1(p)[Qn−1w] pNn−1,1(w) (1 − p)Nn−1,2(w), w ∈ V n,

and for any Borel subset A,

Pn(p)[A] = 0 if A ∩ V n = ∅.

From the definition and (3.1), we have the ‘self-similarity’,

QmPn(p) = Pm(p),(3.2)

for m < n, where QmPn(p) is the image measure of Pn(p) induced by Qm.

Let Ω = C × C × C × · · · and B the Borel field on Ω. By virtue of

(3.2) and Kolmogorov’s extension theorem, for each p, there is a probability

measure P (p) on (Ω,B) such that

P (p)[ {ω = {wk}∞k=1 ∈ Ω | Qmwn = wm, n ≥ m}] = 1,

and

yn P (p) = Pn(p),

where yn P (p) denotes the image measure of P (p) induced by the natural

projection yn from Ω to the n-th C in the product Ω = C × C × C × · · ·.
We regard each yn as an F-valued process on (Ω, P (p)).

Let v ∈ V m . Then for n > m, under the conditional probability

P (p)[ · | ym = v ], {Sm
i (yn)}, i = 1, · · · , L(v), are i.i.d. and independent

of v since for all ∆ ∈ Tm, ∆ ∩ F has the identical structure, and from the
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definition the 2−n-scale behaviors of the path contained in different elements

of Tm are independent. Moreover, under the conditional probability above,

we see that for each m and i, {Sm
i (ym+r)}, r = 0, 1, 2, · · ·, is a supercritical

branching process with

EP (p)[Sm
i (ym+r)] = λp

r , λp = 2p+ 3(1 − p) .

Our ‘continuum limit’ corresponds to the limit distribution of yn as n

tends to infinity. To obtain a non-trivial limit, we introduce a time-scale

transformation Un(α) : C → C, α ∈ (0,∞), n ∈ N. For w ∈ C, define,

(Un(α)w)(t) = w(αnt).

Let

Xn(ω) = Un(λp)yn(ω) , ω ∈ Ω.

Xn has a p-dependence, though we do not write it explicitly. We have,

Proposition 3.1. Let v ∈ V m. Under the conditional probability

P (p)[ · | ym = v ], the following holds:

(1) For each i,

Sm
i (Xn) converges a.s. as n→ ∞ to a random variable S∗m

i . S∗m
i > 0

a.s..

(2) {S∗m
i }, i = 1, · · · , L(v), are i.i.d. random variables.

(3) Let S∗ be a random variable equal in law to S∗0
1 . S∗m

i is equal in law

to λp
−mS∗. The characteristic function of S∗, g(t) = EP (p)[exp (tS∗)],

t ∈ C, is finite and is the unique solution to

g(λp t) = f(g(t)),

where f(x) = px2 + (1 − p)x3, and g′(0) = 1.

(1), (2) and (3) with �(t) ≤ 0 are obtained from the limit theorem for

supercritical branching processes ([9], [1]). For (3) with a general t ∈ C, we

need closer study used in [6].
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Theorem 3.2. For any 0 < p < 1, Xn converges a.s. in C as n →
∞ to a process X(p). X(p) is almost surely self-avoiding. The Hausdorff

dimension of the path {X(p)(t) | t ≥ 0} is almost surely equal to
log λp
log 2

.

As we change the value of the parameter p in (0, 1) , the Hausdorff

dimension takes all the value in (1,
log 3

log 2
).

Proof. The convergence of crossing times in any scale ( any m ) stated

in Proposition 3.1 combined with the fact that for any n, n′ ≥ m and j =

0, 1, · · · , L(ym),

Xn(Tm
j (Xn)) = Xn′(Tm

j (Xn′)),(3.3)

leads to the convergence of Xn to X(p) as n → ∞. Since the argument is

standard ( see [2] and [5] ) we will not go into the details here.

To prove the self-avoiding property, we classify possible self-intersections

as follows.

(1) There are t1 ≥ 0 and t0 > 0 such that

X(p)(t) = X(p)(t1), for t1 ≤ t ≤ t1 + t0 < L(X(p)).

(2) There are t1, t2 and t3, t1 < t3 < t2, such that

X(p)(t1) = X(p)(t2), X(p)(t3) �= X(p)(t1).

First, we consider (1). Let {∆(k)}, k = 0, 1, · · · , be a sequence of trian-

gles such that ∆(k) ∈ Tk, X(p)(t1) ∈ ∆(k), k = 0, 1, · · ·. (1) implies that X(p)

stays in all {∆(k)} at least for time t0. This possibility is excluded from

Proposition 3.1 (3), with s > 0, which shows the distribution of S∗ has a

tail that decreases at least as fast as an exponential (see [5]).

Next we show that (2) occurs with probability zero. From the fact that

X(p) is the limit of Xn, which is self-avoiding, it follows that X(p) cannot

go ‘inside’ any triangle more than once, or cannot enter and exit from a

triangle through the same vertex more than once. That is, for any k ∈ Z+

and any ∆ ∈ Tk,

P [ X(p)(s1), X
(p)(s3) ∈ ∆c and X(p)(s2), X

(p)(s4) ∈ ∆ \Gk,

for some s1 < s2 < s3 < s4 ] = 0.
(3.4)
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P [ X(p)(s1) = X(p)(s2) ∈ ∆ ∩Gk, and X(p)(t) ∈ ∆ \Gk,

s1 < t < s2, for some s1 < s2 ] = 0.
(3.5)

(3.4) and (3.5) imply that the only possibility of (2) is the case that

two parts of the path passing through a pair of neighboring triangles meet

each other at the junction. In this case X(p)(t1) belongs to
⋃∞

k=0Gk. Let

z ∈ GK\GK−1 for some K and let {∆k
1} and {∆k

2}, k = K,K+1, . . . , be two

sequences of triangles satisfying ∆k
1 ∩∆k

2 = {z}, and ∆k
i ∈ Tk , ∆k+1

i ⊂ ∆k
i ,

for i = 1, 2. Let u and v be the other two vertices of ∆K
1 . Assume (2) occurs

with z = X(p)(t1). Then this situation is restated as follows: There exist

two sequences of triangles, {∆∗k
1 } and {∆∗k

2 }, k = K,K + 1, . . . , and ski ,

rki , s
k
i < ti < rki , i = 1, 2, such that (∆∗k

1 ,∆∗k
2 ) = (∆k

1,∆
k
2) for all k ≥ K,

or (∆∗k
1 ,∆∗k

2 ) = (∆k
2,∆

k
1) for all k ≥ K and X(p)(t) ∈ ∆∗k

i , for ski < t < rki ,

i = 1, 2. From the fact that Xn converges to X(p) a.s., we see that for any

N > K, there exists a.s. nN (ω) > N such that for any n > nN ,

d(Xn, X
(p)) < 2−N ,

and

Xn(TN
j (Xn)) = XN (TN

j (XN )).

Thus for an arbitrary N > K,

P [ X(p)(t1) = X(p)(t2) = z, X(p)(t3) �= z, for some t1 < t3 < t2 ]

≤ P [XN (s1) ∈ ∆N
1 , XN (s2) = u, XN (s3) = v,

for some s1, s2, s3, with s2 < s1 < s3 or s3 < s1 < s2]

≤ P [XN (s1) ∈ ∆N
1 , for some s1, with s2 < s1 < s3 or s3 < s1 < s2 |

XK(s2) = u, XK(s3) = v, for some s2, s3]

×P [XK(s2) = u, XK(s3) = v, for some s2, s3]

≤ (1 − p)N−K · P [XK(s2) = u, XK(s3) = v, for some s2, s3].

Here we used (3.3). Since N is arbitrary, we see

P [ X(p)(t1) = X(p)(t2) = z, X(p)(t3) �= z, for some t1 < t3 < t2 ] = 0.

Summing up for all z ∈ ⋃∞
k=1Gk, which is countable, we see that the prob-

ability of (2) is zero.

The shape of the path {w(t) | t ≥ 0} falls in the category of random

fractals studied by Mauldin and Williams ([8]), Falconer ([3]) and Graf ([4]).
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Since the calculation of the Hausdorff dimension of the path for this model

is a straightforward application of Theorem 1.1 of [8], we will omit the proof

here. Instead, we will see in more detail in the 3-dimensional case. �

Remark. From the proof of self-avoiding property above, it follows

immedeately that for any n, i ∈ Z+,

S∗n
i (ω) = Sn

i (X(p)(ω)), a.s..

In other words,

QnX
(p)(ω) = Xn(ω) , a.s..

Here for simplicity, we dealt with self-avoiding walks limited on V n.

It is also possible to construct self-avoiding processes with varying path

Hausdorff dimension from path measures supported on the whole Wn.

We remark that Mandelbrot introduced a one-parameter family of ran-

dom fractals ‘squig’ ([7]) as a substitute for self-avoiding walk on a 2-

dimensional regular triangular lattice. Its Hausdorff dimension ranges from

1 to
log 3

log 2
.

4. The Branching Model on the 3-dimensional Sierpinski Gasket

In this section we study the continuum limit of the branching model

of the self-avoiding walks on the 3-dimensional pre-Sierpinski gasket. Let

c1 = Oa, c2 = Oa ∪ bc. For w ∈ C and A ⊂ R3, let

Mn,i(A)(w) = &{∆ ∈ Tn | {(Qnw)(t) | t ≥ 0} ∩A ∩ ∆ is similar to ci} ,
i = 1, 2, n ∈ Z+.

If A = F , we just denote Mn,i(w). Define V n by

V n = {w ∈Wn |Mk,1(w) + 2Mk,2(w) = L(Qkw), k = 1, · · · , n}.

Note that

QmV
n = V m, m ≤ n.
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We define V n
bc, a set of self-avoiding paths from b to c, by replacing O and

a in the definition of V n by b and c, respectively. Let

Ṽ n = {w = (w1, w2) | w1 ∈ V n, w2 ∈ V n
bc,

{w1(t) | t ≥ 0} ∩ {w2(t) | t ≥ 0} = ∅}.

For x > 0 and y > 0, we define

φ1(x, y) =
∑

w∈V 1

xM1,1(w)yM1,2(w) = x2 + 2x3 + 2x4 + 4x3y + 6x2y2,

φ2(x, y) =
∑

w∈Ṽ 1

xM1,1(w)yM1,2(w) = x4 + 4x3y + 22y4.

Define a probability measure P1(x, y) on C by,

P1(x, y)[w] =

{
φ1(x, y)

−1 xM1,1(w)yM1,2(w), if w ∈ V 1,

0, otherwise.

For n = 2, 3, · · ·, we define Pn(x, y) recursively by,

Pn(x, y)[w] =




Pn−1(x, y)[Qn−1w] φ1(x, y)
−Mn−1,1(Qn−1w)

×φ2(x, y)
−Mn−1,2(Qn−1w) xMn,1(w) yMn,2(w), w ∈ V n,

0, otherwise.

From the definition, we have the self-similarity;

QmPn(x, y) = Pm(x, y),

for m < n.

In a parallel way to the 2-dimensional case, for each x, y, we see there

is a probability measure P (x, y) on (Ω,B), where Ω = C ×C ×C × · · · and

B is the Berel field on Ω, such that

P (x, y)[ {ω = {wk}∞k=1 | Qmwn = wm, n ≥ m}] = 1,

and

yn P (x, y) = Pn(x, y),

where yn denotes the natural projection from Ω to the n-th C in the product

Ω = C × C × C × · · ·. We regard each yn as an F-valued process on

(Ω,B, P (x, y)).
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If for some ∆ ∈ Tm, ∆ ∩ {Qmw(t) | t ≥ 0} is similar to c1 or c2,

then let us call w ‘crosses ’ ∆ once, or twice, respectively. On the 3-

dimensional Sierpinski gasket, unlike the 2-dimensional Sierpinski gasket,

a self-avoiding path is allowed to cross a tetrahedron twice. When we

study crossing times of the tetrahedrons, we need to consider the tetra-

hedrons the path crosses only once and those the path crosses twice sepa-

rately. Let v ∈ V m. Assume v crosses two distinct elements of Tm, ∆1 and

∆2 . Then for n ≥ m, Mn(∆1)(yn) = (Mn,1(∆1)(yn),Mn,2(∆1)(yn)) and

Mn(∆2)(yn) = (Mn,1(∆2)(yn),Mn,2(∆2)(yn)) are independent under the

conditional probability P (x, y)[ · | ym = v ]. Next we compare Mn(∆1)(yn)

with the numbers of crossed tetrahedrons at different scales. Fix any u ∈ V 1

such that ∆′
i ∩ {u(t) | t ≥ 0} is similar to ci, i = 1, 2, respectively, for some

∆′
1, ∆′

2 ∈ T1. Let M̃k(i) = (M̃k,1(i), M̃k,2(i)) be a random vector equal in

law to Mk(∆
′
i)(yk) under P (x, y)[ · | {w | Q1w = u} ], i = 1, 2, k ≥ 1.

Then Mn(∆1)(yn) under P (x, y)[ · | ym = v ], n ≥ m, is equal in law to

M̃n−m+1(i), where i = 1 or 2 according to whether ∆1 ∩ {v(t) | t ≥ 0}, is

similar to c1 or c2. Thus under P (x, y)[ · | {w | ym = v} ] we see that for

each ∆ ∈ Tm that v crosses, Mm+r(∆)(ym+r) r = 0, 1, 2, · · ·, is a two-type

branching process. Define the mean matrix A(x, y) = {a(x, y)ij} by

a(x, y)ij = E[M̃2,j(i)]

= φi(x, y)
−1∂φi(x1, x2)

∂xj
xj

∣∣∣∣∣
x1=x,x2=y

, i, j = 1, 2.

From the definition, we see the elements satisfy the following:

a(x, y)ij > 0, i, j = 1, 2,(4.1)

2 < a(x, y)11 + a(x, y)12 < 4,(4.2)

a(x, y)21 + a(x, y)22 = 4.(4.3)

(4.1) allows us to use Frobenius’ theorem, which implies that A(x, y) has a

positive eigenvalue, ρ(x, y) which is the largest in absolute value of all the

eigenvalues. Furthermore, (4.1), (4.2) and (4.3) imply

2 < ρ(x, y) < 4.(4.4)

From the limit theorem for multi-type supercritical branching processes

( Theorem 1 in Section 6 of Chapter V, [1]), we have the following proposi-

tion.
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Proposition 4.1. Assume v ∈ V m crosses ∆ ∈ Tm. There are ran-

dom variables M
(m)
k (∆), such that under the conditional probability,

P (x, y)[ · | ym = v ],

ρ(x, y)−rMm+r(∆)(ym+r) → (u1, u2)M
(m)
k (∆) , a.s. r → ∞ ,

k = 1, 2 according to v crosses ∆ once or twice, respectively. Here (u1, u2)

is the eigenvector corresponding to ρ(x, y), satisfying u1, u2 > 0. Further-

emore, there are random variables M∗
1 and M∗

2 such that M∗
k > 0, a.s.,

M
(m)
k (∆) equals in law to ρ(x, y)−mM∗

k , k = 1, 2, and

gk(t) = E[ exp(tM∗
k ) ], k = 1, 2

is finite for any t ∈ C.

Let

Xn(ω) = Un(ρ(x, y))yn(ω),

and

r =
y

x
.

We have,

Theorem 4.2. For any x > 0, y > 0, Xn converges a.s. in C as

n → ∞ to a process X(x,y). If r ≤ 34−
1
4 , X(x,y) is self-avoiding a.s. If

r > 34−
1
4 , X(x,y) is self-intersecting a.s.

Proof. The almost sure convergence of Xn to X(x,y) is obtained by a

standard argument using the convergence of the crossing times stated above

( See [6] ) . We will focus here on the self-avoiding property. As in the 2-

dimensional case, the possibilities of self-intersection are classified into type

(1) and type (2).

(1) There are t1 ≥ 0 and t0 > 0 such that

X(x,y)(t) = X(x,y)(t1), for t1 ≤ t ≤ t1 + t0 < L(X(x,y)).

(2) There are t1, t2 and t3, t1 < t2 < t3, such that

X(x,y)(t1) = X(x,y)(t3), X(x,y)(t2) �= X(x,y)(t1).
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Type (1) is proved to occur with probability 0 in a similar way to the

previous secton. To study type (2), more consideration is needed here in

the 3-dimensional case. It is furthere classified into three cases.

(2a) Two parts of the path crossing neighbouring tetrahedrons meet at the

junction.

(2b) The path goes in or out from a tetrahedron through the same vetex

more than once.

(2c) The path crosses a tetrahedron twice. The two parts of the path cor-

responding to the first and the second crossing intersect each other in the

tetrahedron.

(2a) and (2b) are ruled out just in a similar way to the 2-dimensional

case and in its course it is also shown that X(x,y) can cross a tetrahedron at

most twice a.s.. The main difference between the 2- and the 3-dimensional

case lies in (2c). Let us restate type (2c) more precisely.

(2c) There exist a positive integer K and a sequence of tetrahedrons {∆(k)},
k = K,K + 1, · · ·, such that

(i) ∆(k) ∈ Tk , ∆(k+1) ⊂ ∆(k) ,

(ii) X(x,y) crosses each ∆(k) twice,

(iii) the two parts of the path within ∆(k+1) ( the first and the second

crossings ) originate from distinct parts of the path within ∆(k).

The condition (iii) is necessary to ensure the inequality t1 < t3 in (2).

For a ∆ ∈ Tm, m = 1, 2, · · ·, let Bn, n = 1, 2, · · · ,∞, be the event that there

exists a sequence {∆(k)}, k = m,m+1, · · · ,m+n, satisfying (i), (ii), (iii) and

∆(m) = ∆. Let qn be the probability of Bc
n under the condition that X(x,y)

crosses ∆ twice. Note that from the self-similarity of X(x,y) which comes

from that of Pn(x, y), and the identical structure of ∆∩F with ∆ ∈ T m, qn
is independent of m and the choice of ∆. Let q0 = 0. {qn}, n = 0, 1, 2, · · ·,
is increasing, thus, lim

n→∞
qn = q∞ exists. {qn} satisfies the recursion,

qn+1 = h(qn), n ∈ Z+ ,

h(t) = φ2(x, y)
−1φ3(x, y, yt),

where

φ3(x, y1, y2)

=
∑

w=(w1,w2)∈Ṽ 1

xM1,1(w)y
M1,2(w1)+M1,2(w2)
1 y

M1,2(w)−M1,2(w1)−M1,2(w2)
2
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= 2y4
2 + 8y1y

3
2 + 12y2

1y
2
2 + 4x3y2 + x4.

If r > 34−
1
4 , the equation q = h(q) has two solutions in [0, 1], 1 and

q∗, with 0 < q∗ < 1. It is easily seen that q∞ = lim
n→∞

qn = q∗ and thus

the probability that (2c) occurs is strictly positive. If r ≤ 34−
1
4 , the only

solution to the equation above in [0, 1] is 1, thus (2c) occurs with probability

zero.

We further show that if the probability of the occurrence of (2c) is

positive, it is equal to one. Take any ∆ ∈ T1 and let s1 and s2 be the

probabilities that ∆ contains no infinite sequence satisfying (i), (ii) and

(iii) for any K, under the conditions that X(x,y) passes ∆ once and twice,

respectively. That means that none of the elements of T2 within ∆ contains

such infinite sequences, either. This leads to the equations s1 and s2 should

satisfy;

si = Φi(s1, s2), i = 1, 2,(4.5)

where

Φi(s1, s2) = φi(x, y)
−1φi(s1x, s2y), i = 1, 2.

Φ1(s1, s2) and Φ2(s1, s2) are polynomials of s1 and s2 with positive coeffi-

cients and without constant terms. From this combined with the fact that

s1 = s2 = 0 and s1 = s2 = 1 satisfy (4.5), it follows that

si > Φi(s1, s2), i = 1, 2,

for any (s1, s2) ∈ [0, 1]2 \ {(0, 0), (1, 1)}, which means that s1 = s2 = 0

and s1 = s2 = 1 are the only solutions to (4.5). Thus if si �= 1, it follows

that the probability of the occurrence of (2c) is equal to one. From (iii)

and the almost sure positivity of M∗
i , it follows that t1, t2 and t3 do satisfy

t1 < t2 < t3 (strict inequality) almost surely, which means that the path is

really self-intersecting. �

Next we consider the path Hausdorff dimension. We start with a general

theorem. Let J be a non-empty compact subset of Rd such that J =

cl(int(J)). Let D = {1, 2, · · · , N} and D∗ =
∞⋃
n=0

Dn, where D0 stands

for {∅}. For σ, τ ∈ D∗, σ = (σ1, σ2, · · · , σn), τ = (τ1, τ2, · · · , τm), denote

σ ∗ τ = (σ1, · · · , σn, τ1, · · · , τm), |σ| = n, t(σ) = σn, σ|k = (σ1, σ2, · · · , σk),
1 ≤ k ≤ n, and σ|0 = ∅.
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On a probability space (Ω,B, P ), consider a family of random subsets of

Rd,

J(ω) = {Jσ(ω) | σ ∈ D∗},

and a family of random vectors

T(ω) = {Tσ(ω) = (Tσ∗1(ω), · · · , Tσ∗N (ω)) | σ ∈ D∗}.

Assume J and T satisfy the following conditions:

(1) J∅(ω) = J , for P-a.a. ω ∈ Ω . For σ ∈ D∗, Jσ∗i(ω) ⊂ Jσ(ω) and if

Jσ(ω) �= ∅, then Jσ(ω) is similar to J , for P-a.a. ω.

(2) int(Jσ∗i(ω)) ∩ int(Jσ∗j(ω)) = ∅, if 0 ≤ i < j ≤ N , for all σ ∈ D∗ and

P-a.a. ω.

(3) The random vectors Tσ(ω) = (Tσ∗1(ω), · · · , Tσ∗N (ω)), σ ∈ D∗, are

independent and Tσ is equal in law to Tτ if t(σ) = t(τ). T∅(ω) =

diam(J), for P-a.a. ω . Furthermore,

diam(Jσ(ω)) =

|σ|∏
k=0

Tσ|k(ω) , P − a.a.ω.

Let

K(ω) =
∞⋂
n=1

⋃
σ∈Dn

Jσ(ω).

Define an N ×N matrix R(β) = {R(β)ij}i,j=1,···,N , for β ≥ 0 by

R(β)ij = EP [ T β
ij ].

If R(β) is irreducible, from Frobenius’ theorem, there exists a positive eigen-

value λ(β) which is the greatest in absolute value, and a corresponding

eigenvector x = (x1, · · · , xN )T with xi > 0, i = 1, · · · , N . We have the

following theorem as a combination of the results in [8] and [10].

Theorem 4.3. Suppose R(0) is irreducible and λ(0) > 1. Then with

positive probability, K is non-empty. If K is non-empty, K almost surely

has Hausdorff dimension α, where α is determined by λ(α) = 1.



394 Kumiko Hattori

Theorem 4.3 is a slight ( but necessary for our purpose ) generaliza-

tion of Theorem 3.11 in [10] in the sense that a condition in [10] that if

R(0)ij > 0 then Tij > 0, for a.a. ω ∈ Ω is removed. To obtain Theorem

4.3, we follow the proofs leading to Theorem 1.1 in [8], using the fact that

Sα,n =
∑

σ∈Dn

n∏
m=0

Tα
σ|mxt(σ) converges as n → ∞, instead of

∑
σ∈Dn

n∏
m=0

Tα
σ|m,

and changing subsequent formulas in [8] accordingly.

Now let us go back to our processes. Let J be the closed tetrahedron

Oabc and D = {1, 2, · · · , 8}. On (Ω,B, P ), we define J . First set J∅(ω) = J ,

and then define Jσ, σ ∈ Dn, n = 1, 2, · · ·, recursively. Assume Jσ(ω),

σ ∈ Dn, is defined and satisfies

Jσ(ω) ∈ Tn ∪ {∅},

int(Jσ(ω)) ∩ int(Jτ (ω)) = ∅, for any τ ∈ Dn, τ �= σ, a.a. ω ∈ Ω.

Then we define Jσ∗i, i = 1, · · · , 8 as follows. Since it is shown in a similar

way to the 2-dimensional case that QnX
(x,y)(ω) = Xn(ω), a.s., ( see Remark

after Theorem 3.2 ), if Jσ(ω) ∩ {(QnX
(x,y))(ω)(t) | t ≥ 0} is non-empty, it

is almost surely similar to either c1 or c2. In the former case, there are

i ≥ 0 and u1, u2 ∈ Jσ(ω) ∩ Gn such that u1 = Xn(ω)(Tn
i (Xn(ω))) and

u2 = Xn(ω)(Tn
i+1(Xn(ω))). Denote the other two vertices of Jσ(ω) by u3

and u4 (the assignment is arbitrary). In the latter case, there are j > i ≥ 0

and u1, · · · , u4 ∈ Jσ(ω) ∩ Gn such that u1 = Xn(ω)(Tn
i (Xn(ω))), u2 =

Xn(ω)(Tn
i+1(Xn(ω))), u3 = Xn(ω)(Tn

j (Xn(ω))), and u4 =

Xn(ω)(Tn
j+1(Xn(ω))). Denote the four Tn+1 -tetrahedrons in Jσ(ω) by

∆1, · · · ,∆4, so that they satisfy ui ∈ ∆i, i = 1, · · · , 4. Set Jσ∗i = ∆i,

if {(Qn+1X
(x,y))(t) | t ≥ 0} ∩ ∆i is similar to c1, set Jσ∗(i+4) = ∆i, if

{(Qn+1X
(x,y))(t) | t ≥ 0} ∩ ∆i is similar to c2. And for the rest of i’s, set

Jσ∗i(ω) = ∅. If Jσ(ω) ∩ {(QnX
(x,y))(ω)(t) | t ≥ 0} is empty ( including

the case that Jσ(ω) = ∅ ), or similar to neither c1 or c2, set Jσ∗i(ω) = ∅,
i = 1, · · · , 8. Jσ∗i’s defined in this way satisfy

Jσ∗i ⊂ Jσ,

Jσ∗i ∈ Tn+1 ∪ {∅},

int(Jσ∗i(ω)) ∩ int(Jσ∗j(ω)) = ∅, for j �= i, a.a. ω ∈ Ω.
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J defined here satisfies the assumptions in Theorem 4.3. From the pos-

itivity of M∗
k ’s in Proposition 4.1, it follows that K is almost surely non-

empty ( See Theorem 1.2 in [8]). Hence we have the following result.

Theorem 4.4. {X(x,y)(ω)(t) | t ≥ 0} almost surely has Hausdorff di-

mension dH =
log ρ(x, y)

log 2
.

Proof. It is enough to show λ(dH) = 1. In our case, if Tij �= 0 then

Tij =
1

2
, a.s.. Thus we have

(
1

2
)−βR(β)i,j

=




φ1(x, y)
−1 (x2 + 2x3 + 2x4 + 2x3y), 1 ≤ i ≤ 4, j = 1, 2,

φ1(x, y)
−1 (x3 + 2x4 + 4x3y + 6x2y2), 1 ≤ i ≤ 4, j = 3, 4,

φ1(x, y)
−1 (2x3y + 6x2y2), 1 ≤ i ≤ 4, j = 5, 6,

0, 1 ≤ i ≤ 4, j = 7, 8,

φ2(x, y)
−1 (x4 + 3x3y), 5 ≤ i ≤ 8, 1 ≤ j ≤ 4,

φ2(x, y)
−1 (x3y + 22y4), 5 ≤ i ≤ 8, 5 ≤ j ≤ 8.

Since (
1

2
)−βR(β) = R(0), and from the definitions, we see that A(x, y)

appeared in the beginning of this section and R(β) are related as follows;

a(x, y)11 = 2(R(0)11 +R(0)13),

a(x, y)12 = 2R(0)15,

a(x, y)21 = 4R(0)51,

a(x, y)22 = 4R(0)55.

From this we easily have

λ(β) = (
1

2
)βρ(x, y). �

A lower bound of the path Hausdorff dimension is obtained by consid-

ering only the tetrahedons X(x,y) crosses only once, which is a subset of K,

and applying Theorem 1.1 in [8] to this lower bound set. We have

ρ(x, y) ≥ 2x2 + 6x3 + 8x4

x2 + 2x3 + (2 + 4r + 6r2)x4
.



396 Kumiko Hattori

For r ≤ 34−
1
4 , dH can take any value between 1 and 2. We see that by

taking x large enough and r small enough, we can have dH as close to 2

as we want. (2 is the Hausdorff dimension of the 3-dimensional Sierpinski

gasket .) For r > 34−
1
4 , if we fix x and let y → ∞, then dH → 2.

5. Concluding remarks

We have shown that on the 2-dimensional Sierpinski gasket, the con-

tinuum limit of the branching model is self-avoiding for all values of p and

the path Hausdorff dimension can take any value in (1,
log 3

log 2
). On the

3-dimensional Sierpinski gasket, we have given the classification of the con-

tinuum limits according to the values of the parameters – the self-avoiding

region and the self-intersecting region. The path Hausdorff dimension has

been also given. We will state briefly the relation of our results obtained here

and our previous results. In [5] and [6] we considered self-avoiding walks

with path probability proportional to exp {−βL(w)}, where L(w) is the ar-

rival time at a and β > 0. Their limit processes that are self-avoiding are

included in the self-avoiding processes obtained as the limit of the branch-

ing models. In [5] we have proved the limit process which is self-avoiding

is realized only at β = βc on the 2-dimensional Sierpinski gasket. The self-

avoiding limit process in [5] coincides ( up to the overall time-scaling ) with

the limit process of the branching model with p =

√
5 − 1

2
. If we take the

limit p → 1, we get the straight line motion for β > βc, and in the limit

p→ 0, we get the Peano curve motion for β < βc.

The limit self-avoiding process on the 3-dimensional Sierpinski gasket

obtained in [6] is reproduced from the branching model if we set (x, y) =

(xc, yc), where (xc, yc) is the unique solution to

x = φ1(x, y),

y = φ2(x, y),

found in the domain {(x, y) ∈ R2 | x > 0, y > 0, x2 > y }. ( φ1(x, y) and

φ2(x, y) are defined in the beginning of Section 4.) This also means that

the path Hausdorff dimension of the self-avoiding limit process, whose lower

bound was given in [6], is evaluated here.
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Things get extremely complicated and difficult as the dimension of the

space increases ( the d-dimensional Sierpinski gasket). The number of the

self-avoiding paths increases exponentially and the study of the self-avoiding

property boils down to the asymptotic bahavior of high-dimensional dynam-

ical systems. While the complete classification as above may be difficult,

as far as the construction of self-avoiding limit processes is concerned, it is

possible in a similar fashion in an arbitrary dimension.
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