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Discrete Series Whittaker
Functions of SU(n,1) and Spin(2n,1)

By Kenji TANIGUCHI

Abstract. The Mellin transform of Whittaker functions gives the
archimedean factor of the automorphic L-functions. Hence it is very
important to obtain explicit formulae of Whittaker functions. In this
paper, we obtain explicit formulae of discrete series Whittaker functions
of SU(n,1) and Spin(2n,1) (n > 2).

§0. Introduction

Let G be a real connected semisimple Lie group with finite center, G =
K AN be its Iwasawa decomposition,  be a non-degenerate character of N
(i.e.the differential of 7 is non-trivial on every root space corresponding to
simple roots). The space of Whittaker functions C*°(G/N;n) is defined by

C®(G/N;n) = {¢: G5 C;d(gn) = n(n)"'¢(g) for any g € G,n € N}.

For a G-module (7, V), a realization of (mw, V) in C*°(G/N;n) is called a
Whittaker model of (7, V'). Notice that determination of a Whittaker model
of (m, V) is equivalent to that of an intertwining operator ¢ from (7, V) to
C*(G/N;n). For any v € V, 1(v)(g) € C*°(G/N;n) is called a Whittaker
function corresponding to v.

The Mellin transform of Whittaker functions gives the archimedean fac-
tor of the automorphic L-functions. Hence it is very important to obtain
explicit formulae of Whittaker functions. Recently, Hayata, lida, Koseki,

1991 Mathematics Subject Classification. Primary 22E30; Secondary 22E46, 11F30,
33C15.

331



332 Kenji TANIGUCHI

Miyazaki, Oda, Tsuzuki and Yamashita obtained explicit formulae of spher-
ical functions, Whittaker functions and Shintani functions of some groups
and some representations (cf.[K-O], [M-O1], [M-02], [01], [02], [Y1], [Y2]).
The author obtained explicit formulae of discrete series Whittaker functions
of SU(n,1) and Spin(2n,1) (n > 2).

The significance of these cases is in that the explicit formulae are calcu-
lated for non-quasi-split groups SU(n,1) and Spin(2n,1).

Main results

We will explain the main results of this article.

In this paper, E;; is a matrix (0;40j)r and Fyj := E;; — Ej;.

Let ma be the discrete series representation of G whose Harish-Chandra
parameter is A, and let 7} be its contragredient representation. The space
Ak of K-finite vectors in 7y becomes a (gc, K)-module. Let 7}° be
the C>°-globalization of ma x and let Homq, i) (73 . C°°(G/N;n)) be the
space of the intertwining operators as a (gc,K)-module and
Homg (73>, C*°(G/N;n)) be the space of the intertwining operators as a
continuous G-module.

In [Y1], Yamashita proved the following linear isomorphism:

Hom g, 5 (T3 i, CF(G/N;1n)) =~ Ker(Dyy).

(For the definition of this differential operator Dy ,, see §1.3). Then, the
determination of intertwining operators reduces to solving a differential
equation Dy ,¢ = 0.

We know that SU(1,1) ~ Spin(2,1) ~ SL(2,R) and Whittaker func-
tions of SL(2,R) are well known (cf.[J-L] and [J]). Therefore we investigate
SU(n, 1) and Spin(2n,1) case for n > 2.

SU(n,1) case (n > 2)
Let {e;} be the usual basis of the dual space of a Cartan subalgebra of

tc (cf. §2.2). The set of Harish-Chandra parameters of discrete series of
n+1

SU(n,1)is 2= | Z;, where
i=1

Ek:{A:ZAiei; A > >A1>0>A, > > A, (AiEZ)},
=1
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and the corresponding Blattner parameters are denoted by

Ek9A<:>>\=Z)\iei

=1
k—1 n

=Y (Aitk+i-n—De+ > (Ai+k+i—n-—2e.
=1 i=k

Let
Xi=Fip— Eint1 — Bni — Fnyrs (1<i<n—1),
Yi=vV-1(Ein— Eint1+ Eni+ Ent1) (1<i<n-1),
W = \/jl(Enn —Eniint1 — Enpg1 + Engin)

be a basis of n.
We define our preferred character n of N by

n—1

i=1
(xhyiaw S Ra 5 S IR>O)'

Since ¢ € KerD), is a V)-valued function, we can write ¢(g) =
> ¢(Q;9)Q by means of the Gel’fand-Zetlin basis of V). For details on
Q

Gel'fand-Zetlin basis, we refer to §2.3. The main theorem for SU(n,1) is
as follows.

THEOREM A (Lemma 3.2.1(1), Proposition 3.2.3, §§6.2 and 6.3).
(1) Let ¢ be any non-degenerate character of N. Then

dim Homg, g (73 x, C*(G/N;()) = {0} (if A€ Z1UEn1),
dim Homg, sy (A 1, O™ (G/N; ()
=2 Z dimVﬁA—Q(Mla'-'vuan)

A 21 2A 22 A o222 A1)
AR _12A 412 2 An 12 Hn—22An

(ifAEEk, 2§k5§n),
dim Homg (73>, C*°(G/N;())

1. % 00
:idlmHom(gC,K)(wA,K,C (G/N;Q)),
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where, VAo (p1, ..., fin_g) is the irreducible U(n — 2)-module with
highest weight (pi1, . . ., fin—2)-

Let n be defined by (0.1) and A € 2, (2 < k <n). Then ¢ € KerD,
is completely determined by c(Q;a)’s (a € A) for Q satisfying

AAn-1=qAn-25--+,9k—2n—1 = qk—2,n—2;
Qk—1n—1 = Ak—1,
dk—1n—2 = 4kn—1,---r4n—2n-2 = gn—-1,n—1-
For Q which satisfies the conditions in (2), the explicit formula of
c(Q;a) is
k n n—1

—1 k-2
A+ A+ Y Gin-1— Y Gin-1-n+3
-1 i i=1 i=k

c(Qia)=a ¢ =k
X {CI(Q)WO,Ak1+n2k+2 <2§>

2
+c2(Q) Mo |x,_, +n—2k+2| (f) } ,

where, ¢1(Q),c2(Q) are arbitrary constants and We g(t), My g(t)
are Whittaker’s confluent hypergeometric functions ([W-W]). More-
over, c(Q;a) corresponds to an element of
Homg (73>, C*°(G/N;n)) if and only if c2(Q) = 0.

Spin(2n,1) case (n > 2)
Let {e;} be the usual basis of the dual space of a Cartan subalgebra of

bc (cf.

§4.2). The set of Harish-Chandra parameters of discrete series of

Spin(2n,1) is 2 = E; U Zy, where

(1]

[1]

2 =

i=1

. 1
IZ{A:ZAZB“ A >--->A, >0, AieﬁZ,Ai—AHleZ},

n
{A:ZAM; Ay > > Ay >—A, >0,

=1

1
A; € §Z7Az — Ai+1 € Z},
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and corresponding Blattner parameters are

n n 1
ElBA@A:Z)\ZE%’:Z(Ai—i—l-n—i—i)ei,

=1 =1

n n 1
m30eA=Tne=) (h-itntg)a-c

=1 =1

Let
X, = FQnJ‘ —+ _1F2n+1,i (’L =1,...,2n— 1)

be a basis of n. We define our preferred character n of N by

2n—1
(02) 7 <exp (Z gUle)) = e\/*_l.’tZ'nflé ($l € R, § c R>O)-

=1

Since ¢ € KerD, , is V)-valued function, we can write ¢(g) = > c¢(Q;9)Q
Q

by means of the Gel’fand-Zetlin basis of V} (cf. §4.3).

THEOREM B (Proposition 5.2.3, §§6.2 and 6.3).
(1) Let ¢ be any non-degenerate character of N. If A € 21 U=y, then

dim Hom(gC,K) (WX,Kv COO(G/Na C))
=2 Z dim VP o (1, ... 1),

AM2p12A2 > 2 A 2> fin—22An—1 2 fn—12>|An|

dim Homg (73>, C (G/N§<)):EdlmHom(gc,K)(ﬂ-A,K7C (G/N;()),

where Vi _o(pa, ..., pin—1) is the irreducible Spin(2n — 2)-module
with highest weight (p1, ..., fn—-1)-

(2) Let n be defined by (0.2). Then ¢ € KerD, , is completely deter-
mined by c(Q;a)’s for Q satisfying

M Z>q2n—2 = q12n-3 = A2 > -+ > A2

> Gn-22n—-2 = @n-22n—-3 > An—1 > Gn—12n—2 = |qn—12n—3| > [An].
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(3) For Q which satisfies the above conditions in (2), the explicit for-
mula of ¢(Q;a) is

n—1 n—1
—n+1— Ai—|An |+ i 2n—
121 i~ igl di,2n 2€sgnqn71,2n73§’

(@ a) = a(Q)a

where, a(Q) is an arbitrary constant and sgnx := |§—| (x € Ryy).
Further, c(Q;a) corresponds to an element of
Homg (73>, C*°(G/N;n)) if and only if o(Q) = 0 for Q satisfy-

ing sgngn—1,2n-3 > 0.

Our dimension formula Theorem A(1) and Theorem B(1) follows from
results of Chang ([C]) and Matumoto ([M2]).

Let us give an interpretation of our results. Let Zjs(n) be the centralizer
of n in M. In our case, for example G = SU(n, 1) and 7 is non-degenerate,
Zr(n) is isomorphic to U(n — 2) modulo the center. By the right ac-
tion of Zys(n) on KerDy ,, (cf.§1.4), KerD, , is decomposed into irreducible
Zyr(n)-modules. The dimension formula in Theorem A(1) describes irre-
ducible Zys(n)-modules which occur in this decomposition. Their highest
weights are controlled by compact simple roots in the following sense. The
compact simple roots of the positive system A; which corresponds to Zj

are €] — €9,...,6k_9 — €k_1,€k — €k+1,--.,En—1 — €n. The representation
of Zy(n) with highest weight (p1, ..., un—2) enters KerD, , if and only if
(41, - - ., in—2) separates the set of compact simple roots:
€1 €2 e €L—2 €L—1
O — o — . — o — o —
A1 Ao o Ak_2 Ak_1
Nad Nd Nd Nd
H1 A HEk—2
€nt1 (&3 CL+1 .. €n—1 €n
— [} — o — O — e — o — O
Ak Akl e An_1 An .
< < < N
HEk—1 L ) Hn—2

The author expects that analogous dimension formula is valid for quasi-
large discrete series representations of other semisimple Lie groups.
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Let us explain the contents of this paper. In §1, we recall well known
facts on discrete series representations and the method, due to Yamashita
[Y1], to investigate embeddings of discrete series into the space of Whittaker
functions. In §2, we review the structure of SU(n, 1), parametrize discrete
series of SU(n,1) and realize irreducible representations of K ~ U(n).
Yamashita’s differential operator D, , is explicitly computed and explicit
representations of the radial part of the minimal K-type Whittaker func-
tions (if they exist) are given in §3. The Spin(2n,1) case is computed in
864, 5. §4 corresponds to §2 and §5 to §3. In §6, we prove the dimension
formula of Theorem A(1) and Theorem B(1). Here we use the fact, due
to H.Matumoto [M1], that, for a quasi-large (gc, K)-module V', the dimen-
sion of the intertwining space Hom g r)(V, A(G/N;n)) coincides with the
Bernstein degree ¢(V') of V. Chang calculated the characteristic cycles of
discrete series for R-rank one matrix groups (cf.[C]). His result implies the
explicit value of ¢(V'). Finally, we have Theorem A and B.

Acknowledgements. The author expresses his sincere gratitude to Prof.
T.Oshima, whose constant encouragement and advices has enabled him to
write this article, Prof. T.Oda and Prof. T.Uzawa, who suggested him to
study Whittaker functions. He should also like to thank Prof. H. Matumoto,
Prof. T.Kobayashi, for their hearty encouragement and discussions.

§1. Discrete series representations of semisimple Lie groups

1.1. Parametrization of discrete series representations

In this subsection, we review some basic results on discrete series rep-
resentations for real semisimple Lie groups. For general theory, see [K,
Ch.IX], for example.

Let G be a real connected semisimple Lie group with finite center, K be a
maximal compact subgroup of G and g, £ be their Lie algebras respectively.
For any real vector space [, we denote its complexification [®Qg C by [c. Let
g = ¢+ p be a Cartan decomposition of g and 6 the corresponding Cartan
involution. Throughout in this paper, we assume that G has discrete series.
In this case, g has a compact Cartan subalgebra t C £ . Let A be the root
system of gc with respect to tc. For an a € A, let g& be the corresponding
root space. Since t C €, for any a € A, g¢ is contained either in ¢ or
in pc. A root « is called compact (resp. noncompact) if g& C €c (resp.
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g¢ C pc ). We will denote the set of all compact roots (resp. noncompact
roots) by A. (resp. A,). A, is a root subsystem of A and is identified
with the root system of ¢ with respect to tc. We denote by W and W, the
Weyl groups of A and A, respectively, and denote by B( , ) the Killing
form of g¢, which induces, through its restriction to t¢ x t¢, a W-invariant
nondegenerate bilinear form ( , ) on tc and on its dual space tf in the
canonical way.

Now we parametrize discrete series representations.

Let = be the set of A € t which is regular and A + p is K-integral.
Here p denotes half the sum of all positive roots in A with respect to some
positive system. The above condition is independent of the choice of a
positive system of A, and Z is W-stable.

We fix a positive system A’ of A.. Then EF := {A € E;(A,a) >
0 for Yoo € AT} parametrizes discrete series representations of G. We call
A € EF (resp.A := A+ p — 2p.) the Harish-Chandra parameter (resp.the
Blattner parameter) of a discrete series representation my.

1.2. Iwasawa decomposition and the space of Whittaker
functions

Let a be a maximal abelian subspace in p, ¥ be the root system of g
with respect to a, and X1 be a positive system of ¥.. We call dimp a the real
rank of G. For any 3 € X, we denote the corresponding root space by gg,

and set n:= ) gg, A:=expaand N :=expn. We have the well-known
pex+
Iwasawa decomposition:

(1.2.1) G = KAN, g=t+a+n

Further, we denote the centralizer of a in K (resp. in £) by M (resp. m).
For a non-degenerate unitary character n of N (i.e. the differential of n

is non-trivial on every root space corresponding to simple roots), the space
of Whittaker functions C°°(G/N;n) is defined by

(12.2)  C®(G/N;n) = {¢: G5 C;o(gn) = n(n) " é(g)
for any x € G,n € N}.
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By the usual semi-norm system, C*°(G/N;n) is equipped with a struc-
ture of Fréchet space. Through left translation and its differential

(128)  Leole) =0la'g)  Lxdlg) = olexp(~1X)g) o

C*°(G/N;n) has continuous G-module and ge-module structures.

For a (gc, K)-module (7, V), we denote by Homy. xy(m, C*(G/N;n))
the space of intertwining operators as a (gc, K )-module. Let 7> be the
C>°-globalization of (m,V) and let Homg (7>, C*°(G/N;n)) be the space
of the intertwining operators as a continuous G-module.

1.3. Description of embeddings of discrete series
representations into the space of Whittaker functions

In this subsection, we review the method, developed by Yamashita in
[Y1], of describing embeddings of discrete series representations into the
space of Whittaker functions.

For a finite dimensional continuous representation (7,V) of K and a
unitary character i of N, define

(1.3.1) CX(K\G/N;n)
- {¢ G E Vi(kgn) =0 (n)r(k)d(g)
forall ne NJke K,g € G}-

Let {X;} be an orthonormal basis of p with respect to the Killing form on g.
We define a K-homomorphism V., : CX(K\G/N;n) —
C2%aa. (K\G/N;n) by

T

(1.3.2) Vrnd(g) = ZLX@(Q) ® Xi,

where Adc denotes the adjoint representation of K on pc. It is easy to see
that V., ¢ is independent of the choice of a basis {X;}.

Let (74,V,) denote the irreducible representation of K with highest
weight u.
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Now suppose A is a Blattner parameter. The tensor product 7y, ® Adc
decomposes into two K-submodules:

(1.3.2) (1 ® Ade, Va @ pe) = (130, V1) @ (73, Vy)),
where 7';5 = P [ur(xa)]mara with ux(£a) = 0 or 1. Let P\ : V), ®
aeA}

pc — V) be the projection operator along this decomposition. We define
a first order G-homogeneous differential operator Dy, : C2(K\G/N;n) —
€ (K\G/N ) by

(1.3.3) Dano(g) := PA(Vand(g)) (¢ € CT(K\G/N;n),g € G).
(Here, V=V n.)

DEFINITION 1.3.1.
The Blattner parameter A\ of a discrete series representation m is said
to be far from the wall provided that

(1.3.5) A— Z B is A} — dominant for any subset @ of A},
a€e@

Notice that the longest element wgy of the Weyl group W, induces a
bijection A — —wpA on the set = of Harish-Chandra parameters, and
that m_,A is unitary equivalent to the contragredient representation 7} of
ma. For later convenience, we deal with embeddings of 7} instead of those
of mp.

Under these preparations, we can state the embedding theorem due to

Yamashita.

THEOREM 1.3.2 (Yamashita [Y1,Theorem 2.4]).
If the Blattner parameter A = A+ p — 2p. of a discrete series represen-
tation w is far from the wall, then we have a linear isomorphism

(1.3.6) Hom g x)(Th x, C°°(G/N;n)) =~ Ker(Dy ).
This isomorphism is given by:
(1.3.7)  Homyg, g) (A x, C(G/N;n)) > L+ Fll e Ker(D) ),

((v*)(9) = (", FU(g)),
(9 € G,v" is a minimal K-type vector of Tj f).
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1.4. The cases for R-rank one groups

For R-rank one groups, we can simplify the calculation for the solutions
of DAJ?‘

The positive system X1 of a R-rank one Lie group G consists of only
one element {#} or two elements {3,25}. The set of differential of unitary
characters of N can be identified with v/~1gj.

LEmMMA 1.4.1.
Suppose G is R-rank one and g # sl(2,R). Then for any 0 # X € gg,
g5 — {0} = Ad(M )R- X.

PROOF. M acts on n by the adjoint action, and —B(Y7,0Y3) (Y1,Ys €
gp) defines a M-invariant inner product on gg. Set Six|(gg) = {Y €
gp; —B(Y,0Y) = —B(X,60X)}. Then, counting dim M — dim Z;(X) ex-
plicitly (Zas(X) is the centralizer of X in M), the M-orbit Ad(M)X is open
in S)x|(gp) and compact, closed. It follows that Ad(M)X is a connected
component of S|x|(gg). On the other hand, if dim gg > 2 i.e. if g £ s[(2,R),
then S x|(gg) is connected. This implies that Ad(M)X = S|x|(gg) and the
lemma follows. OJ

For a unitary character n of N and every m € M, let ™ be a unitary
character of N such that:

(1.4.1) n™(n) :=n(m Inm) forany n € N.

COROLLARY 1.4.2.
Suppose G is R-rank one and g # sl(2,R).

(1) For any two mon-degenerate unitary characters nm,n2 of N, there
exists an element m € M and ¢ € Rxq given by dni*(X) = dna(cX)
for any X € gg, where d denotes the differential of these characters.

(2)

(1.4.2)  C*(G/N;n) > ¢(9)
= ¢ (g) == ¢(gm) € C*(G/N;n™) (v €G)

gives a continuous G-module and gec-module isomorphism for every
meM.
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(3) For every m € M, there exists a bijection:

(1.4.3) Hom g, i) (A, 1 O (G/N;m)) = Ker(Dy ;) 2 ¢(9)
= ¢™(g) = ¢(gm) € Ker(Dyyym)
~ Hom gy, r (7r7\7K, C*(G/N;n™)).

PRrROOF. (1) : Direct consequences of Lemma 1.4.1. (2) : trivial. We
can show (3) by (2) and Theorem 1.3.2. OJ

We will explicitly calculate all the elements of Ker(D,,) for G =
SU(n,1) and Spin(2n,1).

§2. Parametrization of discrete series representations of
SU(n,1)

2.1. Structure of SU(n,1)
First, we review the structure of SU(n,1). As in §0, Ej;; is a matrix
(0ik6j1) k- The group SU(n,1) is defined by

(2.1.1) G=5U(n,1)={g€ SL(n+1,C);'glp19=In.}
1, O
(= (5 %))
and its Lie algebra g and a maximal compact subgroup K are:

(2.1.2) g=su(n,1)={X€sl(n+1,C) ; ‘X1 +I,1X =0},
K=GnU(n+1)

_ {(’8 (detok)_1> ke U(n)} ~U(n).

The orthocomplement p of ¢ in g (with respect to the Killing form) is

On Z\ -
013 o ([ P)esee)

(05, is m X m-zero matrix) and we fix a maximal abelian subspace a = RH
of p, where H := Ey, n11 + Epq1,. Let f be an element of a* (the linear
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dual space of a) defined by f(H) = 1. A positive root system in 3(a, g) is
{f,2f}, and the corresponding positive root spaces are

0,1 Z —Z
(2.1.4) gf = ~Z 0 0 ZzeCcv 1y,
—tZ 0 0
O0p—1 0 O

gor =4 V-1 0 r —z |;xzeR

The centralizer M and m of a in K and ¢ are

E 0 0
(2.1.5) M= 0 1 0]:;keUmn—-1),1€cU@1),> detk=1p,
00 1
X 0 0
m= 0 —itrX 0 ;X eun—1)»,
0 0  —4trX

respectively. We define a basis {X;,Y;, W} of n by

Xi=FEin—FEipy1—Eni—Eppy (1<i<n—1),
(2.1.6) Y Vv — ( - zn+1+Enz+En+1z) (1 Sign_1)7
W = vV — ( - n—l—l,n—l—l - En,n—‘rl + En—i—l,n)’

and the complexified Iwasawa decomposition of elements of pc are

Eint1 = 5(=Xi +V=1Y) + By, (1<i<n—1),

Epy1i=5(=Xi —V=-1Yi) = Ep; (1<i<n-—1),
(2.1.7) Bppi1 = 5(H+V=IW + Enp — Epi1041),

Eniin=2(H—/=1IW — By + Epi1011)-

Here, E; ,, E),; and E,, ;, — Epq1 n41 are elements of £c.
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2.2. Parametrization of discrete series of SU(n,1) (cf.[BS])
In this subsection, we will parametrize discrete series of SU(n, 1).
We choose

n+1 n+1
(2.2.1) t:= {V_lzaiEi,i i a; € R, Zai = 0}
=1 i=1

as a compact Cartan subalgebra of g and fix it. The root systems A and
A, of gc and tc with respect to t¢ are

(2.2.2) A={e—ej; 1<i#j<n+1},
Ac={e;—e;; 1<i#j<n},

n+1

respectively. Here e; (\/—1 > aZ-Ei’i) =+v—la; i=1,...,n+1). We fix
i=1

one of the positive systems of A.:

Af ={e;—e;; 1<i<j<n}.

There are n+ 1 different positive systems AT, ..., At | of A which contain
A7T. Their simple roots are :

(2.2.3) Af <1l ={ept1 —€1,61 —€2...,6n-1 — €n},

+ _
AT =TIy = {e1 —eny1,6nt1 —€2,...,€n—1 — €n},
AZ— —II,
={e1 — €2, .., €k—1 — €nt1,Entl — €ky.vy€n_1 — En},
+ _
An+1 =l = {61 —€2,...,6p—1 = €p,En — en—l—l}-
n+1 n

Since ) e; = 0 on t¢, we identify tf with ) Ce; by €; — €; (i =
i=1 i=1

n
1,...,n) and e,q1 — — > ¢;. This identification is compatible with the
i=1
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. . k 0 .
isomorphism K > (0 (det k;)_1> +— k € U(n). Then, the set of Harish-
n+1
Chandra parameters is denoted by |J Z, where

k=1

n
(2.2.4) B, = {A = Aiei;
=1
A > >A1>0>A > > A, (AZ'EZ)}

and the corresponding Blattner parameters are

n k—1
(2.2.5) Ek9A<=>)\=Z)\iei:Z(Ai-i-k‘-i-i—n—l)ei
=1 =1

—I—Z(Ai—kk—l—i—n—?)ei.
i=k

2.3. Realization of finite dimensional representations of K

Irreducible representations of K ~ U(n) are parametrized by n-tuple
of integers A = (A1, Ao, ..., Ay) < Aier + -+ + \pen. We denote the cor-
responding irreducible representation by (7x, V). We realize (7y,Vy) by
means of the Gel'fand-Zetlin basis (cf. [G-Z1]).

The Gel’fand-Zetlin basis of (7y,V)) is a set GZ(\) := {Q}, where Q’s
are diagrams of shapes

C]1,n q2,n ------ Qn—l,n Qn,n
din-1 92n—-1--- Gn—-1n—1
q1,2 42,2
q1,1

which satisfy
qij — 4ij—1 € Z>o,

Gij—1 — Qiv1,j € L>o0,
Qi =N (1<i<n).
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The actions of E;; € gl(n,C) = u(n) ®g C are given by

(2.3.2) ™

E :am

Jz,jQ:

,J+1

T’i,an

(Ej41,4)Q = me(Q)
=1
J Jj—1
Q= (Z Gij — Z%‘,j—l) Q
=1 =1

where
(2.3.3) am(Q)
j+1 e
I (a1 — aij =k +9) IT (arj-1 — iy —k+i—1)
_ k=1 k=1
— ; - .
[T (ks = qig =k +4) 11 (ary — @i —k+i—1)
fiwh fok
(234) b,(Q)
Jj+1 j—1
T (kg1 — g —k+i+1) T1 (@1 —gij —k+10)
— k=1 k=1
— ; — .
[T (ks —aij—Fk+i) [T(gry—qj—k+i+1)
pon ot
oij ¢ Qij > ¢i; + 1 and the other g ; — qi,,

Tij © Qi Qi

The actions of general Fj;’s are determined by those of bracket products

of Ej’j+1’S and Ej+17j’S

1 and the other g ; — qx .
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2.4. Irreducible decomposition of V) ® p¢
The adjoint representation of K on p¢ is decomposed into two irreducible
components pfct, where

(2.4.1) pg = @CEi,n—Hv p(_: = @CEn-l—l,i-

i=1 i=1

We denote these representations on p% by (Ad%, p(jc[). The highest weights
of (Ad{,p¢) and (Adg,pg) are (2,1,...,1) and (—1,...,—1,—2), respec-
tively.

LEMMA 2.4.1.

If X is far from the wall, then the irreducible decomposition of (T ®
AdE, vy @pd) is

n

(T)\a V)\) @ (Ad%7p((ij) = @(Tkia Vki)a
k=1

n
where (1,5, V") = (Tazer Vaser) <€2 =) &+ €k>-
i=1
PrOOF. This follows immediately from Weyl’s character formula. [J

Let P : V,\®Ad(i: — V¥ be the projection operators. (7, Vy) is a U(n)-

submodule of the irreducible U(n+-1)-modules V5 (A = (A1 +1,A1,...,Ay))
and Vj (A= (A, -5 Ans A — 1)), Similarly, V" and V. (k=1,...,n) are
U(n)-submodules of the irreducible U(n + 1)-modules Vi and Vi, whose

= - n+1 2 . n+1
highest weights are A = A+ > e; and A = A — ) ¢;, respectively. The
i=1 i=1
corresponding embeddings are given by

- AM+HL A oA, -
GZ(AN)2>Q— Q= ( Q ) e GZ(N),

. Al s Ay A —1 .
GZAN)>3Q+~—Q:= ( 0 ) e GZ(N),
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N , M+2 XM+1 .0 A, +1 =
u :GZ(A+e,) 2 P P e GZ()\)
(1<k<n),
B ) A—1 A —1 Ay —2 2
Ly GZ(A—ek)SPH< p )EGZ()\)
(1<k<n),

respectively. Set

Gkn GZ(N) 3 Q= (1) = @ = (G15) € GZ(N),
Gij=ai;+1 ((5,5) # (k,n)),
Z]k,n = 4kn + 27
Fom : GZ(A) 3 Q = (¢,j) — %k,nQ = (¢iy) € GZ(N),
Gij=a;—1 ((1,7)# (k,n)),
Qk,n =dkn — 2.
Using the theory of tensor operators (cf.[Kr]), we can write down ¢; o

PHQ ® Enppnt1) and 1 o P (Q @ Ept1n) (Q € GZ(N)) explicitly. For
notational convenience, Lf o P,;t are also denoted by P,;t.

PROPOSITION 2.4.2 ([Kr, Proposition 4.3]).
For Q € GZ(\),

(2.4.4) PHQ® Epjpt1) = arn(Q)

@ 6k,n@y
Pk_(Q 02y En+1,n) = bk,n(@ T .

)Tk,né)

§3. The differential equation D) ,¢ =0

3.1. The explicit formula of P,j[(anqi)) =0
In this subsection, we write down the equation D) ,¢ = 0.
Using the Gel'fand-Zetlin basis, we can write ¢ € C2X(K\G/N;n) as

(3.1.1) dlo)= Y. cQi9)Q.

QeGZ(N)
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. Einr1+Eni1; ——T Eint1—Enyi <
Since {72m V 172\/7m (1 <i<n);¢ forms an orthonormal

basis of p,

- Einy1+Eni

v)\,nﬁb Z LEz Eing1tEni1s ¢(g) 2\/m

2v/n+1

Enoi1,
I . B /— z n+1l — Lnt+ls
+ Zz_; \/lez,n;rlnf;Hrl [ ( ) ® QW

1 n
- 2(n + 1) Z (LEH+1,1‘¢(9) ® Ei,nJrl + LE'i,n+1¢(g) & En+1,i) .
=1

We define Vin N(K\G/N;n) — COO®Adi(K\G/N;77) by
(3.1.2) Z Lg, . ,,$(9) ® Ejpni1,
(3.1.3) Vi, g) 1 = Z LE, 41 9(9) ® Enta

Let R(D),,) and R(an) be the radial A-part of Dy, and an, respectively.
To determine ¢(g) € KerD, ,, it is sufficient to calculate ¢|4 € KerR(Dj ).
Assume that 7 € N is given by

(3.1.4) n (exp <n2(xle + vy Y;) + wW))

i=1
- eﬁyn_1§ ($i7yi7w S Ra é- S R>O)'
Because of Corollary 1.4.2(1) and (3), it suffices to calculate ¢|s €
KerR(D) ) only for this character.
Next, we introduce a coordinate system of A by

R>p 2 a — exp((loga)H) € A.

Then, by (2.1,7), (3.1.2) and (3.1.3), we have
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LEMMA 3.1.1.

d
_QR(V;\F,W)(M@) = (CL% - T)\(En,n - En—|—1,n+1)> (Z)(a) & En,n+1
(3.1.5) —2 Z TA(En,i)d(a) ® Eipgr — 2@25(‘1) ® En—1n+1,
_QR(V;J])(Zﬁ(a) = (adi + T)\(En,n - En—i—l,n—i—l)) ¢(a) ® En—i—l,n

(3.1.6) —I—QZT)\ in)9(a) @ By + £¢( ) @ Eptin-1-

For any Q € GZ (),
D) (En,z)Q & Ei,n+1
= (T)\ X Adg)(En,zEz,n)(Q ® En,n—i—l)
- T)\(En,iEi,n)Q & En,n—l—l -Q® En,n—l—l-

Hence we have

n—1

Z A Eni)Q ® Eintr

n—1
= (1 @ AdE)(BniEin)(Q ® Eppia)
=1

n—1
Z En zEz n Q X En n+1l — (n - 1)@ 02y En,n—&—l‘

Similarly, we have

n—1
Y A(Ein)Q & Enyry

i=1

n—1
=- Z(T,\ ® AdE) (B Bni)(Q @ Engan)

n—1

+ Z T)\(Ei,nEn,i)Q & En+1,n + (n - 1)Q & En+1,n-
i=1
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Let C, and C,_; be the Casimir elements of gl(n,C) and gl(n — 1,C),
respectively. Since the Killing form B of gl(n,C) is given by B(X,Y) =
2ntr(XY), Cp, and Cp,—; are :

n

2nCp, = iEZZ +2 Z E;;F;; — Z(n +1-— Qi)Em‘

1<i<j<n i=1
Z ELi+2 > EME’J+Z71+1—27,)E“,
1<i<ji<n =1
n—1 n—1
Q(n - 1)07171 = Z EZZ +2 Z Ei,jEj,z’ - Z(n - Qi)Em'
=1 1<i<j<n—1 =1

n—1 n—1
=Y"E}+2 Y BB+ (n—20)E,
=1

1<i<j<n—1 i=1
Then, it follows:
n—1
; EniBip =nCn — (n=1)Co1 = 3 EL, — ZE” + (n—1)Epn,
n—1
> EinEni=nCp—(n—1)Cpq - 3 Ep, += ZEH — ~(n—1)Eyp.

=1

On the other hand,

A(2nCy) {Z)\2+Zn+1—2z }Q,

Using these formulae and Proposition 2.4.2, we have the following equalities:

LEMMA 3.1.2.
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For any Q € GZ(\),

n—1
(3.1.7) P,j (Z TA(Eni)Q ® Ei,nJrl)

=1

:akn ZA +Zan 1— kE+1 O'an,
z;ék

n—1

(3.1.8) P (Z A(Ein)Q ® En+1,i>

=1

—bkn Z)\ ‘l‘ZQZn 1+n—k Tan
1;&1@

From
Q & En—l,n+1 = (T)\ X AdE)(En—l,n)(Q ® En,n—l—l)
- T)\(En—l,n)Q & En,n—l-l:
QO Eniin—1= —(\® Ad(_:)(En,n—l)(Q ® Ent1,n)
+ T)\(En,n—l)Q ® En+1,n>
we have :

LEmMMA 3.1.3.
For any Q € GZ()\),

n—1 > >~
ajn—1(Q)akn(0jn-1Q)

3.1.9) Pt E,_ = S, g
.19 QO Briet) = 3 =X TR

j—l
_ ]n 1 bkn(Tjn 1Q)
(3.1.10) P (Q® Eni1p1) Z S

O'j,n—la'k,nQv

Tj,n—lfk,nQ-

The next proposition follows from Proposition 2.4.2, Lemma 3.1.1, 3.1.2,
and 3.1.3.
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ProproSITION 3.1.4.
For1 <k <n, we have:

(3.1.11) PH(R(VY,)$(a)) =

i=175.0-1QEGZ(N)

akn(@)ajn—l(Tjn—IQ) ~ P
o Dl W51 Q) o 0:)61.,Q = 0,
e — Gy — k4 1 110305k

(3.112) Py (R(V,)#(a)) = 0
= Z bk,n(@)

QeGZ(N)

n n—1
d .
X (a% — i:E 1 i + 20 + E Gipn—1+ 2n — 2k3) c(Q; a) Tk n@

En—l =
+ 52 >

J=10jn 1QEGZ(N)

o Dhn(@bjin-1(0jn1Q)
A = @jm—1—k+j

C(Uj,n—lQ; a)%k,nQ =0.

These equations are the explicit representations of P,;t(R(Vf p)o(a) =
0, which we needed.

3.2. The explicit formulae of ¢(Q;a)
If A € 5, then Dy ,¢(g) = 0 is equivalent to

P (Vy,0(9) == P_,(Vy,0(9))
= P/ (Vy,9(9) == B (V] ¢(g) = 0.
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By (3.1.11), we have

(3.2.1) P (R(VY,)¢(a)) =0
= c(Q;a) =0 for Q = (gij)
satisfying ¢ n—1 = A\, @i—1.n—2 > A/

Moreover, we can show that Pf(R(Vf\MqS(a)) = 0 implies

{ c(@;a) =0 for any @ satisfying ¢_1, 2> XN (if 2<1<n—1),
c¢(Q;a) =0 forany @ (if [=1),

by (3.2.1) and recursive usage of (3.1.11). Similarly, P, (Vy, ¢(a)) = 0
implies

{ c(Q;a) =0 for any Q satisfying q—1,-2 <X (if 2<1<n-1),
c¢(Q;a) =0 for any @ (if I =n).

Consequently,

LEMMA 3.2.1.

(1) If A € 21 UE 41, then Hom(gC,K)(wxyK,Coo(G/N; n)) = {0}.
(2) In order to solve R(Dyy)¢(a) =0 (A€ Zg, 2 <k < n), we have
only to calculate c(Q;a) for Q satisfying

(322) M 2>qn-1>qn-2>X2>...
c e AE—2 2 Qh—2n—1 = Qk—2.n—2 > Ak—1
> Qh—1n—1 = Mo = Qi—1,n—2 = Qen—1 = Nkl = - -
2 A1 2 Gn-2.n-2 2 Qn-1n-1 = An.

Suppose A € Z. In order to solve D) ;¢ = 0, we eliminate the difference
terms of equations P, (Vy,¢) =---=P_;(V) ¢) =0 and P;(V:\hnqﬁ) =
= PH(VE,0) =0
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LEMMA 3.2.2.
(1) If P;(V:\Fm(ﬁ) == Pj(V;tnng) = 0, then for any l;p1,...,pi;

J1y---5J1—1 which satisfy 1 <1l <n—k+1L,k<p < - <p <
n,1<j1 <---<ji—1 <n-—1, we have

l
(H api,ﬂ(@)) X
. d n l
{ (a% + Z)\z — QZ(AM —pi)

n—1 -1
> Gin-1+2) (@jin1 — i) — 25) o(Q;a)
i=1 i=1

-1
n—1 (@jim—1 — Q-1+ 7 — Ji)
S i=1
a — ! )
j;ﬁjlj,il,jl_l H ()‘pz' Qi1 —Pi+J+ 1)

Il
—

(2
X @jn—1(Tjn-1Q)c(Tjn-1Q; a)} = 0.
We call the above equation (3.2.3)p, .. piijr,ji_1-
(2) If Pf(V;}nqﬁ) = ... = P,;l(V;nd)) = 0, then for any l;p1,...,pI;

1y ji—1 which satisfy 1 <1 <k—1,1<p;<---<p<k-1,1<
<. <ji-1<n—1,

l
(H bpi,n(@)) X
! d n l
{ (a% — Z)\i + 22()‘1% - i)
i=1 i=1

n—1 -1
+ Z Qin—1 — 2 Z(jS,nfl —Jji) + 2”) c(Q;a)
i=1 i=1

l

—_

= (@jin—1 — Gjn—1 +J — Ji)
i=1

A DD .

At [Ty — @jn—1 —pi +7)

boia
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X bjn-1(0jn-1Q)c(0jn-1Q; a)} = 0.
We call the above equation (3.2.4)p, . piijr i1 -

PrROOF. We prove these formulae by induction on [. If [ = 1, then
these formulae are coefficients of 5p17n6j) and %pl,n@ in equations (3.1.11) and
(3.1.12), respectively. If these formulae hold for some [, then, by eliminating
a difference term, we can check that they are true for [ + 1. O

This lemma implies that, if all ¢(Q;a)’s are given for ) satisfying

(3.2.5) M2 Qn-1=@npn2=A > ...
ce A=2 2 Qk—2n—1 = Qk—2,n—2 = Ak—1 = Qk—1,n—1,
Ak 2 Qk—1n—2 = Qkp—1 = Agtl = - - -
2 Mim1 2 Gn—2,m-2 = Qn—1,n—1 = Ap,

then all the other ¢(Q;a)’s are uniquely determined.

9

Let us find the explicit formulae of ¢(Q;a)’s.
Suppose @ = (g;,j) satisfies qx_1,,—1 > Ax and the other g¢; ;’s satisfy
(3.2.5). Let I, pi(1 <i<1),pi(1 <p,<n—k—1+1)and j;(1 <j; <l—-1)
be integers determined by
E+1<pi < - <p—1 <0y @p—1,n—1 7 Ap;>»
kE+1< pll << p;z—k:—l—‘rl <n, dp,—1,n—1 = )‘p§7
b = ka
Ji=pi—1, 1<i<[l-1

(3.2.6)

Then, we have

ap;n(Q) #0 (1 <1 <),
AT 1n1@ia) =0 1<i<n—k-1+1),
c(Tjn-1Q5a) =0 (1 <j <k —2),

-1

l n n—1
=23 O = 2) 2D (G —Gi) 2= =23 N +2D i1 +2k -2,
i=1 i=k i=k

=1
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-1 n—1

[T (%in—1 = G101+ k=1 = ji) Il (@n-1—qr-1n1+k—i—-1)
L 1
Zl _ i _ .
H ()‘pz —Qk—1pn—-1 —Di T+ E—1+ 1) Hk(/\l —Qk—1n-1— %+ k)
i=1 i—
Finally, equation (3.2.3),,... p1:ji,...ji_, 18 written as follows.
(3.2.7) (Tk-1,n-1@Q; a)
_a 1
€ ap—1,0-1(Th—1,0-1Q)
n
H ()‘Z —qk—1n—1 — 1+ k)
% i=k
n—1 ‘
IT(gin-1— @11 —i+k—1)
i=k

d k—1 n k—1
X (a% —i—;)\i - Z;)\i _;%,n—l

n—1
+ Z(h,n—l + 2k — 2) c(Q;a).
i=k

(Notice that, by our assumption, ag—1,—1(7—1,,—1Q) # 0 holds.) Simi-
larly, if @ satisfies gz—1,—1 < Ag—1 and the other g; ;s satisfy (3.2.5), then
equation (3.2.4)p, . pji,....ji_1 18

(3.2.8) c(0k-1,n-1Q; a)
Sbk—l,n—l(ak—l,n—lé)
k—1
[T = e-1n—1 —i+ k= 1)
X k_lzl

(Qi,n—l —Qqk—-1n—-1 — 1+ k — 1)
=1

-
Il

d k—1 n k—2
x|ao- +Z)\i — Z)\i _ZQi,n—l
i=1 i—k i=1
1

+ Qin—1+2n —2k + 2) c(Q;a).
i=k—1

3
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(bk—1n—1(0k—1n—1Q) # 0 by same reason.)
Therefore, ¢(Q;a) for @ satisfying (3.2.5) is a solution of the following
single equation;

d
{ (a— + A— Qk—1,n—1 + 2k — 2>
da

d 52

da
k-1 n 9 )
where A= Y \i— > A\i— qu 1+qu1 Set t = £amdc( E)
i=1 i=k i= i=k

tA+”_%f(Q;t). Then f(Q;t) satlsﬁes

th—Q—ﬁ—( + —2k:+2)2+1 f(@Q;t)=0
dt2 4 Qk—l,n—l n 4 9 -

This is the so-called Whittaker’s differential equation.
We have shown the following proposition :

ProrosiTION 3.2.3.
(1) IfAe=Z; 2<A<n), then

(3.2.9) dimHom(gcyK)(W}lK,C’OO(G/N;n))
<2 Z dim VA, (1, - .o s pn—2),

A ZHIZAQZ 2 A o222 A1,
ApZhp 12 A 412 2An—12Hn—22An

where VA (1, ..., pin—2) is the irreducible U(n — 2)-module with
highest weight (1, ..., tn—2).
(2) The explicit formula of ¢(Q;a) for Q which satisfies (3.2.5) is

—1 —2

_ZA"FZA“FZ i,m— _E i,m— n+_
(3.2.10) (Qia)=a = ST AT ETT

X{ (Q)WO,qk 1,n—1+n—2k+2 <2§>
+ c2(Q) M, lgk—1.7m_1+n— 2k+2|< )}

where, ¢1(Q), c2(Q) are arbitrary constants and W, 3 t), M, 5(t) are

)

Whittaker’s confluent hypergeometric functions (cf.][W-W]).
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As a matter of fact, the equal sign in (3.2.9) holds and we will prove it
in §6.2.

¢4. Parametrization of discrete series representations of
Spin(2n, 1)

4.1. Structure of Spin(2n,1)

We review the structure of G = Spin(2n,1). As in §0, F;; = E;; — Ej;.
The group Spin(2n, 1) is the connected two-fold linear cover of SOgy(2n, 1)
and its maximal compact subgroup K is isomorphic to Spin(2n). The Lie
algebra g = 0(2n,1) of G is given by

B b VA AN o
g_{(—\/—_ltl_}' 0 ),XEO(2TL),UER },

and its Cartan decomposition g =€+ p is

- {(f)( 8>;X60(2n)},

o 02n —17 L= 2n
(g YY)

Then G = Spin(2n,1) = K expp. Fix a maximal abelian subspace a = RH
in p where H := /—1F5,412,. Let f be an element of a* defined by
f(H) =1. A positive system in 3(a, g) is {f}, and the corresponding root

space is
2n—1

n=gysr= Z R(FQ”hi —+ V _1F2n+1,i)-
i=1
We denote X; = Foy i + v —1Fo,41: (1 < i < 2n —1). The centralizer M
of a in K is isomorphic to Spin(2n — 1) and its Lie algebra m is

X 0 0
m= 0 0 0];Xe€0(2n—-1)
0 0 0

The Iwasawa decomposition of elements of p are
{ V=1Fy1,; =X — Fopy (1<i<2n—1),
V—=1F5, 119, = H.

Here, Fy,; (1 =1,...,2n — 1) are elements of &.

(4.1.1)
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4.2. Parametrization of discrete series of Spin(2n,1) (cf.[BS])
In this subsection, we parametrize discrete series of Spin(2n,1).
We choose

(4.2.1) t:= ZRF%,%—I
i=1

as a compact Cartan subalgebra of g and fix it. The root system A (resp.
A.) of gc (resp. £c) with respect to tc is

(4.2.2) A={xe;te;; 1<i<j<npU{fe;l<i<n},
(resp. Ac={Fe;xe;; 1 <i<j<n}),
where e;(v/—1Fyj2j-1) = &;; (1 < i,j5 < n). We fix one of the positive
systems of A.:
Al ={e;+e; 1<i<j<n}.
There are two different positive systems A, AJ of A which contain A}:
Af:{ei:tej;l§i<j§n}U{ei;1§i§n},
Ay ={eite;;1<i<ji<nlu{esl<i<n-—1}U{—e,}.
The set of Harish-Chandra parameters is denoted by =1 U =5, where

n
(4.2.3) = = {A => Aiei; Ay > o> A, >0,

=1
1
A e §Z,AZ‘ _Ai+1 € Z},
n
Ty = {A:ZAiei; Ay > >Ng > —A, >0,
=1

1
A; € §Z,Ai — Ai+1 S Z},

and the corresponding Blattner parameters are

n n 1
ElBA@A:Z)\ZE%':Z(Ai+i—n+§>€i,

=1 i=1

n n
1
EQBA@A:Z)\ZEZ’:Z(Ai+i—n+§>€i_en~

=1 =1
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4.3. Realization of finite dimensional representations of K

Irreducible representations of K ~ Spin(2n) are parametrized by n-
tuple of positive half integers A = (A1, Aa,..., \p) < Aer + -+ + Apen
satisfying (1) all \; € 3Z or all \; € Z, (2) A1 > -+ > A1 > Ayl
We denote the corresponding irreducible representations by (7y, Vy). To
explicitly calculate, we realize (7, V)\) by means of the Gel’fand-Zetlin basis.
(cf.[G-Z2]).

The Gel'fand-Zetlin basis of (7, V)) is a set GZ(\) := {Q}, where Q’s
are diagrams of shapes

d12n—-1 4922n—-1 ------ gn—1,2n—1 qn,2n—1
d1,2n—2 422n—2--- Qn—12n—2
d12n-3 422n—3 ... 4n—1,2n—3
(4.31) Q= (q)=
14 424
41,3 42,3
q1,2
41,1

which satisfy

all g; ; € %Z orall ¢;; € Z,

QGi2j41 = G2 = Git12i41 (G=1,...,5—1),
¢2j+1 = @525 > |@j+1,25+1)

¢Gi2j > Gi2j—1 > Qiv12j (i=1,...,5—1),

4j2j = 4j,2—1 = —qj2j,

Qi2n—1 = Aj.

The actions of Fj; are given by

J
(4.3.2) TA(F2j41,25)Q = Zai,Qj—l(Q)Uiﬂj—lQ
=1
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J
=) Aigj1(Q)Ti2i1Q,
—y

j
Ta(Fajy2.2j41)Q = Y bigj(Q)oi2;Q
J
- Z Bi2i(Q)7i,2;Q + V—1c2;(Q)Q
i=1

where
a;2j-1(Q)

Jj=1 J
Loy = Bajor —lkjma = lig—) 11 (555 = Boja = lhoy —li2j1)

)

4 H (13 2j—1 11‘2,23‘71){122]‘,1 — (ligj—1+1)%}
k#z

Ai2i-1(Q) = ai2j—1(Ti2j-1Q),

J
kl:Il(lZ72j_1 i 2]) 1:[ ( k,25+1 122])
bi2j(Q) = — 7 — ,
l122j(4l122j ) kl:ll (l,% 27 12]){<lk 2 — 1) l’L22]}

k;z

Bi,2j(Q) = b;2j(7i,2;Q),

Jj+1
H lk2j-1 H lk2j+1
=1
CQ](Q) = j )

IT lk2j(lk2; — 1)
F=1

lkoj—1:=qr2j—1+7J—k,
lk2j = Qr2j +J+1—k,
0ij G & ¢i; + 1 and the other g ; — qi,
ij ¢ Qj — qij — 1 and the other g;; — qx .

The actions of other Fy;’s are determined by those of bracket products of

Foji1,25's and Fyjpo0j41’s.
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4.4. Irreducible decomposition of V) ® pc
(Adc, pc) is an irreducible K-module and its highest weight is (1,0,
..,0).

LEmMMA 4.4.1.
If X is far from the wall, then the irreducible decomposition of (T ®
Adc, V\ ® pe) is

n

(T)u V/\) ® (AdC7 p(C) ~ @(T)\+ek7 V)\+ek) @ @(T/\fek7 V)\fek)'
k=1 k=1

Let PkjE VM ® Adé — Vi+e, be the projection operators. Notice that
(7x, Vi) and Vg, (1 <k <n) are Spin(2n)-submodules of the irreducible

- n—1
representation V5 of Spin(2n + 1) whose highest weight is A = > (A +
i=1
1)e; + (|An| 4+ 1)en. The corresponding embeddings are given by

3 <A1+1 DD W | |)\n|+1) _
L:GZN)3Q— Q= 0 e GZ()N),

. >\n71+1 |)\n‘+1 ~
P € GZ(\)

(1<k<n).

AM+1 .
Lf:GZ(A:I:@QBPH( !

Using the theory of tensor operators, we can write down L,f o P,;t(Q ®
Fopt12n) (Q € GZ(N)) explicitly. As in §2.4, ¢f o PF’s are also denoted by
PZE.

k

PROPOSITION 4.4.2.
For Q € GZ(\),

(4.4.1) PH(Q ® Fapi1.2n) = ag20-1(Q)0k20-1Q,
P (Q® Fapi12n) = —Ap2n-1(Q) Tk 2n-1Q.

ProOOF. The proof of this proposition is just similar to that of Propo-
sition 2.4.2 (gl(n,C) case). We can apply the argument of gl(n,C) case by
Kraljevié¢ ([Kr, §4]) to this o(n,C) case. O
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§5. The differential equation D) ,¢ =0

5.1. The explicit formula of P(V) ,¢) =0
In this subsection, we will write down the equation Dy ,¢ = 0.
Using the Gel’fand-Zetlin basis, we can write ¢ € C22(K\G/N;n) as

(5.1.1) dg)= > c@9Q.

QeGZ(N)

Since {, /W];I)FQW/JF]_’Z’ (1<i< 2n)} forms an orthonormal basis of p,

1
5.1.2 v L — Fyrs
(5.1.2) A9 (9) Z N —— 1)F2n+1z¢(g) N\ a@n—1)

Let R(D),,) and R(V ) be the radial A-part of Dy, and V ,, respectively.
To determine ¢(g) € KerDy,, it is sufficient to calculate ¢4 € KerR(Dj ).
Assume that n € N is given by

2n—1
(5.1.3) n <exp (Z lel>> = eV T7n1€ (x; € R, &€ Ryy).
i=1

Because of Corollary 1.4.2(1) and (3), it suffices to calculate ¢|4 €
KerR(Dr, ) only for this character.
Next, we introduce a coordinate system of A by

R<p 2 a — exp((loga)H) € A.
Then, by (4.1.1) and (5.1.2), we have

ProrosiTION 5.1.1.

(5.1.4)  2(2n— 1)V—=1R(V,,)¢(a)

2n—1
d
= a%fﬁ(a) ® Font12n — ; A (Foni)¢p(a) @ Fopi1

— \/—_1§¢>(a) ® Foni12n-1-
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For any Q € GZ (),

27\ (F2ni)Q ® Fopi1i = — (7 ® Ade) (Fon.i)*(Q @ Fopt1.2n)
+ A (F2ni)?Q @ Fany1.2n — Q ® Fapy1.on.

Hence we have

2n—1

Z A (Fon,i) Q@ ® Fong1,i

i=1

[\

Il
|
N | =
.
i\g
—

1

n

(7’)\ X Ad(j)(F2n7i)2(Q & F2n+1,2n)

[~}
i
A

2n —1

72 (F2ni)?Q @ Fopit2n — Q @ Fopt1,2n.

N| —

+

I
—

7

Let Cy, be the Casimir element of o(m,C). Since the Killing form B of

o(m,C) is given by B(X,Y) = (m—2)tr(XY), Coy, and Cyy,—; are —2(2n —
2)Co = >, FjQZ- and —2(2n — 3)Cop—1 = > Ffl Then, it
1<i<j<2n 1<i<j<2n—1 7

2n—1
follows : Z i = —2(2n — 2)Coy, 4+ 2(2n — 3)Cap 1. On the other hand,

for any Q e GZ()\)
TA(—2(2n — 2)C20)Q _{ ZAQ—QZ n—1i) }
n—1
T,\(—2(2n— )an 1 { qu om—2 Z 2n— 1 —Qi)qign_g}Q.
i=1

Using these formulae and Proposition 4.4.2, we have the following equalities:

LEMMA 5.1.2.
For any Q € GZ(\),

2n—1
(5.1.5) A (Z TA(F2n,:)Q @ F2n+17i>

1=1
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= ag2n-1(Q) (M — k + 1)og2n_1Q,

2n—1
(5.1.6) P]; ( Z T,\(an,i)Q ® F2n+1,i>

i=1
= —Ak,2n—1(@)( A —2n+k + )Tk,2n—1Q-

From

Q ® Fonti12n-1 = Ta(Fon2n-1)Q ® Fant12n
— (A @ Adc) (Fan,2n-1)(Q ® Fany1,2n),

we have :
LEMMA 5.1.3.
For any Q € GZ()\),

n—1 =~ ot
ak.on—1(07 99— bion—
PHQ® Fanpronr) = — 3 %2 1(0),2n-2Q)bj 2n—2(Q)

lk,2n—1 - lj,2n—2

0jon—20k 2n—1Q
j—l

+Zak2n 1 szn 2Q) 7,2n— 2(@)

lk2n 1+l]2n 2_1

1 N . -
" 1ak,anl(Q)CZn—Q(Q)Uk,anle

Tj2n—20k2n—1Q

n—1 ot ot
Apopn_1(0;9n— bion—
Plc_ (Q ® F2n+1,2n71) _ § : k,2 1((7],2 2@) 7,2 Z(Q)

i 7 0j2n—2Tk2n—1Q
k,2n—1 + 7,2n—2

j—l

—G—Z Ak 2n—1 7‘] 2n— 2Q) ],271—2(@)

74,2 —27k2n—1Q
] J,em I
lk 2n—1 — l],2n72

_ QAk on-1(Q)c2n—2(Q) T 2n-1Q.

i on—1

The next proposition follows from Proposition 4.4.2, Lemma 5.1.1, 5.1.2,
and 5.1.3.
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PrROPOSITION 5.1.4.
For1 <k <n, we have:

(5.1.7) B (R(Vag)d(a)) = 0 <

Z ar.on-1(Q) ai — A+ k= 1) e(Q;a)op2n1Q

QeGZ(N)

f Z ak2n-1(Q)can—2(Q)

lk?n 1

o(Q;a)ok2n-1Q

QEGZ(/\

n VAT nzzl Z ak.2n-1(Q)bj2n—2(Tj 2n—2Q)

lkon—1 —ljon—2+1

J=1 720 2QEGZ(N)
X ¢(Tjon—2Q; )0k 2n—1Q

V—1¢ nzl Z ak,2n—1(Q)Bj,Qn—Q(Uj,Zn—2Q)

lkon—1+1j2n—2

J=10j2,2Q€GZ(N)

X ¢(0j2n—2Q; )0} 2n-1Q

(51.8) Py (R(Vay)d(a) = 0 <=

d s
> Arana(Q) <a% + A —k+2n— 1) o(Q; a)T2n-1Q

QEGZ(N)
Apon— Cop— ~
f Z £ 1l( 2 2( )(Q;a)Tk,anQ
QEGZ(/\ k,2n—1

Agon-1(Q)bjon—2(Ti2n—2Q)
lkon—1+1ljon—2—1

J=1 75 9n—2QEGZ(N)

X C(Tj,2n72Q; Q)Tk,Qn—IQ

Y -1 nil Z Agan-1(Q)Bjon—2(0j90—2Q)
lkon—1 — lj2n—2
J=1 0 0n—2QEGZ(N) ’ I

X C(O’J’Zn—QQa a)Tk,2n— 1 Q
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These equations are the explicit representations of P,jc (R(Vf ,)o(a) =
0, which we needed.

5.2. The explicit formulae of ¢(Q;a)
If A € Z4, then

DA,U¢(9) =0« Pl_(vA,nqb(g)) == P{(Vk,nqs(g)) = 07

and if A € =y, then

DA,n¢(g) =0
& P (Vand(9) == P, 1(Vano(9) = Pf (Vanolg) = 0.

By (5.1.8), we have

621) P (R(Vaé(@) =0
= ¢(Q;a) =0
for @ = (qij) satisfying qi—12n—2 = A\, @1—1,2n—3 < A

Moreover, we can show that P (R(V,)¢(a)) = 0 implies
c(Q;a) =0 for any @ satisfying ¢;_19,-3 <X (2<1<n-—1)

by (5.2.1) and recursive usage of (5.1.8). Similarly, if A € ZE;, then
P (Vay¢(a)) =0 implies

c¢(Q;a) =0 for any @ satisfying |gn—12n—3| < An,
and if A € Sy, then P;f(Vy,¢(a)) = 0 implies
c(Q;a) =0 for any @Q satisfying |gn—1.2n—3| < —An.
Consequently,

LEMMA 5.2.1.
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In order to solve R(Dy)¢(a) =0, we have only to calculate c(Q;a) for
Q satisfying

(5.2.2) M >qon-2 > qion-3 > A2 > > Ao

> Gn-2.2n-2 = n—22n—3 = An—1 = Qn—1,2n—2
> |Q7’L71,2n73’ > |)\n|

Suppose A € E;. In order to solve D) ;¢ = 0, we eliminate the difference
terms of equations P, (V) ,0) =--- = P, (Vy,¢) =0.

LEMMA 5.2.2.

Suppose I;p1, ..., pis J1s -5 Ji-1 satisfy 1 <1< n,1 <p; <--<p <
n, 1 <1 <. <gii1 <n—1,and P, (Vay¢) = -+ = P,/ (Vay0) = 0.
Then,

l
<H Api,Qn—l (Q)) X

1—1 7,:1
-1
I i 2n—2 i
+ p 171 can—2(Q)c(Q; a)
H lpl,2n 1
i=1
171( )
- lj;on—2 + ljon—2 —1
/¢ "=t - Jiy Js _
T : lzl bjon—2(Tj2n—2Q)c(Tj2n—2Q; a)
I=8 T Ups2n—1 + ljgn—2 — 1)
=1

1 [T, 2n—2 — li2n—2)
i—1

l
j;sjl]il,jl_l lnl(lpm?n—l - l]}2n—2)
1=

X Bj,2n—2(Uj,gn—QQ)C(Uj,2n—2Q;a)} =0.
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We call the above equation (5.2.3)p,, .. pyjr,ii_1 -

The proof of this lemma is just similar to the proof of Lemma 3.2.2.
This lemma and similar computation for the case A € =5 implies that,
if A € 21 UEy and all ¢(Q;a)’s are given for @) satisfying

(5.2.4) M 2>q12n—2 = q12n-3 = A2 > -+ > A2
> Gn—2,2n-2 = qn—22n—3 > An—1 = Qn—1,2n—2

= |gn-12n-3] > [Anl

then all the other ¢(Q;a)’s are uniquely determined.

Let us find the explicit formulae of ¢(Q;a)’s.

Suppose A € Z; and Q = (¢;;) satisfies (5.2.4). Let I,p;(1 < i <
D,pi(1<p;<n-—1-1)and j(1 <j; <l—1) be integers determined by
1 Spl < <Pl S n— 17 qpi,Qn—Q 7& /\pm
1<pi<---<p <n—1, qyopn_o= Ay,

(525) — pl pnflfl _— quQn 2 D;
pbr=n,
ji=pi (1<i<li—1).

Then, we have

Apon—1(Q) #0 (1 <i <),
C(Up§,2n—2Q; a)=0 (1<i<n-1-1),
A(Tjon—2Q;0) =0 (1<j<n-1),

-1
[T li2n—2
171 CanQ(Q) = SgNgn—1,2n—3;
[T lpi2n—1
=1

l -1

n n—1
Z()\pi —pi) = ) _(@ji2n—2 — Ji) = Z Ai — Z Gi2n—2 — M.
i=1 i=1

i=1 i=1

Finally, equation (5.2.3)p,, .. p,us,...ji_, 1S written as follows.

n—1

d n
(a% +n—-1+ Z; Ai — Z Qi2n—2 + Sgn(h—l,Qn—S%) c(Q;a) = 0.

i=1
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n n—1
—n+1=3 M+ > qi2n—2 ¢
It follows that ¢(Q;a) = const.a =1 =1 eSehdn-12n-35  The

A € E5 case can be calculated similarly.

ProprosITION 5.2.3.
(1) If A € 21 U=, then

(5.2.6) dim Homg,. k) (W}k\yK, C*(G/N;n))

E : D
S 2 dlm‘/Qn_Q(Mla"‘mu’n—l)7
A1Zp1>A22>..
ZATL—QZHTL—QZA'I’L—IZMTL—12|)\7L|

where VP _o(pa, ..., pn—1) 1is the irreducible Spin(2n — 2)-module
with highest weight (p1, ..., fn—-1)-

(2) Suppose n is defined by (5.1.3). Then ¢ € KerDy,, is completely
determined by c(Q;a)’s for Q satisfying

M Z>qon—2 = q12n-3 > A2 > -+ > A2

> Qn—22n—2 = qn—22n—-3 = An—1 = Gn—12n—2 = |qn—1,2n-3| = [Anl-

(3) For Q which satisfies the above conditions in (2), the explicit for-
mula of ¢(Q;a) is

n—1 n—1
(5.2.7) c(Q; a) = a(Q)a_n+1_i§1 >\i_|>\n|+i§1 qi72n72€SgHQn71,2n73§7

where, a(Q) is an arbitrary constant.

The equal sign in (5.2.6) holds, and we will prove it in §6.2.
§6. The dimension of the space of Whittaker models

In this section, we prove the explicit dimension formula of the space of
Whittaker models, and the equal signs in (3.2.9) and (5.2.6) are shown.
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6.1. The Gel’fand-Kirillov dimension and the Bernstein degree
of finitely generated U(gc)-modules

At first, we will recall the Gel’fand-Kirillov dimension and the Bernstein
degree of finitely generated U (gc)-modules.

Suppose g; is an arbitrary finite dimensional Lie algebra over C and
U(g1) is the universal enveloping algebra of g;. Let Uy,(g1) C U(g1) be the
subspace of U(gy) spanned by monomials which are products of at most
n elements of g;. Let V be a finitely generated U(g;)-module. Choose a
finite dimensional subspace Vj of V' that generates V' as a U(g;)-module.

o0
Set Vi, = Un(g1)Vo, My, = Vo/Viuer and M = gtV = > M,. M is a
n=0
grU(g1) ~ S(g1)-module. By a theorem of Hilbert-Serre, there exists a
polynomial x(z) over Q such that y(n) is equal to > dim Mj, for sufficiently

—
large n. The degree and the leading coefficient of y(z) are denoted by DimV
and % (c(V) € Z), respectively. (For a graded S(gi)-module N, we
define ¢(N) and DimN similarly.) The integers DimV and ¢(V') are called
the Gel’fand-Kirillov dimension and the Bernstein degree of V', respectively.

Let d be any integer not smaller than DimV. We write

- { o(V)  ifd=DimV,
AT I if d > DimV.

Now, let V' be an irreducible (gc¢, K)-module and 7 be a non-degenerate
character of N. In this case, since V' admits an infinitesimal character,
v(v)(g) (v € Viu € Homg, iy (V,C*(G/N;n))) is a real analytic func-
tion on G. Then we have an isomorphism Homy. xy(V,C*(G/N;n)) =
Homg, x)(V, A(G/N;n)) (A denotes the space of real analytic functions).

THEOREM 6.1.1 ([M1, Corollary 2.2.2 and Theorem 6.2.1]).
Let cq(V'), n and V' be as above. Then

dim Hom g, 1) (V, A(G/N;n)) = ca(V) (d = dimn).
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6.2. Characteristic cycles of (g¢, K)-modules (cf.[V])

Since grU(gc) =~ S(gc) is Noetherian and M = grV is a finitely gen-
erated S(gc)-module, there exists a sequence 0 = My C M; C --- C
M, = M of S(gc)-submodules of M such that M;/M;_1 ~ S(gc)/Qi
(°Q; € SpecS(gc)) for any i. The characteristic cycle of M is the formal
sum

Ch(M) =Y m(Py, M)Py,
k=1

where Pg’s are minimal in {P € SpecS(gc);P DO Ann(M)}, and
m(Py, M) = #{Qi € SpecS(gc); Mi/Mi—1 ~ S(gc)/Qi, Qi = Fr}. By
definition, 0 — M;—1 — M; — S(gc)/Qi — 0 is exact. It follows that

ca(V) = > ca(S(gc)/Qi). If Qi C Qj, then there exists an element
i=1
r € @j — Q; and we have the following exact sequences;

0 — S(gc)/Qi = S(gc)/Qi — S(gc)/(Qi + x5(gc)) — O,
0— Q;/(Qi +xS(gc)) — S(ac)/(Qi +xS(gc)) — S(gc)/Qj — 0.

Then cpim(s(ge)/@:)(S(9c)/Q;) = 0 and we have proved:

LEMMA 6.2.1.
Let d = max {Dim(S(gc)/Px)}. Then DimV =d and

Ann(M)C Py €SpecS(ac)
Py :minimal

cg(V) = > m(Pg, M)cq(S(gc)/ Pr)-

Ann(M)C P €SpecS(ac)
Py :minimal

In [C], Chang calculated m(Py, M) of discrete series representations for
R-rank one matrix groups.

THEOREM 6.2.2 ([C, Theorem A.7, Theorem B.5]).
Let p be a discrete series representation of G = SU(n, 1) or Spin(2n, 1)
whose Harish-Chandra parameter is A. Then

Ch(grmy i) = m(Prs ., 877 1) Prs o
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where Prx _is the unique minimal prime ideal containing Ann(grmy ;) and

m(Pr o817 1)

¢ Z dimVn{2(M1,..-,Mn_2)

ALZ2p12A22 2 A 22K, 22 A 1>
AR ZHE—12Ak 412" 2An—12Hn—22An

(G=SU(n,1),A € 5,2 <k <n),

: D
E dim Vi, _o(p1, -y fn—1)
AM2p1>A2> > 2> -2 > A1 > fin—12> | An |

(G = Spin(2n,1),A € Z; U=)).

LEMMA 6.2.3.
If A, N € Eg, then Cd(S(g(c)/PﬂAyK) = Cd(S(g(c)/Pﬂ-A,TK).

PrROOF. We may assume that u = A’ — A is dominant integral.

Let E, be the irreducible gc-module with highest weight u. Let Vj
be a finite dimensional subspace of mp gk that generates mp x as a U(gc)-
module. Then my x ® E, = U(ge)(Vo ® E,). Set V,, = Up(gc)Vo. For
any v € Ve € E,and X € go, X(v®e) = Xv®e+v® Xe = Xv®
e (mod V, ® E,). Therefore Ann(gr(ma x ® E,)) = Ann(grmy k) and
V(ma,k ® Ey) = V(ma k) holds for their associated varieties. We know that
mar ki is an irreducible submodule of mp g ® E,. Then V(mpr ) € V(7A k).
We can show the inverse inclusion by “down” translation, and we have
V(mar i) = V(ma k). Since mp g is a discrete series representation, V(ma, k)
is a closed irreducible variety. By the Hilbert Nullstellensatz, Pr, , =
Pﬂ-A/,K. Eventually, Cd(S(gc)/PﬂAyK) = Cd(S(g(c)/Pﬂ-A,’K). O

We will prove the equal sign in (3.2.9) (the dimension formula of the
SU(n,1) case). By Theorem 6.1.1, Lemma 6.2.1 and Theorem 6.2.2, it
suffices to prove cd(S(gC)/Pﬁ’K) = 2.

If we read [Y1], [H-P] and [K-W] carefully, we notice that the condition
“far from the wall” in Theorem 1.3.2 can be a little weakened. In our
case G = SU(n,1), Theorem 1.3.2 is also true for 7} r (A € Ej), if the
Blattner parameter A = A + p —2p. = (A1,...,Ap) I8 Ay = -+ = A1 >
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2k —n—1, g =+ = A\, < 2k —n — 3 (see [H-P,89]). For this parameter
A, R(Dyy)é(a) = 0 is equivalent to

d
(a% + Me—1 — A+ Gk—1,n-1 +2n — 2k + 2) c(Q;a)

11— A+ 1
+§\/Qk 1n—1 k c(0p—1,n-1Q5a) =0

al\l Ak—1— Qr—1,n—1

(Ak=1 > Qr—1,n—1 > i),

d
<a£ + Ae—1 — M — Qh—1,n—1 + 2k — 2) c(Q;a)

Aol — Qh—1m— 1
L § [ A—1 = @r—1n—1 + (71 1Q:a) = 0
a Qh—1,n—1 — Ak

(Ak=1 > Qh—1,n—1 > i),

and we can easily check the compatibility of these equations by direct cal-
culation. Then, for this parameter A, the equal sign in (3.2.9) holds and we
have shown cd(S(gC)/Pﬁ’K) = 2. By Lemma 6.2.3, cd(S(g@)/PﬂZ’K) =2
for every parameter A. Similarly, we can prove that the equal sign in (5.2.6)
holds (Spin(2n,1) case).

6.3. Whittaker functions of moderate growth

For a (gc, K)-module (7, V), let (7°°,V>°) be its C*°-globalization and
we denote by (77°°, V' ~°°) the continuous dual to (7°°, V°°) with respect to
U (gc)-topology. We denote the continuous intertwining space by
Homg (7>, C*°(G/N;n)) and set

Wh(n™>) :={p € V"' (X)p = —n(X)p, (X en)}.
There is a canonical isomorphism :

Wh(m™>) 3 ¢ — f, € Homg(n>,C*(G/N;n)),
(o, m(g~ ) = fo(v)(g), (vEV™g€Q).

By a theorem of Wallach (cf.[W, §8.3]), if ¢+ € Homg(7n>,C*(G/N;n)),
then ¢(v)(g) must be of moderate growth.
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In SU(n,1) case, the M-Whittaker function is not of moderate growth
but the W-Whittaker function is. In Spin(2n,1) case, since & > 0,
esg“q"*m"*% is of moderate growth if and only if g,—12,—3 < 0. Then,
for each case, the dimension of Wh(7}\™>) is just the half of that of the
(gc, K)-intertwining space. This is consistent with Matumoto’s theorem
(cf. [M2, Theorem 5.5.2]).

At last, we have proved Theorem A and B.
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