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Discrete Series Whittaker

Functions of SU(n, 1) and Spin(2n, 1)

By Kenji Taniguchi

Abstract. The Mellin transform of Whittaker functions gives the
archimedean factor of the automorphic L-functions. Hence it is very
important to obtain explicit formulae of Whittaker functions. In this
paper, we obtain explicit formulae of discrete series Whittaker functions
of SU(n, 1) and Spin(2n, 1) (n ≥ 2).

§0. Introduction

Let G be a real connected semisimple Lie group with finite center, G =

KAN be its Iwasawa decomposition, η be a non-degenerate character of N

(i.e.the differential of η is non-trivial on every root space corresponding to

simple roots). The space of Whittaker functions C∞(G/N ; η) is defined by

C∞(G/N ; η) = {φ : G
C∞
→ C;φ(gn) = η(n)−1φ(g) for any g ∈ G,n ∈ N}.

For a G-module (π, V ), a realization of (π, V ) in C∞(G/N ; η) is called a

Whittaker model of (π, V ). Notice that determination of a Whittaker model

of (π, V ) is equivalent to that of an intertwining operator ι from (π, V ) to

C∞(G/N ; η). For any v ∈ V , ι(v)(g) ∈ C∞(G/N ; η) is called a Whittaker

function corresponding to v.

The Mellin transform of Whittaker functions gives the archimedean fac-

tor of the automorphic L-functions. Hence it is very important to obtain

explicit formulae of Whittaker functions. Recently, Hayata, Iida, Koseki,

1991 Mathematics Subject Classification. Primary 22E30; Secondary 22E46, 11F30,
33C15.

331



332 Kenji Taniguchi

Miyazaki, Oda, Tsuzuki and Yamashita obtained explicit formulae of spher-

ical functions, Whittaker functions and Shintani functions of some groups

and some representations (cf.[K-O], [M-O1], [M-O2], [O1], [O2], [Y1], [Y2]).

The author obtained explicit formulae of discrete series Whittaker functions

of SU(n, 1) and Spin(2n, 1) (n ≥ 2).

The significance of these cases is in that the explicit formulae are calcu-

lated for non-quasi-split groups SU(n, 1) and Spin(2n, 1).

Main results

We will explain the main results of this article.

In this paper, Eij is a matrix (δikδjl)kl and Fij := Eij − Eji.

Let πΛ be the discrete series representation of G whose Harish-Chandra

parameter is Λ, and let π∗
Λ be its contragredient representation. The space

πΛ,K of K-finite vectors in πΛ becomes a (gC,K)-module. Let π∞
Λ be

the C∞-globalization of πΛ,K and let Hom(gC,K)(π
∗
Λ,K , C

∞(G/N ; η)) be the

space of the intertwining operators as a (gC,K)-module and

HomG(π∗∞
Λ , C∞(G/N ; η)) be the space of the intertwining operators as a

continuous G-module.

In [Y1], Yamashita proved the following linear isomorphism:

Hom(gC,K)(π
∗
Λ,K , C

∞(G/N ; η)) � Ker(Dλ,η).

(For the definition of this differential operator Dλ,η, see §1.3). Then, the

determination of intertwining operators reduces to solving a differential

equation Dλ,ηφ = 0.

We know that SU(1, 1) � Spin(2, 1) � SL(2,R) and Whittaker func-

tions of SL(2,R) are well known (cf.[J-L] and [J]). Therefore we investigate

SU(n, 1) and Spin(2n, 1) case for n ≥ 2.

SU(n, 1) case (n ≥ 2)

Let {ei} be the usual basis of the dual space of a Cartan subalgebra of

kC (cf. §2.2). The set of Harish-Chandra parameters of discrete series of

SU(n, 1) is Ξ =
n+1⋃
i=1

Ξi, where

Ξk =

{
Λ =

n∑
i=1

Λiei; Λ1 > · · · > Λk−1 > 0 > Λk > · · · > Λn (Λi ∈ Z)

}
,
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and the corresponding Blattner parameters are denoted by

Ξk � Λ ⇔ λ =
n∑

i=1

λiei

=
k−1∑
i=1

(Λi + k + i− n− 1)ei +
n∑

i=k

(Λi + k + i− n− 2)ei.

Let


Xi = Ei,n − Ei,n+1 − En,i − En+1,i (1 ≤ i ≤ n− 1),

Yi =
√
−1(Ei,n − Ei,n+1 + En,i + En+1,i) (1 ≤ i ≤ n− 1),

W =
√
−1(En,n − En+1,n+1 − En,n+1 + En+1,n)

be a basis of n.

We define our preferred character η of N by

η

(
exp

(
n−1∑
i=1

(xiXi + yiYi) + wW

))
= e

√
−1yn−1ξ(0.1)

(xi, yi, w ∈ R, ξ ∈ R>0).

Since φ ∈ KerDλ,η is a Vλ-valued function, we can write φ(g) =∑
Q

c(Q; g)Q by means of the Gel’fand-Zetlin basis of Vλ. For details on

Gel’fand-Zetlin basis, we refer to §2.3. The main theorem for SU(n, 1) is

as follows.

Theorem A (Lemma 3.2.1(1), Proposition 3.2.3, §§6.2 and 6.3).

(1) Let ζ be any non-degenerate character of N . Then

dim Hom(gC,K)(π
∗
Λ,K , C

∞(G/N ; ζ)) = {0} (if Λ ∈ Ξ1 ∪ Ξn+1),

dim Hom(gC,K)(π
∗
Λ,K , C

∞(G/N ; ζ))

= 2
∑

λ1≥µ1≥λ2≥···≥λk−2≥µk−2≥λk−1,

λk≥µk−1≥λk+1≥···≥λn−1≥µn−2≥λn

dimV A
n−2(µ1, . . . , µn−2)

( if Λ ∈ Ξk, 2 ≤ k ≤ n),

dim HomG(π∗∞
Λ , C∞(G/N ; ζ))

=
1

2
dim Hom(gC,K)(π

∗
Λ,K , C

∞(G/N ; ζ)),
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where, V A
n−2(µ1, . . . , µn−2) is the irreducible U(n − 2)-module with

highest weight (µ1, . . . , µn−2).

(2) Let η be defined by (0.1) and Λ ∈ Ξk (2 ≤ k ≤ n). Then φ ∈ KerDλ,η

is completely determined by c(Q; a)’s (a ∈ A) for Q satisfying

q1,n−1 = q1,n−2, . . . , qk−2,n−1 = qk−2,n−2,

qk−1,n−1 = λk−1,

qk−1,n−2 = qk,n−1, . . . , qn−2,n−2 = qn−1,n−1.

(3) For Q which satisfies the conditions in (2), the explicit formula of

c(Q; a) is

c(Q; a) = a
−

k−1∑
i=1

λi+
n∑

i=k
λi+

k−2∑
i=1

qi,n−1−
n−1∑
i=k

qi,n−1−n+ 1
2

×
{
c1(Q)W0,λk−1+n−2k+2

(
2ξ

a

)

+c2(Q)M0,|λk−1+n−2k+2|

(
2ξ

a

)}
,

where, c1(Q), c2(Q) are arbitrary constants and Wα,β(t),Mα,β(t)

are Whittaker’s confluent hypergeometric functions ( [W-W]). More-

over, c(Q; a) corresponds to an element of

HomG(π∗∞
Λ , C∞(G/N ; η)) if and only if c2(Q) = 0.

Spin(2n, 1) case (n ≥ 2)

Let {ei} be the usual basis of the dual space of a Cartan subalgebra of

kC (cf. §4.2). The set of Harish-Chandra parameters of discrete series of

Spin(2n, 1) is Ξ = Ξ1 ∪ Ξ2, where

Ξ1 =

{
Λ =

n∑
i=1

Λiei; Λ1 > · · · > Λn > 0, Λi ∈
1

2
Z,Λi − Λi+1 ∈ Z

}
,

Ξ2 =

{
Λ =

n∑
i=1

Λiei; Λ1 > · · · > Λn−1 > −Λn > 0,

Λi ∈
1

2
Z,Λi − Λi+1 ∈ Z

}
,
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and corresponding Blattner parameters are

Ξ1 � Λ ⇔ λ =
n∑

i=1

λiei =
n∑

i=1

(
Λi − i+ n+

1

2

)
ei,

Ξ2 � Λ ⇔ λ =
n∑

i=1

λiei =
n∑

i=1

(
Λi − i+ n+

1

2

)
ei − en.

Let

Xi = F2n,i +
√
−1F2n+1,i (i = 1, . . . , 2n− 1)

be a basis of n. We define our preferred character η of N by

(0.2) η

(
exp

(
2n−1∑
i=1

xiXi

))
= e

√
−1x2n−1ξ (xi ∈ R, ξ ∈ R>0).

Since φ ∈ KerDλ,η is Vλ-valued function, we can write φ(g) =
∑
Q

c(Q; g)Q

by means of the Gel’fand-Zetlin basis of Vλ (cf. §4.3).

Theorem B (Proposition 5.2.3, §§6.2 and 6.3).

(1) Let ζ be any non-degenerate character of N . If Λ ∈ Ξ1 ∪ Ξ2, then

dim Hom(gC,K)(π
∗
Λ,K , C

∞(G/N ; ζ))

= 2
∑

λ1≥µ1≥λ2≥···≥λn−2≥µn−2≥λn−1≥µn−1≥|λn|
dimV D

2n−2(µ1, . . . , µn−1),

dim HomG(π∗∞
Λ , C∞(G/N ; ζ)) =

1

2
dim Hom(gC,K)(π

∗
Λ,K , C

∞(G/N ; ζ)),

where V D
2n−2(µ1, . . . , µn−1) is the irreducible Spin(2n − 2)-module

with highest weight (µ1, . . . , µn−1).

(2) Let η be defined by (0.2). Then φ ∈ KerDλ,η is completely deter-

mined by c(Q; a)’s for Q satisfying

λ1 ≥q1,2n−2 = q1,2n−3 ≥ λ2 ≥ · · · ≥ λn−2

≥ qn−2,2n−2 = qn−2,2n−3 ≥ λn−1 ≥ qn−1,2n−2 = |qn−1,2n−3| ≥ |λn|.
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(3) For Q which satisfies the above conditions in (2), the explicit for-

mula of c(Q; a) is

c(Q; a) = α(Q)a
−n+1−

n−1∑
i=1

λi−|λn|+
n−1∑
i=1

qi,2n−2

esgnqn−1,2n−3
ξ
a ,

where, α(Q) is an arbitrary constant and sgnx := |x|
x (x ∈ R �=0).

Further, c(Q; a) corresponds to an element of

HomG(π∗∞
Λ , C∞(G/N ; η)) if and only if α(Q) = 0 for Q satisfy-

ing sgnqn−1,2n−3 > 0.

Our dimension formula Theorem A(1) and Theorem B(1) follows from

results of Chang ([C]) and Matumoto ([M2]).

Let us give an interpretation of our results. Let ZM (η) be the centralizer

of η in M . In our case, for example G = SU(n, 1) and η is non-degenerate,

ZM (η) is isomorphic to U(n − 2) modulo the center. By the right ac-

tion of ZM (η) on KerDλ,η (cf.§1.4), KerDλ,η is decomposed into irreducible

ZM (η)-modules. The dimension formula in Theorem A(1) describes irre-

ducible ZM (η)-modules which occur in this decomposition. Their highest

weights are controlled by compact simple roots in the following sense. The

compact simple roots of the positive system ∆+
k which corresponds to Ξk

are e1 − e2, . . . , ek−2 − ek−1, ek − ek+1, . . . , en−1 − en. The representation

of ZM (η) with highest weight (µ1, . . . , µn−2) enters KerDλ,η if and only if

(µ1, . . . , µn−2) separates the set of compact simple roots:

e1 e2 . . . ek−2 ek−1

◦ − ◦ − . . . − ◦ − ◦ −
λ1 λ2 . . . λk−2 λk−1

↔ ↔ ↔ ↔
µ1 µ2 . . . µk−3 µk−2

en+1 ek ek+1 . . . en−1 en
− • − ◦ − ◦ − . . . − ◦ − ◦

λk λk+1 . . . λn−1 λn
↔ ↔ ↔ ↔
µk−1 µk . . . µn−3 µn−2

.

The author expects that analogous dimension formula is valid for quasi-

large discrete series representations of other semisimple Lie groups.
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Let us explain the contents of this paper. In §1, we recall well known

facts on discrete series representations and the method, due to Yamashita

[Y1], to investigate embeddings of discrete series into the space of Whittaker

functions. In §2, we review the structure of SU(n, 1), parametrize discrete

series of SU(n, 1) and realize irreducible representations of K � U(n).

Yamashita’s differential operator Dλ,η is explicitly computed and explicit

representations of the radial part of the minimal K-type Whittaker func-

tions (if they exist) are given in §3. The Spin(2n, 1) case is computed in

§§4, 5. §4 corresponds to §2 and §5 to §3. In §6, we prove the dimension

formula of Theorem A(1) and Theorem B(1). Here we use the fact, due

to H.Matumoto [M1], that, for a quasi-large (gC,K)-module V , the dimen-

sion of the intertwining space Hom(gC,K)(V,A(G/N ; η)) coincides with the

Bernstein degree c(V ) of V . Chang calculated the characteristic cycles of

discrete series for R-rank one matrix groups (cf.[C]). His result implies the

explicit value of c(V ). Finally, we have Theorem A and B.

Acknowledgements. The author expresses his sincere gratitude to Prof.

T.Oshima, whose constant encouragement and advices has enabled him to

write this article, Prof. T.Oda and Prof. T.Uzawa, who suggested him to

study Whittaker functions. He should also like to thank Prof. H.Matumoto,

Prof. T.Kobayashi, for their hearty encouragement and discussions.

§1. Discrete series representations of semisimple Lie groups

1.1. Parametrization of discrete series representations

In this subsection, we review some basic results on discrete series rep-

resentations for real semisimple Lie groups. For general theory, see [K,

Ch.IX], for example.

Let G be a real connected semisimple Lie group with finite center, K be a

maximal compact subgroup of G and g, k be their Lie algebras respectively.

For any real vector space l, we denote its complexification l⊗R C by lC. Let

g = k + p be a Cartan decomposition of g and θ the corresponding Cartan

involution. Throughout in this paper, we assume that G has discrete series.

In this case, g has a compact Cartan subalgebra t ⊂ k . Let ∆ be the root

system of gC with respect to tC. For an α ∈ ∆, let gαC be the corresponding

root space. Since t ⊂ k, for any α ∈ ∆, gαC is contained either in kC or

in pC. A root α is called compact (resp. noncompact) if gαC ⊂ kC (resp.
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gαC ⊂ pC ). We will denote the set of all compact roots (resp. noncompact

roots) by ∆c (resp. ∆n). ∆c is a root subsystem of ∆ and is identified

with the root system of kC with respect to tC. We denote by W and Wc the

Weyl groups of ∆ and ∆c respectively, and denote by B( , ) the Killing

form of gC, which induces, through its restriction to tC × tC, a W -invariant

nondegenerate bilinear form ( , ) on tC and on its dual space t∗C in the

canonical way.

Now we parametrize discrete series representations.

Let Ξ be the set of Λ ∈ t∗C which is regular and Λ + ρ is K-integral.

Here ρ denotes half the sum of all positive roots in ∆ with respect to some

positive system. The above condition is independent of the choice of a

positive system of ∆, and Ξ is W -stable.

We fix a positive system ∆+
c of ∆c. Then Ξ+

c := {Λ ∈ Ξ; (Λ, α) ≥
0 for ∀α ∈ ∆+

c } parametrizes discrete series representations of G. We call

Λ ∈ Ξ+
c (resp.λ := Λ + ρ − 2ρc) the Harish-Chandra parameter (resp.the

Blattner parameter) of a discrete series representation πΛ.

1.2. Iwasawa decomposition and the space of Whittaker

functions

Let a be a maximal abelian subspace in p, Σ be the root system of g

with respect to a, and Σ+ be a positive system of Σ. We call dimR a the real

rank of G. For any β ∈ Σ, we denote the corresponding root space by gβ,

and set n :=
∑

β∈Σ+

gβ, A := exp a and N := exp n. We have the well-known

Iwasawa decomposition:

(1.2.1) G = KAN, g = k + a + n.

Further, we denote the centralizer of a in K (resp. in k) by M (resp. m).

For a non-degenerate unitary character η of N (i.e. the differential of η

is non-trivial on every root space corresponding to simple roots), the space

of Whittaker functions C∞(G/N ; η) is defined by

C∞(G/N ; η) = {φ : G
C∞
→ C;φ(gn) = η(n)−1φ(g)(1.2.2)

for any x ∈ G,n ∈ N}.



Discrete Series Whittaker Functions 339

By the usual semi-norm system, C∞(G/N ; η) is equipped with a struc-

ture of Fréchet space. Through left translation and its differential

(1.2.3) Lxφ(g) = φ(x−1g), LXφ(g) =
d

dt
φ(exp(−tX)g) |t=0,

C∞(G/N ; η) has continuous G-module and gC-module structures.

For a (gC,K)-module (π, V ), we denote by Hom(gC,K)(π,C
∞(G/N ; η))

the space of intertwining operators as a (gC,K)-module. Let π∞ be the

C∞-globalization of (π, V ) and let HomG(π∞, C∞(G/N ; η)) be the space

of the intertwining operators as a continuous G-module.

1.3. Description of embeddings of discrete series

representations into the space of Whittaker functions

In this subsection, we review the method, developed by Yamashita in

[Y1], of describing embeddings of discrete series representations into the

space of Whittaker functions.

For a finite dimensional continuous representation (τ, V ) of K and a

unitary character η of N , define

C∞
τ (K\G/N ; η)

=
{
φ : G

C∞
→ V ;φ(kgn) = η−1(n)τ(k)φ(g)

for all n ∈ N, k ∈ K, g ∈ G
}
.

(1.3.1)

Let {Xi} be an orthonormal basis of p with respect to the Killing form on g.

We define a K-homomorphism ∇τ,η : C∞
τ (K\G/N ; η) →

C∞
τ⊗AdC

(K\G/N ; η) by

(1.3.2) ∇τ,ηφ(g) :=
∑
i

LXiφ(g)⊗Xi,

where AdC denotes the adjoint representation of K on pC. It is easy to see

that ∇τ,ηφ is independent of the choice of a basis {Xi}.
Let (τµ, Vµ) denote the irreducible representation of K with highest

weight µ.



340 Kenji Taniguchi

Now suppose λ is a Blattner parameter. The tensor product τλ ⊗ AdC

decomposes into two K-submodules:

(1.3.2) (τλ ⊗AdC, Vλ ⊗ pC) � (τ+
λ , V

+
λ )⊕ (τ−λ , V

−
λ ),

where τ±λ =
⊕

α∈∆+
n

[uλ(±α)]τλ±α with uλ(±α) = 0 or 1. Let Pλ : Vλ ⊗

pC → V −
λ be the projection operator along this decomposition. We define

a first order G-homogeneous differential operator Dλ,η : C∞
τλ

(K\G/N ; η) →
C∞
τ−λ

(K\G/N ; η) by

(1.3.3) Dλ,ηφ(g) := Pλ(∇λ,ηφ(g)) (φ ∈ C∞
τλ

(K\G/N ; η), g ∈ G).

(Here, ∇λ,η = ∇τλ,η.)

Definition 1.3.1.

The Blattner parameter λ of a discrete series representation πΛ is said

to be far from the wall provided that

(1.3.5) λ−
∑
α∈Q

β is ∆+
c − dominant for any subset Q of ∆+

n .

Notice that the longest element w0 of the Weyl group Wc induces a

bijection Λ �→ −w0Λ on the set Ξ+
c of Harish-Chandra parameters, and

that π−w0Λ is unitary equivalent to the contragredient representation π∗
Λ of

πΛ. For later convenience, we deal with embeddings of π∗
Λ instead of those

of πΛ.

Under these preparations, we can state the embedding theorem due to

Yamashita.

Theorem 1.3.2 (Yamashita [Y1,Theorem 2.4]).

If the Blattner parameter λ = Λ + ρ− 2ρc of a discrete series represen-

tation πΛ is far from the wall, then we have a linear isomorphism

(1.3.6) Hom(gC,K)(π
∗
Λ,K , C

∞(G/N ; η)) � Ker(Dλ,η).

This isomorphism is given by:

Hom(gC,K)(π
∗
Λ,K , C

∞(G/N ; η)) � ι �→ F [ι] ∈ Ker(Dλ,η),(1.3.7)

ι(v∗)(g) = 〈v∗, F [ι](g)〉,
(g ∈ G, v∗ is a minimal K-type vector of π∗

Λ,K).
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1.4. The cases for R-rank one groups

For R-rank one groups, we can simplify the calculation for the solutions

of Dλ,η.

The positive system Σ+ of a R-rank one Lie group G consists of only

one element {β} or two elements {β, 2β}. The set of differential of unitary

characters of N can be identified with
√
−1g∗β.

Lemma 1.4.1.

Suppose G is R-rank one and g �� sl(2,R). Then for any 0 �= X ∈ gβ,

gβ − {0} = Ad(M)R>0X.

Proof. M acts on n by the adjoint action, and −B(Y1, θY2) (Y1, Y2 ∈
gβ) defines a M -invariant inner product on gβ. Set S|X|(gβ) := {Y ∈
gβ;−B(Y, θY ) = −B(X, θX)}. Then, counting dimM − dimZM (X) ex-

plicitly (ZM (X) is the centralizer of X in M), the M -orbit Ad(M)X is open

in S|X|(gβ) and compact, closed. It follows that Ad(M)X is a connected

component of S|X|(gβ). On the other hand, if dim gβ ≥ 2 i.e. if g �� sl(2,R),

then S|X|(gβ) is connected. This implies that Ad(M)X = S|X|(gβ) and the

lemma follows. �

For a unitary character η of N and every m ∈ M , let ηm be a unitary

character of N such that:

(1.4.1) ηm(n) := η(m−1nm) for any n ∈ N.

Corollary 1.4.2.

Suppose G is R-rank one and g �� sl(2,R).

(1) For any two non-degenerate unitary characters η1, η2 of N , there

exists an element m ∈M and c ∈ R>0 given by dηm1 (X) = dη2(cX)

for any X ∈ gβ, where d denotes the differential of these characters.

(2)

C∞(G/N ; η) � φ(g)(1.4.2)

�→ φm(g) := φ(gm) ∈ C∞(G/N ; ηm) (x ∈ G)

gives a continuous G-module and gC-module isomorphism for every

m ∈M .
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(3) For every m ∈M , there exists a bijection:

Hom(gC,K)(π
∗
Λ,K , C

∞(G/N ; η)) � Ker(Dλ,η) � φ(g)(1.4.3)

�→ φm(g) := φ(gm) ∈ Ker(Dλ,ηm)

� Hom(gC,K)(π
∗
Λ,K , C

∞(G/N ; ηm)).

Proof. (1) : Direct consequences of Lemma 1.4.1. (2) : trivial. We

can show (3) by (2) and Theorem 1.3.2. �

We will explicitly calculate all the elements of Ker(Dλ,η) for G =

SU(n, 1) and Spin(2n, 1).

§2. Parametrization of discrete series representations of

SU(n, 1)

2.1. Structure of SU(n, 1)

First, we review the structure of SU(n, 1). As in §0, Eij is a matrix

(δikδjl)kl. The group SU(n, 1) is defined by

G = SU(n, 1) =
{
g ∈ SL(n+ 1,C); tḡIn,1g = In,1

}
(2.1.1) (

In,1 =

(
1n 0

0 −1

))

and its Lie algebra g and a maximal compact subgroup K are:

g = su(n, 1) = {X ∈ sl(n+ 1,C) ; tX̄In,1 + In,1X = 0},(2.1.2)

K = G ∩ U(n+ 1)

=

{(
k 0

0 (det k)−1

)
; k ∈ U(n)

}
� U(n).

The orthocomplement p of k in g (with respect to the Killing form) is

(2.1.3) p =

{(
0n 8z
t8̄z 0

)
;8z ∈ Cn

}

(0n is n × n-zero matrix) and we fix a maximal abelian subspace a = RH

of p, where H := En,n+1 + En+1,n. Let f be an element of a∗ (the linear
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dual space of a) defined by f(H) = 1. A positive root system in Σ(a, g) is

{f, 2f}, and the corresponding positive root spaces are

gf =




 0n−1 8z −8z
−t8̄z 0 0

−t8̄z 0 0


 ;8z ∈ Cn−1


 ,

g2f =


√−1


 0n−1 0 0

0 x −x
0 x −x


 ;x ∈ R


 .

(2.1.4)

The centralizer M and m of a in K and k are

M =




 k 0 0

0 l 0

0 0 l


 ; k ∈ U(n− 1), l ∈ U(1), l2 · det k = 1


 ,(2.1.5)

m =




X 0 0

0 −1
2trX 0

0 0 −1
2trX


 ;X ∈ u(n− 1)


 ,

respectively. We define a basis {Xi, Yi,W} of n by

(2.1.6)




Xi = Ei,n − Ei,n+1 − En,i − En+1,i (1 ≤ i ≤ n− 1),

Yi =
√
−1(Ei,n − Ei,n+1 + En,i + En+1,i) (1 ≤ i ≤ n− 1),

W =
√
−1(En,n − En+1,n+1 − En,n+1 + En+1,n),

and the complexified Iwasawa decomposition of elements of pC are

(2.1.7)




Ei,n+1 = 1
2(−Xi +

√
−1Yi) + Ei,n (1 ≤ i ≤ n− 1),

En+1,i = 1
2(−Xi −

√
−1Yi)− En,i (1 ≤ i ≤ n− 1),

En,n+1 = 1
2(H +

√
−1W + En,n − En+1,n+1),

En+1,n = 1
2(H −

√
−1W − En,n + En+1,n+1).

Here, Ei,n, En,i and En,n − En+1,n+1 are elements of kC.
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2.2. Parametrization of discrete series of SU(n, 1) (cf.[BS])

In this subsection, we will parametrize discrete series of SU(n, 1).

We choose

(2.2.1) t :=

{
√
−1

n+1∑
i=1

aiEi,i ; ai ∈ R,
n+1∑
i=1

ai = 0

}

as a compact Cartan subalgebra of g and fix it. The root systems ∆ and

∆c of gC and kC with respect to tC are

∆ = {ei − ej ; 1 ≤ i �= j ≤ n+ 1},
∆c = {ei − ej ; 1 ≤ i �= j ≤ n},

(2.2.2)

respectively. Here ei

(√
−1

n+1∑
i=1

aiEi,i

)
=
√
−1ai (i = 1, . . . , n + 1). We fix

one of the positive systems of ∆c:

∆+
c = {ei − ej ; 1 ≤ i < j ≤ n}.

There are n+1 different positive systems ∆+
1 , . . . ,∆

+
n+1 of ∆ which contain

∆+
c . Their simple roots are :

∆+
1 ⇐⇒Π1 = {en+1 − e1, e1 − e2 . . . , en−1 − en},(2.2.3)

∆+
2 ⇐⇒Π2 = {e1 − en+1, en+1 − e2, . . . , en−1 − en},

· · ·
∆+

k ⇐⇒Πk

= {e1 − e2, . . . , ek−1 − en+1, en+1 − ek, . . . , en−1 − en},
· · ·

∆+
n+1 ⇐⇒Πn+1 = {e1 − e2, . . . , en−1 − en, en − en+1}.

Since
n+1∑
i=1

ei ≡ 0 on tC, we identify t∗C with
n∑

i=1
Cei by ei �→ ei (i =

1, . . . , n) and en+1 �→ −
n∑

i=1
ei. This identification is compatible with the
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isomorphism K �
(
k 0

0 (det k)−1

)
�→ k ∈ U(n). Then, the set of Harish-

Chandra parameters is denoted by
n+1⋃
k=1

Ξk, where

Ξk =

{
Λ =

n∑
i=1

Λiei;(2.2.4)

Λ1 > · · · > Λk−1 > 0 > Λk > · · · > Λn (Λi ∈ Z)

}
,

and the corresponding Blattner parameters are

Ξk � Λ ⇔ λ =
n∑

i=1

λiei =
k−1∑
i=1

(Λi + k + i− n− 1)ei(2.2.5)

+
n∑

i=k

(Λi + k + i− n− 2)ei.

2.3. Realization of finite dimensional representations of K

Irreducible representations of K � U(n) are parametrized by n-tuple

of integers λ = (λ1, λ2, . . . , λn) ⇔ λ1e1 + · · · + λnen. We denote the cor-

responding irreducible representation by (τλ, Vλ). We realize (τλ, Vλ) by

means of the Gel’fand-Zetlin basis (cf. [G-Z1]).

The Gel’fand-Zetlin basis of (τλ, Vλ) is a set GZ(λ) := {Q}, where Q’s

are diagrams of shapes

(2.3.1) Q = (qij) =




q1,n q2,n . . . . . . qn−1,n qn,n

q1,n−1 q2,n−1 . . . qn−1,n−1

. . . . . .

. . .

q1,2 q2,2

q1,1




which satisfy 


qi,j − qi,j−1 ∈ Z≥0,

qi,j−1 − qi+1,j ∈ Z≥0,

qi,n = λi (1 ≤ i ≤ n).
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The actions of Eij ∈ gl(n,C) = u(n)⊗R C are given by

τλ(Ej,j+1)Q =

j∑
i=1

ai,j(Q)σi,jQ,

τλ(Ej+1,j)Q =

j∑
i=1

bi,j(Q)τi,jQ,

τλ(Ejj)Q =

(
j∑

i=1

qi,j −
j−1∑
i=1

qi,j−1

)
Q,

(2.3.2)

where

ai,j(Q)(2.3.3)

=

√√√√√√√√√√

∣∣∣∣∣∣∣∣∣∣∣

j+1∏
k=1

(qk,j+1 − qi,j − k + i)
j−1∏
k=1

(qk,j−1 − qi,j − k + i− 1)

j∏
k=1
k �=i

(qk,j − qi,j − k + i)
j∏

k=1
k �=i

(qk,j − qi,j − k + i− 1)

∣∣∣∣∣∣∣∣∣∣∣
,

bi,j(Q)(2.3.4)

=

√√√√√√√√√√

∣∣∣∣∣∣∣∣∣∣∣

j+1∏
k=1

(qk,j+1 − qi,j − k + i+ 1)
j−1∏
k=1

(qk,j−1 − qi,j − k + i)

j∏
k=1
k �=i

(qk,j − qi,j − k + i)
j∏

k=1
k �=i

(qk,j − qi,j − k + i+ 1)

∣∣∣∣∣∣∣∣∣∣∣
,

σij : qi,j �→ qi,j + 1 and the other qk,l �→ qk,l,

τij : qi,j �→ qi,j − 1 and the other qk,l �→ qk,l.

The actions of general Ek,l’s are determined by those of bracket products

of Ej,j+1’s and Ej+1,j ’s.
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2.4. Irreducible decomposition of Vλ ⊗ pC

The adjoint representation of K on pC is decomposed into two irreducible

components p
±
C , where

(2.4.1) p
+
C :=

n⊕
i=1

CEi,n+1, p
−
C :=

n⊕
i=1

CEn+1,i.

We denote these representations on p
±
C by (Ad±

C , p
±
C ). The highest weights

of (Ad+
C , p

+
C ) and (Ad−

C , p
−
C ) are (2, 1, . . . , 1) and (−1, . . . ,−1,−2), respec-

tively.

Lemma 2.4.1.

If λ is far from the wall, then the irreducible decomposition of (τλ ⊗
Ad±

C , Vλ ⊗ p
±
C ) is

(τλ, Vλ)⊗ (Ad±
C , p

±
C ) �

n⊕
k=1

(τ±k , V
±
k ),

where (τ±k , V
±
k ) = (τλ±e′k

, Vλ±e′k
)

(
e′k =

n∑
i=1

ei + ek

)
.

Proof. This follows immediately from Weyl’s character formula. �

Let P±
k : Vλ⊗Ad±

C → V ±
k be the projection operators. (τλ, Vλ) is a U(n)-

submodule of the irreducible U(n+1)-modules Vλ̃ (λ̃ = (λ1 +1, λ1, . . . , λn))

and Vλ̂ (λ̂ = (λ1, . . . , λn, λn − 1)). Similarly, V +
k and V −

k (k = 1, . . . , n) are

U(n)-submodules of the irreducible U(n + 1)-modules V˜̃
λ

and Vˆ̂
λ
, whose

highest weights are
˜̃
λ = λ̃ +

n+1∑
i=1

ei and
ˆ̂
λ = λ̂ −

n+1∑
i=1

ei, respectively. The

corresponding embeddings are given by

GZ(λ) � Q �→ Q̃ :=

(
λ1 + 1 λ1 . . . λn

Q

)
∈ GZ(λ̃),

GZ(λ) � Q �→ Q̂ :=

(
λ1 . . . λn λn − 1

Q

)
∈ GZ(λ̂),
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ι+k : GZ(λ+ e′k) � P �→
(
λ1 + 2 λ1 + 1 . . . λn + 1

P

)
∈ GZ(

˜̃
λ)

(1 ≤ k ≤ n),

ι−k : GZ(λ− e′k) � P �→
(
λ1 − 1 . . . λn − 1 λn − 2

P

)
∈ GZ(

ˆ̂
λ)

(1 ≤ k ≤ n),

respectively. Set

σ̃k,n : GZ(λ̃) � Q̃ = (qi,j) �→ σ̃k,nQ̃ = (q̃i,j) ∈ GZ(
˜̃
λ),

q̃i,j = qi,j + 1 ((i, j) �= (k, n)),

q̃k,n = qk,n + 2,

τ̂k,n : GZ(λ̂) � Q̂ = (qi,j) �→ τ̂k,nQ̂ = (q̂i,j) ∈ GZ(
ˆ̂
λ),

q̂i,j = qi,j − 1 ((i, j) �= (k, n)),

q̂k,n = qk,n − 2.

Using the theory of tensor operators (cf.[Kr]), we can write down ι+k ◦
P+
k (Q ⊗ En,n+1) and ι−k ◦ P−

k (Q ⊗ En+1,n) (Q ∈ GZ(λ)) explicitly. For

notational convenience, ι±k ◦ P±
k are also denoted by P±

k .

Proposition 2.4.2 ([Kr, Proposition 4.3]).

For Q ∈ GZ(λ),

P+
k (Q⊗ En,n+1) = ak,n(Q̃)σ̃k,nQ̃,

P−
k (Q⊗ En+1,n) = bk,n(Q̂)τ̂k,nQ̂.

(2.4.4)

§3. The differential equation Dλ,ηφ = 0

3.1. The explicit formula of P±
k (∇±

λ,ηφ) = 0

In this subsection, we write down the equation Dλ,ηφ = 0.

Using the Gel’fand-Zetlin basis, we can write φ ∈ C∞
τλ

(K\G/N ; η) as

(3.1.1) φ(g) =
∑

Q∈GZ(λ)

c(Q; g)Q.
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Since
{

Ei,n+1+En+1,i

2
√
n+1

,
√
−1

Ei,n+1−En+1,i

2
√
n+1

(1 ≤ i ≤ n)
}

forms an orthonormal

basis of p,

∇λ,ηφ(g) =
n∑

i=1

LEi,n+1+En+1,i
2
√

n+1

φ(g)⊗ Ei,n+1 + En+1,i

2
√
n+ 1

+

n∑
i=1

L√
−1

Ei,n+1−En+1,i
2
√

n+1

φ(g)⊗
√
−1

Ei,n+1 − En+1,i

2
√
n+ 1

=
1

2(n+ 1)

n∑
i=1

(
LEn+1,iφ(g)⊗ Ei,n+1 + LEi,n+1φ(g)⊗ En+1,i

)
.

We define ∇±
λ,η : C∞

τλ
(K\G/N ; η) → C∞

τλ⊗Ad±
C

(K\G/N ; η) by

∇+
λ,ηφ(g) : =

n∑
i=1

LEn+1,iφ(g)⊗ Ei,n+1,(3.1.2)

∇−
λ,ηφ(g) : =

n∑
i=1

LEi,n+1φ(g)⊗ En+1,i.(3.1.3)

Let R(Dλ,η) and R(∇±
λ,η) be the radial A-part of Dλ,η and∇±

λ,η, respectively.

To determine φ(g) ∈ KerDλ,η, it is sufficient to calculate φ|A ∈ KerR(Dλ,η).

Assume that η ∈ N̂ is given by

η

(
exp

(
n−1∑
i=1

(xiXi + yiYi) + wW

))

= e
√
−1yn−1ξ (xi, yi, w ∈ R, ξ ∈ R>0).

(3.1.4)

Because of Corollary 1.4.2(1) and (3), it suffices to calculate φ|A ∈
KerR(Dλ,η) only for this character.

Next, we introduce a coordinate system of A by

R>0 � a �→ exp((log a)H) ∈ A.

Then, by (2.1,7), (3.1.2) and (3.1.3), we have
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Lemma 3.1.1.

−2R(∇+
λ,η)φ(a) =

(
a
d

da
− τλ(En,n − En+1,n+1)

)
φ(a)⊗ En,n+1

− 2
n−1∑
i=1

τλ(En,i)φ(a)⊗ Ei,n+1 −
ξ

a
φ(a)⊗ En−1,n+1,(3.1.5)

−2R(∇−
λ,η)φ(a) =

(
a
d

da
+ τλ(En,n − En+1,n+1)

)
φ(a)⊗ En+1,n

+ 2
n−1∑
i=1

τλ(Ei,n)φ(a)⊗ En+1,i +
ξ

a
φ(a)⊗ En+1,n−1.(3.1.6)

For any Q ∈ GZ(λ),

τλ(En,i)Q⊗ Ei,n+1

= (τλ ⊗Ad+
C )(En,iEi,n)(Q⊗ En,n+1)

− τλ(En,iEi,n)Q⊗ En,n+1 −Q⊗ En,n+1.

Hence we have

n−1∑
i=1

τλ(En,i)Q⊗ Ei,n+1

=
n−1∑
i=1

(τλ ⊗Ad+
C )(En,iEi,n)(Q⊗ En,n+1)

−
n−1∑
i=1

τλ(En,iEi,n)Q⊗ En,n+1 − (n− 1)Q⊗ En,n+1.

Similarly, we have

n−1∑
i=1

τλ(Ei,n)Q⊗ En+1,i

=−
n−1∑
i=1

(τλ ⊗Ad+
C )(Ei,nEn,i)(Q⊗ En+1,n)

+

n−1∑
i=1

τλ(Ei,nEn,i)Q⊗ En+1,n + (n− 1)Q⊗ En+1,n.
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Let Cn and Cn−1 be the Casimir elements of gl(n,C) and gl(n − 1,C),

respectively. Since the Killing form B of gl(n,C) is given by B(X,Y ) =

2ntr(XY ), Cn and Cn−1 are :

2nCn =
n∑

i=1

E2
i,i + 2

∑
1≤i<j≤n

Ei,jEj,i −
n∑

i=1

(n+ 1− 2i)Ei,i

=
n∑

i=1

E2
i,i + 2

∑
1≤i<j≤n

Ej,iEi,j +
n∑

i=1

(n+ 1− 2i)Ei,i,

2(n− 1)Cn−1 =
n−1∑
i=1

E2
i,i + 2

∑
1≤i<j≤n−1

Ei,jEj,i −
n−1∑
i=1

(n− 2i)Ei,i

=
n−1∑
i=1

E2
i,i + 2

∑
1≤i<j≤n−1

Ej,iEi,j +
n−1∑
i=1

(n− 2i)Ei,i.

Then, it follows:

n−1∑
i=1

En,iEi,n = nCn − (n− 1)Cn−1 −
1

2
E2

n,n −
1

2

n−1∑
i=1

Ei,i +
1

2
(n− 1)En,n,

n−1∑
i=1

Ei,nEn,i = nCn − (n− 1)Cn−1 −
1

2
E2

n,n +
1

2

n−1∑
i=1

Ei,i −
1

2
(n− 1)En,n.

On the other hand,

τλ(2nCn)Q =

{
n∑

i=1

λ2
i +

n∑
i=1

(n+ 1− 2i)λi

}
Q,

τλ(2(n− 1)Cn−1)Q =

{
n−1∑
i=1

q2
i,n−1 +

n−1∑
i=1

(n− 2i)qi,n−1

}
Q.

Using these formulae and Proposition 2.4.2, we have the following equalities:

Lemma 3.1.2.
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For any Q ∈ GZ(λ),

P+
k

(
n−1∑
i=1

τλ(En,i)Q⊗ Ei,n+1

)
(3.1.7)

= ak,n(Q̃)


−

n∑
i=1
i�=k

λi +
n−1∑
i=1

qi,n−1 − k + 1


 σ̃k,nQ̃,

P−
k

(
n−1∑
i=1

τλ(Ei,n)Q⊗ En+1,i

)
(3.1.8)

= bk,n(Q̂)


−

n∑
i=1
i�=k

λi +

n−1∑
i=1

qi,n−1 + n− k


 τ̂k,nQ̂.

From

Q⊗ En−1,n+1 = (τλ ⊗Ad+
C )(En−1,n)(Q⊗ En,n+1)

− τλ(En−1,n)Q⊗ En,n+1,

Q⊗ En+1,n−1 = − (τλ ⊗Ad−
C )(En,n−1)(Q⊗ En+1,n)

+ τλ(En,n−1)Q⊗ En+1,n,

we have :

Lemma 3.1.3.

For any Q ∈ GZ(λ),

P+
k (Q⊗ En−1,n+1) =

n−1∑
j=1

aj,n−1(Q̃)ak,n(σj,n−1Q̃)

λk − qj,n−1 − k + j
σj,n−1σ̃k,nQ̃,(3.1.9)

P−
k (Q⊗ En+1,n−1) =

n−1∑
j=1

bj,n−1(Q̂)bk,n(τj,n−1Q̂)

λk − qj,n−1 − k + j + 1
τj,n−1τ̂k,nQ̂.(3.1.10)

The next proposition follows from Proposition 2.4.2, Lemma 3.1.1, 3.1.2,

and 3.1.3.
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Proposition 3.1.4.

For 1 ≤ k ≤ n, we have:

P+
k (R(∇+

λ,η)φ(a)) = 0(3.1.11)

⇐⇒
∑

Q∈GZ(λ)

ak,n(Q̃)

×
(
a
d

da
+

n∑
i=1

λi − 2λk −
n−1∑
i=1

qi,n−1 + 2k − 2

)
c(Q; a)σ̃k,nQ̃

− ξ

a

n−1∑
j=1

∑
τj,n−1Q∈GZ(λ)

× ak,n(Q̃)aj,n−1(τj,n−1Q̃)

λk − qj,n−1 − k + j + 1
c(τj,n−1Q; a)σ̃k,nQ̃ = 0,

P−
k (R(∇−

λ,η)φ(a)) = 0(3.1.12)

⇐⇒
∑

Q∈GZ(λ)

bk,n(Q̂)

×
(
a
d

da
−

n∑
i=1

λi + 2λk +
n−1∑
i=1

qi,n−1 + 2n− 2k

)
c(Q; a)τ̂k,nQ̂

+
ξ

a

n−1∑
j=1

∑
σj,n−1Q∈GZ(λ)

× bk,n(Q̂)bj,n−1(σj,n−1Q̂)

λk − qj,n−1 − k + j
c(σj,n−1Q; a)τ̂k,nQ̂ = 0.

These equations are the explicit representations of P±
k (R(∇±

λ,η)φ(a)) =

0, which we needed.

3.2. The explicit formulae of c(Q; a)

If Λ ∈ Ξk, then Dλ,ηφ(g) = 0 is equivalent to

P−
1 (∇−

λ,ηφ(g)) = · · · = P−
k−1(∇−

λ,ηφ(g))

= P+
k (∇+

λ,ηφ(g)) = · · · = P+
n (∇+

λ,ηφ(g)) = 0.
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By (3.1.11), we have

P+
l (R(∇+

λ,η)φ(a)) = 0(3.2.1)

=⇒ c(Q; a) = 0 for Q = (qij)

satisfying ql,n−1 = λl, ql−1,n−2 > λl.

Moreover, we can show that P+
l (R(∇+

λ,η)φ(a)) = 0 implies

{
c(Q; a) = 0 for any Q satisfying ql−1,n−2 > λl (if 2 ≤ l ≤ n− 1),

c(Q; a) = 0 for any Q (if l = 1),

by (3.2.1) and recursive usage of (3.1.11). Similarly, P−
l (∇−

λ,ηφ(a)) = 0

implies

{
c(Q; a) = 0 for any Q satisfying ql−1,n−2 < λl (if 2 ≤ l ≤ n− 1),

c(Q; a) = 0 for any Q (if l = n).

Consequently,

Lemma 3.2.1.

(1) If Λ ∈ Ξ1 ∪ Ξn+1, then Hom(gC,K)(π
∗
Λ,K , C

∞(G/N ; η)) = {0}.
(2) In order to solve R(Dλ,η)φ(a) = 0 ( Λ ∈ Ξk, 2 ≤ k ≤ n), we have

only to calculate c(Q; a) for Q satisfying

λ1 ≥ q1,n−1 ≥ q1,n−2 ≥ λ2 ≥ . . .(3.2.2)

. . . λk−2 ≥ qk−2,n−1 ≥ qk−2,n−2 ≥ λk−1

≥ qk−1,n−1 ≥ λk ≥ qk−1,n−2 ≥ qk,n−1 ≥ λk+1 ≥ . . .

· · · ≥ λn−1 ≥ qn−2,n−2 ≥ qn−1,n−1 ≥ λn.

Suppose Λ ∈ Ξk. In order to solve Dλ,ηφ = 0, we eliminate the difference

terms of equations P−
1 (∇−

λ,ηφ) = · · · = P−
k−1(∇−

λ,ηφ) = 0 and P+
k (∇+

λ,ηφ) =

· · · = P+
n (∇+

λ,ηφ) = 0.
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Lemma 3.2.2.

(1) If P+
k (∇+

λ,ηφ) = · · · = P+
n (∇+

λ,ηφ) = 0, then for any l; p1, . . . , pl;

j1, . . . , jl−1 which satisfy 1 ≤ l ≤ n − k + 1, k ≤ p1 < · · · < pl ≤
n, 1 ≤ j1 < · · · < jl−1 ≤ n− 1, we have(

l∏
i=1

api,n(Q̃)

)
×

{(
a
d

da
+

n∑
i=1

λi − 2
l∑

i=1

(λpi − pi)

−
n−1∑
i=1

qi,n−1 + 2
l−1∑
i=1

(qji,n−1 − ji)− 2l

)
c(Q; a)

− ξ

a

n−1∑
j=1

j �=j1,...,jl−1

l−1∏
i=1

(qji,n−1 − qj,n−1 + j − ji)

l∏
i=1

(λpi − qj,n−1 − pi + j + 1)

× aj,n−1(τj,n−1Q̃)c(τj,n−1Q; a)

}
= 0.

We call the above equation (3.2.3)p1,...,pl;j1,...,jl−1
.

(2) If P−
1 (∇−

λ,ηφ) = · · · = P−
k−1(∇−

λ,ηφ) = 0, then for any l; p1, . . . , pl;

j1, . . . , jl−1 which satisfy 1 ≤ l ≤ k−1, 1 ≤ p1 < · · · < pl ≤ k−1, 1 ≤
j1 < · · · < jl−1 ≤ n− 1,(

l∏
i=1

bpi,n(Q̂)

)
×

{(
a
d

da
−

n∑
i=1

λi + 2
l∑

i=1

(λpi − pi)

+
n−1∑
i=1

qi,n−1 − 2
l−1∑
i=1

(qji,n−1 − ji) + 2n

)
c(Q; a)

+
ξ

a

n−1∑
j=1

j �=j1,...,jl−1

l−1∏
i=1

(qji,n−1 − qj,n−1 + j − ji)

l∏
i=1

(λpi − qj,n−1 − pi + j)
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× bj,n−1(σj,n−1Q̂)c(σj,n−1Q; a)

}
= 0.

We call the above equation (3.2.4)p1,...,pl;j1,...,jl−1
.

Proof. We prove these formulae by induction on l. If l = 1, then

these formulae are coefficients of σ̃p1,nQ̃ and τ̂p1,nQ̂ in equations (3.1.11) and

(3.1.12), respectively. If these formulae hold for some l, then, by eliminating

a difference term, we can check that they are true for l + 1. �

This lemma implies that, if all c(Q; a)’s are given for Q satisfying

λ1 ≥ q1,n−1 = q1,n−2 ≥ λ2 ≥ . . .(3.2.5)

. . . λk−2 ≥ qk−2,n−1 = qk−2,n−2 ≥ λk−1 = qk−1,n−1,

λk ≥ qk−1,n−2 = qk,n−1 ≥ λk+1 ≥ . . .

· · · ≥ λn−1 ≥ qn−2,n−2 = qn−1,n−1 ≥ λn,

then all the other c(Q; a)’s are uniquely determined.

Let us find the explicit formulae of c(Q; a)’s.

Suppose Q = (qi,j) satisfies qk−1,n−1 > λk and the other qi,j ’s satisfy

(3.2.5). Let l, pi(1 ≤ i ≤ l), p′i(1 ≤ p′i ≤ n− k− l+ 1) and ji(1 ≤ ji ≤ l− 1)

be integers determined by

(3.2.6)




k + 1 ≤ p1 < · · · < pl−1 ≤ n, qpi−1,n−1 �= λpi ,

k + 1 ≤ p′1 < · · · < p′n−k−l+1 ≤ n, qp′i−1,n−1 = λp′i ,

pl = k,

ji = pi − 1, 1 ≤ i ≤ l − 1.

Then, we have


api,n(Q̃) �= 0 (1 ≤ i ≤ l),

c(τp′i−1,n−1Q; a) = 0 (1 ≤ i ≤ n− k − l + 1),

c(τj,n−1Q; a) = 0 (1 ≤ j ≤ k − 2),

−2
l∑

i=1

(λpi − pi) + 2
l−1∑
i=1

(qji,n−1− ji)− 2l = −2
n∑

i=k

λi + 2
n−1∑
i=k

qi,n−1 + 2k− 2,
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l−1∏
i=1

(qji,n−1 − qk−1,n−1 + k − 1− ji)

l∏
i=1

(λpi − qk−1,n−1 − pi + k − 1 + 1)

=

n−1∏
i=k

(qi,n−1 − qk−1,n−1 + k − i− 1)

n∏
i=k

(λi − qk−1,n−1 − i+ k)

.

Finally, equation (3.2.3)p1,...,pl;ji,...,jl−1
is written as follows.

c(τk−1,n−1Q; a)(3.2.7)

=
a

ξ

1

ak−1,n−1(τk−1,n−1Q̃)

×

n∏
i=k

(λi − qk−1,n−1 − i+ k)

n−1∏
i=k

(qi,n−1 − qk−1,n−1 − i+ k − 1)

×
(
a
d

da
+

k−1∑
i=1

λi −
n∑

i=k

λi −
k−1∑
i=1

qi,n−1

+
n−1∑
i=k

qi,n−1 + 2k − 2

)
c(Q; a).

(Notice that, by our assumption, ak−1,n−1(τk−1,n−1Q) �= 0 holds.) Simi-

larly, if Q satisfies qk−1,n−1 < λk−1 and the other qi,j ’s satisfy (3.2.5), then

equation (3.2.4)p1,...,pl;ji,...,jl−1
is

c(σk−1,n−1Q; a)(3.2.8)

= −a

ξ

1

bk−1,n−1(σk−1,n−1Q̂)

×

k−1∏
i=1

(λi − qk−1,n−1 − i+ k − 1)

k−2∏
i=1

(qi,n−1 − qk−1,n−1 − i+ k − 1)

×
(
a
d

da
+

k−1∑
i=1

λi −
n∑

i=k

λi −
k−2∑
i=1

qi,n−1

+
n−1∑

i=k−1

qi,n−1 + 2n− 2k + 2

)
c(Q; a).
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(bk−1,n−1(σk−1,n−1Q) �= 0 by same reason.)

Therefore, c(Q; a) for Q satisfying (3.2.5) is a solution of the following

single equation;{(
a
d

da
+A− qk−1,n−1 + 2k − 2

)

×
(
a
d

da
+A+ qk−1,n−1 + 2n− 2k + 2

)
− ξ2

a2

}
c(Q; a) = 0,

where A =
k−1∑
i=1

λi−
n∑

i=k

λi−
k−2∑
i=1

qi,n−1 +
n−1∑
i=k

qi,n−1. Set t = 2ξ
a and c(Q; 2ξ

t ) =

tA+n− 1
2 f(Q; t). Then f(Q; t) satisfies{

t2
d2

dt2
− t2

4
− (qk−1,n−1 + n− 2k + 2)2 +

1

4

}
f(Q; t) = 0.

This is the so-called Whittaker’s differential equation.

We have shown the following proposition :

Proposition 3.2.3.

(1) If Λ ∈ Ξk (2 ≤ Λ ≤ n), then

dim Hom(gC,K)(π
∗
Λ,K , C

∞(G/N ; η))(3.2.9)

≤ 2
∑

λ1≥µ1≥λ2≥···≥λk−2≥µk−2≥λk−1,

λk≥µk−1≥λk+1≥···≥λn−1≥µn−2≥λn

dimV A
n−2(µ1, . . . , µn−2),

where V A
n−2(µ1, . . . , µn−2) is the irreducible U(n − 2)-module with

highest weight (µ1, . . . , µn−2).

(2) The explicit formula of c(Q; a) for Q which satisfies (3.2.5) is

c(Q; a) = a
−

k−1∑
i=1

λi+
n∑

i=k
λi+

k−2∑
i=1

qi,n−1−
n−1∑
i=k

qi,n−1−n+ 1
2

(3.2.10)

×
{
c1(Q)W0,qk−1,n−1+n−2k+2

(
2ξ

a

)

+ c2(Q)M0,|qk−1,n−1+n−2k+2|

(
2ξ

a

)}
,

where, c1(Q), c2(Q) are arbitrary constants and Wα,β(t),Mα,β(t) are

Whittaker’s confluent hypergeometric functions (cf.[W-W]).
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As a matter of fact, the equal sign in (3.2.9) holds and we will prove it

in §6.2.

§4. Parametrization of discrete series representations of

Spin(2n, 1)

4.1. Structure of Spin(2n, 1)

We review the structure of G = Spin(2n, 1). As in §0, Fij = Eij − Eji.

The group Spin(2n, 1) is the connected two-fold linear cover of SO0(2n, 1)

and its maximal compact subgroup K is isomorphic to Spin(2n). The Lie

algebra g = o(2n, 1) of G is given by

g =

{(
X

√
−18v

−
√
−1t8v 0

)
;X ∈ o(2n),8v ∈ R2n

}
,

and its Cartan decomposition g = k + p is

k =

{(
X 0

0 0

)
;X ∈ o(2n)

}
,

p =

{(
02n

√
−18v

−
√
−1t8v 0

)
;8v ∈ R2n

}
.

Then G = Spin(2n, 1) = K exp p. Fix a maximal abelian subspace a = RH

in p where H :=
√
−1F2n+1,2n. Let f be an element of a∗ defined by

f(H) = 1. A positive system in Σ(a, g) is {f}, and the corresponding root

space is

n = gf =
2n−1∑
i=1

R(F2n,i +
√
−1F2n+1,i).

We denote Xi = F2n,i +
√
−1F2n+1,i (1 ≤ i ≤ 2n − 1). The centralizer M

of a in K is isomorphic to Spin(2n− 1) and its Lie algebra m is

m =




X 0 0

0 0 0

0 0 0


 ;X ∈ o(2n− 1)


 .

The Iwasawa decomposition of elements of p are

(4.1.1)

{ √−1F2n+1,i = Xi − F2n,i (1 ≤ i ≤ 2n− 1),
√
−1F2n+1,2n = H.

Here, F2n,i (i = 1, . . . , 2n− 1) are elements of k.
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4.2. Parametrization of discrete series of Spin(2n, 1) (cf.[BS])

In this subsection, we parametrize discrete series of Spin(2n, 1).

We choose

(4.2.1) t :=
n∑

i=1

RF2i,2i−1

as a compact Cartan subalgebra of g and fix it. The root system ∆ (resp.

∆c) of gC (resp. kC) with respect to tC is

∆ = {±ei ± ej ; 1 ≤ i < j ≤ n} ∪ {±ei; 1 ≤ i ≤ n},(4.2.2)

(resp. ∆c = {±ei ± ej ; 1 ≤ i < j ≤ n}),
where ei(

√
−1F2j,2j−1) = δij (1 ≤ i, j ≤ n). We fix one of the positive

systems of ∆c:

∆+
c = {ei ± ej ; 1 ≤ i < j ≤ n}.

There are two different positive systems ∆+
1 ,∆

+
2 of ∆ which contain ∆+

c :

∆+
1 = {ei ± ej ; 1 ≤ i < j ≤ n} ∪ {ei; 1 ≤ i ≤ n},

∆+
2 = {ei ± ej ; 1 ≤ i < j ≤ n} ∪ {ei; 1 ≤ i ≤ n− 1} ∪ {−en}.

The set of Harish-Chandra parameters is denoted by Ξ1 ∪ Ξ2, where

Ξ1 =

{
Λ =

n∑
i=1

Λiei; Λ1 > · · · > Λn > 0,(4.2.3)

Λi ∈
1

2
Z,Λi − Λi+1 ∈ Z

}
,

Ξ2 =

{
Λ =

n∑
i=1

Λiei; Λ1 > · · · > Λn−1 > −Λn > 0,

Λi ∈
1

2
Z,Λi − Λi+1 ∈ Z

}
,

and the corresponding Blattner parameters are

Ξ1 � Λ ⇔ λ =
n∑

i=1

λiei =
n∑

i=1

(
Λi + i− n+

1

2

)
ei,

Ξ2 � Λ ⇔ λ =
n∑

i=1

λiei =
n∑

i=1

(
Λi + i− n+

1

2

)
ei − en.
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4.3. Realization of finite dimensional representations of K

Irreducible representations of K � Spin(2n) are parametrized by n-

tuple of positive half integers λ = (λ1, λ2, . . . , λn) ⇔ λ1e1 + · · · + λnen
satisfying (1) all λi ∈ 1

2Z or all λi ∈ Z, (2) λ1 ≥ · · · ≥ λn−1 ≥ |λn|.
We denote the corresponding irreducible representations by (τλ, Vλ). To

explicitly calculate, we realize (τλ, Vλ) by means of the Gel’fand-Zetlin basis.

(cf.[G-Z2]).

The Gel’fand-Zetlin basis of (τλ, Vλ) is a set GZ(λ) := {Q}, where Q’s

are diagrams of shapes

(4.3.1) Q = (qij) =




q1,2n−1 q2,2n−1 . . . . . . qn−1,2n−1 qn,2n−1

q1,2n−2 q2,2n−2 . . . qn−1,2n−2

q1,2n−3 q2,2n−3 . . . qn−1,2n−3

. . . . . .

. . .

q1,4 q2,4

q1,3 q2,3

q1,2

q1,1




which satisfy




all qi,j ∈ 1
2Z or all qi,j ∈ Z,

qi,2j+1 ≥ qi,2j ≥ qi+1,2j+1 (i = 1, . . . , j − 1),

qj,2j+1 ≥ qj,2j ≥ |qj+1,2j+1|,
qi,2j ≥ qi,2j−1 ≥ qi+1,2j (i = 1, . . . , j − 1),

qj,2j ≥ qj,2j−1 ≥ −qj,2j ,
qi,2n−1 = λi.

The actions of Fij are given by

τλ(F2j+1,2j)Q =

j∑
i=1

ai,2j−1(Q)σi,2j−1Q(4.3.2)
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−
j∑

i=1

Ai,2j−1(Q)τi,2j−1Q,

τλ(F2j+2,2j+1)Q =

j∑
i=1

bi,2j(Q)σi,2jQ

−
j∑

i=1

Bi,2j(Q)τi,2jQ+
√
−1c2j(Q)Q,

where

ai,2j−1(Q)

=

√√√√√√√√√√

∣∣∣∣∣∣∣∣∣∣∣

j−1∏
k=1

(l2k,2j−2 − l2i,2j−1 − lk,2j−2 − li,2j−1)
j∏

k=1
(l2k,2j − l2i,2j−1 − lk,2j − li,2j−1)

4
j∏

k=1
k �=i

(l2k,2j−1 − l2i,2j−1){l2k,2j−1 − (li,2j−1 + 1)2}

∣∣∣∣∣∣∣∣∣∣∣
,

Ai,2j−1(Q) = ai,2j−1(τi,2j−1Q),

bi,2j(Q) =

√√√√√√√√√√

∣∣∣∣∣∣∣∣∣∣∣

j∏
k=1

(l2k,2j−1 − l2i,2j)
j+1∏
k=1

(l2k,2j+1 − l2i,2j)

l2i,2j(4l
2
i,2j − 1)

j∏
k=1
k �=i

(l2k,2j − l2i,2j){(lk,2j − 1)2 − l2i,2j}

∣∣∣∣∣∣∣∣∣∣∣
,

Bi,2j(Q) = bi,2j(τi,2jQ),

c2j(Q) =

j∏
k=1

lk,2j−1

j+1∏
k=1

lk,2j+1

j∏
k=1

lk,2j(lk,2j − 1)

,

lk,2j−1 : = qk,2j−1 + j − k,

lk,2j : = qk,2j + j + 1− k,

σij : qi,j �→ qi,j + 1 and the other qk,l �→ qk,l,

τij : qi,j �→ qi,j − 1 and the other qk,l �→ qk,l.

The actions of other Fk,l’s are determined by those of bracket products of

F2j+1,2j ’s and F2j+2,2j+1’s.
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4.4. Irreducible decomposition of Vλ ⊗ pC

(AdC, pC) is an irreducible K-module and its highest weight is (1, 0,

. . . , 0).

Lemma 4.4.1.

If λ is far from the wall, then the irreducible decomposition of (τλ ⊗
AdC, Vλ ⊗ pC) is

(τλ, Vλ)⊗ (AdC, pC) �
n⊕

k=1

(τλ+ek , Vλ+ek)⊕
n⊕

k=1

(τλ−ek , Vλ−ek).

Let P±
k : Vλ ⊗ Ad±

C → Vλ±ek be the projection operators. Notice that

(τλ, Vλ) and Vλ±ek (1 ≤ k ≤ n) are Spin(2n)-submodules of the irreducible

representation Vλ̃ of Spin(2n + 1) whose highest weight is λ̃ =
n−1∑
i=1

(λi +

1)ei + (|λn|+ 1)en. The corresponding embeddings are given by

ι : GZ(λ) � Q �→ Q̃ =

(
λ1 + 1 . . . λn−1 + 1 |λn|+ 1

Q

)
∈ GZ(λ̃),

ι±k : GZ(λ± ek) � P �→
(
λ1 + 1 . . . λn−1 + 1 |λn|+ 1

P

)
∈ GZ(λ̃)

(1 ≤ k ≤ n).

Using the theory of tensor operators, we can write down ι±k ◦ P±
k (Q ⊗

F2n+1,2n) (Q ∈ GZ(λ)) explicitly. As in §2.4, ι±k ◦P±
k ’s are also denoted by

P±
k .

Proposition 4.4.2.

For Q ∈ GZ(λ),

P+
k (Q⊗ F2n+1,2n) = ak,2n−1(Q̃)σk,2n−1Q̃,

P−
k (Q⊗ F2n+1,2n) = −Ak,2n−1(Q̃)τk,2n−1Q̃.

(4.4.1)

Proof. The proof of this proposition is just similar to that of Propo-

sition 2.4.2 (gl(n,C) case). We can apply the argument of gl(n,C) case by

Kraljević ([Kr, §4]) to this o(n,C) case. �
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§5. The differential equation Dλ,ηφ = 0

5.1. The explicit formula of P±
k (∇λ,ηφ) = 0

In this subsection, we will write down the equation Dλ,ηφ = 0.

Using the Gel’fand-Zetlin basis, we can write φ ∈ C∞
τλ

(K\G/N ; η) as

(5.1.1) φ(g) =
∑

Q∈GZ(λ)

c(Q; g)Q.

Since
{√

−1
2(2n−1)F2n+1,i (1 ≤ i ≤ 2n)

}
forms an orthonormal basis of p,

(5.1.2) ∇λ,ηφ(g) =
2n∑
i=1

L√ −1
2(2n−1)

F2n+1,i
φ(g)⊗

√
−1

2(2n− 1)
F2n+1,i.

Let R(Dλ,η) and R(∇λ,η) be the radial A-part of Dλ,η and∇λ,η, respectively.

To determine φ(g) ∈ KerDλ,η, it is sufficient to calculate φ|A ∈ KerR(Dλ,η).

Assume that η ∈ N̂ is given by

(5.1.3) η

(
exp

(
2n−1∑
i=1

xiXi

))
= e

√
−1x2n−1ξ (xi ∈ R, ξ ∈ R>0).

Because of Corollary 1.4.2(1) and (3), it suffices to calculate φ|A ∈
KerR(Dτλ,η) only for this character.

Next, we introduce a coordinate system of A by

R>0 � a �→ exp((log a)H) ∈ A.

Then, by (4.1.1) and (5.1.2), we have

Proposition 5.1.1.

2(2n− 1)
√
−1R(∇λ,η)φ(a)(5.1.4)

= a
d

da
φ(a)⊗ F2n+1,2n −

2n−1∑
i=1

τλ(F2n,i)φ(a)⊗ F2n+1,i

−
√
−1

ξ

a
φ(a)⊗ F2n+1,2n−1.
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For any Q ∈ GZ(λ),

2τλ(F2n,i)Q⊗ F2n+1,i = −(τλ ⊗AdC)(F2n,i)
2(Q⊗ F2n+1,2n)

+ τλ(F2n,i)
2Q⊗ F2n+1,2n −Q⊗ F2n+1,2n.

Hence we have

2n−1∑
i=1

τλ(F2n,i)Q⊗ F2n+1,i

=− 1

2

2n−1∑
i=1

(τλ ⊗AdC)(F2n,i)
2(Q⊗ F2n+1,2n)

+
1

2

2n−1∑
i=1

τλ(F2n,i)
2Q⊗ F2n+1,2n −

2n− 1

2
Q⊗ F2n+1,2n.

Let Cm be the Casimir element of o(m,C). Since the Killing form B of

o(m,C) is given by B(X,Y ) = (m−2)tr(XY ), C2n and C2n−1 are −2(2n−
2)C2n =

∑
1≤i<j≤2n

F 2
j,i and −2(2n − 3)C2n−1 =

∑
1≤i<j≤2n−1

F 2
j,i. Then, it

follows :
2n−1∑
i=1

F 2
2n,i = −2(2n− 2)C2n + 2(2n− 3)C2n−1. On the other hand,

for any Q ∈ GZ(λ),

τλ(−2(2n− 2)C2n)Q =

{
−

n∑
i=1

λ2
i − 2

n∑
i=1

(n− i)λi

}
Q,

τλ(−2(2n− 3)C2n−1)Q =

{
−

n−1∑
i=1

q2
i,2n−2 −

n−1∑
i=1

(2n− 1− 2i)qi,2n−2

}
Q.

Using these formulae and Proposition 4.4.2, we have the following equalities:

Lemma 5.1.2.

For any Q ∈ GZ(λ),

P+
k

(
2n−1∑
i=1

τλ(F2n,i)Q⊗ F2n+1,i

)
(5.1.5)
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= ak,2n−1(Q̃)(λk − k + 1)σk,2n−1Q̃,

P−
k

(
2n−1∑
i=1

τλ(F2n,i)Q⊗ F2n+1,i

)
(5.1.6)

= −Ak,2n−1(Q̃)(−λk − 2n+ k + 1)τk,2n−1Q̃.

From

Q⊗ F2n+1,2n−1 = τλ(F2n,2n−1)Q⊗ F2n+1,2n

− (τλ ⊗AdC)(F2n,2n−1)(Q⊗ F2n+1,2n),

we have :

Lemma 5.1.3.

For any Q ∈ GZ(λ),

P+
k (Q⊗ F2n+1,2n−1) =−

n−1∑
j=1

ak,2n−1(σj,2n−2Q̃)bj,2n−2(Q̃)

lk,2n−1 − lj,2n−2
σj,2n−2σk,2n−1Q̃

+
n−1∑
j=1

ak,2n−1(τj,2n−2Q̃)Bj,2n−2(Q̃)

lk,2n−1 + lj,2n−2 − 1
τj,2n−2σk,2n−1Q̃

−
√
−1

lk,2n−1
ak,2n−1(Q̃)c2n−2(Q̃)σk,2n−1Q̃,

P−
k (Q⊗ F2n+1,2n−1) =−

n−1∑
j=1

Ak,2n−1(σj,2n−2Q̃)bj,2n−2(Q̃)

lk,2n−1 + lj,2n−2
σj,2n−2τk,2n−1Q̃

+
n−1∑
j=1

Ak,2n−1(τj,2n−2Q̃)Bj,2n−2(Q̃)

lk,2n−1 − lj,2n−2 + 1
τj,2n−2τk,2n−1Q̃

−
√
−1

lk,2n−1
Ak,2n−1(Q̃)c2n−2(Q̃)τk,2n−1Q̃.

The next proposition follows from Proposition 4.4.2, Lemma 5.1.1, 5.1.2,

and 5.1.3.
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Proposition 5.1.4.

For 1 ≤ k ≤ n, we have:

P+
k (R(∇λ,η)φ(a)) = 0 ⇐⇒(5.1.7) ∑

Q∈GZ(λ)

ak,2n−1(Q̃)

(
a
d

da
− λk + k − 1

)
c(Q; a)σk,2n−1Q̃

− ξ

a

∑
Q∈GZ(λ)

ak,2n−1(Q̃)c2n−2(Q̃)

lk,2n−1
c(Q; a)σk,2n−1Q̃

+

√
−1ξ

a

n−1∑
j=1

∑
τj,2n−2Q∈GZ(λ)

ak,2n−1(Q̃)bj,2n−2(τj,2n−2Q̃)

lk,2n−1 − lj,2n−2 + 1

× c(τj,2n−2Q; a)σk,2n−1Q̃

−
√
−1ξ

a

n−1∑
j=1

∑
σj,2n−2Q∈GZ(λ)

ak,2n−1(Q̃)Bj,2n−2(σj,2n−2Q̃)

lk,2n−1 + lj,2n−2

× c(σj,2n−2Q; a)σk,2n−1Q̃

= 0,

P−
k (R(∇λ,η)φ(a)) = 0 ⇐⇒(5.1.8) ∑

Q∈GZ(λ)

Ak,2n−1(Q̃)

(
a
d

da
+ λk − k + 2n− 1

)
c(Q; a)τk,2n−1Q̃

+
ξ

a

∑
Q∈GZ(λ)

Ak,2n−1(Q̃)c2n−2(Q̃)

lk,2n−1
c(Q; a)τk,2n−1Q̃

−
√
−1ξ

a

n−1∑
j=1

∑
τj,2n−2Q∈GZ(λ)

Ak,2n−1(Q̃)bj,2n−2(τj,2n−2Q̃)

lk,2n−1 + lj,2n−2 − 1

× c(τj,2n−2Q; a)τk,2n−1Q̃

+

√
−1ξ

a

n−1∑
j=1

∑
σj,2n−2Q∈GZ(λ)

Ak,2n−1(Q̃)Bj,2n−2(σj,2n−2Q̃)

lk,2n−1 − lj,2n−2

× c(σj,2n−2Q; a)τk,2n−1Q̃

= 0.
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These equations are the explicit representations of P±
k (R(∇±

λ,η)φ(a)) =

0, which we needed.

5.2. The explicit formulae of c(Q; a)

If Λ ∈ Ξ1, then

Dλ,ηφ(g) = 0 ⇔ P−
1 (∇λ,ηφ(g)) = · · · = P−

n (∇λ,ηφ(g)) = 0,

and if Λ ∈ Ξ2, then

Dλ,ηφ(g) = 0

⇔ P−
1 (∇λ,ηφ(g)) = · · · = P−

n−1(∇λ,ηφ(g)) = P+
n (∇λ,ηφ(g)) = 0.

By (5.1.8), we have

P−
l (R(∇λ,η)φ(a)) = 0(5.2.1)

=⇒ c(Q; a) = 0

for Q = (qij) satisfying ql−1,2n−2 = λl, ql−1,2n−3 < λl.

Moreover, we can show that P−
l (R(∇λ,η)φ(a)) = 0 implies

c(Q; a) = 0 for any Q satisfying ql−1,2n−3 < λl (2 ≤ l ≤ n− 1)

by (5.2.1) and recursive usage of (5.1.8). Similarly, if Λ ∈ Ξ1, then

P−
n (∇λ,ηφ(a)) = 0 implies

c(Q; a) = 0 for any Q satisfying |qn−1,2n−3| < λn,

and if Λ ∈ Ξ2, then P+
n (∇λ,ηφ(a)) = 0 implies

c(Q; a) = 0 for any Q satisfying |qn−1,2n−3| < −λn.

Consequently,

Lemma 5.2.1.
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In order to solve R(Dλ,η)φ(a) = 0, we have only to calculate c(Q; a) for

Q satisfying

λ1 ≥q1,2n−2 ≥ q1,2n−3 ≥ λ2 ≥ · · · ≥ λn−2(5.2.2)

≥ qn−2,2n−2 ≥ qn−2,2n−3 ≥ λn−1 ≥ qn−1,2n−2

≥ |qn−1,2n−3| ≥ |λn|.

Suppose Λ ∈ Ξ1. In order to solve Dλ,ηφ = 0, we eliminate the difference

terms of equations P−
1 (∇λ,ηφ) = · · · = P−

n (∇λ,ηφ) = 0.

Lemma 5.2.2.

Suppose l; p1, . . . , pl; j1, . . . , jl−1 satisfy 1 ≤ l ≤ n, 1 ≤ p1 < · · · < pl ≤
n, 1 ≤ j1 < · · · < jl−1 ≤ n − 1, and P−

p1
(∇λ,ηφ) = · · · = P−

pl
(∇λ,ηφ) = 0.

Then,(
l∏

i=1

Api,2n−1(Q̃)

)
×

{(
a
d

da
+

l∑
i=1

(λpi − pi)−
l−1∑
i=1

(qji,2n−2 − ji) + 2n− 1

)
c(Q; a)

+
ξ

a

l−1∏
i=1

lji,2n−2

l∏
i=1

lpi,2n−1

c2n−2(Q̃)c(Q; a)

−
√
−1ξ

a

n−1∑
j=1

l−1∏
i=1

(lji,2n−2 + lj,2n−2 − 1)

l∏
i=1

(lpi,2n−1 + lj,2n−2 − 1)

bj,2n−2(τj,2n−2Q̃)c(τj,2n−2Q; a)

+

√
−1ξ

a

n−1∑
j=1

j �=j1,...,jl−1

l−1∏
i=1

(lji,2n−2 − lj,2n−2)

l∏
i=1

(lpi,2n−1 − lj,2n−2)

×Bj,2n−2(σj,2n−2Q̃)c(σj,2n−2Q; a)

}
= 0.
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We call the above equation (5.2.3)p1,...,pl;j1,...,jl−1
.

The proof of this lemma is just similar to the proof of Lemma 3.2.2.

This lemma and similar computation for the case Λ ∈ Ξ2 implies that,

if Λ ∈ Ξ1 ∪ Ξ2 and all c(Q; a)’s are given for Q satisfying

λ1 ≥q1,2n−2 = q1,2n−3 ≥ λ2 ≥ · · · ≥ λn−2(5.2.4)

≥ qn−2,2n−2 = qn−2,2n−3 ≥ λn−1 ≥ qn−1,2n−2

= |qn−1,2n−3| ≥ |λn|,

then all the other c(Q; a)’s are uniquely determined.

Let us find the explicit formulae of c(Q; a)’s.

Suppose Λ ∈ Ξ1 and Q = (qi,j) satisfies (5.2.4). Let l, pi(1 ≤ i ≤
l), p′i(1 ≤ p′i ≤ n− l − 1) and ji(1 ≤ ji ≤ l − 1) be integers determined by

(5.2.5)




1 ≤ p1 < · · · < pl−1 ≤ n− 1, qpi,2n−2 �= λpi ,

1 ≤ p′1 < · · · < p′n−l−1 ≤ n− 1, qp′i,2n−2 = λp′i ,

pl = n,

ji = pi (1 ≤ i ≤ l − 1).

Then, we have 


Api,2n−1(Q̃) �= 0 (1 ≤ i ≤ l),

c(σp′i,2n−2Q; a) = 0 (1 ≤ i ≤ n− l − 1),

c(τj,2n−2Q; a) = 0 (1 ≤ j ≤ n− 1),

l−1∏
i=1

lji,2n−2

l∏
i=1

lpi,2n−1

c2n−2(Q) = sgnqn−1,2n−3,

l∑
i=1

(λpi − pi)−
l−1∑
i=1

(qji,2n−2 − ji) =
n∑

i=1

λi −
n−1∑
i=1

qi,2n−2 − n.

Finally, equation (5.2.3)p1,...,pl;ji,...,jl−1
is written as follows.(

a
d

da
+ n− 1 +

n∑
i=1

λi −
n−1∑
i=1

qi,2n−2 + sgnqn−1,2n−3
ξ

a

)
c(Q; a) = 0.
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It follows that c(Q; a) = const.a
−n+1−

n∑
i=1

λi+
n−1∑
i=1

qi,2n−2

esgnqn−1,2n−3
ξ
a . The

Λ ∈ Ξ2 case can be calculated similarly.

Proposition 5.2.3.

(1) If Λ ∈ Ξ1 ∪ Ξ2, then

dim Hom(gC,K)(π
∗
Λ,K , C

∞(G/N ; η))(5.2.6)

≤ 2
∑

λ1≥µ1≥λ2≥...
≥λn−2≥µn−2≥λn−1≥µn−1≥|λn|

dimV D
2n−2(µ1, . . . , µn−1),

where V D
2n−2(µ1, . . . , µn−1) is the irreducible Spin(2n − 2)-module

with highest weight (µ1, . . . , µn−1).

(2) Suppose η is defined by (5.1.3). Then φ ∈ KerDλ,η is completely

determined by c(Q; a)’s for Q satisfying

λ1 ≥q1,2n−2 = q1,2n−3 ≥ λ2 ≥ · · · ≥ λn−2

≥ qn−2,2n−2 = qn−2,2n−3 ≥ λn−1 ≥ qn−1,2n−2 = |qn−1,2n−3| ≥ |λn|.

(3) For Q which satisfies the above conditions in (2), the explicit for-

mula of c(Q; a) is

(5.2.7) c(Q; a) = α(Q)a
−n+1−

n−1∑
i=1

λi−|λn|+
n−1∑
i=1

qi,2n−2

esgnqn−1,2n−3
ξ
a ,

where, α(Q) is an arbitrary constant.

The equal sign in (5.2.6) holds, and we will prove it in §6.2.

§6. The dimension of the space of Whittaker models

In this section, we prove the explicit dimension formula of the space of

Whittaker models, and the equal signs in (3.2.9) and (5.2.6) are shown.
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6.1. The Gel’fand-Kirillov dimension and the Bernstein degree

of finitely generated U(gC)-modules

At first, we will recall the Gel’fand-Kirillov dimension and the Bernstein

degree of finitely generated U(gC)-modules.

Suppose g1 is an arbitrary finite dimensional Lie algebra over C and

U(g1) is the universal enveloping algebra of g1. Let Un(g1) ⊆ U(g1) be the

subspace of U(g1) spanned by monomials which are products of at most

n elements of g1. Let V be a finitely generated U(g1)-module. Choose a

finite dimensional subspace V0 of V that generates V as a U(g1)-module.

Set Vn = Un(g1)V0, Mn = Vn/Vn−1 and M = grV =
∞∑
n=0

Mn. M is a

grU(g1) � S(g1)-module. By a theorem of Hilbert-Serre, there exists a

polynomial χ(x) over Q such that χ(n) is equal to
n∑

k=0

dimMk for sufficiently

large n. The degree and the leading coefficient of χ(x) are denoted by DimV

and c(V )
(DimV )! (c(V ) ∈ Z), respectively. (For a graded S(g1)-module N , we

define c(N) and DimN similarly.) The integers DimV and c(V ) are called

the Gel’fand-Kirillov dimension and the Bernstein degree of V , respectively.

Let d be any integer not smaller than DimV . We write

cd(V ) =

{
c(V ) if d = DimV,

0 if d > DimV.

Now, let V be an irreducible (gC,K)-module and η be a non-degenerate

character of N . In this case, since V admits an infinitesimal character,

ι(v)(g) (v ∈ V, ι ∈ Hom(gC,K)(V,C
∞(G/N ; η))) is a real analytic func-

tion on G. Then we have an isomorphism Hom(gC,K)(V,C
∞(G/N ; η)) =

Hom(gC,K)(V,A(G/N ; η)) (A denotes the space of real analytic functions).

Theorem 6.1.1 ([M1, Corollary 2.2.2 and Theorem 6.2.1]).

Let cd(V ), η and V be as above. Then

dim Hom(gC,K)(V,A(G/N ; η)) = cd(V ) (d = dim n).
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6.2. Characteristic cycles of (gC,K)-modules (cf.[V])

Since grU(gC) � S(gC) is Noetherian and M = grV is a finitely gen-

erated S(gC)-module, there exists a sequence 0 = M0 ⊂ M1 ⊂ · · · ⊂
Mn = M of S(gC)-submodules of M such that Mi/Mi−1 � S(gC)/Qi

(∃Qi ∈ SpecS(gC)) for any i. The characteristic cycle of M is the formal

sum

Ch(M) =
r∑

k=1

m(Pk,M)Pk,

where Pk’s are minimal in {P ∈ SpecS(gC);P ⊃ Ann(M)}, and

m(Pk,M) = #{Qi ∈ SpecS(gC);Mi/Mi−1 � S(gC)/Qi, Qi = Pk}. By

definition, 0 → Mi−1 → Mi → S(gC)/Qi → 0 is exact. It follows that

cd(V ) =
n∑

i=1
cd(S(gC)/Qi). If Qi � Qj , then there exists an element

x ∈ Qj −Qi and we have the following exact sequences;

0 → S(gC)/Qi
x→ S(gC)/Qi → S(gC)/(Qi + xS(gC)) → 0,

0 → Qj/(Qi + xS(gC)) → S(gC)/(Qi + xS(gC)) → S(gC)/Qj → 0.

Then cDim(S(gC)/Qi)(S(gC)/Qj) = 0 and we have proved:

Lemma 6.2.1.

Let d = max
Ann(M)⊂Pk∈SpecS(gC)

Pk:minimal

{Dim(S(gC)/Pk)}. Then DimV = d and

cd(V ) =
∑

Ann(M)⊂Pk∈SpecS(gC)
Pk:minimal

m(Pk,M)cd(S(gC)/Pk).

In [C], Chang calculated m(Pk,M) of discrete series representations for

R-rank one matrix groups.

Theorem 6.2.2 ([C, Theorem A.7, Theorem B.5]).

Let πΛ be a discrete series representation of G = SU(n, 1) or Spin(2n, 1)

whose Harish-Chandra parameter is Λ. Then

Ch(grπ∗
Λ,K) = m(Pπ∗

Λ,K
, grπ∗

Λ,K)Pπ∗
Λ,K

,
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where Pπ∗
Λ,K

is the unique minimal prime ideal containing Ann(grπ∗
Λ,K) and

m(Pπ∗
Λ,K

, grπ∗
Λ,K)

=




∑
λ1≥µ1≥λ2≥···≥λk−2≥µk−2≥λk−1,

λk≥µk−1≥λk+1≥···≥λn−1≥µn−2≥λn

dimV A
n−2(µ1, . . . , µn−2)

(G = SU(n, 1),Λ ∈ Ξk, 2 ≤ k ≤ n),∑
λ1≥µ1≥λ2≥···≥λn−2≥µn−2≥λn−1≥µn−1≥|λn|

dimV D
2n−2(µ1, . . . , µn−1)

(G = Spin(2n, 1),Λ ∈ Ξ1 ∪ Ξ2).

Lemma 6.2.3.

If Λ,Λ′ ∈ Ξk, then cd(S(gC)/PπΛ,K ) = cd(S(gC)/PπΛ′,K ).

Proof. We may assume that µ = Λ′ − Λ is dominant integral.

Let Eµ be the irreducible gC-module with highest weight µ. Let V0

be a finite dimensional subspace of πΛ,K that generates πΛ,K as a U(gC)-

module. Then πΛ,K ⊗ Eµ = U(gC)(V0 ⊗ Eµ). Set Vn = Un(gC)V0. For

any v ∈ Vn, e ∈ Eµ and X ∈ gC, X(v ⊗ e) = Xv ⊗ e + v ⊗ Xe ≡ Xv ⊗
e (mod Vn ⊗ Eµ). Therefore Ann(gr(πΛ,K ⊗ Eµ)) = Ann(grπΛ,K) and

V(πΛ,K ⊗Eµ) = V(πΛ,K) holds for their associated varieties. We know that

πΛ′,K is an irreducible submodule of πΛ,K ⊗Eµ. Then V(πΛ′,K) ⊆ V(πΛ,K).

We can show the inverse inclusion by “down” translation, and we have

V(πΛ′,K) = V(πΛ,K). Since πΛ,K is a discrete series representation, V(πΛ,K)

is a closed irreducible variety. By the Hilbert Nullstellensatz, PπΛ,K =

PπΛ′,K . Eventually, cd(S(gC)/PπΛ,K ) = cd(S(gC)/PπΛ′,K ). �

We will prove the equal sign in (3.2.9) (the dimension formula of the

SU(n, 1) case). By Theorem 6.1.1, Lemma 6.2.1 and Theorem 6.2.2, it

suffices to prove cd(S(gC)/Pπ∗
Λ,K

) = 2.

If we read [Y1], [H-P] and [K-W] carefully, we notice that the condition

“far from the wall” in Theorem 1.3.2 can be a little weakened. In our

case G = SU(n, 1), Theorem 1.3.2 is also true for π∗
Λ,K (Λ ∈ Ξk), if the

Blattner parameter λ = Λ + ρ − 2ρc = (λ1, . . . , λn) is λ1 = · · · = λk−1 >
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2k − n − 1, λk = · · · = λn < 2k − n − 3 (see [H-P,§9]). For this parameter

λ, R(Dλ,η)φ(a) = 0 is equivalent to

(
a
d

da
+ λk−1 − λk + qk−1,n−1 + 2n− 2k + 2

)
c(Q; a)

+
ξ

a

√
qk−1,n−1 − λk + 1

λk−1 − qk−1,n−1
c(σk−1,n−1Q; a) = 0

(λk−1 > qk−1,n−1 ≥ λk),(
a
d

da
+ λk−1 − λk − qk−1,n−1 + 2k − 2

)
c(Q; a)

+
ξ

a

√
λk−1 − qk−1,n−1 + 1

qk−1,n−1 − λk
c(τk−1,n−1Q; a) = 0

(λk−1 ≥ qk−1,n−1 > λk),

and we can easily check the compatibility of these equations by direct cal-

culation. Then, for this parameter λ, the equal sign in (3.2.9) holds and we

have shown cd(S(gC)/Pπ∗
Λ,K

) = 2. By Lemma 6.2.3, cd(S(gC)/Pπ∗
Λ,K

) = 2

for every parameter Λ. Similarly, we can prove that the equal sign in (5.2.6)

holds (Spin(2n, 1) case).

6.3. Whittaker functions of moderate growth

For a (gC,K)-module (π, V ), let (π∞, V∞) be its C∞-globalization and

we denote by (π−∞, V −∞) the continuous dual to (π∞, V∞) with respect to

U(gC)-topology. We denote the continuous intertwining space by

HomG(π∞, C∞(G/N ; η)) and set

Wh(π−∞) := {ϕ ∈ V −∞;π′(X)ϕ = −η(X)ϕ, (X ∈ n)}.

There is a canonical isomorphism :

Wh(π−∞) � ϕ �→ fϕ ∈ HomG(π∞, C∞(G/N ; η)),

〈ϕ, π(g−1)v〉 = fϕ(v)(g), (v ∈ V∞, g ∈ G).

By a theorem of Wallach (cf.[W, §8.3]), if ι ∈ HomG(π∞, C∞(G/N ; η)),

then ι(v)(g) must be of moderate growth.
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In SU(n, 1) case, the M -Whittaker function is not of moderate growth

but the W -Whittaker function is. In Spin(2n, 1) case, since ξ > 0,

esgnqn−1,2n−3
ξ
a is of moderate growth if and only if qn−1,2n−3 < 0. Then,

for each case, the dimension of Wh(π∗−∞
Λ ) is just the half of that of the

(gC,K)-intertwining space. This is consistent with Matumoto’s theorem

(cf. [M2, Theorem 5.5.2]).

At last, we have proved Theorem A and B.
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