
J. Math. Sci. Univ. Tokyo
3 (1996), 247–270.

Asymptotics of Heavy Molecules

in High Magnetic Fields

By Fumihiko Nakano

Abstract. As the extention of the results of Lieb, Solovej and
Yngvason[LSY1], we consider the Coulomb systems of large molecules
in strong magnetic field and study the energy asymptotics.

1. Introduction

The aim of this paper is to consider the N electrons interacting each

other by the Coulomb repulsion, attracted by K fixed nuclei in a strong

uniform magnetic field.

The corresponding Hamiltonian of quantum mechanics is defined as:

(1.1) HN :=
N∑
i=1

{(pi+A(xi))2 +σi ·B}+
N∑
i=1

V (xi)+
∑

1≤k<l≤N
|xk−xl|−1.

where xi = (xi1, x
i
2, x

i
3) ∈ R3 is the coordinate of the i-th particle. We

often write x = (x1, x2, x3) = (x⊥, x3) where x⊥ = (x1, x2) ∈ R2. V (x) :=∑K
j=1 Zj |xi−Rj |−1, Zj > 0 (resp. Rj ∈ R3) is the charge(resp. position) of

the nuclei, p = −i∇, σ is the Pauli spin matrix, and A = 1
2B×x is the vec-

tor potential associated to the uniform magnetic field B = (0, 0, B), B > 0.

We consider HN on HN := ΛNL2(R3;C2) which is the space of the anti-

symmetric spinor valued functions on R3N (ΛN means the exterior product).
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HN is essentially self-adjoint on ΛNC∞
0 (R3;C2) whose self-adjoint exten-

sion is also denoted by HN . Our main object is to obtain the large field

asymptotics of the ground state energy:

(1.2) EQ(N, {Zj}, B, {Rj}) := inf{(Ψ, HNΨ) : Ψ ∈ D(HN ), (Ψ,Ψ) = 1},

where (·, ·) denotes the inner product of L2(R3N ). {Zj} and {Rj} means

{Z1, · · · , ZK} and {R1, · · · , RK} respectively. This model is arised from

the investigation of the surface structure of neutron star. This has been

studied by many physicists and mathematicians. Among the mathemati-

cal papers, Lieb, Solovej and Yngvason[1,2] have studied quite extensively.

They divided the domain of the asymptotic parameter into five regions,

namely, 1.B � Z4/3, 2.B ≈ Z4/3, 3.Z4/3 � B � Z3, 4.B ≈ Z3, 5.Z3 � B,

and derive the leading asymptotics in each region (B � Zα is meant by

B/Zα → 0 as Z → ∞, and B ≈ Zα is meant by 0 < C < B/Zα < D < ∞
where C,D are some constant). Briefly speaking, the magnetic Thomas

Fermi theory is used in region 1,2,3, and the density matrix functional is

used in region 3,4,5. They treated the one nuclear case(K = 1 case), so

we shall show that as for the density matrix functional theory, that is, in

region 3,4,5, it is easily extended to K nuclei case.

Therefore, we want to obtain the leading asymptotics of EQ when Zj =

kjZ, kj , λ := N/Z are fixed, B = O(Zα) (α ≥ 4/3), and Z → ∞. The

motivation we extend to the K nuclei case is that, first, in the future we

want to consider the atomic binding. If B � Z3, no binding occurs which

is proved using the magnetic Thomas Fermi theory[LSY2]. On the other

hand, if Z3 � B, the occurrence of binding is proved by the hyper strong

theory[LSY1]. But when B ≈ Z3, whether binding occurs or not is the

open problem. The author hope that the study of the K nuclei case will

serve a little to approach this problem. Second, this paper will help us to

consider infinitely many nuclei called “molecular chain” by physicists. In

[NKL], by numerical calculations it is suggested that, as B is order 1012G,

molecular chain is preferred by single atoms. But if B grows higher, no

results have been showed up to the author’s knowledge.

The first observation is that, if λ(= N/Z) is fixed and β := B/Z4/3 → ∞
as Z → ∞, the leading order of the ground state energy is the same as

the ground state energy restricted on the lowest Landau band. Before the

precise statement, let us recall about the Landau band[LSY1,LL]. This is the
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eigenstate of the Pauli Hamiltonian HA := (p+A(x))2 +σ ·B,A = 1
2B×x,

whose spectrum is written formally by the sum of the spectrum of one-

dimensional harmonic oscillator and that of the free particle moving along

the magnetic field:

(1.3) εpασ = 2(α+ σ +
1

2
)B + p2,

where α is a nonnegative integer, σ is the spin variable and p2 is the energy

of the one dimensional free particle. The eigenspace corresponding to (1.3)

for fixed ν = α + σ + 1
2 is called the ν-th Landau band. When ν = 0(the

lowest Landau band), that is, α = 0, σ = −1/2, the remaining energy is

only the kinetic energy along the magnetic field and spin is restricted to

down(σ = −1/2). Therefore if we write Π0 to be the projection operator

onto the lowest Landau band, the Pauli Hamiltonian is reduced to simple

form:

(1.4) Π0HAΠ0 = − ∂2

∂x2
3

Π0.

Π0 has the integral kernel

(1.5) Π0(x, x
′) =

B

2π
exp{ i

2
(x⊥ × x′⊥) · B − 1

4
|x⊥ − x′⊥|2B}δ(x3 − x′3)P

↓,

where P ↓ is the projection in the vectors in C2 with spin σ = −1/2[LSY 1].

Let ΠN
0 :=

⊗N
i=1 Π0 which is the projection onto the subspace where all

particles are in the lowest Landau band. We define the ground state energy

within the lowest Landau band:

EQconf (N, {Zj}, B, {Rj})(1.6)

:= inf{(Ψ, HNΨ) : Ψ ∈ D(HN ),ΠN
0 Ψ = Ψ, (Ψ,Ψ) = 1}.

Theorem 1.1. If λ = N/Z ≤ Λ,Λ > 0 is fixed, then there exists some

constant δ = δ(λ2/3β,Λ) such that δ → 0 as λ2/3β → ∞ and

(1 − δ)EQ(N, {Zj}, B, {Rj}) ≤ EQconf (N, {Zj}, B, {Rj}).
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Remarks.

(1) In general, EQ < 0 (theorem 5.3 of [LSY1]). Hence the above

statement implies the upper bound of the modulus of EQ in terms

of EQconf .

(2) By the definition, EQ ≤ EQconf , hence in particular we obtain

EQ/EQconf → 1 as λ2/3β → ∞.

(3) The theorem does not say the ground state corresponding to EQ lie

in the lowest Landau band. It only shows that EQ is asymptotically

calculated as if all particles were in the lowest Landau band.

(4) Roughly speaking, the idea of its proof is to show that EQ ≥
EQconf − (error), where error term is estimated by Lieb-Thirring in-

equality as the order of Z7/3(that is the leading order of N-electron

systems when the magnetic field vanishes). On the other hand,

EQconf is estimated by variational inequality of Lieb[L] as the order

of N3/5Z6/5B2/5(in case of B � Z3). The condition B � Z4/3

comes from requiring that error term is lower order than EQconf .

As stated before the theorem, in the lowest Landau band, all spins are

down and the remaining kinetic energy is only that of the movement parallel

to the field,i.e.,(− ∂2

∂x2
3
), so that the situation becomes quite simple.

The next step is, when Ψ ∈ domain HN satisfies ΠN
0 Ψ = Ψ, to write the

energy (Ψ, HNΨ) in terms of the density matrix:

ΓΨ
x⊥(x3, x

′
3) :=

N∑
i=1

∫
· · ·
∫

Ψ(x1, · · · , xi−1;x⊥, x3;x
i+1, · · · , xN )(1.7)

× Ψ(x1, · · · , xi−1;x⊥, x′3;x
i+1, · · · , xN )

× dx1 · · · dxi−1dxi+1 · · · dxN ,

= N

∫
· · ·
∫

Ψ(x⊥, x3;x
2 · · ·xN )

× Ψ(x⊥, x′3;x
2 · · ·xN )dx2 · · · dxN .

The second equality holds since Ψ is antisymmetric.
∫

means the integra-

tion on R3 unless stated otherwise.
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ΓΨ
x⊥(x3, x

′
3) stands for the probability amplitude of the particles trans-

ferring from the point (x⊥, x3) to (x⊥, x′3). For example, let N = 2 and we

take φ1, φ2 ∈ L2(R3) such that Π0φi = φi(i = 1, 2) and (φi, φj)L2(R3) = δij .

Set Φ := (2)−1/2{φ1(x1)φ2(x2) − φ1(x2)φ2(x1)} ∈ HN (that is the Slater

determinant). Then, ΓΦ
x⊥(x3, x

′
3) =

∑2
i=1 φi(x⊥, x3)φi(x⊥, x′3). We will be

able to understand the density matrix theory easier if we keep this example

in mind.

At first sight, it seems strange to let N → ∞ because as it goes,

HN ,HN ,etc. would varies. But by reducing the Hamiltonian in terms

of the one density matrix alone, it will become simple which we shall briefly

see here.

The kinetic energy of HN which is simpler in the lowest Landau band

(1.4) is

N∑
i=1

(Ψ,
∂2

∂xi23
Ψ) = N

∫ ∣∣∣∣ ∂

∂x3
Ψ(x⊥, x

′
3;x

2 · · ·xN )

∣∣∣∣2 dxdx2 · · · dxN ,

= N

∫
∂

∂x3
Ψ(x⊥, x3;x

2 · · ·xN )

× ∂

∂x3
Ψ(x⊥, x′3;x

2 · · ·xN )
∣∣
x3=x′3

dxdx2 · · · dxN ,

=

∫
∂

∂x3

∂

∂x′3
ΓΨ
x⊥

∣∣∣
x3=x′3

dx3dx⊥.

It has an easier interpretation by regarding ΓΨ
x⊥ as the kernel of an operator

on L2(R) parameterized by x⊥ ∈ R2. To do this, let {φn}∞n=1 by the

complete orthonormal basis of L2(R)

∂

∂x3

∂

∂x′3
ΓΨ
x⊥(x3, x

′
3)

=
∞∑

n,m=1

φn(x3)φm(x′3)

∫
R

∫
R

∂

∂y3

∂

∂y′3
ΓΨ
x⊥(y3, y

′
3)φn(y3)φm(y′3)dy3dy

′
3.

Then, ∫
∂

∂x3

∂

∂x′3
ΓΨ
x⊥(x3, x

′
3)|x3=x′3

dx
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=
∞∑
n=1

∫
R
dy3

∫
R
dy′3

∫
R2

dx⊥
∂φn
∂y3

ΓΨ
x⊥(y3, y

′
3)
∂φn
∂y′3

,

=

∫
R2

∞∑
n=1

(
∂φ

∂x3
,ΓΨ

x⊥

∂φ

∂x3

)
L2(R)

dx⊥,

where ΓΨ
x⊥ is the operator on L2(R) whose kernel is ΓΨ

x⊥(x3, x
′
3).

We define :

(1.8) TrL2(R)[−
∂2

∂x2
3

ΓΨ
x⊥ ] :=

∞∑
n=1

(
∂φ

∂x3
,ΓΨ

x⊥

∂φ

∂x3

)
L2(R)

.

Hence the kinetic energy of HN equals to
∫
R2 TrL2(R)[− ∂2

∂x2
3
ΓΨ
x⊥ ]dx⊥ which

is finite if Ψ ∈ the domain of
∑N

i=1 H
(i)
A .

We turn to the attraction energy of the Coulomb force by nuclei.

(Ψ,
N∑
i=1

V (xi)Ψ) =
N∑
i=1

∫
Ψ(x1, · · · , xi−1, xi, xi+1, · · · , xN )V (xi)

× Ψ(x1, · · · , xi−1, xi, xi+1, · · · , xN )

× dx1 · · · dxi−1dxi+1 · · · dxNdxi

=

∫
V (x)ρΨ(x)dx,

where ρΨ(x) := ΓΨ
x⊥(x3, x3) which is the diagonal part of ΓΨ

x⊥ . Note that

ρΨ(x) is interpreted as the density of particles which satisfies
∫
ρΨ(x)dx =

N .

As for the repulsion term:
∑

i<j |xi − xj |−1, we expect that exchange

energy is lower order, so that we replace (Ψ,
∑

i<j |xi − xj |−1Ψ) by

D(ρΨ, ρΨ) := 1
2

∫ ∫
|x − y|−1ρΨ(x)ρΨ(y)dxdy. The main error will arise

from here whose estimation is the most difficult part of this theory.

Now we are in a position to establish the density matrix functional:

EDM [Γ] :=

∫
R2

TrL2(R)

[
− ∂2

∂x2
3

Γx⊥

]
dx⊥(1.9)
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+

∫
V (x)ρΓ(x)dx+D(ρΓ, ρΓ),

where ρΓ(x) := Γx⊥(x3, x3) is the diagonal part of Γ and D(f, g) :=
1
2

∫ ∫
|x− y|−1f(x)g(y)dxdy. As the domain of Γ, we take

GDMB := {Γx⊥ : Γx⊥ is a L2(R) − operator valued function on(1.10)

x⊥ ∈ R2 which satisfies the following four conditions}

(1) For arbitrary f ∈ L2(R), the map x⊥ �→ (f,Γx⊥f) is measurable

(2) Γx⊥ is a positive semidefinite, trace class operator for almost all

x⊥ ∈ R2

(3) 0 ≤ Γx⊥ ≤ B/2π for almost all x⊥ ∈ R2

(4)
∫
R2 TrL2(R)[(1 − ∂2

∂x2
3
)Γx⊥ ]dx⊥ < ∞.

Remarks.

(1) Because of the condition(1), the integral of TrL2(R)[(1− ∂2

∂x2
3
)Γ] and

ρΓ(x) makes sense[LSY1].

(2) The condition (3) above comes from the fact that in the lowest

Landau band, the density states per unit area perpendicular to the

field is at most B/2π.

(3) If Ψ ∈ the domain of
∑N

i=1 H
i
A, (Ψ,Ψ) = 1, and ΠN

0 Ψ = Ψ, then

ΓΨ
x⊥ belongs to GDMB (lemma 4.1 of [LSY1]).

We set the variational problem:

EDM (N, {Zj}, B, {Rj})(1.11)

:= inf{EDM [Γ] : Γ ∈ GDMB ,

∫
R2

TrL2(R)[Γx⊥ ]dx⊥ ≤ N}.

The last condition comes from the fact that, N =
∫
ρΓ(x)dx =∫

Γx⊥(x3, x3)dx3dx⊥ =
∫
R2 TrL2(R)[Γ]dx⊥. EDM has the unique minimizer

ΓDM (we can refer to theorem 4.3 of [LSY1] and confirm that it holds for K

nuclei case).

We state the main theorem of this paper:
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Theorem 1.2. If λ := N/Z, Zj = kjZ, kj > 0 are fixed and β :=

B/Z4/3 → ∞, as Z → ∞, then EQ/EDM → 1.

Finally, we prove the relation between ρDM := ρΓDM and the density

function ρQ corresponding to the true ground state ΦQ, i.e., the minimizer

of (1.2).

To do this, we must let the position of the each nuclear Rj ∈ R3 depend

on Z, that is, Rj(Z) = Z−1R̃j where each R̃j ∈ R3 is fixed. This comes

from the scaling property of EDM

(1.12) EDM (N, {kjZ}, B, {Z−1Rj}) = Z3EDM (N/Z, {kj}, B/Z3, {Rj}).

We split EDM into three terms

(1.13) EDM = KDM −ADM +RDM ,

where KDM =
∫
R2 TrL2(R)

[
− ∂2

∂x2
3
ΓDMx⊥

]
dx⊥, −ADM =

∫
V (x)ρDM (x)dx

and RDM = D(ρDM , ρDM ). Similarly, we write

(1.14) EQ = KQ −AQ +RQ.

To avoid confusion, we use the notation ρDM (x;N, {Zj}, B, {Rj}) when

the number of particles is N , the charge(resp. position) of j-th nuclear is

Zj(resp. Rj) and the value of the magnetic field is B.

Theorem 1.3. Let Zj = kjZ, Rj(Z) = Z−1R̃j and kj > 0, λ = N/Z ,

η := B/2πZ3 and R̃j ∈ R3 are all fixed. Then as Z tends to infinity, it

holds that

Z−4ρQ(Z−1x;N, {Zj}, B, {Rj})
→ ρ(x;λ, {kj}, 2πη, {R̃j}) weakly in L1

loc(R
3),

Z−3KQ(N, {Zj}, B, {Rj}) → KDM (λ, {kj}, 2πη, {R̃j}),
Z−3AQ(N, {Zj}, B, {Rj}) → ADM (λ, {kj}, 2πη, {R̃j}),
Z−3RQ(N, {Zj}, B, {Rj}) → RDM (λ, {kj}, 2πη, {R̃j}).
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In the following sections, we will prove the above theorems. Since their

proofs are based on the same argument as in [LSY1], we will only prove part

of them. In section 2, we prove theorem 1.1, in section 3, we see various

properties of the density matrix theory and in section 4, we will meet the

proof of theorem 1.2 and 1.3 (though stated quite briefly).

Before leaving introduction, we comment on the extension of superstrong

and hyperstrong theory in [LSY1] in the K nuclei case. We can easily see the

existence and uniqueness of minimizers of them. But the main difference

from the atom case is that it is difficult to derive the explicit form of the

minimizer of EHS , the hyper strong functional(it seems to need the elliptic

functions) and is also difficult to obtain the critical binding number of EHS ,

which seems to be essential in order to prove EDM = ESS(the superstrong

energy ESS can be defined as EDM ) for large η so their study for molecules

is trusted to the future study.

2. Proof of Theorem 1.1

The proof of theorem 1.1 is almost the same as theorem 1.2 of [LSY1]

which we see here.

Step 1.

In this section, we treat the wave functions in
⊗N L2(R3;C2), that is,

forget antisymmetry. Let α be the subset of {1, · · · , N}. We want to define

the projection Πα whose eigenspace corresponds that if i ∈ α, i-th particle

lies in the lowest Landau band and i �∈ α is not. To do this, at first we define

Πi
0 which is the projection onto the subspace in which the i-th particle lies

in the lowest Landau band(as for the other particles, it operates as the

identity operator). Let Πi
> := I − Πi

0 that is the projection onto higher

bands. We define

(2.1) Πα :=
∏
i∈α

Πi
0

∏
j �∈α

Πj
>.

It is clear that
∑

αΠα = I. The plan of proof is to “expand” HN in terms

of Πα and treat each ΠαHNΠα. We will divide ΠαHNΠα into two terms.

The first term contains i ∈ α particles and it is estimated from below by

EQconf . The second term including the variables i �∈ α corresponds to the

error term and we estimate it by Lieb-Thirring inequality.
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Now we begin the proof. We decompose HN with respect to Πα

HN ≥
∑
α

ΠαHαΠ
α.

Where ε > 0 is arbitrary, and

Hα =
N∑
i=1

H i
A − (1 + ε)

K∑
j=1

Zj
∑
i∈α

|xi −Rj |−1(2.1)

− (1 + ε−1)
K∑
j=1

Zj
∑
i�∈α

|xi −Rj |−1

+ (1 − 3ε)
∑
i<j
i,j∈α

|xi − xj |−1 − (3ε−1 − 1)
∑
i<j
i,j �∈α

|xi − xj |−1

− (
3

2
ε−1 +

3

2
ε− 1)

∑
i∈α
j �∈α

|xi − xj |−1.

To see this, we consider each term of HN respectively. The first term of

(2.2)
∑N

i=1 H
i
A is obvious since H i

A commutes Πα for arbitrary α. For the

second term we write

(2.3) V (xi) = (Πi
0 + Πi

>)V (xi)(Πi
0 + Πi

>).

From it arises two diagonal terms, (Πi
0V (xi)Πi

0 and Πi
>V (xi)Πi

>) and two

remaining non-diagonal terms. Diagonal terms of (2.3) corresponds respec-

tively to
∑

i∈α V (xi) = −
∑K

j=1

∑
i∈α Zj |xi − Rj |−1 and

−
∑K

j=1

∑
i�∈α Zj |xi − Rj |−1 of (2.2)(if i ∈ α (resp. i �∈ α), Πi

>V (xi)Πi
>

(resp. Πi
0V (xi)Πi

0) vanishes since Πα is operated). Non-diagonal terms of

(2.3) are estimated

(2.4) Πi
>V (xi)Πi

0 + Πi
0V (xi)Πi

> ≥ εΠi
0V (xi)Πi

0 + ε−1Πi
>V (xi)Πi

>,

which is derived by taking form of the left hand side of (2.4), apply Schwarz

inequality, and use ab ≥ 1
2(εa2 + ε−1b2). (2.4) says that “the non-diagonal

terms become the diagonal terms” so that they become ε
∑

i∈α V (xi) =
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−ε
∑K

j=1

∑
i∈α Zj |xi − Rj |−1 and −ε−1

∑K
j=1

∑
i�∈α Zj |xi − Rj |−1 of (2.2)

respectively. Thus we obtain (2.2) for the attraction term. The terms∑
i<j |xi − xj |−1 are treated similarly as (2.3) except that |xi − xj |−1 is

operated by (Πi
0 + Πi

>)(Πj
0 + Πj

>) from both sides. There will be 16 terms

but “non-diagonal terms become into diagonal terms” similarly as (2.4).

Step 2.

We estimate each term Hα respectively from below and thus estimate

HN from below. This is possible since

(2.5) inf spec(A+B) ≥ inf specA+ inf specB,

for any operators A,B.

Fix α. We bound Hα below on functions Ψ which are antisymmetric

with respect to xi(i ∈ α) and also antisymmetric with respect to xi(i �∈ α).

In addition, we impose that Πi
0Ψ = Ψ if i ∈ α and Πi

0Ψ = 0 if i �∈ α. At

first we consider three terms of (2.2) that depend on only xi(i ∈ α)’s. They

are in the first, second and fourth terms

(2.6) Ĥα := (1 − 3ε)Hnα + ε
∑
i∈α


3H i

A − 4
K∑
j=1

Zj |xi −Rj |−1


 ,

where nα := <α that is the number of elements of α and Hnα is the Hamil-

tonian(1.1) of xi(i ∈ α) particles where N is replaced by nα. We shall

estimate the second term of (2.6).

∑
i∈α


3H i

A − 4

K∑
j=1

|xi −Rj |−1


(2.7)

≥ 3

K∑
j=1

[∑
i∈α

1

K
H i
A − 4

3
Zj |xi −Rj |−1

]
.

We also treat each term of
∑K

j=1 separately and use (2.5). By translation

invariance, we can let Rj = 0 in each term. Let δj > 0 which satisfies

δj(
Zj

K − nα
2K ) = 4

3Zj(in fact, δj > 1) so that we claim

Πi
0

(
1

K
H i
A − δj(

Zj
K

− nα
2K

)|xi|−1

)
Πi

0(2.8)
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≥ δ2
jΠ

i
0

(
1

K
H i
A − (

Zj
K

− nα
2K

)|xi|−1

)
Πi

0.

This can be seen as follows. Let h(δ) := Π0(HA − δZ/|x|)Π0 = Π0(p
2
3 −

δZ/|x|)Π0. By scaling, x3 → δ−1x3, we can show h(δ) is unitarily equivalent

to δ2Π0[p
2
3 −Z(x2

3 + δ2x2
⊥)−1/2]Π0 and this operator is greater than δ2h(1).

Thus (2.8) is obtained.

We forget the multiplication by Π0 which is already contained in Πα.

By the method of theorem 5.3 of [LSY1], it holds that

∑
i∈α

[
1

K
H i
A − (

Zj
K

− nα
2K

)|xi|−1

]
(2.9)

≥
∑
i∈α


 1

K
H i
A − Zj

K
|xi|−1 +

1

K

∑
i<j

|xi − xj |−1


 .

By translation invariance, RHS of (2.9) is unitarily equivalent to

∑
i∈α


 1

K
H i
A − Zj

K
|xi −Rj |−1 +

1

K

∑
i<j

|xi − xj |−1


 .

And this is estimated from below by

≥
∑
i∈α


 1

K
H i
A −

K∑
k=1

Zk
K

|xi −Rk|−1 +
1

K

∑
i<j

|xi − xj |−1


 ,(2.10)

=
1

K

∑
i∈α


H i

A −
K∑
k=1

Zk|xi −Rk|−1 +
∑
i<j

|xi − xj |−1


 .

Putting it into RHS of (2.7), we estimate that the second term of (2.6) is

bounded below by 3
∑K

j=1 δ
2
jE

Q(nα, {Zj}, B, {Rj}). Therefore, we arrive at

the purpose for Ĥα:

ΠαĤαΠα ≥ Πα{(1 − 3ε)EQconf (nα, {Zj}, B, {Rj})(2.11)

+ (const.)εEQ(nα, {Zj}, B, {Rj})}Πα.
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Step 3.

The remaining terms of (2.2) is bounded below for ε > 0 small by

H̃α := T̃α − (1 + ε−1)
K∑
j=1

Zj
∑
i�∈α

|xi −Rj |−1(2.12)

− 3ε−1
∑
i�∈α

∑
j∈α

|xi − xj |−1 − 3ε−1
∑
i<j
i,j �∈α

|xi − xj |−1,

where T̃α :=
∑

i�∈αH
i
A is the kinetic energy operator of i(i �∈ α)-th particle.

We shall employ two ways to estimate H̃α and apply them at the same

time.

The first is to consider the kinetic energy. Note that for one particle

2BΠ> ≤ Π>HAΠ> = Π>[(p + A)2 + σ · B]Π>.

Since on the higher Landau band, εpασ ≥ 2B(see (1.3)). Thus, Π>(p +

A)2Π> ≥ Π>(2B − σ · B)Π>. Hence

Π>HAΠ> ≥ Π>

[
1

2
(p + A)2 +

1

2
(2B − σ · B) + σ · B

]
Π>,(2.13)

≥ 1

2
Π>[(p + A)2 +B]Π>.

In the last inequality, we used B ≥ ±σ · B.

For the second way, we decompose H̃α:

H̃α =
K∑
l=1

[
T̃α

K
− (1 + ε−1)Zl

∑
i�∈α

|xi −Rl|−1(2.14)

− 3ε−1

K

∑
i�∈α

(
∑
j∈α

|xi − xj |−1) − 3ε−1

K

∑
i<j
i,j �∈α

|xi − xj |−1 ]

=:
K∑
l=1

H̃α
l .
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We treat each H̃α
l and use (2.5) again. By translation, we can let Rj = 0 in

each term. Note that H̃α contains no differentiation with respect to xi(i ∈
α) so that xi(i ∈ α) in H̃α

l can be treated as fixed points whose values are

adjusted to give the lowest possible energy of ΠαH̃α
l Πα. Now consider that

any antisymmetric function Ψ(x1, · · · , xn)(of n := N −nαvariables) and its

corresponding density ρΨ(x)(x ∈ R3). We can always translate Ψ by letting

x �→ x + y such that the maximum of z �→
∫
ρΨ(x + z)|x|−1dx occurs at

z = 0. After this translation, the maximum of xj �→
∫
ρΨ|x−xj |−1dx occurs

at xj = 0 that means infxj ,j∈α
∫
···
∫

ΠαΨH̃α
l ΠαΨ

i�∈α︷ ︸︸ ︷
dxi1 · · · dxin occurs if

xj = 0(j ∈ α).

Due to the two arguments above, we conclude that inf spec(ΠαH̃αΠα) ≥
inf spec(ΠαH̄αΠα), where H̄α =

∑K
l=1 H̄

α
l and

H̄α
l :=

nB

2K
+

1

2

n∑
i=1

(pi + A)2

K
−
{

(1 + ε−1)Zl +
3ε−1

K

} n∑
i=1

|xi|−1(2.15)

− 3ε−1

K

∑
1≤i<j≤n

|xi − xj |−1.

We decompose further using
∑n

i=1 = 1
n−1

∑n
i=1

∑n
j=1
j �=i

:

H̄α
l =

nB

2K
+

1

n− 1

n∑
i=1




n∑
k=1
k �=i

[
1

2K
(pk + A(xk))2(2.16)

−
(

(1 + ε−1)Zl +
3ε−1

K

)
|xk|−1

− 3(n− 1)ε−1

2K
|xk − xi|−1

]}
,

=:
nB

2K
+

1

n− 1

n∑
i=1

H
(i)
l .

We bound each operator H
(i)
l by letting xi = 0 due to the same argument as

above. Therefore we reached the no-interacting Hamiltonian and we shall
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estimate it using Lieb-Thirring inequality that says the sum of the absolute

value of negative eigenvalues of
∑

{1
2(p + A)2 − V } is bounded above by

(const.)
∫
V 5/2(x)dx. To apply this, we cut off the Coulomb potential. For

R > 0, define v(x) = |x|−1 − R−1 for |x| < R and v = 0 if |x| > R so that

−|x|−1 ≥ −v(x) −R−1. We estimate H
(i)
l

(2.17) H
(i)
l ≥ 1

K

{
1

2
(pk + A(xk))2 − ε−1[2KZl + 3N ]|xk|−1

}
.

We use −|xk|−1 ≥ −v(xk) − R−1 and apply Lieb-Thirring inequality to v

which concludes

H
(i)
l ≥ − 1

K
{(const.)R1/2ε−5/2(2KZl + 3N)2/5(2.18)

− ε−1(2KZl + 3N)
n

R
}.

By maximizing the RHS of (2.18) with respect to R, we obtain

(2.19) H
(i)
l ≥ − 1

K
{(const.)ε−2(N − nα)

1/3(2KZl + 3N)2}.

Thus, we arrived at the position of estimating H̄α.

H̄α =
K∑
l=1

H̄α
l =

K∑
l=1

(
nB

2K
+

1

n− 1

n∑
i=1

H
(i)
l

)
,(2.20)

≥ N − nα
2

B − (const.)ε−2(N − nα)
1/3(K2Z2

∑
k2
j +KN2).

Let Kα be the number such that

(2.21) Kα = RHS of (2.11) + RHS of (2.20),

so that Step 2 and Step 3 yields

(2.22) ΠαHαΠα ≥ ΠαKα.
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Step 4.

It suffices to show that ε (> 0) which first appeared in Step1 can be

taken to depend on λ2/3β = Z−2N2/3B and Λ such that

(2.23) Kα ≥ EQconf (N, {Zj}, B, {Rj}) + δ(λ2/3β,Λ)EQ(N, {Zj}, B, {Rj}),

for every α, and δ → 0 and as λ2/3β → ∞ for each fixed Λ. We can easily

derive theorem 1.1 from (2.23) since

(2.24) (Ψ, HNΨ) ≥
∑
α

Kα(Ψ,ΠαΨ) and (Ψ,Ψ) =
∑
α

(Ψ,ΠαΨ).

In proving (2.23), we first note that we can replace nα by N in (2.11)

since EQconf (nα, {Zj}, B, {Rj}) ≥ EQconf (N, {Zj}, B, {Rj}) (it holds because

we can always make particles throw away to infinity[LS1]). (2.11) already

satisfies the conditions of (2.23) if we can let ε > 0 arbitrary small when

λ2/3β → ∞. For the contribution of (2.22), we needs to consider two cases,

namely B � Z3 and B � Z3. When B � Z3, the contribution of (2.21)

can be bounded below by omitting the B term. The rest is bounded below

by

− (const.)(K2
∑

k2
j +KΛ)ε−2(λ2/3β)−2/5Z6/5N3/5B2/5(2.25)

≥ (const.)(K2
∑

k2
j +KΛ)ε−2(λ2/3β)−2/5

× EQ(N, {Zj}, B, {Rj}).

This inequality comes from the upper bound of EQ(it can be obtained by

mimicking the proof of theorem 5.3 of [LSY1]). When B � Z3, (2.21) is

easily seen to be positive as λ2/3β → ∞ provided that Z is bounded below

which follows easily from N/Z ≤ Λ. Hence we can let ε → 0 as λ2/3β → ∞
with satisfying (2.21) is positive.

3. The Density Matrix Functional

In this section, we see the various properties of EDM such as the existence

and uniqueness of the minimizer. These proofs are essentially the same as

in section 4 of [LSY1], so we will give only the sketch.
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At first we need the bound for the energy of one-dimensional Coulomb

potential which is the lemma 2.1 of [LSY1].

Lemma 3.1. Let us consider the one-dimensional Schrödinger operator

on L2(R)

ĥ{Zj},{Rj}{aj} := − d2

dx2
−

K∑
j=1

Zj√
(x−Rj)2 + a2

j

,

where {Zj} denotes the set {Z1, · · · , ZK},etc. Let −µn(ĥ{Zj},{Rj}{aj}) be the

n-th eigenvalues of ĥ{Zj},{Rj}{aj} counting multiplicity. Then they satisfy

the following estimates

−µ1(ĥ{Zj},{Rj}{aj}) ≥ −K
K∑
j=1

Z2
j

{
1 +

[
sinh−1

(
1

KajZj

)]2}
,

−µ2n,−µ2n+1(ĥ{Zj},{Rj}{aj}) ≥ − 1

4n2

K∑
j=1

Z2
j .(3.1)

Proof. We decompose the Hamiltonian

ĥ{Zj},{Rj}{aj} =
K∑
j=1


− 1

K

d2

dx2
− Zj√

(x−Rj)2 + a2
j


 =:

K∑
j=1

ĥj .

We use

(3.2) −µn(ĥ{Zj},{Rj}{aj}) ≥ −
K∑
j=1

µn(ĥj).

In lemma 2.1 of [LSY1], µn(ĥj) is estimated

−µ1(ĥj) ≥ −KZ2
j

(
1 +

[
sinh−1

(
1

KZjaj

)]2)
,
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−µ2n,−µ2n+1(ĥj) ≥ −
KZ2

j

4n2
.(3.3)

Putting this into (3.2), the lemma 3.1 is proved. �

Remark. If we adopt the method used in lemma 2.1 of [LSY1] directly,

we obtain slightly different bound

−µ1 ≥ −






K∑
j=1

Zj sinh−1(a−1
j )




2

+
K∑
j=1

Zj


 ,

−µ2n,2n+1 ≥ − 1

4n2

K∑
j=1

Z2
j .(3.4)

In the following, we see the estimates related to Γ ∈ GDMB which can be

proved essentially in the same way as in [LSY1].

Proposition 3.2. If Γ ∈ GDMB , it holds that

(1)

(3.5)

∫
ρΓdx =

∫
R2

TrL2(R)[Γx⊥ ]dx⊥,

(2)

(3.6)

∫
R

(
∂
√
ρΓ

∂x3

)2

dx3 ≤ TrL2(R)

[
− ∂2

∂x2
3

Γx⊥

]
, for a.e. x⊥ ∈ R2,

(3)

(3.7)

∫
ρ3

Γdx ≤
(

3B2

π2

)
TrL2(R)

[
− ∂2

∂x2
3

Γx⊥

]
,

(4) If
∫
ρΓdx ≤ N and

(3.8) ĥ{Zj},{Rj},x⊥ := − d2

dx2
3

−
K∑
j=1

Zj |x−Rj |−1,
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which is an one-dimensional Schrödinger operator on L2(R). Then,

∫
R2

TrL2(R)[ĥ{Zj},{Rj},x⊥Γx⊥ ]dx⊥(3.9)

≥ −(const.)K1/5N3/5
K∑
j=1

Z
6/5
j B2/5,

and∫
R2

TrL2(R)[ĥ{Zj},{Rj},x⊥Γx⊥ ]dx⊥(3.10)

≥ −(const.)NK
K∑
j=1

Z2
j


1 +

(
ln

B

K2NZ2
j

)2

 .

Using these inequalities, we can prove the existence and uniqueness of

minimizer of EDM . Theorem 4.3 of [LSY1] applies to this with no change.

Theorem 3.3. EDM has an unique minimizer ΓDM . EDM (N, {Zj},
B, {Rj}) is a monotonically non-increasing, convex function of N and non-

increasing function of B.

Next, we set the linearized functional of EDM . It is defined as

(3.11) EDMlin [Γ] :=

∫
R2

TrL2(R2)[h
DM
x⊥ Γx⊥ ]dx⊥

where hDMx⊥ is the one-dimensional Schrödinger operator

(3.12) hDMx⊥ := − d2

dx2
3

− φDMx⊥ (x3),

where

(3.13) φDMx⊥ (x3) =
K∑
j=1

Zj |x−Rj |−1 − |x|−1 ∗ ρDM ,



266 Fumihiko Nakano

which is the effective potential. We set the minimizing problem similarly

as (1.9)

(3.14) EDMlin = inf{EDMlin [Γ] : Γ ∈ GDMB ,

∫
TrL2(R2)[Γx⊥ ]dx⊥ ≤ N}.

The following theorem is proved in [LSY1,theorem 4.4].

Theorem 3.4. ΓDM is also the minimizer of EDMlin .

This is used to prove the uniqueness of ΓDM (the uniqueness of ρDM is

proved without the aid of EDMlin , so that EDMlin is well- defined) and also used

to prove the lower bound to EQ in terms of EDM (in section 4).

The virial inequality has the following form

Lemma 3.5. If we write as EDM = KDM −ADM +RDM , they satisfy

the following estimates.

RDM ≤ ADM − 2KDM +X, KDM ≤ ADM − 2RDM +X,(3.15)

ADM ≤ 3|EDM | +X, KDM ≤ |EDM | +X,(3.16)

RDM ≤ |EDM | +X,

where

(3.17) X =

K∑
j=1

∫
Zj

|x−Rj |

3∑
i=1

(
∂ρDM

∂xi

)
dx.

Remark.

(3.18) |X| ≤
K∑
j=1

Zj

∫
3Rjρ

DM (x)dx ≤ (const.)N
K∑
j=1

ZjRj ,

and it is lower order than EQ when B � Z4/3(by mimicking theorem 5.3

of [LSY1]).

Finally, this is the estimate of ρDM which can be proved by mimicking

proposition 4.9 in [LSY1].
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Proposition 3.6.

∫
R

(
∂
√
ρDM

∂x3

)2

dx3(3.19)

≤ (const.)KB

K∑
j=1

Z2
j



[
sinh−1

(
1

KZj |x⊥ −R⊥
j |

)]2

+ 1


 .

The above estimates will be used to bound the EQ in terms of EDM .

4. Proof of Theorem 1.2

This is the section we prove the main theorem. We derive the upper and

lower bound of EQ and estimate the error.

Theorem 4.1. EQ, EQconf satisfy the following estimates.

EQ(N, {Zj}, B, {Rj}) ≤ EQconf (N, {Zj}, B, {Rj}),(4.1)

≤ EDM (N, {Zj}, B, {Rj}) +RU .

RU is estimated :

RU ≤ (const.)K(
K∑
j=1

Zj)
4/3N1/3B1/3, and

(const.)K1/3(

K∑
j=1

Zj)
2N2/3


1 +

[
ln

(
B

K2N(
∑

j Zj)
2

)]2



5/6

.(4.2)

It is proved by the same way as theorem 5.1 of [LSY1] except the
∑

j Zj
treatment and the virial inequality. Proposition 3.2, lemma 3.5 and propo-

sition 3.6 are used to do this.

To lower EQ, it is sufficient to use theorem 7.1 of [LSY1] which is the

estimate of the Coulomb repulsion.
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Theorem 4.2. When N = λZ, Zj = kjZ,

HN ≥
N∑
i=1

(
(1 − Z−1/3)H i

A − φDM (xi)
)
−D(ρDM , ρDM )(4.3)

− Cλ,kj (1 + λ5)(1 + Z8/3)(1 + [ln(B/Z3)]2),

where φDM (x) =
∑K

j=1 Zj |x−Rj |−1 − |x|−1 ∗ ρDM .

Using the above theorems, propositions and lemmas together lead to the

theorem 1.2. In more detail, we can refer to the section 8 of [LSY1] so that

we omit the proof.

5. The proof of theorem 1.3

The proof of the convergence of ρQ is the same as [LSY1] which is omitted

here. Next, we prove the convergence of each term of the energy. We

will only see the attraction energy only here since the other is essentially

the same. We use the method of [LS1]. At first we define the modified

Hamiltonian for α > 0:

(5.1) Hα
N :=

N∑
i=1

{(pi + A(xi)2 + σi · B} − α
N∑
i=1

V (xi) +
∑
i<j

|xi − xj |−1.

Let EQα denotes the ground state energy of Hα
N defined similarly as (1.2).

Moreover, we define EDMα [Γ] whose Coulomb attractions are all multiplied

by α. EDMα denotes its infimum. Let ΓDMα be the minimizer of EDMα . It

is easy to show ΓDMα → ΓDM1 in L3 ∩ L6/5 as α → 1(To see this, note that

when α moves near 1,
∫ (∂√ρDM

α

∂x3

)2

dx is uniformly bounded. Hence we

can use the argument used in the proof of theorem 2.2 in [LSY1]). Then it

follows that

α−1[EDMα − EDM1 ] ≤ α−1
(
EDMα [ΓDM1 ] − EDM1 [ΓDM1 ]

)
,(5.2)

= ADM1 ,

≥ α−1
(
EDMα [ΓDMα ] − EDM1 [ΓDMα ]

)
,
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= ADMα .

Since |x|−1 ∈ L3/2 + L6, we see ADMα → ADM1 as α → 1. Hence

(5.3)
∂EDMα
∂α

∣∣
α=1

= ADM1 .

Due to the same argument, we can show

(5.4)
∂EQα
∂α

∣∣
α=1

= AQ1 .

We can apply the proof of theorem 1.2 and conclude that

(5.5)
EQα (N, {kjZ}, B, {Z−1R̃j})
EDMα (N, {kjZ}, B, {Z−1R̃j})

→ 1 as Z → ∞, B � Z4/3.

If {kj}, {R̃j}, η fixed, we can use the scaling property and derive

Z−3EQα (N, {kjZ}, B, {Z−1R̃j})(5.6)

→ EDMα (λ, {kj}, 2πη, {R̃j}) as Z → ∞.

Because EQα and EDMα are concave with respect to α, we can derive the

convergence of the derivative(since when a function is concave or convex,

its derivative is monotone)

(5.7) Z−3 ∂

∂α
EQα (N, {kjZ}, B, {Z−1R̃j}) →

∂

∂α
EDMα (λ, {kj}, 2πη, {R̃j}).

Putting α = 1, we reach the conclusion.
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