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L?-theory of singular perturbation of
hyperbolic equations II1

Asymptotic expansions of dispersive type

By Koichi UCHIYAMA

Dedicated to Professor Hikosaburo Komatsu on his 60th birthday

Abstract. We consider Cauchy problems for linear strictly hyper-
bolic equations of order [ with a small parameter € € (0, €] :

(0.1) { (i)™ L(t,z, Dy, Dy; €) + M(t,z, Dy, Dy; €) Yul(t, x; €)

= f(t,xse)
for (t,z) € (0,T)x R,
(0.2) Diu(O,x;e)zg_i(x;e) j=0,1,2,...,1—-1

where L and M are linear strictly hyperbolic operators of order | and
m (I = m+ 1 or m+2) with C* bounded derivatives with respect
to (t,z,€) € [0,00) x R x [0,&)]. The aim of this paper is to give
C™ asymptotic expansions of solutions to singularly perturbed Cauchy
problems of this type, when the characteristic roots of L and M satisfy
the separation conditions. The points are to construct formal solutions
(Proposition 5.3, 5.4), consisting of the regular part and the singular
one (correction part of dispersive type) expressed by Maslov’s canonical
operators, and to give the error estimates in order to obtain asymptotic
expansions with respect to e in the sense of arbitrarily higher order
differentiability norms (Theorem 6.1, 6.2), when the supports of f and
g;’s are contained in fixed compact sets.

1. Introduction

We consider Cauchy problems for a linear strictly hyperbolic equation
of order [ with a small parameter € € (0, €g] :

(1.1) P(t,x, Dy, Dy;e)u(t, z;e) =
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( i€) "™ L(t, x, Dy, Dy; )—I—M(t,x,Dt,DI;e)) u(t,z;€) =
f(t, ;)

for (t,z) € (0,T) x R ¢,

(1.2) Dgu(O,x;e):gj(m;e) j=0,1,2...,1—-1

where L and M are linear strictly hyperbolic operators of order [ and m
(l=m+1orm+2 cf. Ashino [2]) with C*° bounded derivatives with
respect to (t,z,€) € [0,00) x R % x [0,¢9] . The aim of this paper is to
give C'° asymptotic expansions of solutions to singularly perturbed Cauchy
problems of this type. This is a revisit of problems treated in [12].

We assume the data f(t,x;€) € C5°([0,00) x R x [0, ¢0]) and g;(z;¢€) €
Cs°(R? x [0,¢9]). They have asymptotic expansions with respect to e:

N

(1.3) ftwse) =D € fult,w) + Ryia(fie),
n=0

(1.4) Ze gjn(z +RN+1(9]7 €).

We postulate that the solution has an expansion
(1.5) u(t,zi€) ~ v(t, z5€) +w(t, z5e),

where v and w mean formal sums such that

(1.6) v(t,x;e) = Z €"vp(t,z) (regular part),
(1.7) w(t,z;€) = Z €"wy,(t,x;e) (singular part),
(1.8) Pv ~ f,

(1.9) Pw ~ 0

(1.10) D{(v+w)‘ ~ g, §=0,1,2,...,01—1,

We investigated in Part I ([13]) a priori L? and higher order Sobolev
norm estimates of the solution to (1.1) and (1.2) under various separation
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conditions of characteristic roots of L and M. In Part II ([14]), we dealt
with the case where the singular part, that is, the correction terms (1.7)
associated with (1.6) are of dissipative type (exponential decay as € tends
to 0). In this paper, we treat the case where the the correction terms are
dispersive (highly oscillating as € tends to 0). They are described by os-
cillating functions locally and by Maslov’s canonical operators K globally.
The estimates of the remainder terms of asymptotic expansions are given
by a priori estimates in Part I ([13]).
We put

(1.11) upn(t, z;€)

N
S oty z) + NI e ) by (8, 25 €), when [ =m + 1,
n=0

*=

N
S €M (t, ) + SN € Kz hE(t, x5 ), when [ =m + 2
n=0

and its remainder term by
Rnti1(use) = u(t,zy€) —un(l, xse).
We have (in Propositions 6.1 and 6.2)

(1.12) ((ie)""™L + M)Ryi1(u;e) = Ryya(fie)
+eNHp(t, €) + N Ix(t w5 e),
(1.13) D{Ry11(u;€)(0,2) = Ryya(gjie) + € ny(ase),
0<j<i—1.

We apply a priori estimates (Theorem 2.1 or Theorem 2.2) to (1.12) and
(1.13) in order to obtain estimates of Ry41(u;€). Thus, we have our main
result Theorem 6.1 and Theorem 6.2. For an arbitrarily higher order Sobolev
norm and v € N, there exist large number N, such that

((ie)(l_m)L+M)uN = [+ 0(&)
Diuy = gj+O(¢")

and
u=upn(t,z;e) + O(e),

where O(€”)’s are measured by the given Sobolev norm.
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In §2, we state assumptions and a priori estimates quoted from Part
I ([13]). In §3, singular characteristic roots (cf. Frank[5]) are introduced
through principal symbol of e-differential operators. They give nonhomoge-
neous Lagrangian manifolds.

In view point of propagation of waves, the regular part of the solu-
tion is governed by the principal part of M (the subcharacteristic wave
in Whitham[15]). The singular part is governed by e -principal part of
(ie)'=™L + M. In contrast with the propagation of singularity of the solu-
tion u, the principal part of L is not principal to determine the quantitative
propagation of the singularly perturbed wave.

In §4, we give a brief review of canonical operators of Maslov. In §5,
we construct each term of formal asymptotic expansions of solutions. In §6,
we estimate the error terms of truncated expansion of the solutions, using a
priori estimates quoted in §2. Our conclusion is Theorem 6.1 and Theorem
6.2. We have an asymptotic expansion of the solution with respect to € in
the sense of arbitrarily higher order local Sobolev norm.

It seems there are not many works on singular perturbation of hyper-
bolic-hyperbolic type with dispersive correction terms. In Gao [7] similar
problems are studied under more restricted conditions than ours.

A part of this work was done, while the author stayed at the University
of the Philippines in 1994 and it was completed while he stayed at the Isaac
Newton Institute of the University of Cambridge in 1995. He is grateful to
the members for hospitality of these institutes.

2. A priori estimates

We consider two differential operators L and M, whose coefficients have
smooth and bounded derivatives in (¢, z,¢€) :

1
(21) L(t,, D1, Daie) = Di+ > Lj(t,x, D) Dy
j=1

(2.2) M(t,x,Dy,Dyze) = mo(t,z;€)D" + Y Mj(t,x, Dy;e) Dy
j=1
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Their homogeneous principal symbols are defined by

l

2.3 Wt,z,7,&€) = T+ Li(t,x, & e)rt ™,
J
=1

m

(2.4) m(t,z,7,&€) = mo(t,z;e)T™ + Z m;(t, @, &e) T,
j=1

We assume the following assumptions:

(HO) Regular hyperbolicity of L: I(t,z,T,§; €) has the decomposition

l

(2.5) I(t,x,7,&€) = H(T—tpj(t,x,f;e))

j=1
where ¢;(t,z,§; €) are real distinct elements such that
(26) 801(t71‘a€; 6) < 902(tax7£;6) << @l(t,l‘,g;€) uniformly :

in (t,,& ) € [0,00) x Ry x {|¢] = 1} x [0, €], that is, pj41(t, 2, €) —
@;(t,x,&; €) is uniformly positive for j =1, ---, 1 — 1.
(H1) Regular hyperbolicity of M: m(t,z, T, &;€) has the decomposition

m

(2.7) m(t,xz,7,&€) = mo(t, x;€) H(T —i(t,z,&€))

7=1
where 1;(t,z,§; €) are real distinct elements such that
(28) ¢1(t,ﬂf,§; 6) < 1/)2(75,.%,6;6) <..< T/Jm(ta%f;ﬁ) uniformly.

We assume

(D1): l=m+1,

and the following assumption

(H2): mg(t, x; €) is pure-imaginary and uniformly away from 0, that is,
(HP): Rmg(t, x;€) = 0 and there exists a positive constant 6 such that

Smo(t, z;€) > 6 >0,

or
(HN): ®mo(t, z;€) = 0 and there exists a positive constant § such that

Smo(t, z;€) < —6 < 0.
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We assume also
(S0): {1;} separates {¢;} uniformly, that is,

01 <Y1 < g < - <Py < Prme1 uniformly.

REMARK 1. When L and M are pseudo-differetial operators, we intro-
duced in Part I ([13]) the assumptions

(SP) ¥1 < {¢17902} << {¢m—17‘10m} < {wmasom—i—l}

with (HP) and

(SN): {1, 01} < {2, 2} < {93, 03} < < {%m, om} < Pmy1,

with (HN), where x < {a,b} means * < min{a,b} and {¢,d} < * means
max{c,d} < *. (They are (WS*) and (S*) in [13].)

When L and M are differential operators, any one of the conditions (SP)
and (SN) is equivalent to (S0).

REMARK 2. In Part II ([14]), we assumed (D1), (HO), (H1), (SO) and
(E1): uniformly strong ellipticity of mg, that is,

Rmo(t, z;€) > 6 > 0.
We quote from Part I ([13])

THEOREM 2.1. We assume (D1), (HO), (H1), (H2) and (S0). For any
natural number p, there exist C > 0 and g such that for any positive e < g,
for any v > 7o and for any u(t) € C*° ([O,T]; C?(Rg)) we have

P .
(2.9) 0{3 /0 emly (7)1 D7 F () |2 i+ || D™ u(0) |12

p p
+7" (6262” I D™u(0) I + D ¢ || D™u(0) |11
j=0 j=1

=0 j=1

p—1 p!
r e Lo ) |
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T b ]
— J m+j m-+j—
>y [T (@) (e D) |2+ D ) ) dt
j=0
T (2 \J ; 2 i1 2
+e TS () (e[| D™Hu(T) |2 + || D™ u(T) |13)
§=0

where f(t) = (ie)Lu(t) + Mu(t).

When
(D2): l=m+2,
we assume (HO), (H1) and the following assumptions
(WS): {1;} weakly separates {¢;} uniformly, that is,

01 <A{Y1,p2} < <A{Um, Pm+1}t < Pm+2 uniformly.

and
(P): mo(t, x;€) is real and uniformly positive, that is,

Smo(t,z;¢) =0, and mgo(t,z;€) > 6 > 0.
We quote from Part I ([13]),

THEOREM 2.2. We assume (D2), (HO), (H1), (P) and (WS). For any
natural number p, there exist positive constant C' and vy such that for any
positive € < €y, for any v > o and for any u(t) € C™ ([O,T];C{)’O (szl))
we have

P .
(2.10) 0{3 /0 Lemly (22)" I D7 f(2) |2 dt + 7| D™ u(0)

gl €=

p p—1
+9" (Z 72 D Hu(0) [IF + D € || D7 f(0) !!2) }
J=0 j=0

N AN . ) , )
> ’Y/O e Vtz (e fy) (e || pmtit u(t) || + || Dm+]u(t) || )dt
7=0
—2~4T d 2 \J [ 2 m4it1 9 — 9
+e 7 Z(e 7) (6 | D™ y(T) ||* + || D™ u(T) H)7
j=0

where f(t) = (ie)>Lu(t) + Mu(t).
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3. Singular characteristic roots

3.1. Degeneration of order 1
Let [ = m + 1. We define e-principal symbol

ip(t,z,7,§) =il(t,x,7,&0) + m(t,z, 7, 0).

We denote the roots of p(r) = 0 by 7;(t,z,£)’s. In order to show the
argument is microlocal, we state the assumptions (SP) and (SN) separately.

PropoSITION 3.1.  We assume (S2): (D1), (HO0), (H1), (HP), (SP)
r (83): (D1), (HO), (H1), (HN), (SN). Then, 7;’s are real and uniformly
distinct, that is, there exists a positive constant ¢ such that

(31) Tj+1(t,$,€) - Tj(t,fﬂ,f) 2 C|§| fOT j = 1727 e,

Moreover, in case (S2), the least root Ti(t,x,&) satisfies 11(t,z,0)=
—Smo(t, ;0),

(32) Tj(t,l‘,&)—’ﬁ(t,l’,f)ZC(1+’£D fO’/“ j:27"'7m+17

and belongs to the nonhomogeneous smooth symbol class S*. And in case
(S3), the greatest 100t Tyt1(t, x,§) satisfies Tm1(t, x,0)=—mo(t, x;0),

(33) Tm+1(t,$,§)_7j(t,$,§) ZC(1+|§|) fO’I" j: 17'”7m7
and belongs to the nonhomogeneous smooth symbol class S*.

PROOF. We prove the statements under the assumption (S2). We
introduce notations a V b = max{a,b} and a A b = min{a,b}. We have

Sgn[P(SDmH)] = Sgn Sgn |:H ©m+1 — ] = Sgn(@m+l - wm)

m+41

sgnfp(¢m)] = sgn H (Y — @5) = sgn(¥m — Om+1)
=1

Therefore, since p(y, V ©mi1) = 0 and p(¢¥m A @me1) < 0, we have a root
Tm+1 between Y, A i1 and ¥, V @mp1. In the same way, p(7) = 0 has a
root 7j41 between ; A ;11 and ¥; V @j4q for j =1,2,---'m
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Since sgn[p(p1)] = (—1)™ and sgn[p(7)] = (=1)™*! for 7 < ¢ with
sufficiently large |7|, there exists the (m + 1)-th root 71 less than ;. By
the assumption (SP), there exists a positive constant independent of (¢, x, £)
such that the roots {7;} satisty |41 — 75| > ¢[{| for j =1,2,---,m.

Since the coefficients of p(7r) are uniformly bounded with respect to
(t,z,€), there exists a positive constant C' independent of (¢,z,¢;¢€) such
that

It x, )| < C1+€), (i=1,2,---,m+1).
The estimates of the derivatives of 71 follows from the implicit function
theorem. In fact, we need an estimate from below of Op/071(71) = H;”:'El (r1—
7). By the separation condition (SP),

|71 — 73] > cl§] for j=2,3,---,m+1,
for 7; is between 1;_1 A ¢; and ¥;_1 V ¢; when j > 2. On the other hand,

d
p(r) = 7"+ (Smo(t,2;0)) 7™ + > &p;(7),
j=1
where p;’s are polynomials in 7 of order at most m. When { = 0, 1 =
—Qmo(t,#;0) and 7; =0 (j > 2). By Rouché’s theorem, |1 — 7| > ¢ for
sufficiently small |£|. Hence, we have (3.2) and |0p/07(71)| > ¢(1+|&))™. O

REMARK. When the condition (S2) holds, we have for j = 2,3, -+, m+
1,
71 < @1 <min{p;, 1} < 75 < max{yp;, ¥;j-1}.
We call 7; the singular root, since 71 (¢, x, €£)/ € is a root of (i€) (¢, z, 7,;0)
+m(t, z, 7,&; 0) = 0, which is singular when € tends to 0. Aternatively, 7,41
is the singular one, when the condition (S3) holds. Cf. Frank [5] Chap.3.9.

We assume (S2). We denote for simplicity, p(t, z, 7,&) by p, 71 (¢, x, ) by
71 and so on. We consider a Hamiltonian system for (¢(o,y), z(0,y), 7(0,y),

§(o,9)):

dt  Op dxj Op
(3.4) do 01’ do ¢’ J 2004,
dT:—ap %: ap :1’2, ’d,

e A .
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with Cauchy data

(3.5) #0,y) =0, zj(0,y) =y;, j=12,-.d
T(Oyy):’rl(oayyo), fj((),y)zo, ‘]:1’2”d

Suppose = = x(0,9),§ = £(0,y),t = t(o,y), 7 = 71 (t(0,y), 2(0,y),£(0,y))
be a system of solutions to (3.4) and (3.5). Then,

m—+1m—+1 m+1

= (1 —15) = [[(mn—m).
j=2

T=T1 k=1 J
j

@ _ o
do Ot

Therefore, sgng—z_ = (—1)™ and
dt
—| > (1 m,
|z e+ le
Hence, we have o = o(t,y), the inverse function of ¢t = t(o,y) with respect

to o.
We also consider the system for (Z(,y),&(t,y))

di" . 87’1 .= . o
ditj__aifj@wrag)v .7_1727 7da
(3.6) .
W _omia .
d_t] - axj (t,$,§), .7 - 1727 7d7
and Cauchy data .
(3.7) (0,y) =y, &0,y)=0.
Put
0 - ~
n(ty) =GPty E )t Y) L Y)
m+1 B B
= I (n(t@t,9), £t y) — 75t 2t y), £, )
j=2

Then, we consider the equation

{ 3—; = 7(t,y),
t(0,y) = 0.
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A unique solution t(o,y) is the inverse function of o(t,y) fo W(S m

PRrROPOSITION 3.2 (Fedoriuk[4]). We assume (S2). If the family of

T = J}(O',y), § = f(U,y), t = t(a,y), T (t(U y) ( ) f(O’,y))
is a unique solution to (3.4) and (3.5), then :z:(t y) = z(o(t,y),y) and

£(t,y) = &(a(t,y),y) satisfy (3.6) and (3.7).
Conversely, if T(t,y) and &(t,y) make a system of solutions to (3.6) and
(3.7),

z = w(oy) =&(t0,9),y), &=E&0,y) =E(Hoy).y)
t = tloy), T=mn(tloy), ( y),€(0,y)

consist of a solution to (3.4) and (3.5).

Proor. We have

dx; Op or ”ﬁl
do 0¢; S 0¢; ot
_ _9nadt
N 8@ dO"
Hence,
do dz; 0T .
—_—— = —— =1,2,---,d.
dt dO_ 8§j’ .7 ) ) )
In the same way, we have
do dfj 87’1
haienV IR S —1.2.---.d
dt do oz’ Y
do dt ory
—_—— = — =1,2,---,d
dt do ot TS

We define for j =1,2,---,d,

We have i 9
B L )
dt 0¢;

(38) dé o
=L = J = 1727 te 7d7

dt oz’
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and

39 §0.) = &0y = o

The converse is proved in a similar way. OJ

{f?j((),y) = z;(0,y) = yj

REMARK. The bicharacteristic curves in R?**? with parameters (o, %)

t=t(o,y), z=a(0,y), T ="1(0,y), {E=&(0,y)

have another expression

v = Ety), =7t E(ty), {1t y))
¢ = £(t,y) with parameters (¢,y).

PROPOSITION 3.3. We assume (S2).
(i) We have a unique system of C™ solutions {Z;(t,y)} and {&(t,y)} to
(3.6) and (3.7) for all non-negtive t. There exists a positive constant M
such that for any nonnegative t
< Mt 1=1,2,---,d,

sup|Zi(t,y) — i
Y

sup|
Yy

é(t,y)‘Ser—l, i=1,2,--,d.

(ii) There exist a nonnegative continuous function m(t) with m(0) = 0 such
that for any i, a
0,
Wa

Hence, there exist positive constants Ty and O such that

(t,y) — bia| < m(t).

det (g;i (t,y))’ >6>0 (ty)e[0,Ty) x R

Moreover, for any multi-index o, there exists a nonnegative continuous func-
tion meq(t) with mq(0) = 0 such that

< mq(t), when |af > 1,

a—ya(t, Y)
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and that

(t,y)

‘8'“'& < o (t).

oy«

Proor. We omit the parameter y in the solutions.
(i) We will show the global existence and uniqueness of solutions to the
system of integral equations:

T = — "on s,7(s),£(s))ds
~ Lor ~
(3.11) &(t) = ?(s,x(s),é(s))ds
0 0x;

for j = 1,2,---,d. We fix T > 0 arbitrarily. For ¢ € [0,T], we define
successively

t ~
(3.12) jlgn)(t) - 871( L7 (5), EM=D(5))ds
0o 0&
for n>1,
and ~
&% =o,
~ t -
(3.13) £M (1) = on (5,2 Y (s), £V (s5))ds
0o O0x;
for n>1

We will give a priori estimates of approximate sequences. By Proposition
3.1, there exists a constant M > 1 such that

8‘0[‘7'1
< <
‘ n < MO forfal <2
oo+l
< <
‘ ora0E; | = M for |a| <1 and
827_1 1
< M@A+) .
|a&8§j (1 + el
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Then,
t (97'1

~(1) — | _ o1
00 -ul =1~ [ 52

(s,9,0)ds| < Mt,

and 3
\—\/ Tlsy, 0)ds| < Mt.

By induction, we have
2" () - wil

BRIGIE z

IN

Mt,

Mqtq
-1

We will show the global convergence of the approximate sequences. We put

Iz = > 12:(t)] and [IE@)] = Z &i(t)

We claim that there exists a positive constant C'p such that

Ok

129 (#) = 25V @)+ 1€ ) - €5V @) < =5 o
for any k € N and any ¢ € [0, T]. In fact, if we put Cp = Md(1++/deMT)T
£(k)

this is derived by induction. Hence, limy_. ig-k) and limy_. & ; exist and
they are the desired solutions.

(ii) Differentiating the equations (3.8) succesively with respect to y, we have

. . . alz. glalg. ..
a sequence of linear equations satisfied by {alay‘fl, 8ayfj 1 <id,j <d,|a] >

1}. The desired estimates follow from it by Gronwall’s inequality and by
induction. O

We consider Ri};l S5, Ri‘gl as symplectic space with the fundamental
1-form 7dt + Z?ZI ¢;dz;. Let AT be the flow-out of R x {0} C RZ @Rg
by the trajectory defined by (3.6) and (3.7) for ¢ € [0, 00). That is,

(3.14) AdTL = {( 7€) € RO R0 <t < oo,

T = (t y)aT:Tl(tv‘%(tvy)?g(t?y))v
¢=£(ty).ye R}
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We put A? = Ad—H’t:s and A‘[jo't'%] ={(t,z,7,6) e AT, 0 <t <T}.

PROPOSITION 3.4 (Fedoriuk[4]). (i) A% is a (d+1)-dimensional sim-
ply connected Lagrangian C*° manifold with boundary:

Ag = {(anle(Ovyvo)vo);yERd}:
~ RZ

(ii) The wvariable t can be used as a member of local coordinates of every

chart of A%F1.
d+1

(iii) There exists a positive Ty such that the projection of A[o ] onto
. s a diffeomorphism.

Let I = {iy,ig,---,ir} be an empty or nonempty subset of {1,2,---,d}
and I = {ig 1, -, iq} be its complement. RLCI| and R‘fl‘ are the spaces of
coordinates x; =(xi,, Tiy, -, 24, ) and & =(&;,,,, - -, &) respectively. We
use a fixed canonical atlas {Aj,7;;I = I(k),k € N} where A; is an open
domain and 7y is a projection

m R o RY - Roo Rl o R,

which is a diffeomorphism from A; onto a domain

(315)  Ur = {(t&(t,y), &(t,v));
(t,y) € a rectangular set U of [0, +00) x RZ}.

The domain A7 is expressed by a graph of mapping
(3.16) vy = X¢(t,xr, &), & =Er(t,vr, &)

Abuse of notation. I of A; means the label of a local chart and also the
multi-index {i1,12, - -, %} specifying the canonical coordinates of Aj.
The case (S3) is treated in the same way as (S2).

3.2. Degeneration of order 2
Let | = m + 2. We define e-principal symbol

*p(t,l‘,T,é) = 7l(t7 vaag; O) + m(t7l‘a T, 5) 0)
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We denote the roots of p(7) = 0 by 7;(¢, z,§)’s.

PROPOSITION 3.5. We assume (HO),(H1),(P) and (WS). Then, 7;’s
are real and uniformly distinct, that is, there exists a positive constant c
such that

TjJrl(t’ z, 5) - Tj(tv Z, 5) > C|§|
Moreover, the least root T1(t,x,&) and the greatest root Tpya(t,z, &) satisfy

T1(t,x,0) = —v/mo(t, z;0), Tmi2(t, z,0) = \/mo(t, x;0) and

(3.17) 7i(t 2, &) =it e, §) = c(l+[E]), j=2,---m+2,
: Tmia(t, 2, &) — Tt &) > c(1+]), j=1,-,m+1.

They belong to the nonhomogeneous smooth symbol class S*.

PROOF. Since p(7) > 0 for sufficiently big 7 and p(¢m+2) < 0, we have
a root Ty,4+o bigger than ,,19. Then, we have for j =1,2,--- m,

m—j+1

sgn[p(gj+1)] = (—1) sgnpj+1 — ¥y

and

sgulp(y;)] = (=1)" sgnlpj — ¢y
Therefore, we have a root in the interval [pj11 A ¥, ¢j41 V ;). In fact, it
is trivial, if pj41 = ;. It follows from

sgnp(pj Ay)] = (=)™
sgnp(pjr1 V)] = (=)

when ;1 7 ;.
Especially,

sgfp(e2 A1)l = (=1)""1 sgnp(pa Vi) = (—1)™.

Combining the facts

sgnfp(e1)] = (=1)™,
sgnlp(r)] = (—1)m+2 for sufficiently negative T,

we know the existence of the roots {7;} such that

71 <p1 <P ANYj—1 <75 < i Vo1 < Omy2 < Tmt2,



Singular perturbation of hyperbolic equations 215

where 7 =2,3,---,m+ 1.
The rest of proof follows as in the proof of Proposition 3.1. O

REMARK. As we have seen, we have for j =2,3,--- m+1,

71 <1 <min{p;, ¥} <75 < max{p;, Y1} < Pmy2 < Tmie.

We call 7 and 7,12 singular roots.
We consider the Hamiltonian systems of the same type as in the previous
subsection, except one condition in the Cauchy data,

(3.18) Tlo=o = mi(0,y,0) for i=1 or m+2

= =£4/mg(0,2;0), for i=1 or m+2.

We obtain the solutions (t*(o),z*(0),&*(0)) and (a?*(t, y),é*(t,y)), where
* = + according to the signature of the Cauchy data (3.18). They define
the Lagrangian manifolds A* as before. We introduce in the same way their
canonical atlas {A}, 77} etc.

4. Review of canonical operators of Maslov

We summarize basic definitions and results in the theory of canonical
operators ([9]). We refer details to [10], [4]; [11], [6].

4.1. Preliminaries
stationary phase method. We quote a version of the stationary phase
method (see [3], [1], [8]).
We assume the following three conditions.
(C-I) ¢(x,n) is a real valued C'*° function on a neighborhood of a compact
set K in R™ x R™.
(C-II) There exists a positive constant Cp such that
dot PO, m)

On;j Oy,

(C-III) a(z,n) € Cg° (R™ x R™) with support in K.
Then, we assume for x € K, the system of equations

> () for any (x,n) € K.

0
—o(z,n) =0, j=1,...,n
aﬁj(ﬁ( n) j
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has a unique solution n = n(z). We put

(e,n) = ol m) = ol (@) — 5 < H(z)w,w >

where

_ 82¢
Hiw) = (877j877k (@ n(x))> 1<j,k<n

w =1 —1n(z).

and

LEMMA 4.1.

(4.1) /Rna(x,n) exp {z@} dn

= (2me)™/?| det H(z)|" Y2 exp — i (n — 2IndH (x))
i S A k
X exp { o(z,n(z ))} {kgoy (—5 < H *(x)Dy, Dy >> a(z,n)

X exp [lh(a: 77)} } +7Ny1(7,€)

n=n(x)

= (2me)"/?| det H(w)| 2 exp T (sgut (@) exp | ol n(e)]

N . 2k —
x E:<}jf>k§:——2—i——<QH_%$ﬂlpDn>ﬁ+p
2/ = (k+p)lp!

k=0
(h(w, )" @@, 1)y | + 112, €)

Here, IndH (x) is the dimension of the eigenspace with negative eigenvalues
of H(x). The remainder term ryyi1(x,€) (and also Tni1(x,€)) have the
following estimate:

for any multi-index «, there exist a positive integer | = l(a, N) and a positive
constant C' which are independent of €

8 [e%
<e%> ryyi(z,e)| < C sup

‘ N+1

\'YISl
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REMARK. [I(a,N) is a linear function of |af, N.

DEFINITION. We introduce the Fourier transformation with e, which is
A — Fourier transform in [10].

For u(xy) € C§° (R L{') ,

€—|I|7ri/4 i

(For ) (€)= s fpyn 0 |~ o & e o

The inverse transformation is defined by

oHTImi/a

(FET;IHIIQO (.17[) = W /ngl exXp [zgl : 5UI:| v (51) dfl
for v e Cg (R,

phase function. Let A be the Lagrangian manifold defined by (3.14),
denoted in the sequel by z(¢,y) and £(¢,y) without the tildes. We designate
the origin in Riif,g by Ao € A. For A € A, we integrate the form 7dt + {dx
along a curve connecting Ag and A on A:

A
S(\) = / rdt + €dz.

Ao
This is well-defined, since Tdt+£&dx is a closed form on the simply connected
A. When A7 is a local chart with coordinates (t,zr,&7), we define by (3.16)

S[ (t7 zy, gf) =S ()‘(ta zy, 57)) —< gf) Xf(t) xr, gf) >
By construction we have

oSy
awi

=Ei(t,x1,&5) for el

and

oSt . _
@Z—X](t,x[,ﬁj) for jEI
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invariant density. We fix an invariant measure duy = dt Ady; A. .. Adyg
with respect to the hamiltonian flow. When D is a compact set contained
in a single chart Ay,

wo) = [ [ .

where 77(D) is the projection of Dl; to R x R';l. Since det a(?(ﬁ’,yé_) =
k) bl I

a(t,y)

det —————2—
ot 21, 67)

da rdé;

det 2% the density of  is denoted by
8((21,&1)

Jy
det m(t, Ty, fj)

index ¢;. We assume always from now on, A% is of general position,
that is,

pr(t,xr,&5) =

dim{y;detM:O} <d-1.
dy

Let Ay and A; have local coordinates (t,x7,&7) and (t,27,&5). Suppose
A € A; N Ay is a nonsingular point, at which, by definition, det %;’y) #0.
The index in Z4 of an ordered pair of nondisjoint charts is defined by
ox+ 0x
Yy(ArnAy)= Ind LX) = Ind [ =L\ ,
(A7 Ay) 5 O 5e )
where Ind (A) denotes the dimension of the eigenspace with the negative
eigenvalues of A.

REMARK. ~(ArNAy)in Zy is independent from choice of regular points
Ain Ay N Ay (Lemma 6.4 in [10]).

DEFINITION. Let A; be a local chart of a fixed atlas {A[(i); i€ N}.

We choose a chain {A I(ik)} . such that

0<k<
d
Aoy = A[OT%O}, Ariy = A Ay N Agg,,,) 70 (connected).
We define 67 in Z4 by

s—1

or = Z V(A1) N Arig,))-
k=0
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67 is independent of choice of chains, since A is simply connected. This
follows from the fact that the difference of the two values

s—1 t—1
> (A N Areen) = 07 (Argy N AsGi)
k=0 =0

is considered as the closed path index ([10]).

4.2. Canonical operators and commutator relation

Maslov’s canonical operators. The precanonical operators K; are
defined as follows.
1. In case As is a nonsingular chart where det %Zy) never vanishes by
definition:

A € Ay is represented by A = A;(t,z). Let h € C§° (Ar).

(4.2) Ki(h)(t,z) = \/pur(t, 2)h (Ap(t, z)) ecSP1E),

2. In case Ay is a singular chart where the set of zeros of det %’;y) is not
empty by definition:

Suppose A € At is represented by A = A\;(t,z7,&7). Let h € C§° (Ag).

(4.3) Ki(h)(t,z) = eZ%F 7[egsf(t,:cz,57)

X h (Af(t? Iy, 57)) \V Mf(t> xr, 67)} .

We fix a set of canonical charts {A;} on A and a partition of unity {e;}
subordinate to this covering. Then, the canonical operator for h € C§°(A)
is defined by

(4.4) (Kah) (t, @) =Y Ki(erh)(t, x).
I
3. Let T be a fixed positive constant and K be a fixed compact set in A.
For any nonnegative integer j, there exists a constant C' such that for any
h € C§°(A) with supph C K
T i i 2 T i 2
| Dt ranoPa < ¢ [ 10h)

where h in the right hand side is identified with an element in C°°(]0,T;
C5°(Ry))-
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asymptotic transition operator.

LEMMA 4.2 (Lemma 9.1 in [10]). Let A; and Aj be non-disjoint lo-
cal charts. Then, for the precanonical operators K; and Kj there exists
an infinite set of differential operators {Vl(f), k=0,1,2,-- } on A;NAy
and integral operators {Ry (Vi;€), N =1,2,---} such that , for any h €
C§° (A1 N Ay) with supp h in supp ey Nsupp ey, and for any natural number
N, we have

N
(Ksh) (t,2) = K1 S VIO R(t, 2) + Ryi1 (Vig; €) h(t, z).
k=0

Here, Vl(ﬁ) is of degree 2k, and the remainder satisfies the following estimate:
for any fixed T' > 0 and for any nonnegative integer j, there exists a constant
C and an integer | such that

(4.5) /O e 1D Ry 11(Vigs e)h(t)|*dt < C /0 ! D) D (t)||dt.
h is identified with an element in C*>°([0,T7; CSO(RZ)) and l =1(j,N).
Proor. We put
L=InJ, L=InJ, Iz=InJ, ILi=1InNJ.
Then, we have
I=0LUL, J=LUIy, I=ILUl, J=ILUI,.

Let h € C§° (Ar N Ay). By the definition of the precanonical operator, we
have

(K h)(t, 2y, 5)
=B [ B, e (Kh)(t )]

687 —TT
_ TS 1 i (5,—61) -1 O
=e2 Fe7§7 —ar |:€ 2 Fe,x13—>f[3 FE,fIg_wIQ 6(677 $J)

X exp <ESJ(t7:CJ7£J)> h@\)]

= T _lbr],

&7 —x
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where
by = o680~ FIF I (g (~ITsl- D)2
)
X €xp [ed)(-xhaxbag[g?gh; .73[3,512)
Opg
h(AN)dEr,d
X |8§J8$J ( ) §12 xl?)?
with

¢=—wp, &1y + a1, - €1, +55(t25,65).

Notice that ¢ restricted on the stationary points is equal to St on A;NAj.
We have the expansion of b; by the stationary phase method. O

COROLLARY. There exist differential operators WI(? of degree 2k (k >
0) on A; N Ay such that Y02 ,€8S; W}§)€J is the formal inverse of
SRy W(ﬁ)ej. The remainder, defined by

N N
Rint19=9— Z e Z Vf(jf)ej (Z e Z W}2€K9>
k=0  J =0 K

for g € C*(Ay) is a differential operator of degree 4N on Ar (N > 1). Its
coefficients are of order N + 1 with respect to e.

commutator relation. Let
m .
plt,z, 7,6 €)= > pi(t,z,&e) 7™
=0

be a symbol, where p; belongs to the usual nonhomogeneous symbol class
SJ with smooth parameters ¢ and €. An e-pseudodifferential operator

m
P(t,z,eDy, eDyi€) = ZPj(t#C’EDx;G)(EDt)mij
j=0
is defined by

Pj(tv T, €Dy; E)u(t7$) = Fﬁl—»gy [pj(ta z,&; 6) (Fe,x—>£u)] :

61
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Its e-principal symbol is by definition

plt 2, 7.€) = 3 pi(t 2, &0)7" .

=0

PROPOSITION 4.1. Let P(t,x,eDy,eDy5€) be an e—pseudodifferential
operator. Let p(t,x, 7, &) be its e-principal symbol. For K, there exist
a set of differential opertators on A {Tl(k); k=0,1,2,--- } independent of
€ and a set of integral opertators {Rn (K1, P; €); N = 1,2,---} dependent
on € such that for h € C§° (A1) with supp h in suppery,

N
P(t,x,eDy,eDy; )K1(h) = K1 Y T{Vh + Ry 41 (K1, Pye) b,
k=0

and that for a fizred T and for any nonnegative integer j, there exists a
constant Cr and an integer | such that

T . . T
| DBy ah®lPd < €1 [ XD} h(o) Pt
More precisely,

0)

@@ﬁzwwwww)

96, ot wp’ T

(47) TI - Z\//TI (a’r ot Z 8& 61'1 Z 8.%@ 8§z>

1 0*S; &*p 5 8281 9%p
o a2 — Otdx; 00,
8251 82}) 825’[ 82]9
+ +

2,

2 2 2 2
_2288;[‘8881»‘_2 2 aa?a?ap)
jeT §; 070z, icl jel 2108 08,0z

0%p 8P

*Zwmz

+

1
1

e=0
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and Tl(k) are linear differential operators of order k with the coefficients in

> (Ay).

This expansion follows from the stationary phase method. In our case
where P is an e-differential operator, this is only differentiation of oscillatory
functions under the integral.

The global canonical operator is defined by

Knah =Y Ki(erh).
I
We fix a positive T. We put

N N

k k

TN = Sl vy =S v,
k=0 k=0

N
k
wh = S dwh.
k=0

Let fr be a function in C§°(Ay), such that fr = 1 on suppe;. The global
commutation relation is given as follows ([10]).

P(Kxh) = P Ki(erh)
I

= S {ETY (erh) + Rva (K7, Pre)(erh)}
I

= Z{KI (Z Vfﬁej) fi (; W}}e}(>

i 7
+K1Rr N4+1 }T}V(e[h)

+Y  Rni1(K1, Pie)(erh)
i

= Y KViesfiwlkexT{ (erh)
1,J K

+Y KiRr N Ty (erh) + > Rnia(Kr, Pe)(erh)
i i

= Y (Kj—Rnp(Vigse))es fiW kex T (erh)
IJK
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+ Z K[R[7N+1TIN(€[/2) + Z RN+1(K[, P; 6)(€[h)
1 I

= > Kjer Y fiWikex Tt (erh)
7 TK

= > Bv1(Viss e fiWikex T1 (erh)
1,J,K
(transition remainder)
+ Z KRy 1T (esh)  (inverse remainder)
T
+ Z Rn1(Kp, Pye)(erh) (commutation remainder )

= Z Kje;TNh + Ryy1(Kp, P;e)h. (by definition)
J

The remainder term Ry1(Kx, P;€)h has an estimate of the same type as
in Proposition 4.1. TV has an expansion TV = ZN CIf T( ) =0 for
all I, which is the case in §§5,6, we have T = =>7 T] eI.

5. Formal construction of asymptotic solutions

For any n € IN, we have the Taylor expansion of L:
L(t,x, Dy, Dy e Z "L (¢, 2, Dy, Dy) + Ry41(Ls €),

where L(t,z, Dy, Dy;€) and Ry41(L;e€) are differential operators of order [.
We have also

M(t x Dtv z; € ZenM t ant7DI) +RN+1(Ma 6)7

where M (t,x, Dy, D,;€) and Ry11(M;e) are differential operators of order
m.

We recall the notation for the Taylor expansions with respect of € of
the inhomogeneous data f(t,z;¢) € C5°([0,00) x R% x [0,¢g]) in (1.1) and
gj(r;€) € C°(RY x [0,¢0]) in (1.2) of the Introduction:

(51) f t x; 6 Z fn t,x +RN+1(f7 )a

n=0
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(5.2) E:egL ) + Ry y1(gs;€)-

We introduce for simplicity of the statements the following

DEFINITION. Let T be fixed. Firstly, if there is a correspondence

[T c>=(0,7); C5*(RE)) x T C5°(RE) > (fi(t, ), gu(x))
j=1 k=1
u(t,z) € C([0,T]; C5°(RY))

equipped with the following estimate (5.3), we call u is well determined by

{fi> g}

for any given natural number p, there exist a constant C, natural num-
bers g;, r;, real numbers p;, v;, and o}, such that

(5.3) /THDpu(t)Hth
<c{z/ 1% 551 dt+ZHD”fg ;+Zugkuik}.
k=1

Secondly, if there is a correspondence
[I G (RY) 3 {gj(2)} — h(t,z) € C([0,T); C5°(RY))
j=1

which satisfies the following estimate (5.4), we call h is well determined by

{95}
for any given natural number p, there exist a constant C' and real num-
bers oy, such that

(54) [ iohie i < 03 ol

k=1

Lastly, if there is a correspondense

ﬁ (RY) 5 {g;(2)} — v(z) € C*(RY
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which satisfies the following estimate, we call v is well determined by {gx}:
for any given natural number p, there is a constant C' and real numbers
o), such that

n
(5.5) loll; < C > llgellz,
k=1

5.1. Degeneration of order 1
The problem is

{ (ieL + M)u(t,z;€) = f(t, z;¢€),

(5.6) :
D]u(0, x5 €) = g;(z;€), 0<j<m.

We construct a formal expansion of the solution u along the outline in the
introduction §1. We define P = €L + i~'M and introduce

P(t,z,eDy,eDy:€) = €™ P(t,z, Dy, Dy €)
and its e-principal symbol

p(t,x,7,8) =U(t,z,7,§0) + i_lm(t,m, 7,&;0).

The singular characteristic root 71 or 7,41 defined in §3.1 gives the La-
grangian manifold A and the global canonical operator of Maslov Ky. We
seek for the singular part in the form of

(o] o0
w ~ E € w, = E e"Kahy,
n=m n=m

where h,,(\)’s are functions on A. P has the Taylor expansion with respect
to e

N
P(t,x,eDy,eDyze) = Ze"ls(”)(t,x,eDt,eDm)
n=0

+ RN.;,_l(p; 6).

PM)(t, 2, 7,€)’s are polynomial symbols of order at most m+1. Ry,1(P;¢€)
is a differential operator of order at most m + 1 and its coefficients a(t, z;€)
D] D%af(t, x; e)‘ < CeNtL

satisfy sup; ,
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We have a sequence of equations for the regular part

o
v(t,x;€) = Z €"vp(t, x)
n=0

satisfying
(5.7) MOyo(t,2) = fo(t, z),
and
n—1
(5.8) MOu,(t,z) = folt,x) = D (LP + MOy, (t,2)
p=0
for n > 1.
We set
(5.9) ho=--=hp_1=0.

Using the global commutation relation with 7(® = 0 on A, we have formally

Pu=PY "Kphpin =D "KrY T®h, .
n=0 k=1

n=0

We have equations on A with global coordinates (¢, y):

(5.10) TWh,(t,y) = 0,
n+1

(5.11) TWhpint,y) = =3 TWhpinii_i(t,y)
k=2
for n>1.

TW = ZT](l)eI is a hyperbolic operator of 1st order, since % > c(1+ €)™
in (4.7). From the initial conditions (5.6), we have

(5.12)  (eDy)?v(0, x5 €) + (eDy) Ky Z " huliy ~ €gj(xe)

n=m

for 0<j5<m.

Since [0, Tp] x RY is the canonical chart for small Ty > 0, we denote h(A(t, z))
simply by h(t,x), when 0 < t < Tp.

We assume (HO), (H1), (HP) and (S0). The argument is similar, when
(HN) is assumed instead of (HP).
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LEMMA 5.1. Let S(t,xz) be the solution to the eikonal equation
p(t,x, S, Sz) = 0 with Cauchy data S(0,z) = 0 and S¢(0,x) = 71(0,x,0).
Then,

D (exp | L(t.) | futanit. o))
t=

—eJ {Wj(o)(h) + EWj(l)(h) +ot EjWJ'(j)(h)} ’

where Wj(k) ’s are linear combinations of trace operators of order at most k

ont=0. The coefficients of Wj(k) have bounded derivatives on Rg.
Especially,

w9 (h) = <%—f(0,x)>] (0, z).

Applying Lemma 5.1 to (5.12), we have

(5.13) (eDy)? (0, 25 €) + zj: Fw ™ (i e”hn> ~ el gi(z;e)

k=0 n=m

for j=0,1,---,m.

Hence,
(5.14) DJvo(0,2) = gjo(z) for j=0,1,---,m—1.

We will verify that {v,} and {h,} are well determined successively by the
coefficients of asymtotic expansions of f and g;’s, when the supports of f
and g;’s are contained in fixed compact sets.

PROPOSITION 5.1.  Under the assumption (H1), vo(t,z) € C*([0, 00);
CS°(R%)) is determined by (5.7) and (5.14). Moreover, vo(t, ) is well deter-
mined by fo(t, ) and {g;o(x); 0 < j < m—1}. DFvy(0,x) is well determined
by {D{fo(0); 0 <1 <k} and {gj0; 0 < j <m—1}.

Proor. T isa first order ordinary smooth differential operator along
the Hamilton flow. The supports of the data are contained in the fixed
compact sets. Hence, the estimate easily follows. O
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PROPOSITION 5.2. The Cauchy problem of 1st order equation on A
with coordinates (t,y)

TWhy(t) = 0, (0<t<T),
Dhm = gmo — Dvo(0)

has a unique solution.

Moreover, hy,(t) and its traces DFh,,(0) are well determined by fo(0, x)
and {gjo(z); 0<j<m}, when the supports of the data are contained in
fixed compact sets.

PROPOSITION 5.3. We assume all supports of data are contained fized
compact sets.
(i) Under the assumptions (H1) and (5.9), there exist uniquely {v,(t,x);
n > 1} and {hpmin(N);n > 1} such that v, (t,x) satisfies

MOy, (t) = Z ( M ’““)> Un1-1(t)
(5.15) . i
Diwvn(0) = Z hjin—k)
k=0
j=0,1,--,m—1.

and that hy,1n(X\) satisfies

n+1
T(l)hern — _ZT m+n+1 p( )
(5.16) m
ég)hm-i-n = dmmn — Dtmvn(o) - Zwéf) (hernfk) .
k=1

(il)  Moreover, vy(t,z) € C* ([O,T]; COO(Rd)> is well determined by
{fet,2);0 <k <n}, {gjr(x);0<j<m, 0<k;<n—1} and {g;jn(z);
0<j <m—1}. D" *0,(0, ) is well determined by {D}f,(0,2); 0 < l4q <
k+mn,0<qg<n}.

(iii)  Aman(t) and its traces DFhpin(0) are well determined by
{Défq(O,x);Oﬁl—i—qgn} and {gjr(x);0<j<m, 0<Ek<n}.
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ProOOF. Let n = 1. From (5.8) and (5.13), v1(t, ) satisfies:

MOu(t) = fult) = (L0 + MDyuo (1)
Din(0) = gi1,  0<j<m-—2
Dl’“_lvl(O) = gm—l,l_Wrgf?zl(hm)'

vi(t) is thus well determined by {fo(t), fi(t)}, {gj0;0 < 7 < m} and
{9j1;0 < j < m —1}. D" *y1(0) is well determined by {D}f,(0);0 <
l+qg<k+1,¢g=0,1} and the same {g;0, gj1} as above.

From (5.11) and (5.13), Apm41(A(¢,y)) satisfies:

TOhyr(t) = =T@h,(t),
W (hng1) = gma — Doy (0) — Wi (hn).

Bmi1(t) and DFhy,11(0) are thus well determined by {fo(0), f1(0), D¢ fo(0)}
and {gjx;0 <j<m, k=0,1}.

We assume the proposition for {vg,---,v,—1} and {hm, hmi1,- -,
hmtn—1}. Then, v,(t) is given by (5.15). hyqy is given by (5.16). v, (t) is
well determined by f,(t), {vj(t);0 < j < n—1}, {gjn;0 < j < m—1}
and {DFh,1(0);0 < k+1 < m —1}. hpyn(t) is well determined by
{hin (@) -+ hnsn—1(D)}s G, D"vn(0) and {DFh,1(0);0 < k+1<m, [ <
m — 1}. By induction, the assertion (ii) and then (iii) follow. O

5.2. Degeneration of order 2
The problem is

(—€L + M)u(t, z;€) = f(t,2;¢),
DIu(0,z;€) = gj(x;e), 0<j<m+1.

We define P = (¢)2L — M and introduce

P(t,x,eDt,er;e) =" P(t,x, Dy, Dyse)
and its e-principal symbol

p(t,fl?,’?’,é') = l(t,l‘, 7—75; 0) - m(t7x77_7€; O)

The singular roots 71(= 7—) and T,42(= 74) defined in §3.2 give the La-
grangian manifolds A*(x = +,—) and the global canonical operators of
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Maslov Kp~. We assume for the singular part

o0 o o

w ~ E €"w, = E e" g wy = E €"Kp~h;.
n=m n=m x=-+ n=m
x=-

We have a sequence of equations for the regular part

ta;e Zevntx

satisfying

(5.17) MOyo(t,2) = fo(t, z),

(5.18) MOy (t,2) = fi(t,x) — MDuy(t, z),
and

(5.19) MOy, (t,2) = falt, x)—M(l)vn 1(t, 2)

+ Z MP Dy, o (t,z) for n>2.

We seek solutions under the assumption
(5.20) hy=---=hy_; =0.

Using the global commutation relation with 7% = 0 on A*, we have for-
mally

Pw=P> "Kyhpy,, = Z K- Z Fr®pr

*= *= i

{h i n tn>0 should satisfy equations on A* with global coordinates (¢,y):

(5.21) T*Dpx (1) =0
and
n+1
(5.22) T*Ohs () == T"Fhy i k() for n=12,-

k=2
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The initial conditions give

(5.23)  Dju(0,z5¢) ~ Y €"Div,(0,2)

n=0

[o¢]
+ Y e{Djw}(0,2;¢) + Diw, (0,7 €)}
n=m

o0
n=0

Near the initial plane, we have

wit:0) = sty esp [P b 1.,

Here, i, (t,x) = | ()| "! and J.(t.a*(ty)) = det(dw}(t,)/dy;) with

J«(0,y) = 1. S*(t,x) is the solution to
95~ ; 057\ _
oo~ \"Ter ) T

o5t ast\ _
ot Tma2 \ BT T N

with initial data

S~(0,z) =0, ST(0,2) =0

05~ ST

——(0,2) =711(0,2,0), ——(0,2) = T42(0,z,0).

ot ot

Then, by the Lemma 5.1,

o0

(5.24) > & (Diw}) (0,2)

p=m

00 J
—q * k *
=Y iy eij( (B2 ()
p=m k=0

oo

l
—en iyl Yy W (@)

=0 g=max{l—j,0}

for j=0,1,---,m+ 1.
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From (5.24) with j = m + 1, we have

(5.25) (s5)" ni0.2) + (7)™ hp(0.2) = 0.

When (j,n) satisfies the inequality 0 < n+ j <m — 1, (5.23) implies
(5.26) D]v,(0,2) = gjn(z),

since m — j > n + 1. For the rest of (j,n), we have

mln{jvn_m+3}

(5.27) Div,(0) + > w9 (nl,,)
q=0
min{j,n—m+j} @
—\q — _
+ > W () = gim
q=0
that is,

(5.28) D, (0) + W],*(O) (hf{ﬂ‘) + Wj—(0) (h;ﬂ)

9imn — Z {Wjﬂq) (hT—iL_Jrj*Q) + Wj_(q) (h'f_lJrj*(I)} )

q=1

Here, n + j > m and the sum in the right hand side should read 0, if
n—m+j=0.

+

Later, we need the initial conditions for the transport equations of hyy, , ..

They will be given by (5.23) and (5.24).

PROPOSITION 5.4. We assume all supports of data are contained fixed
compact sets.
(i) Under the assumptions (D2), (HO), (H1), (P) and (WS), there exist
uniquely {v,(t,z); n > 1} and {h}, ,,(N);n > 1} such that v, (t, z) satisfies
fit) = MDuy(t), n=1
Fa(t) = MW,y (1)

n—2

(5.29) M@y, (t) =



234 Koichi UCHIYAMA

and
ngn(O,x) = gjn(x)
for 7=0,1,--- - m—1—n, if n<m,
‘ min{j,n—m-+j} @)
(5.30) Diva(0,2) = gjn(x)— Y {Wj ! (hiﬂ—q)
q=0
(@) (p—
_'_WJ (hnﬂ—q)}
for j=max{0,m —n},--- m—1
and that hy, . (\) satisfies
n+1
(5-31) T*(l)h:mrn(t) = Z T+) jn+n+1—p(t)
p=2
and
>0 Wi ()
*=1t
min{m,n}
=gmn— Y Wil (ki) = DIva(0)
o
5.32 X .
*==+
min{m+1,n}
= Gmiln-1— Wi, (h:wrqu)
s
—D" Ly, 1(0).

(ii) Moreover, vy(t,z) € C™ ([O,T];COO(Rd)> is well determined by
{fe(t,2);0 < k < n}, {gjn:0 < j < m—1} {gjn-1:0 < j < m} and

{9;0<j<m+1,0<k<n-—2}.

D" ky,,(0) is well determined by {DLf,(0);0 <1< 2 [%} +k0<qg<

n} and the same {g;;} as above. Here, [r] is the greatest integer less than

or equal to r.

(iii) A,

m-—+n

n}, {gjn(2); 0 < j <m} and {gjr(r);0<j<m+1,0<k<n—1}

(A\) and Dfhy,1n(0) are well determined by { D} f,(0,2); 0 < I4+q <
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PROOF. At first, from (5.23),

{M(O)vo(t) = Jfo(t)

5.33 ;
( ) Dg’l)o((]) = gj70, j:O,l,‘--,m—l.

Since M9 is regularly hyperbolic, vo(t, z) € C ([0, 00); Cgo(Rd)) is well
determined by {fo(t)} and {g;0;0 < j < m —1}. D" Fuy(0) is well deter-
mined by {D}f5(0);0 <1 <k} and {g;0;0 <j <m —1}.

The transportation equations for At are

(5.34) {Tlh 8 _ 8

with the initial condition

Wt @ (0 + WD (h) = gm0 — Diup(0)

5.35
239 {W;‘iof(h%HW(ff(h) _—

m

(5.35) comes from (5.25) and (5.28) with n = 0. (5.35) is rewritten by

(5.36) (Sj(0)>m i (0) + (57 (0>)m hin (0) = gmo — D™u(0)
' (550) " i) + (57 )" b = o

This gives hf(0,7) € O (Rd>. From (5.34), we have ht € C*(A*) and
DFRE (0), well determined by {f5(0)} and {gj0;0 < j < m}.

Then, we see similarly that v(t) and DP"*v(0), hpmyi(t) and
DFhpy1(0), v2(t) and D" uy(0) are well determined successively.

We will construct {v,;n =0, 1, -}, {hE . ;n=0,1,---} by induction.

We assume the proposition for vy, - - -, v,—1 and h cee hqjjb 1o from which
we derive v, and hy._,.. In fact, we note that the traces of h +jg 10 (5.30)

are known, since m < n+j—q < n+j <n-+m— 1. With the initial
data (5.30), the equation (5.29) gives v, (t,z) € C™ ([0, 00); Cgo(Rd)> well
determined by fa(t), {vj(t);0 < j <n-—-1}, {gjn; 0 < j < m—1}, and
traces of {hmﬂ( );0 < j <mn—1}. By induction, we have (ii). Then, from
(5.28), we have (5.32), of which the right hand sides are all known. The
initial values h ., (0) are thus determined. Hence, h ., (t) € C®(AF) are
well determined by {h;t( im < j < n+m-—1}, gmn, Gm+in—1 and by
Dy, 1(0), D™v,(0). By induction, we have (iii). O
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6. Remainder estimates of asymptotic solutions

6.1. Degeneration of order 1
We define the partial sum by

N N+m
un(t, z;€) = Z e"vp(t, z) + Z e"Kphy(t,x;€)
n=0 n=m

and its remainder term by
RNJrl(u; 6) = U(t, Z; 6) - UN(t, x; 6)'
Our main result is

THEOREM 6.1. Let T be a fized positive number. Let f € C3°([0,T] x
R x [0,¢0]) and g; € C§°(R? x [0, €0)) with their supports containd in fized
compact sets independent of €. For any p, N € N, there exists a positive
constant C' independent of € such that for any € € (0, o],

O 2N+1)-1
T P 9 . 2
> /0 Ze J (e | D™ Ry 11 (u; €)(t) ||
=0
+ || D™ RN 1 (u;€) (2) ||%/2) dt

p
+ 36 (| D™ Ry (u; €)(T) |2
§=0

+ || D™ Ry 1 (us €)(T) ”%/2) .

COROLLARY. For any k, Ng € N and positive T, there exist N1 € N
such that for any N > Ny there ewists a positive constant Cn,n, independent
of € such that

sup > |DI{DSRyi(use)(t, )| < Cnvye™.

0<t<T .
cend Jtlal<k

In order to estimate Ry.1(u;e€) by Theorem 2.1, we need
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PROPOSITION 6.1.  The remainder term Ryy1(u;€) satisfies

(6.1) (ieL+ M)Rni1(u;€) = Ryyi1(fie)
+eN T p(t, wse) + VT (t wse),

DIRyi1(u;€)(0,3) = Ryia(gjie) + € nj(ase),
0<j<m,
where
(6.2) p(t,z;e) = Z T NPy, + Z Pra=N=1 )y,
p+q=>N p+q=>2N+1
0<p<N-1 1<p<N
1<q<N 1<g<N

—Z eq( “NRy(Lie) + e N Ry (M e)) Vg

(6.3) x(t,z;e) = KA Z Pra-N-1p@lp, L

p+g>N+1
1<p,q<N

N
+€_N_1RN+1(KAaP§ €) (Z 6qherq) )

q=0
and where

nj(ze) = - > eI N D ()
m—j+p+q>N+1
max{N—-m+1,0}<p<N

(6.4) 0<q<j
(€)= = > NI (T o).
p+q>N+1

max{N—-m+1,0}<p<N
1<q<m

Proor. It is long but straightforward computation from construction
of {vn} and {hm+n}. (See the proof of Proposition 6.2.) O

PROOF OT THE MAIN THEOREM 6.1.
(i) By the assumption on f(t, z;€), there exists a constant Cj y(f) such that

T . .
[ e DRyt o P < e,
0
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and
ID7 Ry 1(f; €)(0)]|* < Cj v (£,

Cj,n(f) depends on the norms of (g) f , but it is bounded when € tends
to 0.

(i)
T . T al j
| e D < O [ e S Dm0 Par
0 0
q=0

C'N

o
Here, by Proposition 5.3, C’; y depends on the norms of {f;(¢);0 < j < N},
{9jk;0 < j <m0 <k <N -1}, {gjn;0 < j < m— 1} and on their
supports, but it is bounded when ¢ tends to 0. We have

N
ID7p(0; )2 < Cn D [|ID™ 0, (0)]
q=0
< Cjin
The dependence of C7 y is just like that of C7 y. In fact, it depends on the
norms of {D!f,(0); 0 S l+¢<j+1+N,0 § q < N} and the same {g;}
as above.
(i)
T . C.
& [ e Dine) e < SN
0 Y

C; v depends on the norms of {D!f,(0); 0 <1+ ¢ < N} and {g;x;0 <j <
m,0 < k < N} and on their supports by Propositions 4.1, 5.3, but it is
bounded when e tends to 0. We have also

| DIx(0)]* < Cf v
(iv)

m
S TIBN 419k )12y < Cf p? Y,
k=0

m
S o lm()laprs < Ciy
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C’J’»7 ~ depends on the norms of {aaN;il ;k =0,---,m}, but stays bounded
for e. By Proposition 5.3, C’”N depends on the norms of {DLf,(0); 0 <
l4+q < N} and {gjr;0 <j<m,0<k <N} and on their supports, but
it is bounded when € tends to 0. We have the conclusion by Theorem 2.1
applicable to (6.1). O

6.2. Degeneration of order 2
We define the partial sum by

N+m
~N(t, z;€) Zevntx+26KA* (t,z;€)

*= i

and its remainder term by

RNJrl(u; 6) = U(t, Z; 6) - 'LLN(t, x; 6)'
Our main result is
THEOREM 6.2. Let T be a fized positive number. Let f € C5°([0,T] x
R x 0, €0]) and g; € C§° (Rd X [0, €9]) with their supports contained in fized

compact sets independent of €. For any p, N € IN, there exists a positive
constant C' independent of € such that for any e € (0, €],

062(N+1)—2
/ ZGQJ 2 | D™ Ry (us ) (t) ||?
+ || D™ R (us€) (1) |?) dt
p
3 (2 D Ry () (T) |

j=0
11 D™ Ry (w;.€)(T) |17)

COROLLARY. For any k, N9 € N and positive T, there exist N1 € N
such that for any N > Ny there exists a positive constant Cn N, independent
of € such that

sup Z |D} DY Ry 1 (u;€)(t, )| < Cynge.

0<t<T
xr€RA J+‘a|<k
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PROPOSITION 6.2. The remainder term Ry41(u;€) satisfies

(6.5) { (i€)’L + M} Ry 1 (u; €)
= Ryu(f;e) + Motz e) + VT Ix(t se),
D{Rn11(u;€)(0,7) = Rya1(gjie) + €V y(ase),
0<j<m,
D7 Ry i1 (u;€)(0,2) = Ry41(gms13€) + € mar (23 €),

where
(6.6) p(t,zse) = > TIHINLEy,
p+q=>N—1
0<p<N-2
1<q<N
- Z PTa=N=1 Py,
ptq>N+1
1<p<N
1<q<N
N
—I—Z el (elfNRN,l(L;e) — e NIRN (M e)) Vg,
q=0
(6.7) x(t,ase) = S Ky Y TNy
*==+ p+q>N+1

1<p,q<N

N
+ 67]\[71-RN+1(‘K'*a Pa 6) (Z eqhin—l-q) } )

q=0
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and where
o _ m—j+p+q—N—1777%(a) (1 *
nj(zie) = > ¢ Wi (hpm)
m—j+p+g>N+1
max{N—-m+1,0}<p<N
0<q<yj,*==%
) . +q—N—1yy/* *
Mm(ze) = — NI D (hy ),
p+q>N+1
max{N—-m+1,0}<p<N
1<q<m,+==
' _ prg—N—277%(a) (7%
Nmt1(T5€) = —e Z € Wm—i—l(thrm)
+q>N+2
(68) max{]\g)—’gl;l,U}SpSN
2<q<m+1l,x=%
+gm+1,N
1
— D" (0, 2)
*(q) (7%
+ Z Wm+1( m+N+1fq)
1<g<min{m+1,N+1}
*=x
PROOF. Firstly,

N
Z eqvq(t,x))

q=0

{ (ie)*L 4+ M} (u(t, x;i€) —

N N
Prat2y(p) _ Z Z ePrapr(p)
p=0¢=0

}vq

N—-2 N
f(t,xe) + { >
p=0 ¢g=0

N

+ Z el <€2RN_1(L; €) — Ry+1(M; e)) g
q=0

f(t z;e) — M(O)UO — ¢ (M(O)m + M(I)UO)

N n—2
+ Z & {Z (L(P) _ M(p+2)) Up—2—p — M(O)"Un — M(l)vn—l}

n=2 p=0

4V AL Z =N Py, Z P N=1 1)y,
p+q>N—1 pt+q>N+1
0<p<N_2 1<p<N
1<q<N 1<q<N
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N
+ Z €7 (62RN_1(L; €) — Rn+1(M; e)) Vg
q=0

= Rni1(f;e) + €V p(t,z;¢) by definition.

Secondly,
N4+m
{ (ie)*L + M} Z €"wy(t, x;€)
n=m
N
= {—e"T2L4+emMY Z €" Wptn (L, T3 €)
n=0
B N
= P(t,x,eDy,eDy;e) Z €? Z K« (hf,H_q)
q:O k=1

N N
= Z el {KA* Z EPT*(P)h;‘n+q+R}kv+1(K, P; e)h:;H_q}
q=0 *==% p=1

N n
= ¥ {KA* 3 enzl T*<P>h;+np}
o

*=-t n=1
LN+ Z K- Z 6p-&-q—l\f—lT*(p)h;thq
*==+ pt+q>N+1
1<p,q<N
B N
+ > Ry,1(K, Pe) Z hytg
*=- q=0
= NFtly(t,z;¢) by definition.

We compute the initial condition.

DY Ry41(u; )(0,2) = g;(ws€) — Djun (0, 25¢)

N , N+m .
= gj(z;e) — {Z € (Divn) (0,2)+ > €D} [Z KA*h;g} }
p=m *==% t=0

n=0
N .
= Rnii(g50+ Y € {gin(@) = Divn(0,2)}
n=0
N
_Em—j Z e Z W;(q)h;(nJrnfq
n=0 0<g<min{j,n}

*=-+
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N+1 m4p+q—j—N—115,%(q) *
—€ E € W; hoim ) -
pHg=2N+1
max{0,N—j+1}<p<N
1<q<j
x=-+

When 0 < 7 < m — 1, this turns out to be
DY R 13€)0,2)

= Ryyi( gj, + Z {g]n ngn(o,l‘)}

N | min{jn—m-+j}
+ Z €" S gin(z) — D{v,(0,2) — Z W*(q) (h;’;ﬂ q)
_ N+ Z mpta—j—N— 1W q) (h;+m)

m—j+p+q>N+1
max{0,N—m+1}<p<N
0<q<j

x=-

= Ryii(gjie) + € n(ase).
When j = m, we have

D} Ryv41(u3 €) (0, )

= Rn+1(gm;e) + Z "{gmn(z) — D{"vp (0, 2)}

m
SS e 3w ()
=
= Rnt1(gm;e
min{m,n}
+Z (@) = DPva(0,2) = > Wil (hny)
=2
N+ Z Pta—N— lw*( ) (h;er)
p+g=2N+1
max{N—-m+1,0}<p<N
1<g<m
w=t
= Rny1(gmi€) + €V pm(ase).

Finally, when j = m + 1, we have

D7 Ry (u;€)(0, )
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N

Ry i1(gmi1:€) + Y € {gmitn(@) = Df*on(0,2)}
n=0
! Z e Z EqW;(z)l (h‘;+m)
q=0
k=

(0
RN(ngrla —e! Z m—‘r)l h*
N-1
+ Z €n{9m+1,n — D" 1o, (0, )
n=0

min{m+1,n+1}

> Wl (i)
*=

N
+€ gm+1,N

min{m+1,N+1}
—eN $ DMty

VO + Y W (B

q=1
k=
— Y e ()
p+q>N+2
max{N—-m+1,0}<p<N
2<g<m+1
=t
Ry y1(gma1s€) + €N77m+1 (z;€). O
PROOF OF THE MAIN THEOREM 6.2.
(i) By the assumption on f(t, z;€), we have
_ Cin
[ e DRyl < SN oy,
0 Y
and
ID7 Ry 41(f5€)(0)]1* < Cjn ()N Y.
(i)

T .
[ empiptese)
0

IN

T N )
Cx [ et S D2, |t

q=0
/
Ch-

IN
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Here, C'y depends on the norms of {f;;0 < j < N}, {gj4;0 <j <m+1,0<
E <N =2}, {gin-1;0 < j <m}, {gjn;0 < j < m— 1} and on their
supports but it is bounded for ¢ by Proposition 5.4.

N
ID7p(0;€)[7 < Cn Y [[D™F#H0,(0)]
q=0
< CY.

The dependence of C; is just like that of C'y.
(i)
T )
e%/ 2| Diy(1)||2dt < Cly.
0

N,0 <l+q < N},

C) depends on the norms of {D!f,(0); 0 < g <
k < N — 1}, but it is bounded

{gin; 0<j<m}, {gjp; 0<j<m+1,0<
for € by Proposition 5.4. We have also

7| DIx(0)]* < O

(iv)

m—+1

S IRN 41985 )21 gy < O,
=0

p m
S { S 1+l < O 20
7=0 k=0

C%; depends on the norms of (a part of) {D!f,(0); 0 <l+¢< N +1,0<
g < N},and {gjr; 0 <j <m+1,0<k < N} We have the conclusion
from Theorem 2.2 applicable to (6.5). O
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