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L2-theory of singular perturbation of

hyperbolic equations III

Asymptotic expansions of dispersive type

By Kôichi Uchiyama

Dedicated to Professor Hikosaburo Komatsu on his 60th birthday

Abstract. We consider Cauchy problems for linear strictly hyper-
bolic equations of order l with a small parameter ε ∈ (0, ε0] :

{ (iε)l−mL(t, x,Dt, Dx; ε) +M(t, x,Dt, Dx; ε)}u(t, x; ε)(0.1)

= f(t, x; ε)

for (t, x) ∈ (0, T ) ×R d
x,

Dj
tu(0, x; ε) = gj(x; ε) j = 0, 1, 2, . . . , l − 1(0.2)

where L and M are linear strictly hyperbolic operators of order l and
m (l = m + 1 or m + 2) with C∞ bounded derivatives with respect
to (t, x, ε) ∈ [0,∞) × R d × [0, ε0]. The aim of this paper is to give
C∞ asymptotic expansions of solutions to singularly perturbed Cauchy
problems of this type, when the characteristic roots of L and M satisfy
the separation conditions. The points are to construct formal solutions
(Proposition 5.3, 5.4), consisting of the regular part and the singular
one (correction part of dispersive type) expressed by Maslov’s canonical
operators, and to give the error estimates in order to obtain asymptotic
expansions with respect to ε in the sense of arbitrarily higher order
differentiability norms (Theorem 6.1, 6.2), when the supports of f and
gj ’s are contained in fixed compact sets.

1. Introduction

We consider Cauchy problems for a linear strictly hyperbolic equation

of order l with a small parameter ε ∈ (0, ε0] :

P (t, x,Dt, Dx; ε)u(t, x; ε) =(1.1)
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(
(iε)l−mL(t, x,Dt, Dx; ε) +M(t, x,Dt, Dx; ε)

)
u(t, x; ε) =

f(t, x; ε)

for (t, x) ∈ (0, T ) ×R d
x ,

Dj
tu(0, x; ε) = gj(x; ε) j = 0, 1, 2, . . . , l − 1(1.2)

where L and M are linear strictly hyperbolic operators of order l and m

(l = m + 1 or m + 2 cf. Ashino [2]) with C∞ bounded derivatives with

respect to (t, x, ε) ∈ [0,∞) × R d × [0, ε0] . The aim of this paper is to

give C∞ asymptotic expansions of solutions to singularly perturbed Cauchy

problems of this type. This is a revisit of problems treated in [12].

We assume the data f(t, x; ε) ∈ C∞
0 ([0,∞)×Rd × [0, ε0]) and gj(x; ε) ∈

C∞
0 (Rd × [0, ε0]). They have asymptotic expansions with respect to ε:

f(t, x; ε) =
N∑
n=0

εnfn(t, x) +RN+1(f ; ε),(1.3)

gj(x; ε) =
N∑
n=0

εngj,n(x) +RN+1(gj ; ε).(1.4)

We postulate that the solution has an expansion

u(t, x; ε) ∼ v(t, x; ε) + w(t, x; ε),(1.5)

where v and w mean formal sums such that

v(t, x; ε) =
∞∑
n=0

εnvn(t, x) (regular part),(1.6)

w(t, x; ε) =
∞∑

n=m

εnwn(t, x; ε) (singular part),(1.7)

Pv ∼ f,(1.8)

Pw ∼ 0(1.9)

Dj
t (v + w)

∣∣∣
t=0

∼ gj , j = 0, 1, 2, . . . , l − 1.(1.10)

We investigated in Part I ([13]) a priori L2 and higher order Sobolev

norm estimates of the solution to (1.1) and (1.2) under various separation
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conditions of characteristic roots of L and M . In Part II ([14]), we dealt

with the case where the singular part, that is, the correction terms (1.7)

associated with (1.6) are of dissipative type (exponential decay as ε tends

to 0). In this paper, we treat the case where the the correction terms are

dispersive (highly oscillating as ε tends to 0). They are described by os-

cillating functions locally and by Maslov’s canonical operators KΛ globally.

The estimates of the remainder terms of asymptotic expansions are given

by a priori estimates in Part I ([13]).

We put

uN (t, x; ε)(1.11)

=




N∑
n=0

εnvn(t, x) +
∑N+m

n=m εnKΛhn(t, x; ε), when l = m+ 1,

N∑
n=0

εnvn(t, x) +
∑N+m

n=m
∗=±

εnKΛ∗h∗n(t, x; ε), when l = m+ 2

and its remainder term by

RN+1(u; ε) = u(t, x; ε) − uN (t, x; ε).

We have (in Propositions 6.1 and 6.2)

((iε)(l−m)L+M)RN+1(u; ε) = RN+1(f ; ε)(1.12)

+εN+1ρ(t, x; ε) + εN+1χ(t, x; ε),

Dj
tRN+1(u; ε)(0, x) = RN+1(gj ; ε) + εN+1ηj(x; ε),(1.13)

0 ≤ j ≤ l − 1.

We apply a priori estimates (Theorem 2.1 or Theorem 2.2) to (1.12) and

(1.13) in order to obtain estimates of RN+1(u; ε). Thus, we have our main

result Theorem 6.1 and Theorem 6.2. For an arbitrarily higher order Sobolev

norm and ν ∈ N , there exist large number N , such that{
((iε)(l−m)L+M)uN = f +O(εν)

Dj
tuN = gj +O(εν)

and

u = uN (t, x; ε) +O(εν),

where O(εν)’s are measured by the given Sobolev norm.
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In §2, we state assumptions and a priori estimates quoted from Part

I ([13]). In §3, singular characteristic roots (cf. Frank[5]) are introduced

through principal symbol of ε-differential operators. They give nonhomoge-

neous Lagrangian manifolds.

In view point of propagation of waves, the regular part of the solu-

tion is governed by the principal part of M (the subcharacteristic wave

in Whitham[15]). The singular part is governed by ε -principal part of

(iε)l−mL +M . In contrast with the propagation of singularity of the solu-

tion u, the principal part of L is not principal to determine the quantitative

propagation of the singularly perturbed wave.

In §4, we give a brief review of canonical operators of Maslov. In §5,

we construct each term of formal asymptotic expansions of solutions. In §6,

we estimate the error terms of truncated expansion of the solutions, using a

priori estimates quoted in §2. Our conclusion is Theorem 6.1 and Theorem

6.2. We have an asymptotic expansion of the solution with respect to ε in

the sense of arbitrarily higher order local Sobolev norm.

It seems there are not many works on singular perturbation of hyper-

bolic-hyperbolic type with dispersive correction terms. In Gao [7] similar

problems are studied under more restricted conditions than ours.

A part of this work was done, while the author stayed at the University

of the Philippines in 1994 and it was completed while he stayed at the Isaac

Newton Institute of the University of Cambridge in 1995. He is grateful to

the members for hospitality of these institutes.

2. A priori estimates

We consider two differential operators L and M , whose coefficients have

smooth and bounded derivatives in (t, x, ε) :

L(t, x,Dt, Dx; ε) = Dl
t +

l∑
j=1

Lj(t, x,Dx; ε)D
l−j
t(2.1)

M(t, x,Dt, Dx; ε) = m0(t, x; ε)D
m
t +

m∑
j=1

Mj(t, x,Dx; ε)D
m−j
t(2.2)
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Their homogeneous principal symbols are defined by

l(t, x, τ, ξ; ε) = τ l +
l∑

j=1

lj(t, x, ξ; ε)τ
l−j ,(2.3)

m(t, x, τ, ξ; ε) = m0(t, x; ε)τ
m +

m∑
j=1

mj(t, x, ξ; ε)τ
m−j .(2.4)

We assume the following assumptions:

(H0) Regular hyperbolicity of L: l(t, x, τ, ξ; ε) has the decomposition

l(t, x, τ, ξ; ε) =
l∏

j=1

(τ − ϕj(t, x, ξ; ε))(2.5)

where ϕj(t, x, ξ; ε) are real distinct elements such that

ϕ1(t, x, ξ; ε) < ϕ2(t, x, ξ; ε) < · · · < ϕl(t, x, ξ; ε) uniformly :(2.6)

in (t, x, ξ, ε) ∈ [0,∞) × Rd
x × {|ξ| = 1} × [0, ε0], that is, ϕj+1(t, x, ξ; ε) −

ϕj(t, x, ξ; ε) is uniformly positive for j = 1, · · · , l − 1.

(H1) Regular hyperbolicity of M : m(t, x, τ, ξ; ε) has the decomposition

m(t, x, τ, ξ; ε) = m0(t, x; ε)
m∏
j=1

(τ − ψj(t, x, ξ; ε))(2.7)

where ψj(t, x, ξ; ε) are real distinct elements such that

ψ1(t, x, ξ; ε) < ψ2(t, x, ξ; ε) < ... < ψm(t, x, ξ; ε) uniformly.(2.8)

We assume

(D1): l = m+ 1,

and the following assumption

(H2): m0(t, x; ε) is pure-imaginary and uniformly away from 0, that is,

(HP): �m0(t, x; ε) ≡ 0 and there exists a positive constant δ such that

�m0(t, x; ε) ≥ δ > 0,

or

(HN): �m0(t, x; ε) ≡ 0 and there exists a positive constant δ such that

�m0(t, x; ε) ≤ −δ < 0.
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We assume also

(S0): {ψi} separates {ϕj} uniformly, that is,

ϕ1 < ψ1 < ϕ2 < · · · < ψm < ϕm+1 uniformly.

Remark 1. When L and M are pseudo-differetial operators, we intro-

duced in Part I ([13]) the assumptions

(SP): ϕ1 < {ψ1, ϕ2} < · · · < {ψm−1, ϕm} < {ψm, ϕm+1}

with (HP) and

(SN): {ψ1, ϕ1} < {ψ2, ϕ2} < {ψ3, ϕ3} < · · · < {ψm, ϕm} < ϕm+1,

with (HN), where ∗ < {a, b} means ∗ < min{a, b} and {c, d} < ∗ means

max{c, d} < ∗. (They are
(
WS±) and

(
S±) in [13].)

When L and M are differential operators, any one of the conditions (SP)

and (SN) is equivalent to (S0).

Remark 2. In Part II ([14]), we assumed (D1), (H0), (H1), (S0) and

(E1): uniformly strong ellipticity of m0, that is,

�m0(t, x; ε) ≥ δ > 0.

We quote from Part I ([13])

Theorem 2.1. We assume (D1), (H0), (H1), (H2) and (S0). For any

natural number p, there exist C > 0 and γ0 such that for any positive ε ≤ ε0,

for any γ ≥ γ0 and for any u(t) ∈ C∞
(
[0, T ];C∞

0 (Rd
x)
)

we have

C


1

γ

∫ T

0
e−2γt 1

ε

p∑
j=0

(
ε2γ
)j

‖ Djf(t) ‖2 dt+ ‖ Dm−1u(0) ‖2
1/2(2.9)

+γp


ε p∑

j=0

ε2j ‖ Dmu(0) ‖2
j +

p∑
j=1

ε2j ‖ Dmu(0) ‖2
j−1/2

+ ε
p−1∑
j=0

ε2j ‖ Djf(0) ‖2 +
p−1∑
j=1

ε2j ‖ Dj−1f(0) ‖2
1/2





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≥ γ

∫ T

0
e−2γt

p∑
j=0

(
ε2γ
)j (

ε ‖ Dm+ju(t) ‖2 + ‖ Dm+j−1u(t) ‖2
1/2

)
dt

+e−2γT
p∑

j=0

(
ε2γ
)j (

ε ‖ Dm+ju(T ) ‖2 + ‖ Dm+j−1u(T ) ‖2
1/2

)
,

where f(t) = (iε)Lu(t) +Mu(t).

When

(D2): l = m+ 2,

we assume (H0), (H1) and the following assumptions

(WS): {ψi} weakly separates {ϕj} uniformly, that is,

ϕ1 < {ψ1, ϕ2} < · · · < {ψm, ϕm+1} < ϕm+2 uniformly.

and

(P): m0(t, x; ε) is real and uniformly positive, that is,

�m0(t, x; ε) ≡ 0, and m0(t, x; ε) ≥ δ > 0.

We quote from Part I ([13]),

Theorem 2.2. We assume (D2), (H0), (H1), (P) and (WS). For any

natural number p, there exist positive constant C and γ0 such that for any

positive ε ≤ ε0, for any γ ≥ γ0 and for any u(t) ∈ C∞
(
[0, T ];C∞

0

(
Rd
x

))
we have

C


1

γ

∫ T

0
e−2γt 1

ε2

p∑
j=0

(
ε2γ
)j

‖ Djf(t) ‖2 dt+ γp‖Dmu(0)‖2(2.10)

+ γp


 p∑
j=0

ε2j+2 ‖ Dm+1u(0) ‖2
j +

p−1∑
j=0

ε2j ‖ Djf(0) ‖2






≥ γ

∫ T

0
e−2γt

p∑
j=0

(
ε2γ
)j (

ε2 ‖ Dm+j+1u(t) ‖2 + ‖ Dm+ju(t) ‖2
)
dt

+e−2γT
p∑

j=0

(
ε2γ
)j (

ε2 ‖ Dm+j+1u(T ) ‖2 + ‖ Dm+ju(T ) ‖2
)
,

where f(t) = (iε)2Lu(t) +Mu(t).
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3. Singular characteristic roots

3.1. Degeneration of order 1

Let l = m+ 1. We define ε-principal symbol

ip(t, x, τ, ξ) = il(t, x, τ, ξ; 0) +m(t, x, τ, ξ; 0).

We denote the roots of p(τ) = 0 by τj(t, x, ξ)’s. In order to show the

argument is microlocal, we state the assumptions (SP) and (SN) separately.

Proposition 3.1. We assume (S2): (D1), (H0), (H1), (HP), (SP)

or (S3): (D1), (H0), (H1), (HN), (SN). Then, τj’s are real and uniformly

distinct, that is, there exists a positive constant c such that

τj+1(t, x, ξ) − τj(t, x, ξ) ≥ c|ξ| for j = 1, 2, · · · ,m.(3.1)

Moreover, in case (S2), the least root τ1(t, x, ξ) satisfies τ1(t, x, 0)=

−�m0(t, x;0),

τj(t, x, ξ) − τ1(t, x, ξ) ≥ c(1 + |ξ|) for j = 2, · · · ,m+ 1,(3.2)

and belongs to the nonhomogeneous smooth symbol class S1. And in case

(S3), the greatest root τm+1(t, x,ξ) satisfies τm+1(t, x, 0)=−�m0(t, x;0),

τm+1(t, x, ξ) − τj(t, x, ξ) ≥ c(1 + |ξ|) for j = 1, · · · ,m,(3.3)

and belongs to the nonhomogeneous smooth symbol class S1.

Proof. We prove the statements under the assumption (S2). We

introduce notations a ∨ b = max{a,b} and a ∧ b = min{a,b}. We have

sgn[p(ϕm+1)] = sgn[�m0]sgn


 m∏
j=1

(ϕm+1 − ψj)


 = sgn(ϕm+1 − ψm)

sgn[p(ψm)] = sgn
m+1∏
j=1

(ψm − ϕj) = sgn(ψm − ϕm+1)

Therefore, since p(ψm ∨ ϕm+1) ≥ 0 and p(ψm ∧ ϕm+1) ≤ 0, we have a root

τm+1 between ψm ∧ϕm+1 and ψm ∨ϕm+1. In the same way, p(τ) = 0 has a

root τj+1 between ψj ∧ ϕj+1 and ψj ∨ ϕj+1 for j = 1, 2, · · · ,m.
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Since sgn[p(ϕ1)] = (−1)m and sgn[p(τ)] = (−1)m+1 for τ < ϕ1 with

sufficiently large |τ |, there exists the (m + 1)-th root τ1 less than ϕ1. By

the assumption (SP), there exists a positive constant independent of (t, x, ξ)

such that the roots {τj} satisfy |τj+1 − τj | ≥ c|ξ| for j = 1, 2, · · · ,m.
Since the coefficients of p(τ) are uniformly bounded with respect to

(t, x, ξ), there exists a positive constant C independent of (t, x, ξ; ε) such

that

|τi(t, x, ξ)| ≤ C(1 + |ξ|), (i = 1, 2, · · · ,m+ 1).

The estimates of the derivatives of τ1 follows from the implicit function

theorem. In fact, we need an estimate from below of ∂p/∂τ(τ1) =
∏m+1
j=2 (τ1−

τj). By the separation condition (SP),

|τ1 − τj | ≥ c|ξ| for j = 2, 3, · · · ,m+ 1,

for τj is between ψj−1 ∧ ϕj and ψj−1 ∨ ϕj when j ≥ 2. On the other hand,

p(τ) = τm+1 + (�m0(t, x; 0)) τm +
d∑

j=1

ξjpj(τ),

where pj ’s are polynomials in τ of order at most m. When ξ = 0, τ1 =

−�m0(t, x; 0) and τj = 0 (j ≥ 2). By Rouché’s theorem, |τ1 − τj | ≥ c for

sufficiently small |ξ|. Hence, we have (3.2) and |∂p/∂τ(τ1)| ≥ c(1+ |ξ|)m. �

Remark. When the condition (S2) holds, we have for j = 2, 3, · · · ,m+

1,

τ1 < ϕ1 < min{ϕj , ψj−1} ≤ τj ≤ max{ϕj , ψj−1}.
We call τ1 the singular root, since τ1(t, x, εξ)/ ε is a root of (iε) l(t, x, τ, ξ; 0)

+m(t, x, τ, ξ; 0) = 0, which is singular when ε tends to 0. Aternatively, τm+1

is the singular one, when the condition (S3) holds. Cf. Frank [5] Chap.3.9.

We assume (S2). We denote for simplicity, p(t, x, τ, ξ) by p, τ1(t, x, ξ) by

τ1 and so on. We consider a Hamiltonian system for (t(σ, y), x(σ, y), τ(σ, y),

ξ(σ, y)): 


dt

dσ
=
∂p

∂τ
,

dxj
dσ

=
∂p

∂ξj
, j = 1, 2, · · · , d,

dτ

dσ
= −∂p

∂t
,

dξj
dσ

= − ∂p

∂xj
, j = 1, 2, · · · , d,

(3.4)
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with Cauchy data{
t(0, y) = 0, xj(0, y) = yj , j = 1, 2, · · · , d,
τ(0, y) = τ1(0, y, 0), ξj(0, y) = 0, j = 1, 2, · · · , d.(3.5)

Suppose x = x(σ, y), ξ = ξ(σ, y), t = t(σ, y), τ = τ1(t(σ, y), x(σ, y), ξ(σ, y))

be a system of solutions to (3.4) and (3.5). Then,

dt

dσ
=
∂p

∂τ

∣∣∣∣
τ=τ1

=
m+1∑
k=1

m+1∏
j=1
j �=k

(τ − τj)

∣∣∣∣∣∣∣
τ=τ1

=
m+1∏
j=2

(τ1 − τj).

Therefore, sgn dt
dσ = (−1)m and∣∣∣∣ dtdσ

∣∣∣∣ ≥ c(1 + |ξ|)m.

Hence, we have σ = σ(t, y), the inverse function of t = t(σ, y) with respect

to σ.

We also consider the system for (x̃(t, y), ξ̃(t, y))


dx̃j
dt

= −∂τ1
∂ξj

(t, x̃, ξ̃), j = 1, 2, · · · , d,

dξ̃j
dt

=
∂τ1
∂xj

(t, x̃, ξ̃), j = 1, 2, · · · , d,

(3.6)

and Cauchy data

x̃(0, y) = y, ξ̃(0, y) = 0.(3.7)

Put

π(t, y) =
∂p

∂τ
(t, x̃(t, y), τ1(t, x̃(t, y), ξ̃(t, y)), ξ̃(t, y))

=
m+1∏
j=2

(τ1(t, x̃(t, y), ξ̃(t, y)) − τj(t, x̃(t, y), ξ̃(t, y))).

Then, we consider the equation


dt

dσ
= π(t, y),

t(0, y) = 0.
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A unique solution t(σ, y) is the inverse function of σ(t, y) =
∫ t
0

ds
π(s,y) .

Proposition 3.2 (Fedoriuk[4]). We assume (S2). If the family of

x = x(σ, y), ξ = ξ(σ, y), t = t(σ, y), τ = τ1(t(σ, y), x(σ, y), ξ(σ, y))

is a unique solution to (3.4) and (3.5), then x̃(t, y) = x(σ(t, y), y) and

ξ̃(t, y) = ξ(σ(t, y), y) satisfy (3.6) and (3.7).

Conversely, if x̃(t, y) and ξ̃(t, y) make a system of solutions to (3.6) and

(3.7),

x = x(σ, y) = x̃(t(σ, y), y), ξ = ξ(σ, y) = ξ̃(t(σ, y), y)

t = t(σ, y), τ = τ1(t(σ, y), x(σ, y), ξ(σ, y))

consist of a solution to (3.4) and (3.5).

Proof. We have

dxj
dσ

=
∂p

∂ξj

∣∣∣∣∣
τ=τ1

= −∂τ1
∂ξj

m+1∏
j=2

(τ1 − τj)

= −∂τ1
∂ξj

dt

dσ
.

Hence,
dσ

dt

dxj
dσ

= −∂τ1
∂ξj

, j = 1, 2, · · · , d.

In the same way, we have

dσ

dt

dξj
dσ

=
∂τ1
∂xj

, j = 1, 2, · · · , d.

dσ

dt

dτ

dσ
=

∂τ1
∂t

, j = 1, 2, · · · , d.

We define for j = 1, 2, · · · , d,{
x̃j(t, y) = xj(σ(t, y), y)

ξ̃j(t, y) = ξj(σ(t, y), y).

We have 


dx̃j
dt

= −∂τ1
∂ξj

, j = 1, 2, · · · , d,

dξ̃j
dt

=
∂τ1
∂xj

, j = 1, 2, · · · , d,
(3.8)
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and {
x̃j(0, y) = xj(0, y) = yj
ξ̃j(0, y) = ξj(0, y) = 0.

(3.9)

The converse is proved in a similar way. �

Remark. The bicharacteristic curves in R2d+2 with parameters (σ, y)

t = t(σ, y), x = x(σ, y), τ = τ(σ, y), ξ = ξ(σ, y)

have another expression{
x = x̃(t, y), τ = τ1(t, x̃(t, y), ξ̃(t, y))

ξ = ξ̃(t, y) with parameters (t, y).

Proposition 3.3. We assume (S2).

(i) We have a unique system of C∞ solutions {x̃i(t, y)} and {ξ̃i(t, y)} to

(3.6) and (3.7) for all non-negtive t. There exists a positive constant M

such that for any nonnegative t

sup
y
x̃i(t, y) − yi ≤Mt i = 1, 2, · · · , d,

sup
y
ξ̃i(t, y) ≤ eMt − 1, i = 1, 2, · · · , d.

(ii) There exist a nonnegative continuous function m(t) with m(0) = 0 such

that for any i, a ∣∣∣∣∂x̃i∂ya
(t, y) − δia

∣∣∣∣ ≤ m(t).

Hence, there exist positive constants T0 and δ such that∣∣∣∣det

(
∂x̃i
∂ya

(t, y)

)∣∣∣∣ ≥ δ > 0 (t, y) ∈ [0, T0] ×Rd.

Moreover, for any multi-index α, there exists a nonnegative continuous func-

tion mα(t) with mα(0) = 0 such that

∣∣∣∣∣∂
|α|x̃i
∂yα

(t, y)

∣∣∣∣∣ ≤ mα(t), when |α| > 1,
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and that ∣∣∣∣∣∂
|α|ξ̃i
∂yα

(t, y)

∣∣∣∣∣ ≤ mα(t).

Proof. We omit the parameter y in the solutions.

(i) We will show the global existence and uniqueness of solutions to the

system of integral equations:

x̃i(t) = yi −
∫ t

0

∂τ1
∂ξi

(s, x̃(s), ξ̃(s))ds(3.10)

ξ̃i(t) =

∫ t

0

∂τ1
∂xi

(s, x̃(s), ξ̃(s))ds(3.11)

for j = 1, 2, · · · , d. We fix T > 0 arbitrarily. For t ∈ [0, T ], we define

successively




x̃
(0)
i (t) = yi,

x̃
(n)
i (t) = yi −

∫ t

0

∂τ1
∂ξi

(s, x̃(n−1)(s), ξ̃(n−1)(s))ds

for n ≥ 1,

(3.12)

and 


ξ̃
(0)
i (t) = 0,

ξ̃
(n)
i (t) =

∫ t

0

∂τ1
∂xi

(s, x̃(n−1)(s), ξ̃(n−1)(s))ds

for n ≥ 1.

(3.13)

We will give a priori estimates of approximate sequences. By Proposition

3.1, there exists a constant M ≥ 1 such that

∣∣∣∣∣∂
|α|τ1
∂xα

∣∣∣∣∣ ≤ M(1 + |ξ|) for |α| ≤ 2,

∣∣∣∣∣∂
|α|+1τ1
∂xα∂ξi

∣∣∣∣∣ ≤ M for |α| ≤ 1 and

∣∣∣∣∣ ∂
2τ1

∂ξi∂ξj

∣∣∣∣∣ ≤ M(1 + |ξ|)−1.
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Then,

|x̃(1)
i (t) − yi| = | −

∫ t

0

∂τ1
∂ξi

(s, y, 0)ds| ≤Mt,

and

|ξ̃(1)
i (t)| = |

∫ t

0

∂τ1
∂xi

(s, y, 0)ds| ≤Mt.

By induction, we have

|x̃(n)
i (t) − yi| ≤ Mt,

|ξ̃(n)
i (t)| ≤

n∑
q=1

M qtq

q!
≤ eMt − 1.

We will show the global convergence of the approximate sequences. We put

‖x̃(t)‖ =
d∑

j=1

|x̃i(t)| and ‖ξ̃(t)‖ =
d∑

j=1

|ξ̃i(t)|.

We claim that there exists a positive constant CT such that

‖x̃(k)(t) − x̃(k−1)(t)‖ + ‖ξ̃(k)(t) − ξ̃(k−1)(t)‖ ≤ CT
k

k!

for any k ∈ N and any t ∈ [0, T ]. In fact, if we put CT = Md(1+
√
deMT )T ,

this is derived by induction. Hence, limk→∞ x̃
(k)
j and limk→∞ ξ̃

(k)
j exist and

they are the desired solutions.

(ii) Differentiating the equations (3.8) succesively with respect to y, we have

a sequence of linear equations satisfied by {∂|α|x̃i
∂yα ,

∂|α|ξ̃j
∂yα ; 1 ≤ i, j ≤ d, |α| ≥

1}. The desired estimates follow from it by Gronwall’s inequality and by

induction. �

We consider Rd+1
t,x ⊕ Rd+1

τ,ξ as symplectic space with the fundamental

1-form τdt+
∑d

j=1 ξjdxj . Let Λd+1 be the flow-out of Rd
x×{0} ⊂ Rd

x⊕Rd
ξ

by the trajectory defined by (3.6) and (3.7) for t ∈ [0,∞). That is,

Λd+1 =
{
(t, x, τ, ξ) ∈ Rd+1

t,x ⊕Rd+1
τ,ξ ; 0 ≤ t <∞,(3.14)

x = x̃(t, y), τ = τ1(t, x̃(t, y), ξ̃(t, y)),

ξ = ξ̃(t, y), y ∈ Rd
}
.
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We put Λd
s = Λd+1

∣∣∣
t=s

and Λd+1
[0,T ] = {(t, x, τ, ξ) ∈ Λd+1; 0 ≤ t ≤ T}.

Proposition 3.4 (Fedoriuk[4]). (i) Λd+1 is a (d+1)-dimensional sim-

ply connected Lagrangian C∞ manifold with boundary:

Λd
0 = {(0, y, τ1(0, y, 0), 0); y ∈ Rd},

∼= Rd
x.

(ii) The variable t can be used as a member of local coordinates of every

chart of Λd+1.

(iii) There exists a positive T0 such that the projection of Λd+1
[0,T0] onto

Rd+1
t,x

∣∣∣
[0,T0]

is a diffeomorphism.

Let I = {i1, i2, · · · , ik} be an empty or nonempty subset of {1, 2, · · · , d}
and I = {ik+1, · · · , id} be its complement. R|I|

x and R
|I|
ξ are the spaces of

coordinates xI =(xi1 , xi2 , · · · , xik) and ξI =(ξik+1
, · · · , ξid) respectively. We

use a fixed canonical atlas {ΛI , πI ; I = I(k), k ∈ N} where ΛI is an open

domain and πI is a projection

πI : Rd+1
t,x ⊕Rd+1

τ,ξ → Rt ⊕R|I|
x ⊕R

|I|
ξ ,

which is a diffeomorphism from ΛI onto a domain

ŨI = {(t, x̃I(t, y), ξ̃I(t, y));(3.15)

(t, y) ∈ a rectangular set UI of [0,+∞) ×Rd
y}.

The domain ΛI is expressed by a graph of mapping

xI = XI(t, xI , ξI), ξI = ΞI(t, xI , ξI).(3.16)

Abuse of notation. I of ΛI means the label of a local chart and also the

multi-index {i1, i2, · · · , ik} specifying the canonical coordinates of ΛI .

The case (S3) is treated in the same way as (S2).

3.2. Degeneration of order 2

Let l = m+ 2. We define ε-principal symbol

−p(t, x, τ, ξ) = −l(t, x, τ, ξ; 0) +m(t, x, τ, ξ; 0).
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We denote the roots of p(τ) = 0 by τj(t, x, ξ)’s.

Proposition 3.5. We assume (H0),(H1),(P) and (WS). Then, τj’s

are real and uniformly distinct, that is, there exists a positive constant c

such that

τj+1(t, x, ξ) − τj(t, x, ξ) ≥ c|ξ|.
Moreover, the least root τ1(t, x, ξ) and the greatest root τm+2(t, x, ξ) satisfy

τ1(t, x, 0) = −
√
m0(t, x; 0), τm+2(t, x, 0) =

√
m0(t, x; 0) and{

τj(t, x, ξ) − τ1(t, x, ξ) ≥ c(1 + |ξ|), j = 2, · · · ,m+ 2,

τm+2(t, x, ξ) − τj(t, x, ξ) ≥ c(1 + |ξ|), j = 1, · · · ,m+ 1.
(3.17)

They belong to the nonhomogeneous smooth symbol class S1.

Proof. Since p(τ) > 0 for sufficiently big τ and p(ϕm+2) < 0, we have

a root τm+2 bigger than ϕm+2. Then, we have for j = 1, 2, · · · ,m,

sgn[p(ϕj+1)] = (−1)m−j+1sgn[ϕj+1 − ψj ]

and

sgn[p(ψj)] = (−1)m−jsgn[ϕj+1 − ψj ].

Therefore, we have a root in the interval [ϕj+1 ∧ ψj , ϕj+1 ∨ ψj ]. In fact, it

is trivial, if ϕj+1 = ψj . It follows from

sgn[p(ϕj+1 ∧ ψj)] = (−1)m−j

sgn[p(ϕj+1 ∨ ψj)] = (−1)m−j+1

when ϕj+1 �= ψj .

Especially,

sgn[p(ϕ2 ∧ ψ1)] = (−1)m−1 sgnp(ϕ2 ∨ ψ1) = (−1)m.

Combining the facts

sgn[p(ϕ1)] = (−1)m+1,

sgn[p(τ)] = (−1)m+2 for sufficiently negative τ,

we know the existence of the roots {τj} such that

τ1 < ϕ1 < ϕj ∧ ψj−1 ≤ τj ≤ ϕj ∨ ψj−1 < ϕm+2 < τm+2,
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where j = 2, 3, · · · ,m+ 1.

The rest of proof follows as in the proof of Proposition 3.1. �

Remark. As we have seen, we have for j = 2, 3, · · · ,m+ 1,

τ1 < ϕ1 < min{ϕj , ψj−1} ≤ τj ≤ max{ϕj , ψj−1} < ϕm+2 < τm+2.

We call τ1 and τm+2 singular roots.

We consider the Hamiltonian systems of the same type as in the previous

subsection, except one condition in the Cauchy data,

τ |σ=0 = τi(0, y, 0) for i = 1 or m+ 2(3.18)

= ±
√
m0(0, x; 0), for i = 1 or m+ 2.

We obtain the solutions (t∗(σ), x∗(σ), ξ∗(σ)) and
(
x̃∗(t, y), ξ̃∗(t, y)

)
, where

∗ = ± according to the signature of the Cauchy data (3.18). They define

the Lagrangian manifolds Λ∗ as before. We introduce in the same way their

canonical atlas {Λ∗
I , π

∗
I} etc.

4. Review of canonical operators of Maslov

We summarize basic definitions and results in the theory of canonical

operators ([9]). We refer details to [10], [4]; [11], [6].

4.1. Preliminaries

stationary phase method. We quote a version of the stationary phase

method (see [3], [1], [8]).

We assume the following three conditions.

(C-I) φ(x, η) is a real valued C∞ function on a neighborhood of a compact

set K in Rm ×Rn.

(C-II) There exists a positive constant C0 such that∣∣∣∣∣det
∂2φ(x, η)

∂ηj∂ηk

∣∣∣∣∣ ≥ C0 for any (x, η) ∈ K.

(C-III) a(x, η) ∈ C∞
0 (Rm ×Rn) with support in K.

Then, we assume for x ∈ K, the system of equations

∂

∂ηj
φ(x, η) = 0, j = 1, . . . , n
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has a unique solution η = η(x). We put

h(x, η) = φ(x, η) − φ(x, η(x)) − 1

2
< H(x)w,w >

where

H(x) =

(
∂2φ

∂ηj∂ηk
(x, η(x))

)
1≤j,k≤n

and

w = η − η(x).

Lemma 4.1.∫
Rn

a(x, η) exp

[
i
φ(x, η)

ε

]
dη(4.1)

= (2πε)n/2|detH(x)|−1/2 exp
πi

4
(n− 2IndH(x))

× exp

[
i

ε
φ(x, η(x))

]{ N∑
k=0

1

k!

(
− iε

2
< H−1(x)Dη, Dη >

)k
a(x, η)

× exp

[
i

ε
h(x, η)

]∣∣∣∣
η=η(x)

}
+ r̃N+1(x, ε)

= (2πε)n/2|detH(x)|−1/2 exp
πi

4
(sgnH(x)) exp

[
i

ε
φ(x, η(x))

]

×




N∑
k=0

(
− iε

2

)k 2k∑
p=0

2−p

(k + p)!p!
< H−1(x)Dη, Dη >

k+p

(h(x, η))p a(x, η)|η=η(x)

}
+ rN+1(x, ε)

Here, IndH(x) is the dimension of the eigenspace with negative eigenvalues

of H(x). The remainder term rN+1(x, ε) (and also r̃N+1(x, ε)) have the

following estimate:

for any multi-index α, there exist a positive integer l = l(α,N) and a positive

constant C which are independent of ε∣∣∣∣
(
ε
∂

∂x

)α
rN+1(x, ε)

∣∣∣∣ ≤ C sup
x,η
β≤α

|γ|≤l

∣∣∣∂βx∂γηa(x, η)∣∣∣ εN+1.
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Remark. l(α,N) is a linear function of |α|, N .

Definition. We introduce the Fourier transformation with ε, which is

λ− Fourier transform in [10].

For u(xI) ∈ C∞
0

(
R |I|

x

)
,

(Fε,xI→ξIu) (ξI) =
e−|I|πi/4

(2πε)|I|/2

∫
R|I|

x

exp

[
− i
ε
xI · ξI

]
u (xI) dxI .

The inverse transformation is defined by

(
F−1
ε,ξI→xI

v
)

(xI) =
e|I|πi/4

(2πε)|I|/2

∫
R|I|

ξ

exp

[
i

ε
ξI · xI

]
v (ξI) dξI

for v ∈ C∞
0

(
R

|I|
ξ

)
.

phase function. Let Λ be the Lagrangian manifold defined by (3.14),

denoted in the sequel by x(t, y) and ξ(t, y) without the tildes. We designate

the origin in R2d+2
t,x,τ,ξ by λ0 ∈ Λ. For λ ∈ Λ, we integrate the form τdt+ ξdx

along a curve connecting λ0 and λ on Λ:

S(λ) =

∫ λ

λ0

τdt+ ξdx.

This is well-defined, since τdt+ξdx is a closed form on the simply connected

Λ. When ΛI is a local chart with coordinates (t, xI , ξI), we define by (3.16)

SI
(
t, xI , ξI

)
= S

(
λ(t, xI , ξI)

)
− < ξI , XI(t, xI , ξI) > .

By construction we have

∂SI
∂xi

= Ξi(t, xI , ξI) for i ∈ I

and
∂SI
∂ξj

= −Xj(t, xI , ξI) for j ∈ I.
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invariant density. We fix an invariant measure dµ = dt∧dy1∧ . . .∧dyd
with respect to the hamiltonian flow. When D is a compact set contained

in a single chart ΛI ,

µ(D) =

∫ ∞

0
dt

∫
πI(D)

∣∣∣∣∣det
∂(t, y)

∂(t, xI , ξI)

∣∣∣∣∣ dxIdξI
where πI(D) is the projection of D|t to R|I|

x × R
|I|
ξ . Since det ∂(t,y)

∂(t,xI ,ξI)
=

det ∂(y)
∂(xI ,ξI)

, the density of µ is denoted by

µI(t, xI , ξI) =

∣∣∣∣∣det
∂y

∂(xI , ξI)
(t, xI , ξI)

∣∣∣∣∣ .
index δI . We assume always from now on, Λd+1 is of general position,

that is,

dim

{
y; det

∂x(t, y)

∂y
= 0

}
≤ d− 1.

Let ΛI and ΛJ have local coordinates (t, xI , ξI) and (t, xJ , ξJ). Suppose

λ ∈ ΛI ∩ ΛJ is a nonsingular point, at which, by definition, det ∂x(t,y)
∂y �= 0.

The index in Z4 of an ordered pair of nondisjoint charts is defined by

γ (ΛI ∩ ΛJ) = Ind

(
∂xI
∂ξI

(λ)

)
− Ind

(
∂xJ
∂ξJ

(λ)

)
,

where Ind (A) denotes the dimension of the eigenspace with the negative

eigenvalues of A.

Remark. γ(ΛI∩ΛJ) in Z4 is independent from choice of regular points

λ in ΛI ∩ ΛJ (Lemma 6.4 in [10]).

Definition. Let ΛI be a local chart of a fixed atlas
{
ΛI(i); i ∈ N

}
.

We choose a chain
{
ΛI(ik)

}
0≤k≤s

such that

ΛI(i0) = Λd+1
[0,T0], ΛI(is) = ΛI ; ΛI(ik) ∩ ΛI(ik+1) �= ∅ (connected).

We define δI in Z4 by

δI =
s−1∑
k=0

γ(ΛI(ik) ∩ ΛI(ik+1)).
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δI is independent of choice of chains, since Λ is simply connected. This

follows from the fact that the difference of the two values

s−1∑
k=0

γ
(
ΛI(ik) ∩ ΛI(ik+1)

)
−

t−1∑
l=0

γ
(
ΛI(jl) ∩ ΛI(jl+1)

)

is considered as the closed path index ([10]).

4.2. Canonical operators and commutator relation

Maslov’s canonical operators. The precanonical operators KI are

defined as follows.

1. In case ΛI is a nonsingular chart where det ∂x(t,y)
∂y never vanishes by

definition:

λ ∈ ΛI is represented by λ = λI(t, x). Let h ∈ C∞
0 (ΛI).

KI(h)(t, x) =
√
µI(t, x)h (λI(t, x)) e

i
ε
S(λI(t,x)).(4.2)

2. In case ΛI is a singular chart where the set of zeros of det ∂x(t,y)
∂y is not

empty by definition:

Suppose λ ∈ ΛI is represented by λ = λI(t, xI , ξI). Let h ∈ C∞
0 (ΛI).

KI(h)(t, x) = e
πi
2
δIF−1

ε,ξ
I
→x

I

[
e

i
ε
SI(t,xI ,ξI)(4.3)

× h
(
λI(t, xI , ξI)

)√
µI(t, xI , ξI)

]
.

We fix a set of canonical charts {ΛI} on Λ and a partition of unity {eI}
subordinate to this covering. Then, the canonical operator for h ∈ C∞

0 (Λ)

is defined by

(KΛh) (t, x) =
∑
I

KI(eIh)(t, x).(4.4)

3. Let T be a fixed positive constant and K be a fixed compact set in Λ.

For any nonnegative integer j, there exists a constant C such that for any

h ∈ C∞
0 (Λ) with supph ⊂ K

∫ T

0
ε2j‖Dj

t,xKΛh(t)‖2dt ≤ C

∫ T

0
‖Dj

t,yh(t)‖2dt,

where h in the right hand side is identified with an element in C∞([0, T ];

C∞
0 (Rd

y)).
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asymptotic transition operator.

Lemma 4.2 (Lemma 9.1 in [10]). Let ΛI and ΛJ be non-disjoint lo-

cal charts. Then, for the precanonical operators KI and KJ there exists

an infinite set of differential operators
{
V

(k)
IJ , k = 0, 1, 2, · · ·

}
on ΛI ∩ ΛJ

and integral operators {RN (VIJ ; ε) , N = 1, 2, · · ·} such that , for any h ∈
C∞

0 (ΛI ∩ ΛJ) with supph in supp eI ∩ supp eJ , and for any natural number

N, we have

(KJh) (t, x) = KI

N∑
k=0

εkV
(k)
IJ h(t, x) +RN+1 (VIJ ; ε)h(t, x).

Here, V
(k)
IJ is of degree 2k, and the remainder satisfies the following estimate:

for any fixed T > 0 and for any nonnegative integer j, there exists a constant

C and an integer l such that∫ T

0
ε2j‖DjRN+1(VIJ ; ε)h(t)‖2dt ≤ C

∫ T

0
ε2(N+1)‖Dlh(t)‖2dt.(4.5)

h is identified with an element in C∞([0, T ];C∞
0 (Rd

y)) and l = l(j,N).

Proof. We put

I1 = I ∩ J, I2 = I ∩ J, I3 = I ∩ J, I4 = I ∩ J.

Then, we have

I = I1 ∪ I2, J = I1 ∪ I3, I = I3 ∪ I4, J = I2 ∪ I4.

Let h ∈ C∞
0 (ΛI ∩ ΛJ). By the definition of the precanonical operator, we

have

(KJh)(t, xJ , xJ)

= e
πi
2
δIF−1

ε,ξ
I
→x

I

[
e−

πi
2
δIFε,x

I
→ξ

I
(KJh)(t, x)

]

= e
πi
2
δIF−1

ε,ξ
I
→x

I


eπi

2
(δJ−δI)Fε,xI3→ξI3

F−1
ε,ξI2→xI2

√√√√∣∣∣∣∣ ∂µJ
∂(ξJ , xJ)

∣∣∣∣∣
× exp

(
i

ε
SJ(t, xJ , ξJ)

)
h(λ)

]

= e
πi
2
δIF−1

ε,ξ
I
→x

I
[bI ] ,
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where

bI = e
πi
2

(δJ−δI)−πi
4
|I3|+πi

4
|I2|(2πε)(−|I3|−|I2|)/2

×
∫

exp

[
i

ε
φ(xI1 , xI2 , ξI3 , ξI4 ;xI3 , ξI2)

]

×

√√√√∣∣∣∣∣ ∂µJ
∂ξJ∂xJ

∣∣∣∣∣h(λ)dξI2dxI3 ,

with

φ = −xI3 · ξI3 + xI2 · ξI2 + SJ(t, xJ , ξJ̃).

Notice that φ restricted on the stationary points is equal to SI on ΛI ∩ΛJ .

We have the expansion of bI by the stationary phase method. �

Corollary. There exist differential operators W
(k)
IJ of degree 2k (k ≥

0) on ΛI ∩ ΛJ such that
∑∞

k=0 ε
k∑

J W
(k)
IJ eJ is the formal inverse of∑∞

k=0 ε
k∑

J V
(k)
IJ eJ . The remainder, defined by

RI,N+1g = g −
N∑
k=0

εk
∑
J

V
(k)
IJ eJ

(
N∑
l=0

εl
∑
K

W
(l)
IKeKg

)

for g ∈ C∞(ΛI) is a differential operator of degree 4N on ΛI (N ≥ 1). Its

coefficients are of order N + 1 with respect to ε.

commutator relation. Let

p(t, x, τ, ξ; ε) =
m∑
j=0

pj(t, x, ξ; ε)τ
m−j

be a symbol, where pj belongs to the usual nonhomogeneous symbol class

Sj with smooth parameters t and ε. An ε-pseudodifferential operator

P (t, x, εDt, εDx; ε) =
m∑
j=0

Pj(t, x, εDx; ε)(εDt)
m−j

is defined by

Pj(t, x, εDx; ε)u(t, x) = F−1
ε,ξ→x [pj(t, x, ξ; ε) (Fε,x→ξu)] .
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Its ε-principal symbol is by definition

p(t, x, τ, ξ) =
m∑
j=0

pj(t, x, ξ; 0)τm−j .

Proposition 4.1. Let P (t, x, εDt, εDx;ε) be an ε−pseudodifferential

operator. Let p(t, x, τ, ξ) be its ε-principal symbol. For KI , there exist

a set of differential opertators on ΛI {T (k)
I ; k = 0, 1, 2, · · · } independent of

ε and a set of integral opertators {RN (KI , P ; ε); N = 1, 2, · · ·} dependent

on ε such that for h ∈ C∞
0 (ΛI) with supph in supp eI ,

P (t, x, εDt, εDx; ε)KI(h) = KI

N∑
k=0

εkT
(k)
I h+RN+1 (KI , P ; ε)h,

and that for a fixed T and for any nonnegative integer j, there exists a

constant CI and an integer l such that∫ T

0
ε2j‖Dj

t,xRN+1h(t)‖2dt ≤ CI

∫ T

0
ε2(N+1)‖Dl

t,yh(t)‖2dt.

More precisely,

T
(0)
I = p

(
t, xI ,−

∂SI
∂ξI

,
∂SI
∂t

,
∂SI
∂xI

, ξI

)
(4.6)

T
(1)
I =

1

i
√
µI


∂p
∂τ

∂

∂t
+
∑
i∈I

∂p

∂ξi

∂

∂xi
−
∑
i∈I

∂p

∂xi

∂

∂ξi


√

µI(4.7)

+
1

i


1

2


∂2SI
∂t2

∂2p

∂τ2
+ 2
∑
j∈I

∂2SI
∂t∂xj

∂2p

∂τ∂ξj

+
∑
i,j∈I

∂2SI
∂xi∂xj

∂2p

∂ξi∂ξj
+
∑
i,j∈I

∂2SI
∂ξi∂ξj

∂2p

∂xi∂xj

−2
∑
j∈I

∂2SI
∂t∂ξj

∂2p

∂τ∂xj
− 2

∑
i∈I,j∈I

∂2SI
∂xi∂ξj

∂2p

∂ξi∂xj




−
∑
i∈I

∂2p

∂xi∂ξi
+ i

∂P

∂ε

∣∣∣∣∣∣
ε=0



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and T
(k)
I are linear differential operators of order k with the coefficients in

C∞ (ΛI).

This expansion follows from the stationary phase method. In our case

where P is an ε-differential operator, this is only differentiation of oscillatory

functions under the integral.

The global canonical operator is defined by

KΛh =
∑
I

KI(eIh).

We fix a positive T. We put

TNI =
N∑
k=0

εkT
(k)
I , V N

IJ =
N∑
k=0

εkV
(k)
IJ ,

WN
IJ =

N∑
k=0

εkW
(k)
IJ .

Let fI be a function in C∞
0 (ΛI), such that fI ≡ 1 on suppeI . The global

commutation relation is given as follows ([10]).

P (KΛh) = P
∑
I

KI(eIh)

=
∑
I

{
KIT

N
I (eIh) +RN+1(KI , P ; ε)(eIh)

}

=
∑
I

{
KI

(∑
J

V N
IJ eJ

)
fI

(∑
K

WN
IKeK

)

+KIRI,N+1

}
TNI (eIh)

+
∑
I

RN+1(KI , P ; ε)(eIh)

=
∑
I,J,K

KIV
N
IJ eJfIW

N
IKeKT

N
I (eIh)

+
∑
I

KIRI,N+1T
N
I (eIh) +

∑
I

RN+1(KI , P ; ε)(eIh)

=
∑
I,J,K

(KJ −RN+1(VIJ ; ε))eJfIW
N
IKeKT

N
I (eIh)
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+
∑
I

KIRI,N+1T
N
I (eIh) +

∑
I

RN+1(KI , P ; ε)(eIh)

=
∑
J

KJeJ
∑
I,K

fIW
N
IKeKT

N
I (eIh)

−
∑
I,J,K

RN+1(VIJ ; ε)eJfIW
N
IKeKT

N
I (eIh)

(transition remainder)

+
∑
I

KIRI,N+1T
N
I (eIh) (inverse remainder)

+
∑
I

RN+1(KI , P ; ε)(eIh) (commutation remainder )

=
∑
J

KJeJT
Nh+RN+1(KΛ, P ; ε)h. (by definition)

The remainder term RN+1(KΛ, P ; ε)h has an estimate of the same type as

in Proposition 4.1. TN has an expansion TN =
∑N

k=0 ε
kT (k). If T

(0)
I = 0 for

all I, which is the case in §§5,6, we have T (1) =
∑

I T
(1)
I eI .

5. Formal construction of asymptotic solutions

For any n ∈ N , we have the Taylor expansion of L:

L(t, x,Dt, Dx; ε) =
N∑
n=0

εnL(n)(t, x,Dt, Dx) +RN+1(L; ε),

where L(t, x,Dt, Dx; ε) and RN+1(L; ε) are differential operators of order l.

We have also

M(t, x,Dt, Dx; ε) =
N∑
n=0

εnM (n)(t, x,Dt, Dx) +RN+1(M ; ε),

where M(t, x,Dt, Dx; ε) and RN+1(M ; ε) are differential operators of order

m.

We recall the notation for the Taylor expansions with respect of ε of

the inhomogeneous data f(t, x; ε) ∈ C∞
0 ([0,∞) ×Rd × [0, ε0]) in (1.1) and

gj(x; ε) ∈ C∞
0 (Rd × [0, ε0]) in (1.2) of the Introduction:

f(t, x; ε) =
N∑
n=0

εnfn(t, x) +RN+1(f ; ε),(5.1)



Singular perturbation of hyperbolic equations 225

gj(x; ε) =
N∑
n=0

εngj,n(x) +RN+1(gj ; ε).(5.2)

We introduce for simplicity of the statements the following

Definition. Let T be fixed. Firstly, if there is a correspondence

n∏
j=1

C∞([0, T ];C∞
0 (Rd

x)) ×
m∏
k=1

C∞
0 (Rd

x) � (fj(t, x), gk(x))

→ u(t, x) ∈ C∞([0, T ];C∞
0 (Rd

x))

equipped with the following estimate (5.3), we call u is well determined by

{fj , gk}:
for any given natural number p, there exist a constant C, natural num-

bers qj , rj , real numbers µj , νj , and σk such that

∫ T

0
‖Dpu(t)‖2dt(5.3)

≤ C




n∑
j=1

∫ T

0
‖Dqjfj(t)‖2

µj
dt+

n∑
j=1

‖Drjfj(0)‖2
νj +

m∑
k=1

‖gk‖2
σk


 .

Secondly, if there is a correspondence

n∏
j=1

C∞
0 (Rd

x) � {gj(x)} → h(t, x) ∈ C∞([0, T ];C∞
0 (Rd

x))

which satisfies the following estimate (5.4), we call h is well determined by

{gj}:
for any given natural number p, there exist a constant C and real num-

bers σk, such that

∫ T

0
‖Dph(t)‖2dt ≤ C

n∑
k=1

‖gk‖2
σk
.(5.4)

Lastly, if there is a correspondense

n∏
j=1

C∞
0 (Rd

x) � {gj(x)} → v(x) ∈ C∞
0 (Rd

x)
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which satisfies the following estimate, we call v is well determined by {gk}:
for any given natural number p, there is a constant C and real numbers

σk such that

‖v‖2
p ≤ C

n∑
k=1

‖gk‖2
σk
.(5.5)

5.1. Degeneration of order 1

The problem is


(iεL+M)u(t, x; ε) = f(t, x; ε),

Dj
tu(0, x; ε) = gj(x; ε), 0 ≤ j ≤ m.

(5.6)

We construct a formal expansion of the solution u along the outline in the

introduction §1. We define P = εL+ i−1M and introduce

P̃ (t, x, εDt, εDx; ε) = εmP (t, x,Dt, Dx; ε)

and its ε-principal symbol

p(t, x, τ, ξ) = l(t, x, τ, ξ; 0) + i−1m(t, x, τ, ξ; 0).

The singular characteristic root τ1 or τm+1 defined in §3.1 gives the La-

grangian manifold Λ and the global canonical operator of Maslov KΛ. We

seek for the singular part in the form of

w ∼
∞∑

n=m

εnwn =
∞∑

n=m

εnKΛhn,

where hn(λ)’s are functions on Λ. P̃ has the Taylor expansion with respect

to ε:

P̃ (t, x, εDt, εDx; ε) =
N∑
n=0

εnP̃ (n)(t, x, εDt, εDx)

+ RN+1(P̃ ; ε).

P̃ (n)(t, x, τ, ξ)’s are polynomial symbols of order at most m+1. RN+1(P̃ ; ε)

is a differential operator of order at most m+ 1 and its coefficients ã(t, x; ε)

satisfy supt,x

∣∣∣Dj
tD

α
x ã(t, x; ε)

∣∣∣ ≤ CεN+1.
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We have a sequence of equations for the regular part

v(t, x; ε) =
∞∑
n=0

εnvn(t, x)

satisfying

M (0)v0(t, x) = f0(t, x),(5.7)

and

M (0)vn(t, x) = fn(t, x) −
n−1∑
p=0

(L(p) +M (p+1))vn−1−p(t, x)(5.8)

for n ≥ 1.

We set

h0 = · · · = hm−1 = 0.(5.9)

Using the global commutation relation with T (0) = 0 on Λ, we have formally

Pw = P̃
∞∑
n=0

εnKΛhm+n =
∞∑
n=0

εnKΛ

∞∑
k=1

εkT (k)hm+n.

We have equations on Λ with global coordinates (t, y):

T (1)hm(t, y) = 0,(5.10)

T (1)hm+n(t, y) = −
n+1∑
k=2

T (k)hm+n+1−k(t, y)(5.11)

for n ≥ 1.

T (1) =
∑
T

(1)
I eI is a hyperbolic operator of 1st order, since ∂p

∂τ ≥ c(1+ |ξ|)m
in (4.7). From the initial conditions (5.6), we have

(εDt)
jv(0, x; ε) + (εDt)

jKΛ

∞∑
n=m

εn hn|t=0 ∼ εjgj(x; ε)(5.12)

for 0 ≤ j ≤ m.

Since [0, T0]×Rd
x is the canonical chart for small T0 > 0, we denote h(λ(t, x))

simply by h(t, x), when 0 ≤ t < T0.

We assume (H0), (H1), (HP) and (S0). The argument is similar, when

(HN) is assumed instead of (HP).
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Lemma 5.1. Let S(t, x) be the solution to the eikonal equation

p(t, x, St, Sx) = 0 with Cauchy data S(0, x) = 0 and St(0, x) = τ1(0, x, 0).

Then,

Dj
t

(
exp

[
i

ε
S(t, x)

]√
µ(t, x)h(t, x)

)∣∣∣∣
t=0

= ε−j
{
W

(0)
j (h) + εW

(1)
j (h) + · · · + εjW

(j)
j (h)

}
,

where W
(k)
j ’s are linear combinations of trace operators of order at most k

on t = 0. The coefficients of W
(k)
j have bounded derivatives on Rd

x.

Especially,

W
(0)
j (h) =

(
∂S

∂t
(0, x)

)j
h(0, x).

Applying Lemma 5.1 to (5.12), we have

(εDt)
j v(0, x; ε) +

j∑
k=0

εkW
(k)
j

( ∞∑
n=m

εnhn

)
∼ εjgj(x; ε)(5.13)

for j = 0, 1, · · · ,m.

Hence,

Dj
t v0(0, x) = gj,0(x) for j = 0, 1, · · · ,m− 1.(5.14)

We will verify that {vn} and {hn} are well determined successively by the

coefficients of asymtotic expansions of f and gj ’s, when the supports of f

and gj ’s are contained in fixed compact sets.

Proposition 5.1. Under the assumption (H1), v0(t, x) ∈ C∞([0,∞);

C∞
0 (Rd)) is determined by (5.7) and (5.14). Moreover, v0(t, x) is well deter-

mined by f0(t, x) and {gj,0(x); 0 ≤ j ≤ m−1}. Dk
t v0(0, x) is well determined

by {Dl
tf0(0); 0 ≤ l ≤ k} and {gj,0; 0 ≤ j ≤ m− 1}.

Proof. T (1) is a first order ordinary smooth differential operator along

the Hamilton flow. The supports of the data are contained in the fixed

compact sets. Hence, the estimate easily follows. �
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Proposition 5.2. The Cauchy problem of 1st order equation on Λ

with coordinates (t, y)

{
T (1)hm(t) = 0, (0 < t < T ),

W
(0)
m hm = gm,0 −Dm

t v0(0)

has a unique solution.

Moreover, hm(t) and its traces Dk
t hm(0) are well determined by f0(0, x)

and {gj,0(x); 0 ≤ j ≤ m}, when the supports of the data are contained in

fixed compact sets.

Proposition 5.3. We assume all supports of data are contained fixed

compact sets.

(i) Under the assumptions (H1) and (5.9), there exist uniquely {vn(t, x);
n ≥ 1} and {hm+n(λ);n ≥ 1} such that vn(t, x) satisfies




M (0)vn(t) = fn(t) −
n−1∑
k=0

(
L(k) +M (k+1)

)
vn−1−k(t)

Dj
t vn(0) = gj,n −

j∑
k=0

W
(k)
j (hj+n−k)

j = 0, 1, · · · ,m− 1.

(5.15)

and that hm+n(λ) satisfies



T (1)hm+n(t) = −

n+1∑
p=2

T (p)hm+n+1−p(t)

W
(0)
m hm+n = gm,n −Dm

t vn(0) −
m∑
k=1

W (k)
m (hm+n−k) .

(5.16)

(ii) Moreover, vn(t, x) ∈ C∞
(
[0, T ];C∞(Rd)

)
is well determined by

{fk(t, x); 0 ≤ k ≤ n}, {gj,k(x); 0 ≤ j ≤ m, 0 ≤ k ≤ n− 1} and {gj,n(x);
0 ≤ j ≤ m−1}. Dm+k

t vn(0, x) is well determined by {Dl
tfq(0, x); 0 ≤ l+q ≤

k + n, 0 ≤ q ≤ n}.
(iii) hm+n(t) and its traces Dk

t hm+n(0) are well determined by{
Dl
tfq(0, x); 0 ≤ l + q ≤ n

}
and {gj,k(x); 0 ≤ j ≤ m, 0 ≤ k ≤ n} .
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Proof. Let n = 1. From (5.8) and (5.13), v1(t, x) satisfies:



M (0)v1(t) = f1(t) − (L(0) +M (1))v0(t)

Dj
t v1(0) = gj,1, 0 ≤ j ≤ m− 2

Dm−1
t v1(0) = gm−1,1 −W

(0)
m−1(hm).

v1(t) is thus well determined by {f0(t), f1(t)}, {gj,0; 0 ≤ j ≤ m} and

{gj,1; 0 ≤ j ≤ m − 1}. Dm+k
t v1(0) is well determined by {Dl

tfq(0); 0 ≤
l + q ≤ k + 1, q = 0, 1} and the same {gj,0, gj,1} as above.

From (5.11) and (5.13), hm+1(λ(t, y)) satisfies:{
T (1)hm+1(t) = −T (2)hm(t),

W
(0)
m (hm+1) = gm,1 −Dm

t v1(0) −W
(1)
m (hm).

hm+1(t) and Dk
t hm+1(0) are thus well determined by {f0(0), f1(0), Dtf0(0)}

and {gj,k; 0 ≤ j ≤ m, k = 0, 1}.
We assume the proposition for {v0, · · · , vn−1} and {hm, hm+1, · · · ,

hm+n−1}. Then, vn(t) is given by (5.15). hm+n is given by (5.16). vn(t) is

well determined by fn(t), {vj(t); 0 ≤ j ≤ n − 1}, {gj,n; 0 ≤ j ≤ m − 1}
and {Dk

t hn+l(0); 0 ≤ k + l ≤ m − 1}. hm+n(t) is well determined by

{hm(t), · · · , hm+n−1(t)}, gm,n, D
m
t vn(0) and {Dk

t hn+l(0); 0 ≤ k+ l ≤ m, l ≤
m− 1}. By induction, the assertion (ii) and then (iii) follow. �

5.2. Degeneration of order 2

The problem is


(−ε2L+M)u(t, x; ε) = f(t, x; ε),

Dj
tu(0, x; ε) = gj(x; ε), 0 ≤ j ≤ m+ 1.

We define P = (ε)2L−M and introduce

P̃ (t, x, εDt, εDx; ε) = εmP (t, x,Dt, Dx; ε)

and its ε-principal symbol

p(t, x, τ, ξ) = l(t, x, τ, ξ; 0) −m(t, x, τ, ξ; 0).

The singular roots τ1(= τ−) and τm+2(= τ+) defined in §3.2 give the La-

grangian manifolds Λ∗(∗ = +,−) and the global canonical operators of
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Maslov KΛ∗ . We assume for the singular part

w ∼
∞∑

n=m

εnwn =
∞∑

n=m

εn
∑
∗=±

w∗
n =

∞∑
n=m
∗=±

εnKΛ∗h∗n.

We have a sequence of equations for the regular part

v(t, x; ε) =
∞∑
n=0

εnvn(t, x)

satisfying

M (0)v0(t, x) = f0(t, x),(5.17)

M (0)v1(t, x) = f1(t, x) −M (1)v0(t, x),(5.18)

and

M (0)vn(t, x) = fn(t, x) −M (1)vn−1(t, x)(5.19)

+
n−2∑
p=0

(L(p) −M (p+2))vn−2−p(t, x) for n ≥ 2.

We seek solutions under the assumption

h∗0 = · · · = h∗m−1 = 0.(5.20)

Using the global commutation relation with T ∗(0) = 0 on Λ∗, we have for-

mally

Pw = P̃
∞∑
n=0
∗=±

εnKΛ∗h∗m+n =
∞∑
n=0
∗=±

εnKΛ∗

∞∑
k=1

εkT ∗(k)h∗m+n.

{h∗m+n}n≥0 should satisfy equations on Λ∗ with global coordinates (t, y):

T ∗(1)h∗m(t) = 0(5.21)

and

T ∗(1)h∗m+n(t) = −
n+1∑
k=2

T ∗(k)hm+n+1−k(t) for n = 1, 2, · · · .(5.22)
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The initial conditions give

Dj
tu(0, x; ε) ∼

∞∑
n=0

εnDj
t vn(0, x)(5.23)

+
∞∑

n=m

εn{Dj
tw

+
n (0, x; ε) +Dj

tw
−
n (0, x; ε)}

∼
∞∑
n=0

εngj,n(x).

Near the initial plane, we have

w∗
n(t, x; ε) =

√
µ∗(t, x) exp

[
iS∗(t, x)

ε

]
h∗n(t, x).

Here, µ∗(t, x) = |J∗(t, x)|−1 and J∗(t, x∗(t, y)) = det(∂x∗i (t, y)/∂yj) with

J∗(0, y) = 1. S∗(t, x) is the solution to

∂S−

∂t
− τ1

(
t, x,

∂S−

∂x

)
= 0,

∂S+

∂t
− τm+2

(
t, x,

∂S+

∂x

)
= 0

with initial data

S−(0, x) = 0, S+(0, x) = 0

∂S−

∂t
(0, x) = τ1(0, x, 0),

∂S+

∂t
(0, x) = τm+2(0, x, 0).

Then, by the Lemma 5.1,

∞∑
p=m

εp
(
Dj
tw

∗
p

)
(0, x)(5.24)

=
∞∑
p=m

εp−j
j∑

k=0

εkW
∗(k)
j (h∗p)(x)

= εm−j
∞∑
l=0

εl
l∑

q=max{l−j,0}
W

∗(l−q)
j

(
h∗q+m(x)

)
.

for j = 0, 1, · · · ,m+ 1.
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From (5.24) with j = m+ 1, we have

(
S+
t

)m+1
h+
m(0, x) +

(
S−
t

)m+1
h−m(0, x) = 0.(5.25)

When (j, n) satisfies the inequality 0 ≤ n+ j ≤ m− 1, (5.23) implies

Dj
t vn(0, x) = gj,n(x),(5.26)

since m− j ≥ n+ 1. For the rest of (j, n), we have

Dj
t vn(0) +

min{j,n−m+j}∑
q=0

W
+(q)
j

(
h+
n+j−q

)
(5.27)

+

min{j,n−m+j}∑
q=0

W
−(q)
j

(
h−n+j−q

)
= gj,n,

that is,

Dj
t vn(0) +W

+(0)
j

(
h+
n+j

)
+W

−(0)
j

(
h−n+j

)
(5.28)

= gj,n −
min{j,n−m+j}∑

q=1

{
W

+(q)
j

(
h+
n+j−q

)
+W

−(q)
j

(
h−n+j−q

)}
.

Here, n + j ≥ m and the sum in the right hand side should read 0, if

n−m+ j = 0.

Later, we need the initial conditions for the transport equations of h±m+n.

They will be given by (5.23) and (5.24).

Proposition 5.4. We assume all supports of data are contained fixed

compact sets.

(i) Under the assumptions (D2), (H0), (H1), (P) and (WS), there exist

uniquely {vn(t, x); n ≥ 1} and {h∗m+n(λ);n ≥ 1} such that vn(t, x) satisfies

M (0)vn(t) =




f1(t) −M (1)v0(t), n = 1

fn(t) −M (1)vn−1(t)

+
n−2∑
p=0

(
L(p) −M (p+2)

)
vn−2−p(t), n ≥ 2

(5.29)
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and




Dj
t vn(0, x) = gj,n(x)

for j = 0, 1, · · · ,m− 1 − n, if n < m,

Dj
t vn(0, x) = gj,n(x) −

min{j,n−m+j}∑
q=0

{
W

+(q)
j

(
h+
n+j−q

)

+W
−(q)
j

(
h−n+j−q

)}
for j = max{0,m− n}, · · · ,m− 1.

(5.30)

and that h∗m+n(λ) satisfies

T ∗(1)h∗m+n(t) = −
n+1∑
p=2

T ∗(p)h∗m+n+1−p(t)(5.31)

and 


∑
∗=±

W ∗(0)
m

(
h∗m+n

)

= gm,n −
min{m,n}∑

q=1
∗=±

W ∗(q)
m

(
h∗n+m−q

)
−Dm

t vn(0)

∑
∗=±

W
∗(0)
m+1

(
h∗m+n

)

= gm+1,n−1 −
min{m+1,n}∑

q=1
∗=±

W
∗(q)
m+1

(
h∗n+m−q

)

−Dm+1
t vn−1(0).

(5.32)

(ii) Moreover, vn(t, x) ∈ C∞
(
[0, T ];C∞(Rd)

)
is well determined by

{fk(t, x); 0 ≤ k ≤ n}, {gj,n;0 ≤ j ≤ m − 1}, {gj,n−1; 0 ≤ j ≤ m} and

{gj,k; 0 ≤ j ≤ m+ 1, 0 ≤ k ≤ n− 2}.
Dm+k
t vn(0) is well determined by {Dl

tfq(0); 0 ≤ l ≤ 2
[
n−q

2

]
+ k, 0 ≤ q ≤

n} and the same {gj,k} as above. Here, [r] is the greatest integer less than

or equal to r.

(iii) h∗m+n(λ) and Dk
t hm+n(0) are well determined by {Dl

tfq(0, x); 0 ≤ l+q ≤
n}, {gj,n(x); 0 ≤ j ≤ m} and {gj,k(x); 0 ≤ j ≤ m+ 1, 0 ≤ k ≤ n− 1}.
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Proof. At first, from (5.23),{
M (0)v0(t) = f0(t)

Dj
t v0(0) = gj,0, j = 0, 1, · · · ,m− 1.

(5.33)

Since M (0) is regularly hyperbolic, v0(t, x) ∈ C∞
(
[0,∞);C∞

0 (Rd)
)

is well

determined by {f0(t)} and {gj,0; 0 ≤ j ≤ m− 1}. Dm+k
t v0(0) is well deter-

mined by {Dl
tf0(0); 0 ≤ l ≤ k} and {gj,0; 0 ≤ j ≤ m− 1}.

The transportation equations for h±m are{
T (1)h+

m(t) = 0

T (1)h−m(t) = 0
(5.34)

with the initial condition{
W

+(0)
m (h+

m) +W
−(0)
m (h−m) = gm,0 −Dm

t v0(0)

W
+(0)
m+1 (h+

m) +W
−(0)
m+1 (h−m) = 0.

(5.35)

(5.35) comes from (5.25) and (5.28) with n = 0. (5.35) is rewritten by

(
S+
t (0)

)m
h+
m(0) +

(
S−
t (0)

)m
h−m(0) = gm,0 −Dm

t v0(0)(
S+
t (0)

)m+1
h+
m(0) +

(
S−
t (0)

)m+1
h−m(0) = 0.

(5.36)

This gives h±m(0, x) ∈ C∞
0

(
Rd
)
. From (5.34), we have h±m ∈ C∞(Λ±) and

Dk
t h

±
m(0), well determined by {f0(0)} and {gj,0; 0 ≤ j ≤ m}.

Then, we see similarly that v1(t) and Dm+k
t v1(0), hm+1(t) and

Dk
t hm+1(0), v2(t) and Dm+k

t v2(0) are well determined successively.

We will construct {vn;n = 0, 1, · · ·}, {h±m+n;n = 0, 1, · · ·} by induction.

We assume the proposition for v0, · · · , vn−1 and h±m, · · · , h±m+n−1, from which

we derive vn and h±m+n. In fact, we note that the traces of h±n+j−q in (5.30)

are known, since m ≤ n + j − q ≤ n + j ≤ n + m − 1. With the initial

data (5.30), the equation (5.29) gives vn(t, x) ∈ C∞
(
[0,∞);C∞

0 (Rd)
)

well

determined by fn(t), {vj(t); 0 ≤ j ≤ n − 1}, {gj,n; 0 ≤ j ≤ m − 1}, and

traces of {h±m+j(t); 0 ≤ j ≤ n− 1}. By induction, we have (ii). Then, from

(5.28), we have (5.32), of which the right hand sides are all known. The

initial values h±m+n(0) are thus determined. Hence, h±m+n(t) ∈ C∞(Λ±) are

well determined by {h±j (t);m ≤ j ≤ n + m − 1}, gm,n, gm+1,n−1 and by

Dm+1
t vn−1(0), Dm

t vn(0). By induction, we have (iii). �
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6. Remainder estimates of asymptotic solutions

6.1. Degeneration of order 1

We define the partial sum by

uN (t, x; ε) =
N∑
n=0

εnvn(t, x) +
N+m∑
n=m

εnKΛhn(t, x; ε)

and its remainder term by

RN+1(u; ε) = u(t, x; ε) − uN (t, x; ε).

Our main result is

Theorem 6.1. Let T be a fixed positive number. Let f ∈ C∞
0 ([0, T ] ×

Rd× [0, ε0]) and gj ∈ C∞
0 (Rd× [0, ε0]) with their supports containd in fixed

compact sets independent of ε. For any p,N ∈ N , there exists a positive

constant C independent of ε such that for any ε ∈ (0, ε0],

C ε2(N+1)−1

≥
∫ T

0

p∑
j=0

ε2j
(
ε ‖ Dm+jRN+1(u; ε)(t) ‖2

+ ‖ Dm+j−1RN+1(u; ε)(t) ‖2
1/2

)
dt

+
p∑

j=0

ε2j
(
ε ‖ Dm+jRN+1(u; ε)(T ) ‖2

+ ‖ Dm+j−1RN+1(u; ε)(T ) ‖2
1/2

)
.

Corollary. For any k,N0 ∈ N and positive T , there exist N1 ∈ N

such that for any N ≥ N1 there exists a positive constant CN,N0 independent

of ε such that

sup
0≤t≤T

x∈Rd

∑
j+|α|≤k

|Dj
tD

α
xRN+1(u; ε)(t, x)| ≤ CN,N0ε

N0 .

In order to estimate RN+1(u; ε) by Theorem 2.1, we need
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Proposition 6.1. The remainder term RN+1(u; ε) satisfies

(iεL+M)RN+1(u; ε) = RN+1(f ; ε)(6.1)

+εN+1ρ(t, x; ε) + εN+1χ(t, x; ε),

Dj
tRN+1(u; ε)(0, x) = RN+1(gj ; ε) + εN+1ηj(x; ε),

0 ≤ j ≤ m,

where

ρ(t, x; ε) =
∑

p+q≥N
0≤p≤N−1
1≤q≤N

εp+q−NL(p)vq +
∑

p+q≥N+1
1≤p≤N
1≤q≤N

εp+q−N−1M (p)vq(6.2)

−
N∑
q=0

εq
(
ε−NRN (L; ε) + ε−N−1RN+1(M ; ε)

)
vq,

χ(t, x; ε) = KΛ

∑
p+q≥N+1
1≤p,q≤N

εp+q−N−1T (p)hm+q(6.3)

+ε−N−1RN+1(KΛ, P̃ ; ε)


 N∑
q=0

εqhm+q


 ,

and where


ηj(x; ε) = −
∑

m−j+p+q≥N+1
max{N−m+1,0}≤p≤N

0≤q≤j

εm−j+p+q−N−1W
(q)
j (hp+m)

ηm(x; ε) = −
∑

p+q≥N+1
max{N−m+1,0}≤p≤N

1≤q≤m

εp+q−N−1W (q)
m (hp+m).

(6.4)

Proof. It is long but straightforward computation from construction

of {vn} and {hm+n}. (See the proof of Proposition 6.2.) �

Proof ot the main Theorem 6.1.

(i) By the assumption on f(t, x; ε), there exists a constant Cj,N (f) such that

∫ T

0
e−2γt‖DjRN+1(f ; ε)(t)‖2dt ≤ Cj,N (f)

γ
ε2(N+1),
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and

‖DjRN+1(f ; ε)(0)‖2 ≤ Cj,N (f)ε2(N+1).

Cj,N (f) depends on the norms of
(
∂
∂ε

)N+1
f , but it is bounded when ε tends

to 0.

(ii)

∫ T

0
e−2γt‖Djρ(t; ε)‖2dt ≤ CN

∫ T

0
e−2γt

N∑
q=0

‖Dm+1+jvq(t)‖2dt

=
C ′

N,j

γ
.

Here, by Proposition 5.3, C ′
j,N depends on the norms of {fj(t); 0 ≤ j ≤ N},

{gj,k; 0 ≤ j ≤ m, 0 ≤ k ≤ N − 1}, {gj,N ; 0 ≤ j ≤ m − 1} and on their

supports, but it is bounded when ε tends to 0. We have

‖Djρ(0; ε)‖2 ≤ CN

N∑
q=0

‖Dm+1+jvq(0)‖2

≤ C ′′
j,N .

The dependence of C ′′
j,N is just like that of C ′

j,N . In fact, it depends on the

norms of {Dl
tfq(0); 0 ≤ l + q ≤ j + 1 +N, 0 ≤ q ≤ N} and the same {gj,k}

as above.

(iii)

ε2j
∫ T

0
e−2γt‖Djχ(t)‖2dt ≤ Cj,N

γ
,

Cj,N depends on the norms of {Dl
tfq(0); 0 ≤ l + q ≤ N} and {gj,k; 0 ≤ j ≤

m, 0 ≤ k ≤ N} and on their supports by Propositions 4.1, 5.3, but it is

bounded when ε tends to 0. We have also

ε2j‖Djχ(0)‖2 ≤ C ′
j,N .

(iv)
m∑
k=0

‖RN+1(gk; ε)‖2
m−k+j ≤ C ′

j,N ε
2(N+1),

m∑
k=0

‖ηk(ε)‖2
m−k+j ≤ C ′′

j,N .
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C ′
j,N depends on the norms of {∂N+1gk

∂εN+1 ; k = 0, · · · ,m}, but stays bounded

for ε. By Proposition 5.3, C ′′
j,N depends on the norms of {Dl

tfq(0); 0 ≤
l + q ≤ N} and {gj,k; 0 ≤ j ≤ m, 0 ≤ k ≤ N} and on their supports, but

it is bounded when ε tends to 0. We have the conclusion by Theorem 2.1

applicable to (6.1). �

6.2. Degeneration of order 2

We define the partial sum by

uN (t, x; ε) =
N∑
n=0

εnvn(t, x) +
N+m∑
n=m
∗=±

εnKΛ∗h∗n(t, x; ε)

and its remainder term by

RN+1(u; ε) = u(t, x; ε) − uN (t, x; ε).

Our main result is

Theorem 6.2. Let T be a fixed positive number. Let f ∈ C∞
0 ([0, T ] ×

Rd× [0, ε0]) and gj ∈ C∞
0 (Rd× [0, ε0]) with their supports contained in fixed

compact sets independent of ε. For any p,N ∈ N , there exists a positive

constant C independent of ε such that for any ε ∈ (0, ε0],

C ε2(N+1)−2

≥
∫ T

0

p∑
j=0

ε2j
(
ε2 ‖ Dm+j+1RN+1(u; ε)(t) ‖2

+ ‖ Dm+jRN+1(u; ε)(t) ‖2
)
dt

+
p∑

j=0

ε2j
(
ε2 ‖ Dm+j+1RN+1(u; ε)(T ) ‖2

+ ‖ Dm+jRN+1(u; ε)(T ) ‖2
)
.

Corollary. For any k,N0 ∈ N and positive T , there exist N1 ∈ N

such that for any N ≥ N1 there exists a positive constant CN,N0 independent

of ε such that

sup
0≤t≤T

x∈Rd

∑
j+|α|≤k

|Dj
tD

α
xRN+1(u; ε)(t, x)| ≤ CN,N0ε

N0 .
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Proposition 6.2. The remainder term RN+1(u; ε) satisfies

{ (iε)2L+M}RN+1(u; ε)(6.5)

= RN+1(f ; ε) + εN+1ρ(t, x; ε) + εN+1χ(t, x; ε),

D j
tRN+1(u; ε)(0, x) = RN+1(gj ; ε) + εN+1ηj(x; ε),

0 ≤ j ≤ m,

Dm+1
t RN+1(u; ε)(0, x) = RN+1(gm+1; ε) + εNηm+1(x; ε),

where

ρ(t, x; ε) =
∑

p+q≥N−1
0≤p≤N−2
1≤q≤N

εp+q+1−NL(p)vq(6.6)

−
∑

p+q≥N+1
1≤p≤N
1≤q≤N

εp+q−N−1M (p)vq

+
N∑
q=0

εq
(
ε1−NRN−1(L; ε) − ε−N−1RN+1(M ; ε)

)
vq,

χ(t, x; ε) =
∑
∗=±


KΛ∗

∑
p+q≥N+1
1≤p,q≤N

εp+q−N−1T ∗(p)h∗m+q(6.7)

+ ε−N−1RN+1(K
∗, P̃ ; ε)


 N∑
q=0

εqh∗m+q




 ,
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and where


ηj(x; ε) =
∑

m−j+p+q≥N+1
max{N−m+1,0}≤p≤N

0≤q≤j,∗=±

εm−j+p+q−N−1W
∗(q)
j (h∗p+m)

ηm(x; ε) = −
∑

p+q≥N+1
max{N−m+1,0}≤p≤N

1≤q≤m,∗=±

εp+q−N−1W ∗(q)
m (h∗p+m),

ηm+1(x; ε) = −ε
∑

p+q≥N+2
max{N−m+1,0}≤p≤N

2≤q≤m+1,∗=±

εp+q−N−2W
∗(q)
m+1(h

∗
p+m)

+gm+1,N

−
{
Dm+1
t vN (0, x)

+
∑

1≤q≤min{m+1,N+1}
∗=±

W
∗(q)
m+1

(
h∗m+N+1−q

)
 .

(6.8)

Proof. Firstly,

{ (iε)2L+M}


u(t, x; ε) − N∑

q=0

εqvq(t, x)




= f(t, x; ε) +



N−2∑
p=0

N∑
q=0

εp+q+2L(p) −
N∑
p=0

N∑
q=0

εp+qM (p)


 vq

+
N∑
q=0

εq
(
ε2RN−1(L; ε) −RN+1(M ; ε)

)
vq

= f(t, x; ε) −M (0)v0 − ε
(
M (0)v1 +M (1)v0

)

+
N∑
n=2

εn



n−2∑
p=0

(
L(p) −M (p+2)

)
vn−2−p −M (0)vn −M (1)vn−1




+εN+1




∑
p+q≥N−1
0≤p≤N−2
1≤q≤N

εp+q+1−NL(p)vq −
∑

p+q≥N+1
1≤p≤N
1≤q≤N

εp+q−N−1M (p)vq



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+
N∑
q=0

εq
(
ε2RN−1(L; ε) −RN+1(M ; ε)

)
vq

= RN+1(f ; ε) + εN+1ρ(t, x; ε) by definition.

Secondly,

{ (iε)2L+M}
N+m∑
n=m

εnwn(t, x; ε)

= {−εm+2L+ εmM}
N∑
n=0

εnwm+n(t, x; ε)

= P̃ (t, x, εDt, εDx; ε)
N∑
q=0

εq
∑
∗=±

KΛ∗
(
h∗m+q

)

=
N∑
q=0

εq
∑
∗=±


KΛ∗

N∑
p=1

εpT ∗(p)h∗m+q +R∗
N+1(K, P̃ ; ε)h∗m+q




=
∑
∗=±


KΛ∗

N∑
n=1

εn
n∑

p=1

T ∗(p)h∗m+n−p




+εN+1
∑
∗=±

KΛ∗
∑

p+q≥N+1
1≤p,q≤N

εp+q−N−1T ∗(p)h∗m+q

+
∑
∗=±

R∗
N+1(K, P̃ ; ε)


 N∑
q=0

εqh∗m+q




= εN+1χ(t, x; ε) by definition.

We compute the initial condition.

D j
tRN+1(u; ε)(0, x) = gj(x; ε) −Dj

tuN (0, x; ε)

= gj(x; ε) −




N∑
n=0

εn
(
Dj
t vn
)

(0, x) +
N+m∑
p=m

εpDj
t

[∑
∗=±

KΛ∗h∗p

]
t=0




= RN+1(gj ; ε) +
N∑
n=0

εn
{
gj,n(x) −Dj

t vn(0, x)
}

−εm−j
N∑
n=0

εn
∑

0≤q≤min{j,n}
∗=±

W
∗(q)
j h∗m+n−q
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−εN+1
∑

p+q≥N+1
max{0,N−j+1}≤p≤N

1≤q≤j
∗=±

εm+p+q−j−N−1W
∗(q)
j

(
h∗p+m

)
.

When 0 ≤ j ≤ m− 1, this turns out to be

D j
tRN+1(u; ε)(0, x)

= RN+1(gj ; ε) +
m−j−1∑
n=0

εn
{
gj,n(x) −Dj

t vn(0, x)
}

+
N∑

n=m−j
εn


gj,n(x) −Dj

t vn(0, x) −
min{j,n−m+j}∑

q=0
∗=±

W
∗(q)
j

(
h∗n+j−q

)


−εN+1
∑

m−j+p+q≥N+1
max{0,N−m+1}≤p≤N

0≤q≤j
∗=±

εm+p+q−j−N−1W
∗(q)
j

(
h∗p+m

)

= RN+1(gj ; ε) + εN+1ηj(x; ε).

When j = m, we have

Dm
t RN+1(u; ε)(0, x)

= RN+1(gm; ε) +
N∑
n=0

εn {gm,n(x) −Dm
t vn(0, x)}

−
N∑
p=0

εp
m∑
q=0
∗=±

εqW ∗(q)
m

(
h∗p+m

)

= RN+1(gm; ε)

+
N∑
n=0

εn


gm,n(x) −Dm

t vn(0, x) −
min{m,n}∑

q=0
∗=±

W ∗(q)
m

(
h∗m+n−q

)


−εN+1
∑

p+q≥N+1
max{N−m+1,0}≤p≤N

1≤q≤m
∗=±

εp+q−N−1W ∗(q)
m

(
h∗p+m

)

= RN+1(gm; ε) + εN+1ηm(x; ε).

Finally, when j = m+ 1, we have

Dm+1
t RN+1(u; ε)(0, x)
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= RN+1(gm+1; ε) +
N∑
n=0

εn
{
gm+1,n(x) −Dm+1

t vn(0, x)
}

−ε−1
N∑
p=0

εp
m+1∑
q=0
∗=±

εqW
∗(q)
m+1

(
h∗p+m

)

= RN (gm+1; ε) − ε−1
∑
∗=±

W
∗(0)
m+1(h

∗
m)

+
N−1∑
n=0

εn
{
gm+1,n −Dm+1

t vn(0, x)

−
min{m+1,n+1}∑

q=0
∗=±

W
∗(q)
m+1

(
h∗m+n+1−q

)


+εNgm+1,N

−εN

Dm+1

t vN (0, x) +

min{m+1,N+1}∑
q=1
∗=±

W
∗(q)
m+1

(
h∗m+N+1−q

)


−εN+1
∑

p+q≥N+2
max{N−m+1,0}≤p≤N

2≤q≤m+1
∗=±

εp+q−N−2W
∗(q)
m+1

(
h∗p+m

)

= RN+1(gm+1; ε) + εNηm+1(x; ε). �

Proof of the main theorem 6.2.

(i) By the assumption on f(t, x; ε), we have∫ T

0
e−2γt‖DjRN+1(f ; ε)(t)‖2dt ≤ Cj,N (f)

γ
ε2(N+1),

and

‖DjRN+1(f ; ε)(0)‖2 ≤ Cj,N (f)ε2(N+1).

(ii)

∫ T

0
e−2γt‖Djρ(t; ε)‖2dt ≤ CN

∫ T

0
e−2γt

N∑
q=0

‖Dm+2+jvq‖2dt

≤ C ′
N .
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Here, C ′
N depends on the norms of {fj ; 0 ≤ j ≤ N}, {gj,k; 0 ≤ j ≤ m+1, 0 ≤

k ≤ N − 2}, {gj,N−1; 0 ≤ j ≤ m}, {gj,N ; 0 ≤ j ≤ m − 1} and on their

supports but it is bounded for ε by Proposition 5.4.

‖Djρ(0; ε)‖2 ≤ CN

N∑
q=0

‖Dm+2+jvq(0)‖2

≤ C ′′
N .

The dependence of C ′′
N is just like that of C ′

N .

(iii)

ε2j
∫ T

0
e−2γt‖Djχ(t)‖2dt ≤ C ′

N .

C ′
N depends on the norms of {Dl

tfq(0); 0 ≤ q ≤ N, 0 ≤ l + q ≤ N},
{gj,N ; 0 ≤ j ≤ m}, {gj,k; 0 ≤ j ≤ m+ 1, 0 ≤ k ≤ N − 1}, but it is bounded

for ε by Proposition 5.4. We have also

ε2j‖Djχ(0)‖2 ≤ C ′′
N .

(iv)
m+1∑
k=0

‖RN+1(gk; ε)‖2
m+1−k+j ≤ C ′

N ε
2(N+1),

p∑
j=0

{
ε2j+2

m∑
k=0

‖εN+1ηk(ε)‖2
m+1−k+j + ε2j+2‖εNηm+1‖2

j

}
≤ C ′′

N ε2(N+1).

C ′′
N depends on the norms of (a part of) {Dl

tfq(0); 0 ≤ l + q ≤ N + 1, 0 ≤
q ≤ N}, and {gj,k; 0 ≤ j ≤ m + 1, 0 ≤ k ≤ N}. We have the conclusion

from Theorem 2.2 applicable to (6.5). �
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