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Cross Ratio Varieties for Root Systems of Type A and

the Terada Model

By J. Sekiguchi

Abstract. The notion of cross ratio varieties for root systems is
introduced in [7]. Among others, in the case of the root system of type
An+2, it was conjectured (cf. Conjecture 2.2 in [7]) that the corre-
sponding cross ratio variety is isomorphic to the n-dimensional Terada
model which is a natural compactification of the complement in Pn of
the singular locus of the holonomic system of differential equations for
the Appell-Lauricella hypergeometric function FD. The purpose of this
article is to prove this conjecture.

1. Introduction

Let ∆ be an irreducible root system on an Euclidean space E over R

and let P(EC) be the complex projective space associated to E. For each

subroot system of type A3 in ∆, it is possible to define an A3-cross ratio

map of Z(∆) to CR(P), where Z(∆) is a Zariski open subset of P(EC) and

CR(P) � P1 (for the precise definition of Z(∆) and CR(P), see [7], §1). By

taking the product of the A3-cross ratio maps for all subroot systems of type

A3 in ∆, we obtain a map cr∆,A3 of Z(∆) to CR(P)m, where m is the num-

ber of subroot systems of type A3 in ∆. We put C′(∆, A3) = cr∆,A3(Z(∆))

and denote by C(∆, A3) its Zariski closure in CR(P)m following the notation

in [7].

We now assume that ∆ = ∆(An+2) is of type An+2. In this case, it

is easy to see that dim C(∆, A3) = n and that C(∆, A3) is regarded as a

compactification of the complement of the hypersurface Sn in Cn defined

by
n∏

j=1

{zj(1 − zj)}
∏
i<j

(zi − zj) = 0,

where z = (z1, · · · , zn) is a standard affine coordinate system of Cn (cf. [7]).

On the other hand, there is a natural compactification of Cn\Sn constructed
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in [9] which is called the (n-dimensional) Terada model and denotes Tn
in this article. Moreover, both C(∆, A3) and Tn admit W (An+2)-actions.

Noting these, we are led to ask a question whether C(∆, A3) is isomorphic

to Tn or not (cf. [7], Conjecture 2.2 (i)).

The purpose of this article is to give an answer affirmative to the ques-

tion above, namely, to prove that C(∆, A3) is isomorphic to Tn for each n.

Conjecture 2.2 in [7] is its easy consequence. The result of this article shows

that the notion of cross ratio varieties introduced in [7] is regarded as a

generalization of the Terada model to the case of root systems.

We are going to explain the contents of this article briefly. In §2, we

introduce a projective space with displacements which is denoted by Pn
dsp

to distinguish from the usual projective space and, by using it, we define

the (n-dimensional) Terada model Tn following [9]. In §3, we define the

cross ratio variety C(∆(An), A3) (cf. [7]) and its variations C(∆(An), A2),

C(∆(An), {A2, A3}). Among these three varieties, there are isomorphisms

C(∆(An), A3) � C(∆(An−1), {A2, A3}) � C(∆(An−1), A2),

which will be shown in §4. The Terada model is defined as a closed subvari-

ety of the product of a large number of projective spaces. For our purpose,

it is better to define it as a closed subvariety of the product of a smaller

number of projective lines, which will be done in §5. We next show that the

modification of the definition of the Terada model above is same as that of

C(∆(An−1), A2). This implies the our main result of this article.

Theorem.

(1) C(∆(An+1), A2) is non-singular.

(2) There is a W (An+2)-equivariant isomorphism of C(∆(An+1), A2) to

Tn.

In the last section, we give a remark on the relations among the Terada

model, cross ratio varieties of type A and other compactifications of the

configuration space of n points of the projective line.

The author thanks to Professor T. Oda for explaining him both the

constructions of the Terada model and stable n-pointed trees of projective

lines and sending him the preprint [4]. The author also thanks to the referee

for explaining an idea simplifying the proof of the main result (cf. the

arguments in §5.).
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2. Projective spaces with displacements and the Terada model

We begin with introducing the notion of a projective space with dis-

placement which was constructed in [9]. The argument below is based on

[4].

For each t = (t1, t2, · · · , tn) ∈ Cn and a ∈ C\{0}, we put a · t =

(at1, · · · , atn). Let [t] for t ∈ Cn be the set {a · t; a ∈ C\{0}}. Then the

(n− 1)-dimensional projective space Pn−1 is the totality of [t], t ∈ Cn\{0}.
We define the diagonal map ιn of C to Cn by ιn(a) = (a, · · · , a) ∈ Cn for

each a ∈ C\{0}. Moreover, we put (t1, · · · , tn) + ιn(a) = (t1 + a, · · · , tn + a)

for (t1, · · · , tn) ∈ Cn and a ∈ C. We denote by [[t]] the set [t+ ιn(a)], a ∈ C.

The totality of [[t]], t ∈ Cn\ιn(C), is called the (n−2)-dimensional projective

space with displacement (cf. [9], [4]) which is denoted by Pn−2
dsp to distinguish

it from the projective space in the usual sense.

There is a natural identification between Pn−2
dsp and Pn−2. In fact, for

each [[t]] = [[t1, · · · , tn]] ∈ Pn−2
dsp , we put σ([[t]]) = [t1 − tn, · · · , tn−1 − tn].

Then it is clear that σ induces a bijection between Pn−2
dsp and Pn−2.

For a finite set F , we put CF = {(tf )f∈F ; tf ∈ C, f ∈ F} stressing

the affine coordinate system t = (tf )f∈F parametrized by F . Using the

coordinate (tf )f∈F instead of (t1, · · · , tn), we introduce PF and PF
dsp by an

argument similar to that defining Pn−1 and Pn−2
dsp . We now take x ∈ PF

dsp.

Then there is t = (tf )f∈F such that x = [[t]]. In this case, we write xF (f) =

tf (∀f ∈ F ) for simplicity. In spite that xF (f)(f ∈ F ) depends on the choice

of t ∈ CF , the ratio of xF (i) − xF (j) and xF (i) − xF (k) (i, j, k ∈ F ) does

only on x if one of xF (i)−xF (j), xF (i)−xF (k) is not zero. In the argument

below, it is sufficient to treat the ratio (xF (i) − xF (j))/(xF (i) − xF (k)).

We are going to introduce the Terada model. For this purpose, we define

a product of projective spaces with displacements:

P̃F
dsp =

∏
I⊂F,�I>2

PI
dsp.(1)

Let prF,I be the projection of P̃F
dsp to PI

dsp. For each x ∈ P̃F
dsp, we put xI =

prF,I(x). Using the notation introduced above, we write xI = [[xI(i)]]i∈I .

Definition 1. (cf. [9], [4].) Let TF be the subvariety of P̃F
dsp defined
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as follows. A point x ∈ P̃F
dsp is contained in TF if and only if

MD(I, J) (xI(i) − xI(k))(xJ(j) − xJ(k))

= (xI(j) − xI(k))(xJ(i) − xJ(k)) ∀i, j, k ∈ I,

where (I, J) runs through all the pairs of subsets of F such that I ⊂ J ,

�I > 2.

Remark 1. Since (xI(i)−xI(k))/(xI(j)−xI(k)) depends only on xI =

prF,I(x), the condition MD(I, J) is well-defined.

If F and F ′ are finite sets such that �F = �F ′, it is clear that TF � TF ′ .

Noting this, we frequently write Tn instead of TF in the case where n =

�F − 2. In this note, Tn is called the (n-dimensional) Terada model. The

Terada model has some nice properties. For example, Tn is non-singular

and admits a biregular W (An+2)-action, where W (An+2) is the Weyl group

of type An+2 which is isomorphic to the symmetric group on n + 3 letters.

3. Cross ratio varieties for root systems of type A

In this section, we review the definition of cross ratio varieties for root

systems of type A introduced in [7] and its variations.

We first recall the definition of root systems of type A (cf. [1]).

Let εj (j = 1, · · · , n, n+1) be a standard basis of the (n+1)-dimensional

Euclidean space Ẽ over R. We identifiy Ẽ with Rn+1 by the correspondence

t =
n+1∑
i=1

tiεi −→ (t1, · · · , tn, tn+1).

Let E be a linear subspace of Ẽ defined by t1 + · · ·+ tn + tn+1 = 0. The set

∆(An) consisting of

εj − εk (j �= k)

is a root system of type An on E (cf. [1]).

Let P(EC) be the projective space associated to EC = E ⊗R C. Then

P(EC) consists of [t], t ∈ EC\{0}, t1 + · · · + tn + tn+1 = 0. It is clear that

P(EC) is identified with Pn−1
dsp . Let Z(∆(An)) be the complement in P(EC)

of the union of hyperplanes tj = tk (j �= k).
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Subroot systems of type Ap in ∆(An) are parametrized by subsets of

Nn = {1, · · · , n, n + 1} of cardinality p + 1. In fact, if I = {i1, i2, · · · , ip+1}
is a subset of Nn such that �I = p + 1, then

εj − εk (j, k ∈ I, j �= k)

form a root system of type Ap. We denote by ∆(I) the subroot system thus

defined in this note.

In the cases p = 2, 3, we are going to define a map of Z(∆(An)) to

CR(P) corresponding to I, where CR(P) is a linear subspace of P2 with

homogeneous coordinate [ξ1 : ξ2 : ξ3] defined by ξ1 + ξ2 + ξ3 = 0 (cf. [7], §1).

We first treat the case p = 3. Corresponding to I, we define a map

crA3,I of Z(∆(An)) to CR(P) by

crA3,I(t) = [(ti1 − ti2)(ti3 − ti4) : −(ti1 − ti3)(ti2 − ti4) : (ti1 − ti4)(ti2 − ti3)],

where I = {i1, i2, i3, i4}. The definition of crA3,I depends on the ordering of

i1, i2, i3, i4. But for our purpose, this dependence is not important. There-

fore we may take one of such orderings. Taking the product of all the maps

of the form crA3,I , we define

cr∆(An),A3
=

∏

I⊂Nn,�I=4

crA3,I .

We next treat the case p = 2. Then, corresponding to I, we define a

map crA2,I of Z(∆(An)) to CR(P) by

crA2,I(t) = [ti1 − ti2 : ti2 − ti3 : ti3 − ti1 ],

where I = {i1, i2, i3}. As in the case p = 4, we may take one of the orderings

on i1, i2, i3 for the definition of crA2,I . In this case, we define

cr∆(An),A2
=

∏

I⊂Nn,�I=3

crA2,I .

Definition 2. We put

C′(∆(An), A3) = cr∆(An),A3
(Z(∆(An))),

C(∆(An), A3) = C′(∆(An), A3),
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C′(∆(An), A2) = cr∆(An),A2
(Z(∆(An))),

C(∆(An), A2) = C′(∆(An), A2),

C′(∆(An), {A2, A3}) = (cr∆(An),A2
× cr∆(An),A3

)(Z(∆(An))),

C(∆(An), {A2, A3}) = C′(∆(An), {A2, A3}),

and call C(∆(An), A3) (resp. C(∆(An), A2), C(∆(An), {A2, A3})) the cross

ratio variety for the root system ∆(An) of type (∆(An), A3) (resp.

(∆(An), A2), (∆(An), {A2, A3})).

Remark 2. (i) The relation between the map crA3,I and the cross ratio

in the usual sense was explained in [7], §1.

(ii) The cross ratio variety C(∆(An), A3) was introduced and studied in

[7], §2 and C(∆(An), A2) was referred to in [7], §6.

The set C′(∆(An), A3) is identified with a Zariski open subset of Cn−2,

which we are going to explain. Let z = (z1, · · · , zn−2) be a standard affine

coordinate system of Cn−2. As in the introduction, let Sn−2 be the hyper-

surface of Cn−2 defined by the equation

n−2∏
i=1

{zi(1 − zi)}
∏
i<j

(zi − zj) = 0.(2)

We now state a lemma which is easy to prove (cf. [7], Lemma 2.1).

Lemma 1. We put

zj(t) =
(tj − tn+1)(tn−1 − tn)

(tj − tn)(tn−1 − tn+1)
(j = 1, 2, · · · , n− 2)(3)

for all t = (t1, · · · , tn, tn+1) ∈ Z(∆(An)) and define the map F of Z(∆(An))

to Cn−2 by

t −→ (z1(t), · · · , zn−2(t)).

Then F (Z(∆(An))) = Cn−2\Sn−2.

We now show that C(∆(An), A3) is a compactification of Cn−2\Sn−2.

This is a consequence of the lemma below.
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Lemma 2. We have an isomorphism:

C′(∆(An), A3) � Cn−2\Sn−2.(4)

Proof. For t = (t1, · · · , tn, tn+1) ∈ Z(∆(An)), it is easy to compute

the following identities (in the below, j, k, l,m(= 1, 2, · · · , n−2) are mutually

different):




zk(t)

zj(t)
=

(tk − tn+1)(tj − tn)

(tk − tn)(tj − tn+1)
,

1 − zk(t)

1 − zj(t)
=

(tk − tn−1)(tj − tn)

(tk − tn)(tj − tn−1)
,

zj(t)(1 − zk(t))

zk(t)(1 − zj(t))
=

(tj − tn+1)(tk − tn−1)

(tj − tn−1)(tk − tn+1)
,

zj(t) − zk(t)

zj(t) − zl(t))
=

(tj − tk)(tl − tn)

(tj − tl)(tk − tn)
,

zl(t)(zj(t) − zk(t))

zj(t)(zl(t) − zk(t))
=

(tj − tk)(tl − tn+1)

(tj − tl)(tj − tn+1)
,

(1 − zl(t))(zk(t) − zj(t))

(1 − zj(t))(zk(t) − zl(t))
=

(tk − tj)(tl − tn−1)

(tk − tl)(tj − tn−1)
,

(zj(t) − zk(t))(zl(t) − zm(t))

(zl(t) − zk(t))(zj(t) − zm(t))
=

(tj − tk)(tl − tm)

(tk − tl)(tj − tm)
.

(5)

In virtue of (3), (5), we find that for each subset I of Nn with �I = 4,

crA3,I(t) (t ∈ Z(∆(An))) is expressed by zj(t), j = 1, 2, · · · , n − 2. There-

fore, noting the definition of C′(∆(An), A3), we easily show the isomorphism

(4). �

On the other hand, Tn−2 is also regarded as a compactification of

Cn−2\Sn−2 as we are going to explain below briefly. By the correspondence

(z1, · · · , zn−2) −→ [z1 : · · · : zn−2 : 1],

Cn−2 is embedded in Pn−2. Under the identification σ between Pn−2
dsp �

Pn−2 given in §2, Cn−2\Sn−2 corresponds to the Zariski open subset (Pn−2
dsp )′

of Pn−2
dsp defined by

(Pn−2
dsp )′ = {[[t1, · · · , tn]] ; (t1, · · · , tn) ∈ Cn, ti �= tj(i �= j)}.(6)
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Moreover we put

T ′
n−2 = {x ∈ Tn−2, prF,F (x) ∈ (Pn−2

dsp )′},(7)

where F = Nn−1 and prF,F is the projection of P̃n−2
dsp to Pn−2

dsp defined in §2.

Then clearly

T ′
n−2 � (Pn−2

dsp )′ � Cn−2\Sn−2

and therefore Tn−2 is a compactification of Cn−2\Sn−2.

Remark 3. The hypersurface Sn−2 in Cn−2 is nothing but the singu-

lar locus of the holonomic system of differential equations for the Appell-

Lauricella hypergeometric function of n− 2 variables FD.

4. Isomorphisms among C(∆(An), A3), C(∆(An−1), {A2, A3}) and

C(∆(An−1), A2)

The main purpose of this section is to prove isomorphisms in Theorem

1 below.

Theorem 1. We have the isomorphism:

C(∆(An), A3) � C(∆(An−1), {A2, A3}) � C(∆(An−1), A2).(8)

This theorem is a consequence of the following two propositions.

Proposition 1. C(∆(An), A3) � C(∆(An−1), {A2, A3}).

Proposition 2. C(∆(An), A2) � C(∆(An), {A2, A3}).

This section is devoted to prove these two propositions.

Proof of Proposition 1. For u = (u1, u2, · · · , un) ∈ Cn such that

ui �= uj (i �= j) and that
∑n

j=1 uj = 0, we put

wj(u) =
un−1 − un
uj − un

, j = 1, 2, · · · , n− 2.(9)
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Then 


wk(u)

wj(u)
=

uj − un
uk − un

,

wj(u)(1 − wk(u))

wk(u)(1 − wj(u))
=

uk − un−1

uj − un−1
,

wl(u)(wj(u) − wk(u))

wj(u)(wl(u) − wk(u))
=

uj − uk
uj − ul

,

(10)




1 − wk(u)

1 − wj(u)
=

(uk − un−1)(uj − un)

(uk − un)(uj − un−1)
,

wj(u) − wk(u)

wj(u) − wl(u)
=

(uj − uk)(ul − un)

(uj − ul)(uk − un)
,

(1 − wl(u))(wk(u) − wj(u))

(1 − wj(u))(wk(u) − wl(u))
=

(uk − uj)(ul − un−1)

(uk − ul)(uj − un−1)
,

(wj(u) − wk(u))(wl(u) − wm(u))

(wl(u) − wk(u))(wj(u) − wm(u))
=

(uj − uk)(ul − um)

(uk − ul)(uj − um)
.

(11)

(In the above, j, k, l,m(= 1, 2, · · · , n − 2) are mutually different.) We note

that the left-hand sides of equations in (5) coincide with those in (10) and

(11) by replacing zj(t) with wj(u) (j = 1, 2, · · · , n − 2). In virtue of (9),

(10) (resp. (11)), we find that for each subset I of Nn−1 such that �I = 3

(resp. �I = 4), crA2,I(u) (resp. crA3,I(u)) is expressed in terms of wj(u), j =

1, 2, · · · , n−2. Recalling the definition of C(∆(An−1), {A2, A3}), we conclude

from the arguments above that C(∆(An), A3) � C(∆(An−1), {A2, A3}) and

the proposition follows. �

We are going to prove Proposition 2. For this purpose, we prepare the

following lemma.

Lemma 3. C(∆(A3), A2) � C(∆(A3), {A2, A3}).

Proof. For t = (t1, t2, t3, t4) ∈ Z(∆(A3)), we put

(σ1,4 : σ1,2 : σ1,3) = (t2 − t3 : t3 − t4 : t4 − t2),

(σ2,4 : σ2,1 : σ2,3) = (t1 − t3 : t3 − t4 : t4 − t1),

(σ3,4 : σ3,1 : σ3,2) = (t1 − t2 : t2 − t4 : t4 − t1),

(σ4,3 : σ4,1 : σ4,2) = (t1 − t2 : t2 − t3 : t3 − t1),

(12)

(τ1 : τ2 : τ3) = ((t1 − t2)(t3 − t4) :(13)

−(t1 − t3)(t2 − t4) : (t1 − t4)(t2 − t3)).
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The right-hand sides of these equations are images of cross ratio maps. It

is easy to show the identity equations among σi,j and τi given below:

σ1,2σ2,3σ3,1 + σ1,3σ2,1σ3,2 = 0, σ1,2σ2,4σ4,1 + σ1,4σ2,1σ4,2 = 0,

σ1,3σ3,4σ4,1 + σ1,4σ3,1σ4,3 = 0, σ2,3σ3,4σ4,2 + σ2,4σ3,2σ4,3 = 0,
(14)

τ1σ2,4σ3,1 + τ2σ2,1σ3,4 = 0, τ1σ4,2σ1,3 + τ2σ4,3σ1,2 = 0,

τ2σ3,2σ4,1 + τ3σ3,1σ4,2 = 0, τ2σ2,3σ1,4 + τ3σ2,4σ1,3 = 0,

τ3σ4,3σ2,1 + τ1σ4,1σ2,3 = 0, τ3σ3,4σ1,2 + τ1σ3,2σ1,4 = 0.

(15)

We denote by σ1, σ2, σ3, σ4 the left-hand sides of equations in (12) in order

and by τ the left-hand side of (13). Let X be the subvariety of CR(P)4

with coordinate σ = (σ1, σ2, σ3, σ4) satisfying the relation (14) and Ỹ be

the subvariety of CR(P)5 with coordinate (σ, τ) = (σ1, σ2, σ3, σ4, τ) sat-

isfying the relations (14), (15). Then it follows from the definition that

C(∆(A3), A2) (resp. C(∆(A3), {A2, A3})) is a closed subvariety of X (resp.

Ỹ ). In particular, C(∆(A3), A2) is identified with the subvariety Y of Ỹ

defined by

Y = {(σ, τ) ∈ CR(P)5; σ ∈ C(∆(A3), A2), (σ, τ) ∈ Ỹ }.

The correspondence (σ, τ) → σ defines a natural projection πY of Y �
C(∆(A3), {A2, A3}) to C(∆(A3), A2).

We are going to prove that πY is an isomorphism. To prove this, it

suffices to show that for any (σ, τ) ∈ Y satisfying σ ∈ C(∆(A3), A2), τ ∈
CP (P) is uniquely determined by equation (15). If σ ∈ C′(∆(A3), A2),

all of σi,j do not vanish, so the claim is clear. Therefore we assume that

σ �∈ C′(∆(A3), A2). Then, since at least one of σi,j is zero, we may assume

that σ4,3 = 0 without loss of generality. In this case, σ4,1 = −σ4,2 �= 0 and

it follows from (14) that

σ1,2σ2,3σ3,1 + σ1,3σ2,1σ3,2 = 0, σ1,2σ2,4 − σ1,4σ2,1 = 0,

σ1,3σ3,4 = 0, σ2,3σ3,4 = 0.
(16)

In virtue of (16), there are two possibilities:

Case (I): σ3,4 = 0.

Case (II): σ3,4 �= 0 and σ1,3 = σ2,3 = 0.

In Case (I), it is easy to show that

σ1 = σ2 = 0, τ = (0 : 1 : −1).
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On the other hand, in Case (II), we find that τ = σ3.

By the argument above, we find that (σ, τ) ∈ Y depends only on σ ∈
C(∆(A3), A2) and the lemma follows. �

Remark 4. Under the notation in Lemma 3, X actually coincides with

C(∆(A3), A2). In fact, it is provable that (14) is a defining equation of

C(∆(A3), A2).

Still we treat the cross ratio variety C(∆(A3), A2) for the root system

∆(A3). We are going to define a map φ of C(∆(A3), A2) to CR(P). For

each x ∈ C(∆(A3), A2), it follows from Lemma 3 that there is a unique

τ ∈ CR(R) such that (x, τ) ∈ C(∆(A3), {A2, A3}). Then φ(x) = τ .

We return to the general case, that is, the case where n is arbitrary and

start to prove Propisition 2.

Proof of Propisition 2. We are going to define a map of

C(∆(An), A2) to C(∆(An), A3). If I = {i1, i2, i3, i4} is a subset of Nn such

that �I = 4, we put

+An,I =
4∏

k=1

π(An,A2),I\{ik}.

Then

+An,I(C(∆(An), A2)) = C(∆(I), A2).

Since ∆(I) is a root system of type A3, we can define a surjective map of

C(∆(I), A2) to CR(P) by an argument similar to that constructing the map

φ. We denote this map by φ∆(I). Then φ∆(I) ◦+An,I is a surjective map of

C(∆(An), A2) to CR(P). Moreover we define

φ̃∆(An) =
∏

I⊂Nn,�I=4

φ∆(I) ◦+An,I .

For each x ∈ C(∆(An), A2), we put

η∆(An)(x) = (x, φ̃∆(An)(x)).

Then η∆(An) defines a map of C(∆(An), A2) to C(∆(An), {A2, A3}).
To prove Proposition 2, it suffices to show that the map η∆(An) is an

isomorphism of C(∆(An), A2) to C(∆(An), {A2, A3}). But this is clear from
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the definition of η∆(An). In fact, for each x ∈ C(∆(An), A2), we find that

both πA2,A3 ◦η∆(An) and η∆(An) ◦πA2,A3 are the identity maps, where πA2,A3

denotes the natural projection of C(∆(An), {A2, A3}) to C(∆(An), A2).

We have thus proved Proposition 2. �

5. A simplification of the Terada model

For our purpose, it is better to simplify the definition of Tn. This section

is devoted to this subject. We begin with introducing a product space of

projective spaces with displacements modifying the definition of P̃F
dsp (cf.

(1)): (
P̃F

dsp

)
rest

=
∏

I⊂F,�I=3

PI
dsp

and a natural projection

TR : P̃F
dsp −→

(
P̃F

dsp

)
rest

defined by TR((xI)I⊂F,�I>2) = (xI)I⊂F,�I=3. Then

TF,rest = TR(TF )

is a closed subvariety of
(
P̃F

dsp

)
rest

.

Lemma 4. The restriction of TR to TF gives an isomorphism between

TF and TF,rest.

Proof. For any x ∈ TF , we write x = (xI)I⊂F,�I>2. We are going to

prove that for each subset J of F with �I > 3, xJ is uniquely determined by

TR(x). From the definition, there are i, j ∈ J such that xJ(i) − xJ(j) �= 0.

For any k ∈ J with k �= i, j, we put I = {i, j, k}. Then it follows from the

condition MD(I, J) of Definition 1 that

(xI(i) − xI(j))(xJ(k) − xJ(i)) = (xI(k) − xI(i))(xJ(i) − xJ(j)).(17)

If xI(i)−xI(j) = 0, the assumption combined with (17) implies that xI(k)−
xI(j) = 0, which contradicts the definition of PI

dsp. Therefore xI(i)−xI(j) �=
0. Then (17) turns out to be

xJ(k) − xJ(i) =
xI(k) − xI(i)

xI(i) − xI(j)
· (xJ(i) − xJ(j)).(18)
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Since, for any k′ ∈ J with k′ �= i, j, an equation for xJ(k′) − xJ(i) similar

to (18) holds, we conclude that xJ = [[xJ(j)]]j∈J is uniquely determined by

TR(x).

As a consequence, TR|TF is bijective. Moreover, in virtue of the equa-

tions of the form (18) and that TF is non-singular, we find that TF,rest is

also non-singular and

TR : TF −→ TF,rest

is an isomorphism between algebraic varieties. �

At the first appearance, the conditions MD(I, J) of Definition 1 for all

pair (I, J) induce no relation for TF,rest as a subvariety of
(
P̃F

dsp

)
rest

. We

are going to mention equations defining TF,rest. Let J = {i, j, k, l} be a

subset of F with �J = 4. We put Im = J\{m} for each m ∈ J . Then we

have the following.

Lemma 5. Let x = (xI)I⊂F,�I=3 ∈
(
P̃F

dsp

)
rest

. If x is contained in

TF,rest, then

(xIi(k) − xIi(l))(xIj (i) − xIj (l))(xIk(j) − xIk(l))(19)

= (xIi(j) − xIi(l))(xIj (k) − xIj (l))(xIk(i) − xIk(l)).

This lemma is proved by an easy but a little lengthy argument, using

MD(Im, J) (m ∈ J).

Remark 5. The author does not know whether the equations of the

form (19) for all i, j, k, l ∈ F actually define the variety TF,rest or not.

Last in this section, we give an identification between PI
dsp and CR(P)

for each I ⊂ F , �I = 3. This is eatablished by the correspondence

xI −→ [xI(j) − xI(k) : xI(k) − xI(i) : xI(i) − xI(j)]

in the case where I = {i, j, k}.
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6. The main theorem

In this section, we consider the case �F = Nn+2. Therefore TF,rest �
TF � Tn. In this case, it follows from the argument at the last part of the

previous section that TF,rest is regarded as a closed subvariety of CR(P)m,

where m = �{I; I ⊂ Nn+2, �I = 3}. On the other hand, C(∆(An+1), A2) is

also a closed subvariety of CR(P)m.

We are going to show that the construction of TF,rest is same as that

of C(∆(An+1), A2). In fact, we recall the definition of TF . We denote by

(PF
dsp)

′ the totality of xF ∈ PF
dsp such that xF (i) − xF (j) �= 0 for i �= j (cf.

(6)). Moreover, we put (cf. (7))

T ′
F = {x = (xI)I⊂F,�I>2 ∈ TF ;xF ∈ (PF

dsp)
′},

T ′
F,rest = TR(T ′

R).

Cleraly, T ′
F,rest is Zariski open in TF,rest. Taking a subset I = {i, j, k} of F ,

we write down the relation MD(I, F ). Then

(xI(i) − xI(k))(xF (j) − xF (k)) = (xI(j) − xI(k))(xF (i) − xF (k)).

This implies that if x = (xI)I⊂F,�I=3 is contained in (TF,rest)′, there is

xF ∈ (PF
dsp)

′ such that xI = [xF (j)−xF (k) : xF (k)−xF (i) : xF (i)−xF (j)]

for all subset I of F with �I = 3. Comparing the argument above with the

definition of C(∆(An+1), A2), we have proved the following.

Theorem 2. The varieties TF,rest(� TF ) and C(∆(An+1), A2) are iso-

morphic.

As an easy consequence of Theorem 2, we obtain the theorem below

which is nothing but Conjecture 2.2 in [7].

Theorem 3. (i) The variety C(∆(An), A3) is non-singular.

(ii) The complement of C′(∆(An), A3) in C(∆(An), A3) is the union of

hypersurfaces Y∆(An),A3
(∆(I)), where I runs through all the subsets of Nn

such that 1 < �I < n.

Proof. The claim (i) is a consequence of Theorem 2 and (8).

The claim (ii) follows from Theorem 2 and the arguments in [9], [4] and

[7], §2. �
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Remark 6. It is known (cf. [9]) that the Weyl group W (An+2) acts on

Tn biregularly. This coincides with the W (An+2)-action on the cross ratio

variety C(∆(An+2), A3)(� Tn).

We are going to explain a relation between this action and the W (An)-

action on a Cartan subgroup H of SL(n + 1,C). We take α1, · · · , αn ∈
∆(An) as a system of simple roots with Dynkin diagram:

α1 ——— α2 ——— · · · · · ·——— αn

We regard each α ∈ ∆(An) as a character on H which we denote by χα.

Putting βj =
∑j

i=1 αi (j = 1, 2, · · · , n), we define a map χ of H to Pn �
Pn

dsp by χ(g) = [χβ1(g) : · · · : χβn(g) : 1] for each g ∈ H. If H ′ = {g ∈
H; χα(g) �= 1 (∀α ∈ ∆(An))}, then H ′ coincides with Cn\Sn under the

identification of Cn with a subset of Pn explained in §3. Therefore Tn �
C(∆(An+2), A3) is regarded as a compactification of H ′. The W (An)-action

on H ′ induces the biregular W (An)-action on Pn which is identified with

the group of permutations among homogeneous coordinates. This action on

Pn is extended to a birational W (An+2)-action which coincides with that

induced from the W (An+2)-action on C(∆(An+2), A3).

A Cartan subalgebra of the Lie algebra sl(n + 3,R) is regarded as a

standard representation space of W (An+2). Then, roughly speaking, there

is a W (An+2)-equivariant map of a Cartan subalgebra of sl(n+3,C) with a

natural linear W (An+2)-action to a Cartan subgroup of SL(n + 1,C) with

the birational W (An+2)-action explained before.

A similar situation occurs when we consider the W (D4)-action on a

Cartan subgroup H of the simple group SO(8,C)/{±1}. In this case, the

W (D4)-action on H is biregular and is extended to a birational W (E6)-

action (cf. [3], [6]).

7. Concluding remarks

After the work was done, the author was informed by N. Takayama

(Kobe Univ.) of the work of M. M. Kapranov(cf. [12]). It is stated in [11],

[12] that there are several works on compactifications of the configuration

space of n-points of the projective line and the subject goes back to A.

Grothendieck (cf. [10]). We here list up such compactifications.

(C1) The Grothendieck-Knudsen moduli space M0,n (cf. [10], 1972, [13],

1983).
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(C2) The n-dimensional Terada model Tn (cf. [9], 1983).

(C3) The Gerritzen-Herrlich-van der Put compactification of stable n-

pointed trees of projective lines (cf. [2], 1988).

(C4) Kapranov’s Chow quotient G(2, n)//H (cf. [12]).

(C5) The cross ratio variety C(∆(An+2), A3).

It seems to be true the equivalence of (C1) and (C3), because the definitions

of them are quite similar. T. Oda ([4]) proved the isomorphism between

Tn and the compactification (C3). On the other hand, M. M. Kapranov

([12] proved the isomorphism M0,n � G(2, n)//H. For these reasons, it is

plausible that the compactifications (C1)-(C5) are mutually isomorphic.
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