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The logarithmic forms of k-generic arrangements

By Ki-Suk Lee and Hiroaki Terao1

Abstract. A (central) arrangement A is a finite family of one
codimensional subspaces of a vector space V . Relations between the
module of logarithmic forms of A and the module of logarithmic forms
of A \ {H} are studied. It is found that the logarithmic q-forms of A
are generated by the logarithmic forms of the type dα

α if A is k-generic
and q ≤ k − 2.

1. Introduction

1.1. The Setup of This Paper

Let V be an l-dimensional vector space over a field K. Let A be a central

arrangement in V : A is a finite family of one-codimensional subspaces of

V . Let L(A) be the set of intersections of elements of A. We agree that

V ∈ L(A) as the empty intersection. For X ∈ L(A), let r(X) be the

codimension of X in V . We say that a hyperplane H is k − generic to A
if X �⊆ H for every X ∈ L(A) with r(X) < k. An arrangement A is said

to be k − generic if every hyperplane H in A is k-generic to A \ {H}. Let

S denote the symmetric algebra S(V ∗) of the dual space V ∗ of V . Then S

can be considered as the K-algebra of all polynomial functions on V . Let

0 ≤ q ≤ l. Let Ωq[V ] denote the S-module of all regular(=polynomial)

q-forms on V . Then each Ωq[V ] is a free S-module of rank
(l
q

)
. For each

H ∈ A, choose αH ∈ V ∗ such that ker(αH) = H. Let

Q = Q(A) =
∏

H∈A
αH ∈ S.

Define

Ωq(A) = {ω | ω is a rational q−form on V such that

Qω ∈ Ωq[V ] and Q(dω) ∈ Ωq+1[V ]},
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which is called the module of logarithmic q-forms with pole along A. Define

Ωq 〈A〉 =
q∧
< dα1/α1, · · · , dαn/αn, dx1, · · · , dxl >

where A = {ker(α1), · · · , ker(αn)}. Obviously Ωq 〈A〉 ⊆ Ωq(A) for each q.

1.2. The Aim

Kita and Noumi [1], Rose and Terao [3] proved that Ωq(A) = Ωq 〈A〉 for

an l-generic arrangement A, where q = 0, · · · , l − 2. The aim of this paper

is to generalize the result to k-generic arrangements. We will prove:

Theorem 1. We have

Ωq(A) = Ωq 〈A〉

for a k-generic arrangement A, where q = 0, · · · , k − 2.

Ziegler announced exactly the same generalization in [4, Theorem 7.4]

with incomplete proof. However he gave a detailed proof for k=3, in other

words, he proved that “Ω1(A) = Ω1 〈A〉, if A is 3-generic”.

2. The Residue map

2.1. The setup

Fix H ∈ A in this section. Let A′ = A\{H} and A′′ = {K∩H|K ∈ A′}.
Then A′ is an arrangement in V called the deletion of A. The arrangement

A′′ is called the restriction of A to H. We call A, A′, A′′ a triple of ar-

rangements and H the distinguished hyperplane. Choose αH ∈ V ∗ with

ker(αH) = H. Let Q′ = Q/αH . Then Q′ defines A′. Let x1, · · · , xl be a

basis for V ∗.

2.2. The Residue

Lemma 2. [4, Lemma 3.6]

For any ω ∈ Ωq(A), there exist a rational (q− 1)-form ω′ and a rational

q-form ω′′ such that

1. ω = ω′ ∧ (dαH/αH) + ω′′,

2. Q′ω′ and Q′ω′′ are both regular (no pole).
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Lemma 3. [3, Lemma 2.2.2]

Let ω ∈ Ωq(A). Choose a rational (q− 1)-form ω′ and a rational q-form

ω′′ such that

1. ω = ω′ ∧ (dαH/αH) + ω′′,

2. neither ω′ nor ω′′ has a pole along H.

Then the restriction ω′|H of the ω′ to H depends only upon ω (and H).

Definition. For ω ∈ Ωq(A), the restriction of ω′ in Lemma 3 to H is

called the residue of ω and is denoted by res(ω).

2.3. A Short Exact Sequence

Let H in A be 3-generic to A \ {H}. Let A,A′,A′′ be the triple of

arrangements with H the distinguished hyperplane.

Lemma 4. For any ω ∈ Ωq(A), res(ω) ∈ Ωq−1(A′′). In other words,

one can define a K-linear map

res : Ωq(A) → Ωq−1(A′′).

Proof. Write

ω = ω′ ∧ (dαH/αH) + ω′′

as in Lemma 2. Since H is 3-generic, res(ω) = ω′|H has at most a simple

pole along A′′. Since dω ∈ Ωq+1(A), write

dω = η′ ∧ (dαH/αH) + η′′,

where both Q′η′ and Q′η′′ are regular. Then one has

dω′ ∧ (dαH/αH) + dω′′ = dω = η′ ∧ (dαH/αH) + η′′.

Since neither dω′ nor dω′′ has a pole along H, from Lemma 3,

η′|H = dω′|H = d(res(ω)).

Since H is 3-generic, d(res(ω)) has at most a simple pole along A′′. Therefore

res(ω) ∈ Ωq−1(A′′). �
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Lemma 5. The sequence 0 → Ωq(A′) → Ωq(A) → Ωq−1(A′′) is exact

for q ≥ 1.

Proof. For ω ∈ Ωq(A′), we can choose ω′ = 0 and ω′′ = ω in lemma

3. Thus res(ω) = 0. We can assume that αH = x1. We may (uniquely)

choose ω′ and ω′′ such that ω = ω′ ∧ (dx1/x1) + ω′′ and neither ω′ nor ω′′

contains dx1. Suppose

ω′|H = res(ω) = 0.

Then every coefficient of ω′ is divisible by x1. So Q′ω is regular. Also, dω

has no pole along H either. Therefore ω ∈ Ωq(A′). �

3. Proof of Theorem 1

In section 3.1, we give a proof for 3-generic arrangement. In section 3.2,

we prove Theorem 1.

3.1. 3-Generic Case

Let A be a 3-generic arrangement. The aim is to show that Ω1(A) =

Ω1 〈A〉. We want to show by induction on |A|. If A is an empty arrangement,

Ω1(A) = Ω1 〈A〉 =< dx1, · · · , dxl >. Suppose |A| ≥ 1 and H ∈ A. Since

|A′| < |A|, by induction assumption it is enough to show that

Ω1(A) = SdαH/αH + Ω1(A′)

where H = ker(αH),A′ = A \ {H}.

Lemma 6. If H in A is 3-generic to A \ {H},

Ω1(A) = SdαH/αH + Ω1(A′)

where H = ker(αH),A′ = A \ {H}.

Remark. The above lemma was first proved by Ziegler in [4, Lemma

6.1]. It was derived from his “Strong Preparation Lemma for 1-forms” [4,

theorem 5.1]. Here, we give a new proof of it.

Proof. Let Q and Q′ be the defining equations for A and A′ respec-

tively. Then Q = Q′αH . Let η := ωQ. Then η ∈ Ω1[V ]. We can choose η1

and η2 such that

η = η1dαH + αHη2,
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where η1 ∈ S, η2 ∈ Ω1[V ]. Similarly, for any K ∈ A′,

η = η′1dαK + αKη′2.

We have

η1dαH − η′1dαK = αKη′2 − αHη2.

Now, wedge dαK both sides. Then

η1dαH ∧ dαK = (η′2αK − η2αH) ∧ dαK .

We get

η1 ∈ (αH , αK).

But K is an arbitrary element in A. Thus, η1 ∈ ⋂
K∈A′(αH , αK). Since

H is 3-generic, η1 ∈ (αH ,
∏

K∈A′αK) = (αH , Q′). For some f1, f2 ∈ S,

η1 = f1αH + f2Q
′.

ω = η/Q′αH

= (η1dαH + αHη2)/Q
′αH

= (f1αHdαH + f2Q
′dαH + αHη2)/Q

′αH

= f2dαH/αH + (f1dαH + η2)/Q
′.

= f2dαH/αH + ω′′,

where ω′′ = (f1dαH +η2)/Q
′. Since ω ∈ Ω1(A) and f2dαH/αH ∈ Ω1(A), we

have ω′′ ∈ Ω1(A). This implies ω′′ ∈ Ω1(A′) because ω′′ has no pole along

H. �

Remark. It may be natural to try to generalize the above lemma as

follows:

Let k be an integer such that 3 ≤ k ≤ l. If H in A is k-generic to A′,
then Ωq(A) = Ωq−1(A′) ∧ dαH/αH + Ωq(A′) for q = 1, · · · , k − 2.

We may call the above generalization a “Strong Preparation Lemma for

k-forms (k ≥ 1)”. If it were true, we could prove Theorem 1 easily applying

the “ Strong Preparation Lemma for k-forms (k ≥ 1)” repeatedly. But,

unfortunately, we have some counter examples to this generalization: Let

A′ be an arrangement defined by Q′ = xyzw(x+z)(x+w)(y+z)(y+w)(x+
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y + z + w). Let H be a hyperplane defined by αH = x− y + 2z + 3w. Let

A = A′ ∪ {H}. Then H is 4-generic to A′. But in this case, Ω2(A) �=
Ω1(A′) ∧ dαH/αH + Ω2(A′). This fact can be shown by use of the Gröbner

basis program “Macaulay” by D. Bayer and M. Stillman, and “Matroid” by

P. Edelman to compute the intersection lattice.

3.2. General Case
The proof of Theorem 1 will be done by double induction on |A| and k.

|A|=0 or k=3 cases are the starting points of the induction. Let us consider
the following diagram.

0 −−−−−→ Ωq 〈A′〉
j1−−−−−→ Ωq 〈A〉

res1−−−−−→ Ωq−1 〈A′′〉 −−−−−→ 0
�

i′

�
i

�
i′′

0 −−−−−→ Ωq(A′)
j2−−−−−→ Ωq(A)

res2−−−−−→ Ωq−1(A′′)

where i′, i, i′′, j1 and j2 are inclusions, res1 and res2 are the residue maps.

We know that |A′| < |A|, and A′′ is (k − 1)-generic if A is k-generic. So by

induction assumption, i′, i′′ are the identity maps. Let ω ∈ Ωq(A). Since

res1 is surjective, there is η ∈ Ωq 〈A〉 such that res1(η) = res2(ω). Note

res1(η) = res2(η). Then ξ := ω − η is in ker(res2). From Lemma 5., we

know that ker(res2)=im(j2). Now ξ ∈ Ωq(A′) = Ωq 〈A′〉. This says that

ω = η + ξ is in Ωq 〈A〉. So Ωq(A) = Ωq 〈A〉.

Since the converse of Theorem 1 can be easily proved as in [4, Theorem

7.4], we have

Theorem 7. An arrangement A is k-generic if and only if Ωq(A) =

Ωq 〈A〉 for 0 ≤ q ≤ k − 2.
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