The logarithmic forms of k-generic arrangements

By Ki-Suk LEE and Hiroaki TERAO¹

Abstract. A (central) arrangement \mathcal{A} is a finite family of one codimensional subspaces of a vector space V. Relations between the module of logarithmic forms of \mathcal{A} and the module of logarithmic forms of $\mathcal{A} \setminus \{H\}$ are studied. It is found that the logarithmic q-forms of \mathcal{A} are generated by the logarithmic forms of the type $\frac{d\alpha}{\alpha}$ if \mathcal{A} is k-generic and $q \leq k-2$.

1. Introduction

1.1. The Setup of This Paper

Let V be an l-dimensional vector space over a field **K**. Let \mathcal{A} be a central arrangement in V: \mathcal{A} is a finite family of one-codimensional subspaces of V. Let $L(\mathcal{A})$ be the set of intersections of elements of \mathcal{A} . We agree that $V \in L(\mathcal{A})$ as the empty intersection. For $X \in L(\mathcal{A})$, let r(X) be the codimension of X in V. We say that a hyperplane H is k – generic to \mathcal{A} if $X \not\subseteq H$ for every $X \in L(\mathcal{A})$ with r(X) < k. An arrangement \mathcal{A} is said to be k – generic if every hyperplane H in \mathcal{A} is k-generic to $\mathcal{A} \setminus \{H\}$. Let S denote the symmetric algebra $S(V^*)$ of the dual space V^* of V. Then S can be considered as the **K**-algebra of all polynomial functions on V. Let $0 \leq q \leq l$. Let $\Omega^q[V]$ denote the S-module of all regular(=polynomial) q-forms on V. Then each $\Omega^q[V]$ is a free S-module of rank $\binom{l}{q}$. For each $H \in \mathcal{A}$, choose $\alpha_H \in V^*$ such that ker $(\alpha_H) = H$. Let

$$Q = Q(\mathcal{A}) = \prod_{H \in \mathcal{A}} \alpha_H \in S.$$

Define

$$\Omega^{q}(\mathcal{A}) = \{ \omega \mid \omega \text{ is a rational } q\text{-form on } V \text{ such that} \\ Q\omega \in \Omega^{q}[V] \text{ and } Q(d\omega) \in \Omega^{q+1}[V] \},$$

¹first author's current address: Korea National University of Education, Chongwon, Choongbook 363-791, Korea

¹⁹⁹¹ Mathematics Subject Classification. Primary 52B30; Secondary 32S25.

which is called the module of logarithmic q-forms with pole along \mathcal{A} . Define

$$\Omega^{q} \langle \mathcal{A} \rangle = \bigwedge^{q} \langle d\alpha_{1} / \alpha_{1}, \cdots, d\alpha_{n} / \alpha_{n}, dx_{1}, \cdots, dx_{l} \rangle$$

where $\mathcal{A} = \{ \ker(\alpha_1), \cdots, \ker(\alpha_n) \}$. Obviously $\Omega^q \langle \mathcal{A} \rangle \subseteq \Omega^q(\mathcal{A})$ for each q.

1.2. The Aim

Kita and Noumi [1], Rose and Terao [3] proved that $\Omega^q(\mathcal{A}) = \Omega^q \langle \mathcal{A} \rangle$ for an *l*-generic arrangement \mathcal{A} , where $q = 0, \dots, l-2$. The aim of this paper is to generalize the result to *k*-generic arrangements. We will prove:

THEOREM 1. We have

 $\Omega^q(\mathcal{A}) = \Omega^q \left\langle \mathcal{A} \right\rangle$

for a k-generic arrangement \mathcal{A} , where $q = 0, \dots, k-2$.

Ziegler announced exactly the same generalization in [4, Theorem 7.4] with incomplete proof. However he gave a detailed proof for k=3, in other words, he proved that " $\Omega^1(\mathcal{A}) = \Omega^1 \langle \mathcal{A} \rangle$, if \mathcal{A} is 3-generic".

2. The Residue map

2.1. The setup

Fix $H \in \mathcal{A}$ in this section. Let $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ and $\mathcal{A}'' = \{K \cap H | K \in \mathcal{A}'\}$. Then \mathcal{A}' is an arrangement in V called the *deletion* of \mathcal{A} . The arrangement \mathcal{A}'' is called the *restriction* of \mathcal{A} to H. We call $\mathcal{A}, \mathcal{A}', \mathcal{A}''$ a *triple* of arrangements and H the *distinguished* hyperplane. Choose $\alpha_H \in V^*$ with $\ker(\alpha_H) = H$. Let $Q' = Q/\alpha_H$. Then Q' defines \mathcal{A}' . Let x_1, \dots, x_l be a basis for V^* .

2.2. The Residue

LEMMA 2. [4, Lemma 3.6]

For any $\omega \in \Omega^q(\mathcal{A})$, there exist a rational (q-1)-form ω' and a rational q-form ω'' such that

- 1. $\omega = \omega' \wedge (d\alpha_H/\alpha_H) + \omega'',$
- 2. $Q'\omega'$ and $Q'\omega''$ are both regular (no pole).

LEMMA 3. [3, Lemma 2.2.2]

Let $\omega \in \Omega^q(\mathcal{A})$. Choose a rational (q-1)-form ω' and a rational q-form ω'' such that

1. $\omega = \omega' \wedge (d\alpha_H/\alpha_H) + \omega'',$

2. neither ω' nor ω'' has a pole along H.

Then the restriction $\omega'|_H$ of the ω' to H depends only upon ω (and H).

DEFINITION. For $\omega \in \Omega^q(\mathcal{A})$, the restriction of ω' in Lemma 3 to H is called the *residue* of ω and is denoted by $\operatorname{res}(\omega)$.

2.3. A Short Exact Sequence

Let H in \mathcal{A} be 3-generic to $\mathcal{A} \setminus \{H\}$. Let $\mathcal{A}, \mathcal{A}', \mathcal{A}''$ be the *triple* of arrangements with H the *distinguished* hyperplane.

LEMMA 4. For any $\omega \in \Omega^q(\mathcal{A})$, $\operatorname{res}(\omega) \in \Omega^{q-1}(\mathcal{A}'')$. In other words, one can define a **K**-linear map

$$\operatorname{res}: \Omega^q(\mathcal{A}) \to \Omega^{q-1}(\mathcal{A}'').$$

PROOF. Write

$$\omega = \omega' \wedge (d\alpha_H/\alpha_H) + \omega''$$

as in Lemma 2. Since H is 3-generic, $\operatorname{res}(\omega) = \omega'|_H$ has at most a simple pole along \mathcal{A}'' . Since $d\omega \in \Omega^{q+1}(\mathcal{A})$, write

$$d\omega = \eta' \wedge (d\alpha_H/\alpha_H) + \eta'',$$

where both $Q'\eta'$ and $Q'\eta''$ are regular. Then one has

$$d\omega' \wedge (d\alpha_H/\alpha_H) + d\omega'' = d\omega = \eta' \wedge (d\alpha_H/\alpha_H) + \eta''.$$

Since neither $d\omega'$ nor $d\omega''$ has a pole along H, from Lemma 3,

$$\eta'|_H = d\omega'|_H = d(res(\omega)).$$

Since *H* is 3-generic, $d(\operatorname{res}(\omega))$ has at most a simple pole along \mathcal{A}'' . Therefore $\operatorname{res}(\omega) \in \Omega^{q-1}(\mathcal{A}'')$. \Box

LEMMA 5. The sequence $0 \to \Omega^q(\mathcal{A}') \to \Omega^q(\mathcal{A}) \to \Omega^{q-1}(\mathcal{A}'')$ is exact for $q \ge 1$.

PROOF. For $\omega \in \Omega^q(\mathcal{A}')$, we can choose $\omega' = 0$ and $\omega'' = \omega$ in lemma 3. Thus $res(\omega) = 0$. We can assume that $\alpha_H = x_1$. We may (uniquely) choose ω' and ω'' such that $\omega = \omega' \wedge (dx_1/x_1) + \omega''$ and neither ω' nor ω'' contains dx_1 . Suppose

$$\omega'|_H = res(\omega) = 0.$$

Then every coefficient of ω' is divisible by x_1 . So $Q'\omega$ is regular. Also, $d\omega$ has no pole along H either. Therefore $\omega \in \Omega^q(\mathcal{A}')$. \Box

3. Proof of Theorem 1

In section 3.1, we give a proof for 3-generic arrangement. In section 3.2, we prove Theorem 1.

3.1. 3-Generic Case

Let \mathcal{A} be a 3-generic arrangement. The aim is to show that $\Omega^1(\mathcal{A}) = \Omega^1 \langle \mathcal{A} \rangle$. We want to show by induction on $|\mathcal{A}|$. If \mathcal{A} is an empty arrangement, $\Omega^1(\mathcal{A}) = \Omega^1 \langle \mathcal{A} \rangle = \langle dx_1, \cdots, dx_l \rangle$. Suppose $|\mathcal{A}| \geq 1$ and $H \in \mathcal{A}$. Since $|\mathcal{A}'| < |\mathcal{A}|$, by induction assumption it is enough to show that

$$\Omega^1(\mathcal{A}) = Sd\alpha_H/\alpha_H + \Omega^1(\mathcal{A}')$$

where $H = \ker(\alpha_H), \mathcal{A}' = \mathcal{A} \setminus \{H\}.$

LEMMA 6. If H in \mathcal{A} is 3-generic to $\mathcal{A} \setminus \{H\}$,

$$\Omega^{1}(\mathcal{A}) = Sd\alpha_{H}/\alpha_{H} + \Omega^{1}(\mathcal{A}')$$

where $H = \ker(\alpha_H), \mathcal{A}' = \mathcal{A} \setminus \{H\}.$

REMARK. The above lemma was first proved by Ziegler in [4, Lemma 6.1]. It was derived from his "Strong Preparation Lemma for 1-forms" [4, theorem 5.1]. Here, we give a new proof of it.

PROOF. Let Q and Q' be the defining equations for \mathcal{A} and \mathcal{A}' respectively. Then $Q = Q'\alpha_H$. Let $\eta := \omega Q$. Then $\eta \in \Omega^1[V]$. We can choose η_1 and η_2 such that

$$\eta = \eta_1 d\alpha_H + \alpha_H \eta_2,$$

where $\eta_1 \in S, \eta_2 \in \Omega^1[V]$. Similarly, for any $K \in \mathcal{A}'$,

$$\eta = \eta_1' d\alpha_K + \alpha_K \eta_2'$$

We have

$$\eta_1 d\alpha_H - \eta_1' d\alpha_K = \alpha_K \eta_2' - \alpha_H \eta_2.$$

Now, wedge $d\alpha_K$ both sides. Then

$$\eta_1 d\alpha_H \wedge d\alpha_K = (\eta'_2 \alpha_K - \eta_2 \alpha_H) \wedge d\alpha_K.$$

We get

$$\eta_1 \in (\alpha_H, \alpha_K).$$

But K is an arbitrary element in A. Thus, $\eta_1 \in \bigcap_{K \in \mathcal{A}'} (\alpha_H, \alpha_K)$. Since H is 3-generic, $\eta_1 \in (\alpha_H, \prod_{K \in \mathcal{A}'} \alpha_K) = (\alpha_H, Q')$. For some $f_1, f_2 \in S$, $\eta_1 = f_1 \alpha_H + f_2 Q'$.

$$\omega = \eta/Q'\alpha_H
= (\eta_1 d\alpha_H + \alpha_H \eta_2)/Q'\alpha_H
= (f_1 \alpha_H d\alpha_H + f_2 Q' d\alpha_H + \alpha_H \eta_2)/Q'\alpha_H
= f_2 d\alpha_H/\alpha_H + (f_1 d\alpha_H + \eta_2)/Q'.
= f_2 d\alpha_H/\alpha_H + \omega'',$$

where $\omega'' = (f_1 d\alpha_H + \eta_2)/Q'$. Since $\omega \in \Omega^1(\mathcal{A})$ and $f_2 d\alpha_H/\alpha_H \in \Omega^1(\mathcal{A})$, we have $\omega'' \in \Omega^1(\mathcal{A})$. This implies $\omega'' \in \Omega^1(\mathcal{A}')$ because ω'' has no pole along H. \Box

REMARK. It may be natural to try to generalize the above lemma as follows:

Let k be an integer such that $3 \leq k \leq l$. If H in \mathcal{A} is k-generic to \mathcal{A}' , then $\Omega^q(\mathcal{A}) = \Omega^{q-1}(\mathcal{A}') \wedge d\alpha_H / \alpha_H + \Omega^q(\mathcal{A}')$ for $q = 1, \dots, k-2$.

y + z + w). Let H be a hyperplane defined by $\alpha_H = x - y + 2z + 3w$. Let $\mathcal{A} = \mathcal{A}' \cup \{H\}$. Then H is 4-generic to \mathcal{A}' . But in this case, $\Omega^2(\mathcal{A}) \neq \Omega^1(\mathcal{A}') \wedge d\alpha_H/\alpha_H + \Omega^2(\mathcal{A}')$. This fact can be shown by use of the Gröbner basis program "Macaulay" by D. Bayer and M. Stillman, and "Matroid" by P. Edelman to compute the intersection lattice.

3.2. General Case

The proof of Theorem 1 will be done by double induction on $|\mathcal{A}|$ and k. $|\mathcal{A}|=0$ or k=3 cases are the starting points of the induction. Let us consider the following diagram.

where i', i, i'', j_1 and j_2 are inclusions, res_1 and res_2 are the residue maps. We know that $|\mathcal{A}'| < |\mathcal{A}|$, and \mathcal{A}'' is (k-1)-generic if \mathcal{A} is k-generic. So by induction assumption, i', i'' are the identity maps. Let $\omega \in \Omega^q(\mathcal{A})$. Since res_1 is surjective, there is $\eta \in \Omega^q \langle \mathcal{A} \rangle$ such that $res_1(\eta) = res_2(\omega)$. Note $res_1(\eta) = res_2(\eta)$. Then $\xi := \omega - \eta$ is in ker (res_2) . From Lemma 5., we know that ker $(res_2) = \operatorname{im}(j_2)$. Now $\xi \in \Omega^q(\mathcal{A}') = \Omega^q \langle \mathcal{A}' \rangle$. This says that $\omega = \eta + \xi$ is in $\Omega^q \langle \mathcal{A} \rangle$. So $\Omega^q(\mathcal{A}) = \Omega^q \langle \mathcal{A} \rangle$.

Since the converse of Theorem 1 can be easily proved as in [4, Theorem 7.4], we have

THEOREM 7. An arrangement \mathcal{A} is k-generic if and only if $\Omega^q(\mathcal{A}) = \Omega^q \langle \mathcal{A} \rangle$ for $0 \leq q \leq k-2$.

References

 Kita, M. and M. Noumi, On the structure of cohomology groups attached to the integral of certain many-valued analytic functions, Japan. J. Math. 9 (1983), 113–157.

- [2] Orlik, P. and H. Terao, Arrangements of Hyperplanes, Grundlehren der Math. Wiss 300 Springer-Verlag, 1992.
- [3] Rose, L. and H. Terao, A free resolution of the module of logarithmic forms of a generic arrangement, J. Algebra **136** (1991), 376–400.
- [4] Ziegler, G., Combinatorial construction of logarithmic differential forms, Advances in Math. 76 (1989), 116–154.

(Received February 20, 1995)

Department of Mathematics University of Wisconsin Madison, WI 53706, USA