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On the growth of meromorphic functions

on the unit disc and conformal martingales

By Atsushi Atsuji

Abstract. The relations between divergence of integrals of mero-
morphic functions on the unit disc along Brownian paths and value
distribution of the meromorphic functions will be discussed.

In this note we wish to discuss some aspects of the behaviour of confor-

mal martingales related to Nevanlinna theory.

Let (Zt, Pz) be a complex Brownian motion on C and σ = inf{t > 0 :

|Zt| ≥ 1}.
We first consider the behaviour of conformal martingales under Pz defined

by such a form as

Xt =

∫ σ∧t

0
f(Zt)dZt,

where f is a meromorphic function on the unit disc ∆(1) in C.

We have

Theorem 1. Under the above situation if there exists α > 0 such that

(1)

∫ σ

0
|f |α(Zt)dt = ∞ Pz − a.s.

for any z in ∆(1), then

(2) αTf (ρ) ≥ 2 log
1

1 − ρ
as ρ → 1,
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where Tf (ρ) is the Ahlfors-Shimizu characteristic function of f defined by

Tf (ρ) =

∫
∆(ρ)

|f ′(z)|2
(|f(z)|2 + 1)2

gρ(0, z)dxdy

where ∆(ρ) = {z ∈ C : |z| < ρ} and gρ(w, z) is a usual green function of
1
2∆C on ∆(ρ).

We have the following as a corollary to the above theorem.

Corollary 1. If f satisfies the assumption of Theorem 1, then f

omits at most 2 + α
2 values.

It is a well-known fact that a conformal martingale Xt converges in C if

and only if

< X >∞=

∫ σ

0
|f |2(Zt)dt < ∞ a.s.

where < X >t is a usual quadratic variation of Xt.

Then we can relate the behaviour of Xt to the value distribution of f .

Corollary 2. If Xt does not converge as t → ∞ Pz− a.s. for all z

in ∆(1), then f can omit at most three points of C ∪ {∞}.

Since the poles of f are polar, then f ′(Zt) can be defined a.s for 0 < t <

σ. We also have the similar result for drivatives of meromorphic functions.

Corollary 3. If f(Zt) does not converge as t → ∞ Pz− a.s. for all

z in ∆(1), then

Tf ′(ρ) ≥ 2 log
1

1 − ρ
as ρ → 1.

Hence f ′ can omit at most three points of C ∪ {∞}.

We can show a defect relation for such functions satisfying (1) and it

leads the above corollaries. We define functions appeared in classical Nevan-

linna theory as in [5].

m(ρ, a) =

∫ 2π

0
log+ 1

|f(ρeiθ) − a|
dθ

2π
, m(ρ,∞) =

∫ 2π

0
log+ |f |(ρeiθ)dθ

2π

N(a, ρ) =
∑

f(ζ)=a,ζ∈∆(ρ)

log
ρ

|ζ| ( the sum counting with multiplicity)
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Nevanlinna’s second main theorem is as follows.

Proposition 1. Let f be a meromorphic function on ∆(1).

Then we have for β > 0

q∑
i=1

m(ρ, ai) +N1(ρ) ≤ 2Tf (ρ) +O(log Tf (ρ)) + (1 + β) log
1

1 − ρ

holds for ρ /∈ Eβ ⊂ [0, 1) with
∫
Eβ

1
1−ρdρ < ∞, where N1(ρ) is the counting

function for critical points of f defined by

N1(ρ) =
∑

f ′(ζ)=0,ζ∈∆(ρ)

log
ρ

|ζ| ( the sum counting with multiplicity).

We define the defect for f by

δ(a) = lim inf
ρ→1

(1 − N(a, ρ)

Tf (ρ)
).

Combining the above Nevanlinna’s theorem with (2) we immediately have

that under the assumption in the theorem 1

(3)

q∑
i=1

δ(ai) ≤ 2 +
α

2
.

If f omits a, then δ(a) = 1. Hence we have the Corollary 1.

(2) follows from the following.

Lemma 1. Let u(z) be a nonnegative function on ∆(1) satisfying that

u(Zt) is a local submartingale. If

(4)

∫ σ

0
eu(Zt)dt = ∞ Pz − a.s.

for Brownian motion Zt starting from any points z inside ∆(1), then

E[u(Zσρ)] ≥ 2 log
1

1 − ρ
as ρ → 1,
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where σρ = inf{t > 0 : |Zt| ≥ ρ}.

Since the poles of f are polar for Brownian motion, then u =

log+ |f |α(Zt) is a local submartingale. Then we can apply the above lemma

to this case.

The same method as Theorem 1 leads us to have the similar result for

the holomorphic cuves from the unit disc to Pn(C). Let f be a holomorphic

map from the unit disc to Pn(C). It can be expressed as (f0, . . . , fn) in

a homogeneous coordinate. Set |f |2 = (f1f0 )2 + · · · + (fnf0 )2 and ‖f‖2 =

|f0|2 + · · · + |fn|2. Let’s define a characteristic function, counting function

and defect of f . Let D be a hyperplane in Pn(C).

T (ρ) =

∫ 2π

0
log ‖f‖(ρeiθ)dθ

2π

N(ρ,D) =
∑

ζ∈f−1(D),ζ∈∆(ρ)

log
ρ

|ζ| ( the sum counting with multiplicity)

δ(D) = lim inf
ρ→1

(1 − N(ρ,D)

T (ρ)
).

Theorem 2. Let f be a nondegenerate holomorphic curve from ∆(1)

to Pn(C). If there exists α > 0 such that

∫ σ

0
|f |α(Zt)dt = ∞ a.s.

for Brownian motion Zt starting from any points inside ∆(1), then for any

q hyperplanes {Dj} in general position

q∑
i=1

δ(Di) ≤ n+ 1 +
n(n+ 1)

4
α.

As for the proof of this theorem the same procedure can be carried as

the theorem 1 where we have only to be careful to the remainder term of the

second main theorem. In this case it is just n(n+1)
2 log 1

1−ρ([6]) as mentioned

in §2.
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The related results of Theorem 1 and Theorem 2 are exposed in [4].

We next consider an analogy of the above result for a more general

conformal martingale under Pz, defined by such a form as

M0
t =

∫ t∧σ

0
g(Zs)dZs

M1
t =

∫ t∧σ

0
M0

s dZs,

where g is a locally bounded complex valued function on ∆(1).

We have

Theorem 3. If M1
t does not converge as t → ∞ Pz− a.s. for all z in

∆(1), then

E[ [M0,M0]σρ ] ≥ log
1

1 − ρ
,

where [M0,M0]t is the Riemannian quadratic variation ( c.f.[3]) of M0 on

P1.

Since M1 never hits any single points a.s, the phrase that ‘Mt omits a

point’ is meaningless. But we can verify the phrase that ‘Mt feels a point’

in a sense as we will define later.

Corollary 4. Assume that

E[log |g|2(Zσρ)] ≤ o(E[ [M (0),M (0)]σρ ]) as ρ ↑ ∞.

If M1
t does not converge as t → ∞ Pz− a.s. for all z in ∆(1), then M0

t

does not feel at most three points.

These topics will be treated in §3.

§1. Proof of Lemma 1

We note several facts on Brownian motion. Let Yt be a Brownian motion

on ∆(1) associated to the hyperbolic metric given by

ds2 =
4

(1 − |z|2)2 |dz|
2.
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We can write

(5) Yφt = Zt with φt =

∫ t

0

4

(1 − |Zs|2)2
ds.

Note that φ∞ = ∞a.s.

From now on we use hyperbolic length r for Euclidean length ρ, namely

r = log 1+ρ
1−ρ . Let rt be the hyperbolic length of Yt from the origin. Define

τr = inf{t > 0 : rt ≥ r}. Then our goal is to show

E[u(Yτr)] ≥ 2r as r → ∞.

Remark that by time change argument the condition (4) in the lemma 1

says in the words of Yt

(4′)

∫ ∞

0
eu(Yt)e−2rtdt = ∞.

Assume that there exists a sequence {rν ↑ ∞ ν = 1, 2, . . . } and 0 < δ < 1

such that
E[u(Yτrν )]

rν
≤ 2(1 − δ) < 0.

Fix ε > 0. Set

κν = inf{t ≥ τrν(1−ε) : σ(Yt)e
−2rt ≥ 1

r2
t + 1

}

The assumption (4′) implies that κν < ∞ a.s. for 0 ≤ ν < ∞ and κν ↑
∞ as ν ↑ ∞ a.s. Let θt be a shift on the Brownian path space Ω i.e.

(ω ◦ θt)(s) = ω(t+ s) for ω ∈ Ω. We can write κν = κ0 ◦ θτrν (1−ε)
+ τrν(1−ε),

where κν = inf{t ≥ 0 : σ(Yt)e
−2rt ≥ 1

r2t +1
}. Using the positivity of u and

the definition of κν

E[u(Yκν∧τrν )] = E[u(Yτrν ) : κν > τrν ] + E[u(Yκν ) : κν ≤ τrν ]

≥ E[2rκν + log
1

r2
κr + 1

: κν ≤ τrν ]

Since u(Yt) is a submartingale, the left hand side of the first line is bouded

by

E[u(Yτrν )] ≤ 2(1 − δ)rν .
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On the other hand side if P (κν ≤ τrν ) → 1 as ν → ∞, it is easy to see that

letting rν → ∞, we have

E[2rκν + log 1
r2κν+1

: κν ≤ τrν ]

rν
→ 2(1 − ε).

We here used that rt
t → 1 a.s. By the following lemma 2 and taking ε < δ,

this leads a contradiction.

Lemma 2. The notations are as above.

P (κν ≤ τrν ) → 1 as ν → ∞.

Proof. It is obvious that

P (κν ≤ τrν ) ≥ P (

∫ τr

τrν (1−ε)

σ(Yt)e
−2rtdt ≥

∫ τrν

τrν (1−ε)

1

r2
t + 1

dt).

It is easy to see that for a hyperbolic Brownian motion

rt
t

→
t↑∞

1 and
τr
r

→
r↑∞

1 a.s.

Using this fact we have

P (

∫ τrν

τ(1−ε)rν

1

r2
t + 1

dt ≤ 8

(1 − ε)rν
) → 1 as rν → ∞.

We write this event Gr. Set qr = 8
(1−ε)rν and Ct =

∫ t
0 σ(Ys)e

−2rsds. Hence

the underlined probaility is bounded below by

P (Cτrν − Cτ(1−ε)rν
≥ qr, Gr).

We estimate

P (Cτrν ◦ θτ(1−ε)rν
≥ qr).
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Let Sl = inf{t > 0 : Ct ≥ l}. By strong Markov property

P (Cτrν ◦ θτ(1−ε)rν
≥ qr) = E[PYτ(1−ε)rν

(Cτrν ≥ qr)]

= E[PYτ(1−ε)rν
(Cτrν ≥ CSqr

)]

= E[PYτ(1−ε)rν
(τrν ≥ Sqr)]

= P (τrν ◦ θτ(1−ε)rν
≥ Sqr ◦ θτ(1−ε)rν

).

Since τrν > τ(1−ε)rν ,

τrν ◦ θτ(1−ε)rν
= τrν − τ(1−ε)rν .

By the property of hyperbolic Brownian motion mentioned a few lines before

the right hand side diverges almost surely as rν tends to infinity. And the

continuity of Ct in t concludes Sε → 0 as ε → 0. This completes the proof.

§2. Proof of Theorem 2

As mentioned in the Introduction we have only to note the following

second main theorem. We use the notations in the Introduction.

Proposition 2. Let f be a nondegenerate holomorphic map from ∆(1)

to Pn and {Di ; i = 1, . . . , q} be hyperplanes of Pn in general position.

Then we have for β > 0

(q − n− 1)T (ρ) ≤
q∑

i=1

N(ρ,Di) +O(log T (ρ)) + (1 + β)
n(n+ 1)

2
log

1

1 − ρ

holds for ρ /∈ Eβ ⊂ [0, 1) with
∫
Eβ

1
1−ρdρ < ∞.

In Shabat’s book([6]) we can see the proof of the case that f is from C

to Pn. We understand that n(n+1)
2 comes from 1 + 2 + · · ·+ n in the proof.

(In the entire case the remainder term turns to β n(n+1)
2 log ρ. ) The log 1

1−ρ
remainder term comes from the following estimate. We use the notations

in §2.
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Lemma 3([1]). Let Yt be a hyperbolic Brownian motion on ∆(1) and

h(x) a function on ∆(1) satisfying that E[h(Yτr)] < ∞ for 0 < r < ∞.

Then

E[h(Yτr)] ≤ eβ r(E[

∫ τr

0
h(Ys)ds])

(β+1)2

holds for r /∈ Eβ ⊂ [0,∞) where the Lebesgue measure of Eβ is finite.

When rewrite the above inequality in the word of a complex Brownian

motion, the remainder term appears.

Corollary 5. Let Zt be a complex Brownian motion. Under the

above situation

E[log h(Zτr)] ≤ (β + 2)2 logE[

∫ σρ

0
h(Ys)

4

(1 − |Zs|2)2
ds]

+ (2 + β) log
1

1 − ρ
+O(1)

holds for ρ /∈ Eβ ⊂ [0, 1) with
∫
Eβ

1
1−ρdρ < ∞.

Proof. From Lemma 3 we have

E[h(Zσρ
4

(1 − |Zσρ |2)2
] ≤ eβ r(E[

∫ σρ

0
h(Zs)

4

(1 − |Zs|2)2
ds])(β+1)2 ,

with r = ρ+1
ρ−1 . With Jensen’s inequality we immediately have the desired

inequality. �

Remark. Though the remainder term of Corollary 5 is different from

one in the second main theorem, because we apply Corollary 5 to the proof

with deviding the both side of the corollary by 2, then in the final conclusion

it turns from 2 to 1.

§3. Related conformal martingales

We first see an analogy of Nevanlinna’s theorems as the Proposition 1

for M0 and M1.
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We regard M0 and M1 as conformal martingales on P1. We introduce

a Riemannian qudratic variation of conformal martingale M on P1 by

[M,M ]t =

∫ t

0

d < M >s

(1 + |Ms|2)2
,

where < M >t is the usual quadratic variation of M .

We remark that w∧w
(1+|w|2)2

is a cannonical Kähler form on P1, what is

called, Fubini-Study metric.

We note that if Mt = f(Zt) for f is a meromorphic function and Zt is a

complex Brownian motion, then we have

E[ [f(Z), f(Z)]σρ ] = Tf (ρ).

Let

‖x, a‖ =




|x−a|√
1+|x|2

√
1+|a|2

if a < ∞,

1√
1+|x|2

if a = ∞ (chordal distance on P 1) .

Set ua(w) = log ‖x, a‖−1.

We first have the following as in [2].

Proposition 3. Let M be a conformal martingale and T a stopping

time satisfying that E[ [M,M ]T ] < ∞. We have

E[ua(MT )] − E[ua(M0)] +N(T, a) = E[ [M,M ]T ],

where N(T, a) = limλ→∞ λP (ua(MT )∗ > λ) with ua(Mt)
∗ =

sup0≤s<t ua(Mt).

N(T, a) is an analogy Nevanlinna’s counting function of a−points.

Thus we say that a conformal martingale M does not feel a ∈ P1 if

N(T, a) = 0 for any stopping time T .

We remarked that in [1] we can get Nevanlinna’s second main theorem

only using estimates on some functionals of complex Brownian motions and

time-change argument. Since a conformal martingale is a time changed
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Brownian motion, we can carry the same procedure as the proof of Nevan-

linna’s theorem in [1].

Define conformal martingales M0,M1 mentioned introduction by

M0
t =

∫ t∧σ

0
g(Zs)dZs

M1
t =

∫ t∧σ

0
M0

s dZs,

where g is a locally bounded complex valued function on ∆(1) and Zt and

σ are the same as in the introduction.

Proposition 4. Let a1, . . . , aq be distinct points on P1. Then we have

for β > 0

q∑
i=1

E[ua(M
j
σρ)] +N j

1 (ρ) ≤ 2E[ [M j ,M j ]σρ ] +O(logE[ [M j ,M j ]σρ ])

+ (1 + β) log
1

1 − ρ
j = 0, 1

holds for ρ /∈ Eβ ⊂ [0, 1) with
∫
Eβ

1
1−ρdρ < ∞, where

N j
1 (ρ) =

{
E[log |g|2(Zσρ)] j = 0

E[log |M0
σρ |2] j = 1

We remark that N1
1 (ρ) is lower bounded.

The quite same method as the previous section leads us to the Theorem

3 and its corollary.
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