Notes on the integrability of exit times from unbounded domains of Brownian motion

By Atsushi Atsuji

Abstract

The integrability and the tail distribution of the first exit time from unbounded domain of Brownian motions will be considered. They are characterized by the growth order of the first eigen values of the intersection of domains and sphere with radius r and quasihyperbolic distance.

§1. Introduction

Let D be an unbounded domain with smooth boundary in a noncompact complete Riemannian manifold M and τ_{D} be the first exit time from D of Brownian motion on M or a diffusion with the generator $L=\frac{1}{2} \Delta_{M}+b ; b$ is a vector field. The purpose of this note is to give some conditions of some characteristics of D for the integrability of τ_{D} and to get some information on the tail of τ_{D}.

We consider some classes of diffusions such as Brownian motions on \mathbf{R}^{n}, spherically symmetric diffusions on \mathbf{R}^{n} and Brownian motion on some Riemannian manifolds with a curvature conditions. In the case that $M=$ \mathbf{R}^{n} and $L=\Delta$ we will see the following.
Let $B(r)=\left\{x \in \mathbf{R}^{n}:|x|<r\right\}$ and $S(r)=\left\{x \in \mathbf{R}^{n}:|x|=r\right\}$. Suppose that $0 \in D$.
If for some $\nu \in(0,1)$

$$
\varliminf_{r \rightarrow \infty} \frac{1}{\log r} \int_{0}^{\nu r} \alpha_{r} d r>2 p
$$

then $E_{0}\left[\tau_{D}^{p}\right]<\infty$, where $\alpha_{r}=-\frac{n-2}{2 r}+\sqrt{\lambda_{r}+\frac{(n-2)^{2}}{4 r^{2}}}$ and λ_{r} is the first eigenvalue of the Laplacian with Dirichlet boundary condition on $D \cap S(r)$.

The key to the proof is an estimate on a hitting probability such as

$$
\begin{equation*}
P\left(B_{\tau_{D_{r}}} \in D \cap S(r)\right) \leq \text { const. } \exp \left(-\int_{0}^{\nu r} \alpha_{r} d r\right) \tag{1.1}
\end{equation*}
$$

where D_{r} denotes $D \cap B(r)$.
This type estimate is known as Carleman-Tsuji inequality in classical complex function theory $([2,7,13,16])$. We can easily extend this inequality for the other diffusions mentioned before. In combining Burkholder type inequality ([1]) with such an estimate we have our result.
The converse of the above result depends on the following lower estimate.

$$
\begin{equation*}
P_{x}\left(B_{\tau_{D_{r}}} \in D \cap S(r)\right) \geq \text { const. } \exp (-\eta(x, D \cap S(r))) \tag{1.2}
\end{equation*}
$$

where $\eta(x, D \cap S(r))=\inf _{y \in D \cap S(r)} \eta(x, y)$ and $\eta(x, y)$ is quasi-hyperbolic distance in D from x to y ([17]). The definition of quasi-hyperbolic distance will be given in $\S 3$.

We first discuss these estimates in $\S 2$ and $\S 3$. Then we note how the above type estimates are joined to the Burkholder inequality in $\S 4$. Unfortunately we have different characteristics which are appeared in the upper and lower bounds in the right hand sides of (1.1) and (1.2) if D is general. But when D is a cone in \mathbf{R}^{n}, we can easily obtain equivalent upper and lower estimates with a little stochastic calculus in §5. These estimates will have several other applications to consider the tails of Brownian functionals. To give an example in $\S 6$ we obtain a condition for the finiteness of a special Feynman-Kac functional by using the method in the previous sections.

§2. A Carleman-Tsuji inequality

Let M be a complete Riemannian manifold. We first introduce geodesic polar coordinates which we often use from now on. In these coordinates the metric of M takes the form: $d s^{2}=d r^{2}+g_{i j} d \theta_{i} d \theta_{j}$. Let $G=\operatorname{det}\left(g_{i j}\right)^{1 / 2}$. The Laplacian takes the form:

$$
\begin{aligned}
\Delta_{M} & =\frac{\partial^{2}}{\partial r^{2}}+\frac{\frac{\partial G}{\partial r}}{G} \frac{\partial}{\partial r}+G^{-1} \frac{\partial}{\partial \theta_{i}}\left(G g^{i j} \frac{\partial}{\partial \theta_{j}}\right) \\
& =\frac{\partial^{2}}{\partial r^{2}}+\frac{\frac{\partial G}{\partial r}}{G} \frac{\partial}{\partial r}+\Delta_{\theta}
\end{aligned}
$$

where $\left(g^{i j}\right)$ is the inverse matrix of $\left(g_{i j}\right)$ and Δ_{θ} denotes the Laplacian on $S(r)$ with respect to the induced metric.

We here discuss a reason why we consider a Riemannian structure even in \mathbf{R}^{n}. Let $n \geq 3$.
Let a second order differential elliptic operator on $\mathbf{R}^{n}: A=\sum \frac{\partial}{\partial x_{i}}\left(a_{i j} \frac{\partial}{\partial x_{j}}\right)$ $\left(a_{i j}=a_{j i}\right)$ be given. Assume that A satisfies the uniform elliptic condition, that is, there exists constant $\lambda>0$ such that for any $\xi \in \mathbf{R}^{n}$

$$
\lambda^{-1}|\xi|^{2} \leq \sum a_{i j} \xi_{i} \xi_{j} \leq \lambda|\xi|^{2}
$$

We can find a Riemannian metric on \mathbf{R}^{n} from $\left(a_{i j}\right)$ by $a_{i j}=G g^{i j}, G=$ $\operatorname{det}\left(a_{i j}\right)^{\frac{1}{n-2}}$. Hence we turn \mathbf{R}^{n} into a Riemannian manifold M with a Riemannian metric $\left(g_{i j}\right)$ in a global coordinate. We have that $\Delta_{M}=G^{-1} A$. Then Δ_{M}-diffusion is a time-changed process of A-diffusion. It should be remarked that the uniform ellipticity of A implies that there exist constants $a_{1}, a_{2}>0$ such that $a_{1} \leq G=\operatorname{det}\left(a_{i j}\right)^{\frac{1}{n-2}} \leq a_{2}$. Let Δ_{M}-diffusion and A-diffusion be denoted by B_{t} and X_{t} respectively, and $\tau^{i}, i=1,2$ be hitting times to a domain in \mathbf{R}^{n} and $\sigma^{i}, i=1,2$ to another one of B_{t} and X_{t} respectively. Then

$$
\begin{aligned}
P\left(\tau^{1}<\sigma^{1}\right) & =P\left(\int_{0}^{\tau^{1}} G\left(B_{t}\right) d t<\int_{0}^{\sigma^{1}} G\left(B_{t}\right) d t\right) \\
& =P\left(\tau^{2}<\sigma^{2}\right)
\end{aligned}
$$

And since $P\left(\tau^{1}>t\right)=P\left(\int_{0}^{\tau^{1}} G\left(B_{t}\right) d t>\int_{0}^{t} G\left(B_{t}\right) d t\right)$, hence there exist constants $c_{1}, c_{2}>0$ such that

$$
P\left(\tau^{1}>c_{1} t\right) \leq P\left(\tau^{2}>t\right) \leq P\left(\tau^{1}>c_{2} t\right)
$$

Thus, as for our problem, the problem on A-diffusion is equivalent to one on Δ_{M}-diffusion.

Remark. It is usual to set that $g^{i j}=a_{i j}$. But the setting bears a drift term $\nabla \log G$. Since it is easier to treat a time-changed object than to do one with a drift, we prefer our setting to the other.

The diffusion process we consider in this paper has a generator with the form in this coordinates as

$$
L=\frac{1}{2} \Delta_{M}+b_{1}(r) \frac{\partial}{\partial r}+b_{2} \cdot \nabla_{\theta}
$$

where ∇_{θ} is the component to $T S(r)$ of ∇.
In this section we assume the following conditions on L.

$$
\frac{G^{\prime}(r, \theta)}{G(r, \theta)} \text { is a radial function. }
$$

Let us denote this function by $\psi(r)$.
Remark. The above condition is satisfied in the cases that M is \mathbf{R}^{n} and the diffusion is a spherically symmetric diffusion (i.e. the distribution of the diffusion is invariant under the actions of rotations. Of course this class includes Brownian motion.) and that a Riemannian maifold with constant curvature.

We note that this assumption can be removed in the following discussions with some conditions. But this yields the complicated forms of quantities in the estimates, for example $\gamma(r)$ in Proposition 2.1. For brevity we impose this condition.

In this section we also assume that $B(\delta) \subset D$ for some δ. Let $\theta_{r}=D \cap S(r)$ and $b_{2}(r)=\sup _{\theta \in \theta_{r}}\left|b_{2}(r, \theta)\right|$.

Let λ_{r} be the first eigenvalue for the Laplacian on $S(r)$ of the Dirichlet problem on θ_{r}, that is,

$$
\lambda_{r}=\inf _{\substack{u \in C^{\infty}\left(\theta_{r}\right) \\ u=0 \text { on } \partial \theta_{r}}} \frac{\int_{\theta_{r}}\left|\operatorname{grad}_{\theta} u(x)\right|^{2} d s_{r}}{\int_{\theta_{r}}|u(x)|^{2} d s_{r}} \quad \text { for } r>0
$$

where $d s_{r}$ is the volume form on $S(r)$ induced from the Riemannian metric and $\lambda_{0}=0$.

Let us write " $f^{\prime}(r) "$ for $" \frac{\partial f}{\partial r} "$.

Proposition 2.1. Let M have injectivity radius $i(o)$ for a point o and $\psi(r)=\frac{G^{\prime}(r, \theta)}{G(r, \theta)}$ independent of θ.
Assume that

$$
\frac{2(n-2)}{(n-1)^{2}} \psi^{2}+\frac{2(n-2)}{n-1} \psi^{\prime} \geq 0 \quad \text { for } r<i(o)
$$

and

$$
b_{2}(r) \lambda_{r}^{-1 / 2} \leq 1
$$

(i) If $b_{1} \equiv 0$, then there exists a positive constant c_{1} such that for $0<\nu<1$ and for $i(o)<r$

$$
P_{o}\left(X_{\tau_{D_{r}}} \in \theta_{r}\right) \leq c_{1} \exp \left(-\int_{\delta}^{\nu r} \alpha_{r} d r\right)
$$

where

$$
\begin{aligned}
\alpha_{r} & =-\gamma(r)+\sqrt{\left(1-b_{2}(r) \lambda_{r}^{-1 / 2}\right) \lambda_{r}+\gamma(r)^{2}} \\
\gamma(r) & =\sqrt{\frac{1}{4}\left\{(n-2)^{2}\left(\frac{g^{\prime}(r)}{g(r)}\right)^{2}+2(n-2) \frac{g^{\prime \prime}(r)}{g(r)}\right\}}
\end{aligned}
$$

and $g(r)$ is defined by

$$
\psi(r)=(n-1) g^{\prime}(r) / g(r) \text { with } g(\delta)=1
$$

(ii) If $b_{1} \not \equiv 0$ and for some $0<p<1$

$$
\sup _{x \in M} \int_{M} \int_{d(x, y)}^{\infty} e^{-\int_{1}^{r} \psi(t) d t} b_{1}(r)^{2} d r d V(y) \leq \sqrt{2 e^{-1} p^{-1}+1}-1
$$

then there exists a positive constant c_{2} such that for $i(o)<r$

$$
P_{o}\left(X_{\tau_{D_{r}}} \in \theta_{r}\right) \leq c_{2} \exp \left(-\left(1-\frac{1}{p}\right) \int_{\delta}^{\nu r} \alpha_{r} d r\right)
$$

where α_{r} is same as (i).

Proof of Proposition 2.1. (i) This proof is a slight modification of [16].
Set $u(x)=P_{x}\left(X_{\tau_{D_{R}}} \in \theta_{R}\right)$ and $m(r)^{2}=\int_{\theta_{r}} u(x)^{2} d s_{r}$, for $r<R$ where $d s_{r}$ is the volume form on $S(r)$ induced by the Riemannian metric on M. Since u vanishes on $\partial D_{r} \backslash \theta_{r}$, by Green formula

$$
\begin{aligned}
\int_{\theta_{r}} u^{2} d s_{r} & =\int_{\theta_{r}} u^{2} \frac{\partial r}{\partial r} d s_{r} \\
& =\int_{D_{r}}\left\{\Delta r u^{2}+<g r a d r, g r a d u^{2}>\right\} d V \\
& =\int_{D_{r}}\left\{\frac{G^{\prime}}{G} u^{2}+2 u u^{\prime}\right\} d V
\end{aligned}
$$

Differentiating $m(r)^{2}$ in r, we have

$$
\begin{equation*}
2 m(r) m^{\prime}(r)=2 \int_{\theta_{r}} u u^{\prime} d s_{r}+\int_{\theta_{r}} u^{2} \frac{G^{\prime}}{G} d s_{r} \tag{2.1}
\end{equation*}
$$

Using Green formula again on (2.1), we have
the right hand side of (2.1)

$$
\begin{aligned}
= & \int_{\theta_{r}} \frac{\partial}{\partial r} \log G(r, \theta) u^{2} d s_{r}+2 \int_{\theta_{r}} u u^{\prime} d s_{r} \\
= & \int_{D_{r}}\left\{\Delta \log G(r, \theta) u^{2}+<\operatorname{grad} u^{2}, \operatorname{grad} \log G>\right. \\
& \left.\quad+2|\operatorname{grad} u|^{2}+2 u \Delta u\right\} d V \\
= & \int_{D_{r}} u^{2}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{G^{\prime}}{G} \frac{\partial}{\partial r}\right) \log G d V+\int_{D_{r}} \Delta_{\theta} \log G(r, \theta) u^{2} d V \\
& \quad+\int_{D_{r}} 2 u u^{\prime} \frac{G^{\prime}}{G} d V \\
& \quad+\int_{D_{r}}\left\{<\operatorname{grad}_{\theta} u^{2}, \operatorname{grad}_{\theta} \log G>+2|\operatorname{grad} u|^{2}+2 u \Delta u\right\} d V
\end{aligned}
$$

where $\operatorname{grad}_{\theta}$ denotes gradient on $S(r)$.
Using Green formula on θ_{u} for $\delta<u<r$ again, we have that the right hand side $=\int_{D_{r}}\left\{\frac{G^{\prime \prime}}{G} u^{2}+2 u u^{\prime} \frac{G^{\prime}}{G}+2|\operatorname{grad} u|^{2}+2 u \Delta u\right\} d V$.

Then differentiating the both sides of (3.1) in r again, since u is L-harmonic,

$$
\begin{align*}
\left(2 m m^{\prime}\right)^{\prime}= & \int_{\theta_{r}}\left\{\frac{G^{\prime \prime}}{G} u^{2}+2 u u^{\prime} \frac{G^{\prime}}{G}+2|g r a d u|^{2}+2 u \Delta u\right\} d s_{r} \tag{2.2}\\
= & \int_{\theta_{r}}\left\{\frac{G^{\prime \prime}}{G} u^{2}+2 u u^{\prime} \frac{G^{\prime}}{G}+2|g r a d u|^{2}-2(b u) u\right\} d s_{r} \\
= & \int_{\theta_{r}}\left\{\frac{G^{\prime \prime}}{G} u^{2}+2 u u^{\prime} \frac{G^{\prime}}{G}+2\left(u^{\prime}\right)^{2}\right. \\
& \left.+2\left|\operatorname{grad}_{\theta} u\right|^{2}-2 b_{2} u u\right\} d s_{r}
\end{align*}
$$

By Schwarz inequality

$$
\begin{align*}
-\int_{\theta_{r}} b_{2} u u d s_{r} & \geq-b_{2}(r)\left(\int_{\theta_{r}}\left|\operatorname{grad}_{\theta} u\right|^{2} d s_{r}\right)^{1 / 2}\left(\int_{\theta_{r}} u^{2} d s_{r}\right)^{1 / 2} \tag{2.3}\\
& \geq-b_{2}(r) \lambda_{r}^{-1 / 2} \int_{\theta_{r}}\left|\operatorname{grad}_{\theta} u\right|^{2} d s_{r}
\end{align*}
$$

Using (2.1) and Schwarz inequality
(2.4) $\int_{\theta_{r}}\left(u^{\prime}\right)^{2} d s_{r}$

$$
\begin{aligned}
& \geq \frac{1}{m^{2}}\left(\int_{\theta_{r}} u u^{\prime} d s_{r}\right)^{2} \\
& =\frac{1}{m^{2}}\left(m m^{\prime}-\frac{1}{2} \int_{\theta_{r}} u^{2} \frac{G^{\prime}}{G} d s_{r}\right)^{2} \\
& =\frac{1}{m^{2}}\left\{m^{2}\left(m^{\prime}\right)^{2}-m m^{\prime} \int_{\theta_{r}} u^{2} \frac{G^{\prime}}{G} d s_{r}+\frac{1}{4}\left(\int_{\theta_{r}} u^{2} \frac{G^{\prime}}{G} d s_{r}\right)^{2}\right\} \\
& \geq\left(m^{\prime}\right)^{2}-\psi m m^{\prime}+\frac{1}{4} \psi^{2} m^{2}
\end{aligned}
$$

From (2.1), (2.3),(2.4) the right hand side of (2.2) is bounded from below by

$$
\left\{2\left(1-b_{2}(r) \lambda_{r}^{-1 / 2}\right) \lambda_{r}+\frac{1}{2} \psi^{2}+\psi^{\prime}\right\} m(r)^{2}+2\left(m^{\prime}\right)^{2}
$$

Hence, from this and (2.3), we obtain

$$
\begin{equation*}
m^{\prime \prime}(r) \geq \frac{1}{2}\left\{2\left(1-b_{2}(r) \lambda_{r}^{-1 / 2}\right) \lambda_{r}+\frac{1}{2} \psi^{2}+\psi^{\prime}\right\} m(r) \tag{2.5}
\end{equation*}
$$

Let $M(r)^{2}=\frac{1}{A(r)} m(r)^{2}$ where $A(r)=\int_{S(r)} d s_{r}$.
From (2.5) we have

$$
\begin{equation*}
\frac{M^{\prime \prime}}{M}+\psi \frac{M^{\prime}}{M} \geq \frac{1}{2}\left(1-b_{2}(r) \lambda_{r}^{-1 / 2}\right) \lambda_{r} \tag{2.6}
\end{equation*}
$$

We define $g(r)$ by

$$
\psi(r)=(n-1) \frac{g^{\prime}(r)}{g(r)} \text { with } g(\delta)=1
$$

We set $f(t)=\log M(r)^{2}+(n-2) \log g(r)$ and change the variable by $t=$ $\int_{\delta}^{r} \frac{d r}{g(r)}$. From (2.6), using $\dot{r}=g(r)$ and $\ddot{r}=g g^{\prime}$, we have

$$
\begin{aligned}
(\dot{r})^{-2}\left(2 \ddot{f}(t)+(\dot{f}(t))^{2}\right) \geq & 4\left(1-b_{2}(r) \lambda_{r}^{-1 / 2}\right) \lambda_{r} \\
& +(\dot{r})^{-2}\left\{(n-2)^{2}\left(g^{\prime}(r)\right)^{2}+2(n-2) g^{\prime \prime}(r) g(r)\right\}
\end{aligned}
$$

Our assumption implies that $(n-2)^{2}\left(g^{\prime}(r)\right)^{2}+2(n-2) g^{\prime \prime}(r) g(r) \geq 0$.
We let

$$
\tilde{\gamma}(t)=\sqrt{\frac{1}{4}\left\{(n-1)^{2}\left(g^{\prime}(r)\right)^{2}+2(n-2) g^{\prime \prime}(r) g(r)\right\}}
$$

(regarding as a function of $\left.t=\int_{\delta}^{r} \frac{d r}{g(r)}\right)$,

$$
\tilde{\beta}_{t}=-\tilde{\gamma}(t)+\sqrt{\left(1-b_{2}(r) \lambda_{r}^{-1 / 2}\right) \lambda_{r} g(r)^{2}+\gamma(t)^{2}}
$$

and $\tilde{\gamma}(t)=g(r)^{2} \gamma(r), \tilde{\beta}_{t}=g(r)^{2} \beta_{r}$. We have

$$
\left(\dot{f}(t)+\frac{\ddot{f}(t)}{\dot{f}(t)}\right)^{2} \geq\left(2 \tilde{\beta}_{t}+2 \tilde{\gamma}(t)\right)^{2}
$$

From (2.1) and Green formula we have

$$
\begin{aligned}
\frac{M^{\prime}}{M} & =2 \frac{m^{\prime}}{m}-\psi \\
& =2 \int_{\theta_{r}} u u^{\prime} d s_{r} \\
& =\int_{D_{r}}\left\{u \Delta u+|\operatorname{grad} u|^{2}\right\} d V \\
& \geq \int_{D_{r}}\left\{\left(u^{\prime}\right)^{2}+\left|\operatorname{grad}_{\theta} u\right|^{2}-\left(b_{2} u\right) u\right\} d V
\end{aligned}
$$

Then from Schwarz inequarity, (2.4) and the assumptions on b we have that $\frac{M^{\prime}}{M}>0$.

Since $\frac{M^{\prime}}{M}>0$ implies that \dot{f} is positive, so is $\dot{f}(t)+\frac{\ddot{f}(t)}{\dot{f}(t)}$, then

$$
\dot{f}(t)+\frac{\ddot{f}(t)}{\dot{f}(t)} \geq 2 \tilde{\beta}_{t}+2 \tilde{\gamma}(t)
$$

From this we have for $t_{2}>t_{1} \geq t(\delta)$

$$
\int_{t_{1}}^{t_{2}} \exp f(s) \dot{f}(s) d s \geq \exp f\left(t_{1}\right) \dot{f}\left(t_{1}\right) \int_{t_{1}}^{t_{2}} \exp \left(\int_{t_{1}}^{s}\left(2 \tilde{\beta}_{u}+2 \tilde{\gamma}(u)\right) d u\right) d s
$$

Rewriting this in the variable of r again

$$
\begin{aligned}
& M\left(r_{2}\right)^{2} g\left(r_{2}\right)^{n-2}-M\left(r_{1}\right)^{2} g\left(r_{1}\right)^{n-2} \\
& \geq M\left(r_{1}\right)^{2} g\left(r_{1}\right)^{n-2} \dot{f}\left(t_{1}\right) \int_{r_{1}}^{r_{2}} \exp \left(\int_{r_{1}}^{s} 2 \beta_{t}+2 \gamma(t) d t\right) \frac{d s}{g(s)} \\
& \geq M\left(r_{1}\right)^{2} g\left(r_{1}\right)^{n-2} \dot{f}\left(t_{1}\right) \int_{\nu r_{2}}^{r_{2}} \exp \left(\int_{r_{1}}^{s} 2 \gamma(t) d t\right) \frac{d s}{g(s)} \cdot \exp \int_{r_{1}}^{\nu r_{2}} \beta_{t} d t .
\end{aligned}
$$

Our assumption on the metric yields

$$
2 \gamma(r) \geq(n-2) g^{\prime}(r) / g(r)
$$

This implies that

$$
\frac{\int_{\nu r_{2}}^{r_{2}} \exp \left(\int_{r_{1}}^{s} 2 \gamma(t) d t\right) d s}{g\left(r_{2}\right)^{n-2}} \geq \text { const. }>0 .
$$

Hence

$$
1 \geq M(r)^{2} \geq \text { const. } M(\delta)^{2} \exp \int_{\delta}^{\nu r} \beta_{t} d t
$$

In combining this with sub-mean property of u^{2} or Harnack inequality on u we obtain i). (We can show Harnack inequality in this situation ([3])).
(ii) Let $X_{t}=\left(r_{t}, \theta_{t}\right)$ be the diffusion treated in (i) with $b_{1} \equiv 0$ and

$$
d r_{t}=d B_{t}+\frac{1}{2} \psi\left(r_{t}\right) d t
$$

where B_{t} is an 1-dimensional standard Brownian motion.
Set

$$
M_{t}=\exp \left(\int_{0}^{t} b_{1}\left(r_{s}\right) d B_{s}-\frac{1}{2} \int_{0}^{t} b_{1}\left(r_{s}\right)^{2} d s\right)
$$

Let \hat{X}_{t} be the diffusion in this case with $b_{1} \not \equiv 0$. The formula of transformation of drift $([8,15])$ implies that

$$
\hat{P}_{x_{0}}\left(\hat{X}_{\tau_{D_{r}}} \in \theta_{r}\right)=E\left[M_{\tau_{D_{r}}} ; X_{\tau_{D_{r}}} \in \theta_{r}\right]
$$

In rather vulgar way, using Hölder inequality the above right hand side is bounded by

$$
E\left[M_{\tau_{D_{r}}}^{p}\right]^{1 / p} P\left(X_{\tau_{D_{r}}} \in \theta_{r}\right)^{1-1 / p}
$$

Thus we estimate $E\left[M_{\tau_{D_{r}}}^{p}\right]$.
Set $Y_{t}=\int_{0}^{t} b_{1}\left(r_{s}\right) d B_{s}-\frac{1}{2} \int_{0}^{t} b_{1}\left(r_{s}\right)^{2} d s$ and $c_{r}=\sup _{x \in D_{r}} E_{x}\left[\left|Y_{\tau_{D_{r}}}\right|\right]$.
From the proof of John-Nirenberg inequality for BMO-martingale([6,15]) we have

$$
E\left[M_{\tau_{D_{r}}}^{p}\right] \leq \frac{c_{r}}{1-e p c_{r}}
$$

On the other hand

$$
\begin{aligned}
E_{x}\left[\left|Y_{\tau_{D_{r}}}\right|\right] & \leq E_{x}\left[\left|\int_{0}^{\tau_{r}} b_{1}\left(r_{s}\right) d B_{s}\right|\right]+\frac{1}{2} E\left[\int_{0}^{\tau_{r}} b_{1}\left(r_{s}\right)^{2} d s\right] \\
& \leq E\left[\int_{0}^{\tau_{r}} b_{1}\left(r_{s}\right)^{2} d s\right]^{1 / 2}+\frac{1}{2} E\left[\int_{0}^{\tau_{r}} b_{1}\left(r_{s}\right)^{2} d s\right] \\
& \leq E\left[\int_{0}^{\infty} b_{1}\left(r_{s}\right)^{2} d s\right]^{1 / 2}+\frac{1}{2} E\left[\int_{0}^{\infty} b_{1}\left(r_{s}\right)^{2} d s\right]
\end{aligned}
$$

Unless the global green function for X_{t} exists, then the right hand side of the above inequality is divergent. Thus we may assume that the global green function exists.
It takes the form as

$$
g(x, y)=\int_{d(x, y)}^{\infty} e^{-\int_{1}^{r} \psi(t) d t} d r
$$

Then

$$
\begin{aligned}
& c_{r} \leq \sup _{x \in M}\left\{\left(\int_{M} \int_{d(x, y)}^{\infty} e^{-\int_{1}^{r} \psi(t) d t} b_{1}(r)^{2} d r d V(y)\right)^{1 / 2}\right. \\
&\left.+\frac{1}{2} \int_{M} \int_{d(x, y)}^{\infty} e^{-\int_{1}^{r} \psi(t) d t} b_{1}(r)^{2} d r d V(y)\right\}
\end{aligned}
$$

Combining these estimates complete the proof.
The above proposition gives us a bit information on the decay of the tail distribution of τ_{D}.

Theorem 2.2. Suppose the assumption of Proposition 2.1 and that $i(o)=\infty$.
(i) Assume that $\psi(r) \leq \frac{n-1}{r}$.

If $\underline{\lim }_{r \rightarrow \infty} \frac{1}{\log r} \int_{0}^{\nu r} \alpha_{r} d r<\infty$, then

$$
\underset{t \rightarrow \infty}{\lim }-\frac{1}{\log t} \log P\left(\tau_{D}>t\right) \geq \underline{\lim }_{r \rightarrow \infty} \frac{1}{2} \frac{1}{\log r} \int_{0}^{\nu r} \alpha_{r} d r
$$

(ii) Suppose that $0<a \leq \psi(r)$.

If $\underline{\lim }_{r \rightarrow \infty} \frac{1}{\log r} \int_{0}^{\nu r} \alpha_{r} d r<\infty$, then

$$
\underline{\lim }_{t \rightarrow \infty}-\frac{1}{\log t} \log P\left(\tau_{D}>t\right) \geq \underline{\lim }_{r \rightarrow \infty} \frac{1}{\log r} \int_{0}^{\nu r} \alpha_{r} d r
$$

(iii) Suppose that $0<a \leq \psi(r)$. If $0<\sigma=\underline{\lim }_{r \rightarrow \infty} \frac{1}{r} \int_{0}^{\nu r} \alpha_{r} d r<\infty$, then

$$
\varliminf_{t \rightarrow \infty}-\frac{1}{t} \log P\left(\tau_{D}>t\right) \geq \frac{a^{2} \sigma}{8 \sigma+4 a}
$$

By the discussion in the beginning of this section and Corollary 2.5 below we have the following.

Theorem 2.3. Let τ_{D} be an exit time from D of a spherical symmetric diffusion on \mathbf{R}^{n} whose generator A is uniformly elliptic.
If $\underline{\lim }_{r \rightarrow \infty} \frac{1}{\log r} \int_{0}^{\nu r} \alpha_{r} d r<\infty$, then there exists a constant $c>0$ depending only on the elliptic constant such that

$$
\lim _{t \rightarrow \infty}-\frac{1}{\log t} \log P\left(\tau_{D}>t\right) \geq \lim _{r \rightarrow \infty} \frac{c}{2} \frac{1}{\log r} \int_{0}^{\nu r} \alpha_{r} d r
$$

In particular we can take $c=1$ in the case that A is a usual Laplacian on \mathbf{R}^{n}.

To prove these we prepare an elementary estimate.
Lemma 2.4. Let D be a bounded domain in M and τ_{D} be the first exit time from D of a diffusion corresponding to Δ_{M}. Let $Q_{D}(t, x, y)$ be a heat kernel with Dirichlet boundary condition on D. Assume that $Q_{D}(t, x, y) \leq$ $p(t)$. We have for $t>2$

$$
P\left(\tau_{D}>t\right) \leq e^{-\frac{\lambda_{1}}{2} t} \operatorname{vol}(D)^{3 / 2} p(t / 2-1) p(2)^{1 / 2}
$$

where λ_{1} is the first eigenvalue of Dirichlet problem of Δ_{M} on D.
Proof. By eigenfunction expansion of it $Q_{D}(t, x, y)=$ $\sum e^{-\lambda_{m} t} \phi_{m}(x) \phi_{m}(y)$. Since

$$
\sum e^{-\lambda_{m} t} \phi_{m}(x)^{2}=Q_{D}(t, x, x) \leq p(t)
$$

then

$$
\begin{equation*}
\sum e^{-\lambda_{m} t}=\int_{D} Q_{D}(t, x, x) d x \leq \operatorname{vol}(D) p(t) \tag{2.9}
\end{equation*}
$$

And $e^{-\frac{\lambda_{m}}{2} t}\left|\phi_{m}(x)\right| \leq p(t)^{1 / 2}$, so

$$
\begin{equation*}
e^{-\lambda_{m}}\left|\phi_{m}(x)\right| \leq p(2)^{1 / 2} \tag{2.10}
\end{equation*}
$$

From (2.9) and (2.10), for $t>2$

$$
\begin{aligned}
P\left(\tau_{D}>t\right) & =\int_{D} Q_{D}(t, x, y) d y \\
& \leq \int_{D} \sum e^{-\lambda_{m} t}\left|\phi_{m}(x) \| \phi_{m}(y)\right| d y \\
& \leq \operatorname{vol}(D)^{1 / 2} p(2)^{1 / 2} \sum e^{-\lambda_{m}(t-1)} \\
& \leq \operatorname{vol}(D)^{1 / 2} p(2)^{1 / 2} e^{-\lambda_{1} t / 2} \sum e^{-\lambda_{m}(t-1)+\lambda_{m} t / 2} \\
& \leq \operatorname{vol}(D)^{3 / 2} p(2)^{1 / 2} e^{-\lambda_{1} t / 2} p(t / 2-1) .
\end{aligned}
$$

Corollary 2.5.
(i) If the assumption of Theorem 2.2 (i) is satisfied, or
$\tau_{B(r)}$ is the first exit time from $B(r)$ of a diffusion on \mathbf{R}^{n} whose generator A is uniformly elliptic, then there exist constants $c_{1}, c_{2}>0$ in each case such that for $t>2$

$$
P\left(\tau_{B(r)}>t\right) \leq c_{1} e^{-c_{2} \frac{t}{r^{2}}} \operatorname{vol}(B(r))^{3 / 2}(t / 2-1)^{-n / 2}
$$

(ii) Suppose that $i(o)=\infty$. If $\psi(r)$ is away from 0, then there exist constants $c_{1}, c_{2}, c_{3}>0$ for $t>2$

$$
P\left(\tau_{B(r)}>t\right) \leq c_{1} e^{-c_{2}\left(\frac{t}{r^{2}}+t\right)} \operatorname{vol}(B(r))^{3 / 2}(t / 2-1)^{-n / 2}
$$

Proof. (i) We have only to compare τ with one of radial motion of Eucledian Brownian motion.
(ii) We have only to note that uniform ellipticity implies that $p(t)=$ const.t $t^{-n / 2}([4])$ and $\lambda_{B(r)}=$ const. $\frac{1}{r^{2}}$.

Lemma 2.6. Suppose that $a \leq \psi(r)$. Then

$$
P\left(\tau_{r}>t\right) \leq e^{\frac{a}{2}-\frac{a^{2}}{8} t}
$$

Proof. Let $r_{t}^{1}-r_{0}=w_{t}+\frac{a}{2} t$ where w_{t} is an one dimensional standard Brownian motion and $\tau_{r}^{1}=\inf \left\{t>0: r_{t}^{1} \geq r\right\}$. Then direct calculation says that

$$
P\left(\tau_{r}^{1} \in d s\right)=e^{\frac{a}{2}-\frac{a^{2}}{8} s} \frac{r}{\sqrt{2 \pi s^{3}}} e^{-\frac{r^{2}}{2 s}}
$$

Hence by comparison argument we have

$$
\begin{aligned}
P\left(\tau_{r}>t\right) & \leq P\left(\tau_{r}^{1}>t\right) \\
& \leq e^{\frac{a}{2}-\frac{a^{2}}{8} t} \int_{t}^{\infty} \frac{r}{\sqrt{2 \pi s^{3}}} e^{-\frac{r^{2}}{2 s}} \\
& \leq e^{\frac{a}{2}-\frac{a^{2}}{8} t} \cdot \square
\end{aligned}
$$

Proof of Theorem 2.2. (i) From lemma 2.4 and Corollary 2.5 we have

$$
\begin{aligned}
P\left(\tau_{B(r)}>t\right) & \leq \text { const. } e^{-c \frac{t}{r^{2}} r^{3 n / 2}(t / 2-1)^{-n / 2} p(2)^{1 / 2}} \\
& =\text { const. } \exp \left(-\left\{c \frac{t}{r^{2}}-\log r^{3 n / 2}+\log (t / 2-1)^{n / 2}\right\}\right)
\end{aligned}
$$

Set $t=r^{2} \log \left(r^{3 n / 2}(t / 2-1)^{-n / 2} r^{p}\right)$ for $p>\underline{\lim }_{r \rightarrow \infty} \frac{1}{\log r} \int_{0}^{\nu r} \alpha_{r} d r$. We note that $\log t=2 \log r+o(\log t)$. For such t by Proposition 2.1 we have as $r \rightarrow \infty$

$$
\begin{aligned}
P\left(\tau_{D}>t\right) & \leq P\left(\tau_{D}>\tau_{r}\right)+P\left(\tau_{r}>t\right) \\
& \leq \text { const. } e^{-\int_{\delta}^{\nu r} \alpha_{r} d r}+\text { const. } r^{-p} \\
& \leq \text { const. } e^{-\int_{\delta}^{\nu r} \alpha_{r} d r}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{1}{\log t} \log P\left(\tau_{D}>t\right) & \leq-\frac{\log r}{\log t} \frac{1}{\log r} \int_{0}^{\nu r} \alpha_{r} d r+o(1) \\
& =-\frac{1}{2} \frac{1}{\log r} \int_{0}^{\nu r} \alpha_{r} d r+o(1)
\end{aligned}
$$

(ii) and (iii) By lemma 2.6 we can carry the similar argument to (i).

§3. Lower estimate

In this section we treat diffusions with generator $L=\Delta_{M}$ without a bector field.
Before we mention the lower bound $P\left(X_{\tau_{D_{r}}} \in \theta_{r}\right)$ we need some notations. For a simple curve $\phi(t) \quad(0 \leq t<\infty)$ in D with $\phi(0)=x(x$ is the origin of our coordinate) let $\rho(t)$ denote the distance from $\phi(t)$ to ∂D.
Let $\Gamma_{r}=\left\{\phi:[0, r) \rightarrow D_{r}\right.$, simple rectifiable curve , $\phi(r) \in \theta_{r}$ and $\phi(0)=$ $x\}$.
We first have the following.
Proposition 3.1. Assume $\operatorname{Ric}_{M} \geq k$.
We define $g(r)$ by

$$
g^{\prime \prime}(r)+k g(r)=0 \text { with } g(0)=0 \text { and } g^{\prime}(0)=1
$$

Let $v(x)$ be a positive subharmonic function on D_{r}. Let $I_{t}=\inf \{v(x)$: $d(x, \phi(t)) \leq \kappa \rho(t)\}$ for $0<\kappa<1$. Then we have

$$
I_{0} \geq I_{r} \exp \left(-\int_{0}^{r}(\kappa+1) \frac{g(\kappa \rho(t))^{-n+1}}{\int_{\kappa \rho(t)}^{\rho(t)} g(s)^{-n+1} d s}|\dot{\phi}| d t\right) .
$$

In particular if $M=\mathbf{R}^{n}$ and $\Delta_{M}=\Delta_{\mathbf{R}^{n}}$,

$$
I_{0} \geq I_{r} \exp \left(-c \int_{0}^{r}|\dot{\phi}| \frac{1}{\rho(t)} d t\right)
$$

where c satisfies that $c(\log c-1)=1$ if $n=2$ and that $c=(n-1)^{\frac{n-1}{n-2}}$ if $n \geq 3$.

Proof. We have only to modify the proposition in [13] only a little. Let $C(t)=\{x \mid \kappa \rho(t)<d(\phi(t), x)<\rho(t)\}$. We define $u(x)$ by

$$
u(x)=\frac{\int_{d(\phi(t), x)}^{\rho(t)} g(s)^{-n+1} d s}{\int_{\kappa \rho(t)}^{\rho(t)} g(s)^{-n+1} d s} I_{t}
$$

where $I_{t}=\inf \{v(x): d(x, \phi(t)) \leq \kappa \rho(t)\}$. Take a polar coordinate around $\phi(t)$.

We can write the radial part of X_{t} such as in [6] :

$$
r_{t}=r_{0}+w_{t}+\frac{1}{2} \int_{0}^{t} \frac{\partial G}{\partial r} / G\left(X_{s}\right) d s-L_{t}
$$

where L_{t} is an increasing process which increases only on the cut locus of $\phi(t)$. Set $\tilde{u}(d(x, \phi(t)))=u(x)$. Then comparison argument leads us $\tilde{u}\left(r_{t}\right)$ is a submartingale, that is, $u(x)$ is subharmonic on $C(t) . u$ satisfies that

$$
u(x)=0 \text { on } d(\phi(t), x)=\kappa \rho(t) \quad u(x)=I_{t} \text { on } d(\phi(t), x)=\rho(t) .
$$

Thus maximum principle implies that $u(x) \leq v(x)$ on $C(t)$.
We can calculate the left differential $\left(I_{t}\right)_{-}^{\prime}$ of I_{t} in t as in [13]. By maximum principle again

$$
I_{t-\Delta t} \geq \tilde{u}(d(\phi(t), \phi(t-\Delta t))+\kappa \rho(t-\Delta t))
$$

It is obvious that $\rho(t-\Delta t) \leq d(\phi(t), \phi(t-\Delta t))+\rho(t)$. Then

$$
\begin{aligned}
I_{t-\Delta t} & \geq \frac{\int_{(1+\kappa) d(\phi(t), \phi(t-\Delta t))+\kappa \rho(t)}^{\rho(t)} g(s)^{-n+1} d s}{\int_{\kappa \rho(t)}^{\rho(t)} g(s)^{-n+1} d s} I_{t} \\
& =I_{t}-\frac{\int_{\kappa \rho(t)}^{(1+\kappa) d(\phi(t), \phi(t-\Delta t))+\kappa \rho(t)} g(s)^{-n+1} d s}{\int_{\kappa \rho(t)}^{\rho(t)} g(s)^{-n+1} d s} I_{t} .
\end{aligned}
$$

We have

$$
\frac{\left(I_{t}\right)_{-}^{\prime}}{I_{t}} \leq(\kappa+1) \frac{g(\kappa \rho(t))^{-n+1}}{\int_{\kappa \rho(t)}^{\rho(t)} g(s)^{-n+1} d s}|\dot{\phi}| .
$$

Hence integrating the both sides fom 0 to r

$$
I_{0} \geq I_{r} \exp \left(-\int_{0}^{r}(\kappa+1) \frac{g(\kappa \rho(t))^{-n+1}}{\int_{\kappa \rho(t)}^{\rho(t)} g(s)^{-n+1} d s}|\dot{\phi}| d t\right)
$$

We now return to our diffusion treated in $\S 2$, namely, its generator has the form

$$
L=\frac{1}{2} \Delta_{M}=\frac{1}{2}\left(\frac{\partial^{2}}{\partial r^{2}}+\psi(r) \frac{\partial}{\partial r}+\Delta_{\theta}\right)
$$

Let $\tilde{\Gamma_{r}}$ denote all of simple smooth curves belonging to Γ_{r} and satisfying the following condition. Let $B(x, l)$ be a ball with center x and radius l.
The condition ;

$$
\int_{\kappa \rho(r)}^{\nu \rho(r)} \alpha_{t} d t \geq \text { const. }>0, \text { uniformly in } r
$$

where α_{t} is defined in Proposition 2.1 with $L=\Delta_{M}$ and $D=B(\phi(r), \rho(r)) \cap$ $B(r)$.

Here we introduce quasi-hyperbolic distance $\eta_{D}(x, y)$ on $D \subset \mathbf{R}^{n}$.

$$
\eta_{D}(x, y)=\inf _{\phi \in \Gamma} \int_{\phi} \frac{1}{d(x, \partial D)}|d x|
$$

where $d(x, \partial D)$ is Euclidean distance from x to ∂D and

$$
\Gamma=\{\phi: \text { a rectifiable curve in } D \text { from } x \text { to } y\}
$$

Cororally 3.2.
i) Let $M=\mathbf{R}^{n}$ and

$$
\eta_{r}=c \inf _{y \in \theta_{r}} \eta_{D}(x, y)
$$

where c is a sonstant satisfying that $c(\log c-1)=1$ and $c>1$ if $n=2$ and that $c=(n-1)^{\frac{n-1}{n-2}}$ if $n \geq 3$. Then there exists a constant $C>0$ such that

$$
P_{x}\left(X_{\tau_{D_{r}}} \in \theta_{r}\right) \geq C \exp \left(-\eta_{r}\right)
$$

ii) Assume that Ric $_{M} \geq$ k.(i.e. $\psi(r)$ is bounded for all r and in any local coordinates.) We define $g(r)$ as in the Proposition 3.1. We have

$$
P_{x}\left(X_{\tau_{D_{r}}} \in \theta_{r}\right) \geq c \exp \left(-\eta_{r}\right) \text { for } i(x)>2 r
$$

where

$$
\eta_{r}=\inf _{\phi \in \tilde{\Gamma_{r}}} \int_{0}^{r}(1+\kappa)|\dot{\phi}| \frac{g(\kappa \rho(t))^{-n+1}}{\int_{\kappa \rho(t)}^{\rho(t)} g(s)^{-n+1} d s} d t
$$

and $0<\kappa<1$.
Proof. i) We can evaluate I_{r} without any constraint on Γ_{r}. We consider the region $\tilde{B}=B(\phi(r), \rho(r)) \cap H_{-}$, where H_{-}is a half space separated by the hyperplane H tangential to ∂D_{r} at $\phi(r)$ and including D_{r}. We define $\tilde{p}(x)$ by

$$
\begin{aligned}
& \Delta \tilde{p}(x)=0 \\
& \tilde{p}(x)=0 \\
& \tilde{p}(x)=1 \\
& \text { on }(\partial B(\phi(r), \rho(r))) \cap H_{-} \text {and } \\
& \tilde{p}(\phi(r), \rho(r)) \cap H
\end{aligned}
$$

Then maximum principle yields $\tilde{p}(x) \leq P_{x}\left(X_{\tau_{D_{r}}} \in \theta_{r}\right)$ on $C(\phi(r))$. Since \tilde{B} is a cone with a vertex $\phi(r)$, we can estimate $\tilde{p}(x)$ from below by Proposition 2.1 or direct calculation in $\S 5$. Then

$$
\begin{aligned}
I_{r} & \geq \inf _{x \in B(\phi(r), \kappa \rho(r))} \tilde{p}(x) \\
& \geq 1-\sup \operatorname{Px}\left(X_{\tau_{\tilde{B}}} \in \partial B(\phi(r), \rho(r))\right) \\
& \geq 1-\exp \left(- \text { const. } \int_{\kappa \rho(r)}^{\rho(r)} \frac{d t}{t}\right) \\
& \geq \text { const. }>0
\end{aligned}
$$

Then we have

$$
I_{0} \geq \text { const. } \exp \left(-\inf _{\phi \in \Gamma_{r}} c_{\kappa} \int_{0}^{r}|\dot{\phi}| \frac{1}{\rho(t)} d t\right)
$$

where $c_{\kappa}=(1+1 / \kappa) \log (1 / \kappa)$ if $n=2$ and $=\frac{n-2}{\kappa\left(1-\kappa^{n-2}\right)}$ if $n \geq 3$.
We choose κ such that $1 / \kappa(\log (1 / \kappa)-1)=1$ if $n=2, \kappa=(n-1)^{-\frac{1}{n-2}}$ which are minimizing c_{κ}.
ii) The condition of $\tilde{\Gamma}_{r}$ implies that $I_{r} \geq$ const. >0, uniformly.

$$
I_{0} \geq \text { const. } \exp \left(-\eta_{r}\right)
$$

This completes the proof.
If the first eigenvalue of Dirichlet problem on \tilde{B} could be estimated, we could know whether $\tilde{\Gamma}_{r}$ is empty or not. But I don't know such estimates on the first eigenvalues in general. In the following two cases we are not bothered with this problem.

LEMMA 3.3. $\quad \inf _{r} \inf _{\phi \in \Gamma_{r}} I_{r}>0$ holds in the following cases.
i) X_{t} is a spherically symmetric diffusion on \mathbf{R}^{n}.
ii) Δ_{θ} takes the form as

$$
\Delta_{\theta}=\operatorname{div}(\mathcal{A} \nabla)
$$

with satisfying that there exists a constant $a>0$ such that

$$
a^{-1}|\xi|^{2} \leq<\mathcal{A}_{x} \xi, \xi>\leq a|\xi|^{2}
$$

for all $(x, \xi) \in T S^{n-1}(r)$ where $S^{n-1}(r)$ is a sphere with centere o and radius r in \mathbf{R}^{n}.

Proof. Immediate from the proof of Corollary 3.2.
Theorem 3.4. Assume the assumption of Corollary 3.2 with $k=0$ and that $i(o)=\infty$.
i) If

$$
\varlimsup_{r \rightarrow \infty} \frac{1}{\log r} \eta_{r}<\infty
$$

then

$$
\varlimsup_{t \rightarrow \infty}-\frac{1}{\log t} \log P\left(\tau_{D}>t\right) \leq \varlimsup_{r \rightarrow \infty} \frac{1}{2} \frac{1}{\log r} \eta_{r}
$$

ii) If

$$
\varlimsup_{r \rightarrow \infty} \frac{1}{r} \eta_{r}<\infty
$$

then

$$
\varlimsup_{t \rightarrow \infty}-\frac{1}{t} \log P\left(\tau_{D}>t\right) \leq 4\left(\varlimsup_{r \rightarrow \infty} \frac{1}{r} \eta_{r}\right)^{2}
$$

Proof. The proof of ii) is quite similar to i)'s. Then we give only one in the case of i). It is well-known that $P\left(\tau_{r}<t\right) \leq$ const. $e^{-\frac{r^{2}}{4 t}}$ for Eucledian

Brownian motion. On the other hand let r_{t} be the distance on M from o to X_{t}. Set $r_{t}^{(0)}-r_{0}^{(0)}=w_{t}+\int_{0}^{t} \frac{n-1}{r_{s}^{0}} d s$ be the radial motion of a Brownian motion on \mathbf{R}^{n}. Then the curvature assumption and comparison theorem imply that

$$
r_{t} \leq r_{t}^{(0)}
$$

Then we have

$$
P\left(t>\tau_{r}\right) \leq P\left(t>\tau_{r}^{(0)}\right) \leq \text { const. } e^{-\frac{r^{2}}{4 t}}
$$

Hence

$$
P\left(\tau_{D}>\tau_{r}\right) \leq P\left(\tau_{D}>t\right)+P\left(t>\tau_{r}\right) \leq P\left(\tau_{D}>t\right)+\text { const. } e^{-\frac{r^{2}}{4 t}}
$$

We set $t=\frac{r^{2}}{4 p \log r}$ with $p>\varlimsup_{r \rightarrow \infty} \frac{1}{\log r} \eta_{r}$ so that $\log r / \log t \rightarrow 1 / 2$ as $t \rightarrow \infty$. Then as Theorem 2.2 we have the desired result.

§4. Burkholder type inequalities and a basic argument

Theorem 4.1. Assume the assumptions of Proposition 2.1 with $i(o)=$ ∞ and that $b_{1}(r) \geq 0$. If a moderately increasing function $\phi(r)$ satisfies that

$$
\varliminf_{r \rightarrow \infty} \frac{1}{\log \phi(r)} \int_{0}^{\nu r} \alpha_{r} d r>1
$$

and $\phi(d(o, x))$ is L-subharmonic, then

$$
\begin{cases}E\left[\phi\left(\tau_{D}\right)\right]<\infty & \text { if } \psi(r) \geq c>0 \\ E\left[\phi\left(\tau_{D}^{1 / 2}\right)\right]<\infty & \text { if } \psi(r) \geq 0\end{cases}
$$

We also have a necessary condition for the integrability of τ_{D}.
Theorem 4.2. Suppose the assumption of Theorem 3.4 and use the notation there. Let $\phi(r)$ be a positive moderately increasing function. If $E\left[\phi\left(\tau_{D}^{1 / 2}\right)\right]<\infty$, then

$$
\underline{\lim }_{r \rightarrow \infty} \frac{1}{\log \phi(r)} \eta_{r} \geq 1
$$

Since $\phi(r)=r^{p}$ is a moderately increasing and $\phi(d(o, x))$ is L-subharmonic in each cases in the above theorems, in particular we recover the following.

Corollary 4.3. i) Assume the assumption of Theorem 4.1 and that $\psi(r) \geq 0$.
If

$$
\varliminf_{r \rightarrow \infty} \frac{1}{\log r} \int_{0}^{\nu r} \alpha_{r} d r>2 p
$$

then $E\left[\tau_{D}^{p}\right]<\infty$.
ii) Assume the assumption of Theorem 4.1 and that $\psi(r) \geq c>0$. If

$$
\underline{l i m}_{r \rightarrow \infty} \frac{1}{\log r} \int_{0}^{\nu r} \alpha_{r} d r>p
$$

then $E\left[\tau_{D}^{p}\right]<\infty$.
iii) Assume the assumption of Theorem 4.2.

If $E\left[\tau_{D}^{p}\right]<\infty$, then

$$
\underline{\lim }_{r \rightarrow \infty} \frac{1}{\log r} \eta_{r} \geq 2 p
$$

We use the method in [1], so we need the following Burkholder type inequalities. We define $h\left(B_{t}\right)^{*}$ by $\sup _{0<s<t} h\left(B_{s}\right)$.

Lemma 4.4. Let $o \in M$ be fixed and $\phi(r)$ be a moderately increasing function.
i)[1] Let B_{t} denote a Brownian motion on \mathbf{R}^{n}. There exist constants c and C such that for any stopping time τ

$$
c E\left[\phi\left(\tau^{1 / 2}\right)\right] \leq E\left[\phi\left(\left|B_{\tau}\right|^{*}\right)\right] \leq C E\left[\phi\left(\tau^{1 / 2}\right)\right] .
$$

ii) Assume the assumption of Theorem 4.1.

If $\psi(r)>c>0$, then there exist constants $C, c_{p}>0$ such that

$$
c E[\phi(\tau)] \leq E\left[\phi\left(d\left(o, X_{\tau}\right)^{*}\right)\right]+C .
$$

If $\psi(r) \geq 0$, then

$$
c E\left[\phi\left(\tau^{1 / 2}\right)\right] \leq E\left[\phi\left(d\left(o, X_{\tau}\right)^{*}\right)\right]
$$

iii) Assume the assumption of Theorem 4.1. There exists a constant C such that

$$
E\left[\phi\left(d\left(o, X_{t}\right)^{*}\right)\right] \leq C E\left[\phi\left(\tau^{1 / 2}\right)\right]
$$

Proof of ii) And iii). We write the radial part of B_{t} such as in [10] again :

$$
r_{t}=r_{0}+w_{t}+\frac{1}{2} \int_{0}^{t} \frac{\partial G}{\partial r} / G\left(B_{s}\right) d s-L_{t}
$$

where L_{t} is an increasing process which increases only on the cut locus of B_{0}. In the case of ii) $L_{t} \equiv 0$ and $\phi(r)=\frac{\partial G}{\partial r} / G$. Then we can compare r_{t} with

$$
r_{t}^{(1)}=r_{0}^{(1)}+w_{t}+\text { const.t }
$$

and

$$
r_{t}^{(2)}=r_{0}^{(2)}+w_{t}
$$

It is easy to see that "good λ inequalities" for r_{t} and any stopping time are verified.
Set

$$
r_{t}^{(0)}=r_{0}^{(0)}+w_{t}+\frac{1}{2} \int_{0}^{t} \frac{n-1}{r_{s}^{(0)}} d s
$$

Comparing r_{t} with $r_{t}^{(0)}$, iii) is a direct consequence of i).
The following argument is essentially due to Tsuji([16]).
Proposition 4.5.
i) Assume the assumption of Theorem 4.1. If $\underline{\lim }_{r \rightarrow \infty}-\frac{\log P\left(X_{\left.\tau_{D_{r}} \in \theta_{r}\right)}\right.}{\log \phi(r)}>1$ and $\phi(d(o, x))$ is L-subharmonic for a moderately increasing function $\phi(r)$, then $E\left[\phi\left(\tau_{D}\right)\right]<\infty$.
ii) Conversely if the assumption of Theorem 4.2 is satisfied and $E\left[\phi\left(\tau_{D}^{1 / 2}\right)\right]<\infty$, then $\underline{\lim }_{r \rightarrow \infty}-\frac{\log P\left(X_{\left.\tau_{r} \in \theta_{r}\right)}\right.}{\log \phi(r)} \geq 1$.

Proof. We fix a reference point $o \in D$.
(i) From the assumption there is a r_{0} such that

$$
P_{x}\left(X_{\tau_{r}} \in \theta_{r}\right) \leq \text { const. } \phi(r)^{-1-\epsilon} \text { for } r \geq r_{0}, \epsilon>0
$$

Define $v_{r}(x)$ as

$$
\begin{aligned}
L v_{r}(x)=0 \quad x \in D, \quad v_{r}(x) & =1 & & x \in \partial D \backslash \partial D_{r} \\
& =0 \quad & & x \in \partial D_{r} \backslash \theta_{r} .
\end{aligned}
$$

Then $v_{r}(x) \leq P_{x}\left(X_{\tau_{D_{r}}} \in \theta_{r}\right)$ on D_{r} by the maximum principle.
Set $v(x)=\int_{0}^{\infty} \phi^{\prime}(r) v_{r}(x) d r$. This is a bounded harmonic function on D. And $v(x)=\int_{0}^{r_{1}} \phi^{\prime}(r) d r=\phi\left(r_{1}\right)$ if $x \in \partial D$ and $d(o, x)=r_{1}$. Since $\phi(d(o . x))$ is L-subharmonic, by maximum principle on D_{r} we have

$$
\phi(d(o, x)) \leq \phi(r) P_{x}\left(X_{\tau_{r}} \in \theta_{r}\right)+v(x)
$$

Since $b_{1}(r) \geq 0$, it is clear from lemma 4.4 that for any stopping time τ

$$
\text { const. } E\left[\tau^{p}\right] \leq E\left[d\left(o, X_{\tau}\right)^{2 p}\right] .
$$

It is easy to see by the routine argument that $E\left[\tau_{D}^{p}\right]<\infty([1])$. iv) immediately follows from lemma 4.4.

Proof of Theorem 4.1 and 4.2. Combine Proposition 4.5 with Proposition 2.1 and Corollary 3.2 respectively.

Next we add a remark on the case $D=M \backslash \bar{U}: U$ is an open set in M. Let $D=M \backslash B(1)$ and X_{t} be a Brownian motion on M. In view of our problem it is reasonable to consider only the case that $P_{x}\left(\tau_{D}<\infty\right)$ for any $x \in D$, namely, X_{t} is recurrent. We borrow the results from [11]. P.Li and L-F.Tam showed the following.

Lemma 4.6. Assume that the Ricci curvature of M is nonnegative on D and $\int_{1}^{\infty} \frac{d t}{A(t)}=\infty$ where $A(t)$ is $n-1$ dimensional volume of $S(t)$. Then there exists a harmonic function $g(x)$ on D satisfying that

$$
\begin{array}{ll}
g(x) \text { is harmonic on } D, \quad g(x)=0 \quad \text { on } \quad S(1), \\
& g(x) \rightarrow \infty \text { as } d(o, x) \rightarrow \infty,
\end{array}
$$

and there exists r_{0} such that for $r \geq r_{0}$

$$
c_{1} \int_{1}^{r} \frac{d t}{A(t)} \leq g(x) \leq c_{2} \int_{1}^{r} \frac{d t}{A(t)} \text { on } S(r)
$$

The above lemma and maximum principle immediately lead us to the following proposition.

Proposition 4.7. Under the condition of the Lemma 4.6 we have

$$
c_{1}\left(\int_{1}^{r} \frac{d t}{A(t)}\right)^{-1} \leq P\left(\tau_{r}<\tau_{D}\right) \leq c_{2}\left(\int_{1}^{r} \frac{d t}{A(t)}\right)^{-1}
$$

By Burkholder's argument and the method we have done by now, we get the following.

Theorem 4.8.
i) Assume the same condition of the Lemma 4.6. Let $f(r)$ be a positive increasing function on $[0, \infty)$ satisfying that $\int_{1}^{r} \frac{d t}{A(t)} \leq f(r)$. Then $E\left[f\left(\tau_{D}\right)\right]=\infty$.
ii)Assume that $A(t) \geq \delta>0$ for $t \geq 1$ together with the assumption of Lemma 4.6. We have for $\epsilon>0$

$$
P\left(\tau_{D}>t\right) \geq \text { const. }\left(\int_{1}^{t^{\frac{1}{2-\epsilon}}} \frac{d t}{A(t)}\right)^{-1} .
$$

§5. Examples

1. Cone. Let $M=\mathbf{R}^{n}, G$ be an open set on $S(1)$ and X_{t} be Brownian motion B_{t}. We define a cone C_{G} with respect to G by $C_{G}=\{x \mid x=$ $a \xi, \quad \xi \in G, \quad 0<a<\infty\}$. We can directly compute $P\left(B_{\tau_{D_{r}}} \in \theta_{r}\right)$ where $D=C_{G}$. It is well-known that B_{t} has skew-product representation [8] such as

$$
B_{t}=\left(r_{t}, \Theta\left(\int_{0}^{t} \frac{d s}{r_{s}^{2}}\right)\right)
$$

Where r_{t} is a Bessel process : $r_{t}=r_{0}+w_{t}+\int_{0}^{t} \frac{(n-1)}{r_{s}} d s$ and Θ_{t} is a Brownian motion on S^{n-1} independent of r_{t}. We first consider the distribution of $\int_{0}^{t} \frac{d s}{r_{s}^{2}}$. By Ito's formula

$$
\begin{equation*}
\log r_{t}=\log r_{0}+W\left(\int_{0}^{t} \frac{d s}{r_{s}^{2}}\right)+\frac{n-2}{2} \int_{0}^{t} \frac{d s}{r_{s}^{2}} \tag{5.1}
\end{equation*}
$$

Where W_{t} is a one dimensional Brownian motion. We define one dimensional diffusion Y_{t} by

$$
\begin{equation*}
Y_{t}=r_{0}+W_{t}+\frac{n-2}{2} t \tag{5.2}
\end{equation*}
$$

and $T_{l}=\inf \left\{t>0: Y_{t}=l\right\}$. Then it is easy to see that

$$
\begin{equation*}
E_{l_{0}}\left[e^{-\alpha T_{l}}\right]=\exp \left\{-\left(\frac{-(n-2)+\sqrt{(n-2)^{2}+8 \alpha}}{2}\right)\left(l-l_{0}\right)\right\} \tag{5.3}
\end{equation*}
$$

Let τ_{r} denotes $\tau_{B(r)}$. From (5.1) we have $\int_{0}^{\tau_{r}} \frac{d s}{r_{s}^{2}}=T_{\log r}$. On the other hand it is well known that $P\left(\sigma_{G}>t\right) \sim e^{-\lambda_{G} t / 2}(t \uparrow \infty)$ ("a $\sim \mathrm{b}$ " means that there are constants c_{1}, c_{2} such that $c_{1} b \leq a \leq c_{2} b$.), where $\sigma_{G}=\inf \{t>0$: $\left.\Theta_{t} \notin G\right\}$. For simplicity we assume $r_{0}=1$. Therefore

$$
\begin{aligned}
P\left(B_{\tau_{D_{r}}} \in \theta_{r}\right) & =P\left(\sigma_{G}>\int_{0}^{\tau_{r}} \frac{d s}{r_{s}^{2}}\right) \\
& =\int_{0}^{\infty} P\left(\sigma_{G}>t\right) P\left(\int_{0}^{\tau_{r}} \frac{d s}{r_{s}^{2}} \in d t\right) \\
& =\int_{0}^{\infty} P\left(\sigma_{G}>t\right) P\left(T_{\log r} \in d t\right) \\
& \sim E\left[e^{\left.-1 / 2 \lambda_{G} T_{\log r}\right]}\right. \\
& =\exp \left\{-\left(\frac{-(n-2)+\sqrt{(n-2)^{2}+4 \lambda_{G}}}{2}\right) \log r\right\}
\end{aligned}
$$

Making the same argument as Theorem 2.2 and Theorem 3.3, we have

$$
\lim _{t \rightarrow \infty} \frac{1}{\log t} \log P\left(\tau_{C_{G}}>t\right)=-\frac{-(n-2)+\sqrt{(n-2)^{2}+4 \lambda_{G}}}{4}
$$

Hence our upper estimste in Theorem 2.2 is sharp in this case.
This fact has already been known ([5]). We remark that recently this estimte was used for application to estimste occupation times at cone by Meyre and Werner[11]. They have this estimate using direct calculation without Dirichlet problem.

When M has a constant negative sectional curvature and D is a cone, $P\left(\tau_{D}=\infty\right)>0$. Hence this case is not fit for our problem. From Theorem 4.1 we know $\lambda_{r} \sim$ const. $e^{\sqrt{-k} r} / r^{2}$ is sufficient.
2. Let $M=\mathbf{R}^{2}$. Then $\lambda_{r}=\pi^{2} / l(r)^{2}: l(r)=$ length of θ_{r}. Define D_{d} by

$$
D_{d}=\left\{(x, y)\left|y>|x|^{d}\right\} \quad d>1\right.
$$

We have
Proposition 5.1. i) There exist positive constants $c_{1}, c_{2}, C_{1}, C_{2}$ such that

$$
C_{1} e^{-c_{1} r \frac{d-1}{d}} \leq P\left(X_{\tau_{D_{r}}} \in \theta_{r}\right) \leq C_{2} e^{-c_{2} r \frac{d-1}{d}}
$$

ii) There exist positive constants $c_{3}, c_{4}, C_{3}, C_{4}$ such that

$$
C_{3} e^{-c_{3} t^{\frac{d-1}{d+1}}} \leq P\left(\tau_{D_{d}} \geq t\right) \leq C_{4} e^{-c_{4} t^{\frac{d-1}{3 d-1}}}
$$

iii) $E\left[\tau_{D_{d}}^{p}\right]<\infty \quad$ for $\quad 0<p<\infty$.

Proof. We have $l(r) \sim 2 r^{1 / d}$ and $\rho(r) \sim r^{1 / d}$. Proposition 2.1, Corollary 3.2 and Theorem 4.1 imply the desire results.

As for the case of $d<1$ we consider D_{d}^{c} with $d>1$. Then we have

$$
l_{D^{c}}(r) \sim 2 \pi r-2 r^{1 / d} \quad \rho_{D^{c}} \sim r-r^{1 / d}
$$

§6. Finiteness of a stopped Feynman-Kac functional

Let $q(x)$ be a measurable function on M. We call $E_{x}\left[\exp \left(\int_{0}^{\tau_{D}} q\left(X_{s}\right) d s\right)\right]$ the stopped Feynman-Kac functional on D. On the finiteness of stopped Feynman-Kac functional on a bounded domain many authors have considered. It is known via large deviation theory that the one is either finite or not according as sup $\operatorname{Re}(\operatorname{spec}(\Delta+q))$ is negative or not.([14]) case D is unbounded, then we cannot apply large deviation theory directly. We obtain a sufficient condition on D for the finiteness of this functional for special potentials. Let $M=\mathbf{R}^{n}(n \geq 3), L=\Delta$ and X_{t} be a Brownian motion on M throughout this section. We have the following result.

Theorem 6.1.
i)Let $0 \leq q(x) \leq c \frac{1}{|x|^{2}}$. If

$$
\begin{aligned}
& \underset{r \rightarrow \infty}{\lim } \frac{1}{\log r} \int_{\delta}^{\nu r} \frac{1}{r}\left(-\frac{n-2}{2}+\sqrt{\lambda_{r} r^{2}+\frac{(n-2)^{2}}{4}}\right) d r \\
& \quad>\frac{n-2}{2}-\sqrt{\frac{(n-2)^{2}}{4}-4 c}
\end{aligned}
$$

then

$$
E_{x}\left[\exp \left(\int_{0}^{\tau_{D}} q\left(X_{s}\right) d s\right)\right]<\infty \quad x \in D \backslash\{0\}
$$

where λ_{r} is defined in §2.
ii)Let D be a cone C_{G} defined in $\S 5$ and $q(x)=c \frac{1}{|x|^{2}}$. We have

$$
\begin{aligned}
& E_{x}\left[\exp \left(\int_{0}^{\tau_{D}} q\left(X_{s}\right) d s\right)\right]<\infty \quad x \in D \backslash\{0\} \\
& \text { if and only if } \quad 2 c<\lambda_{G} .
\end{aligned}
$$

Proof. ii) is obvious by skew product representation of X_{t} in $\S 5$. We are going to show i). Set $r_{n}=n^{\gamma} r_{0}, n=1,2, \ldots$, with $\left|X_{0}\right|=r_{0}$ and $\gamma>0$.

$$
\begin{aligned}
\text { (6.1) } E & {\left[\exp \left(\int_{0}^{\tau_{D}} q\left(X_{s}\right) d s\right)\right] } \\
\leq & E\left[\exp \left(\int_{0}^{\tau_{D}} c \frac{1}{\left|X_{s}\right|^{2}} d s\right)\right] \\
\leq & \sum E\left[\exp \left(\int_{0}^{\tau_{r_{n+1}}} c \frac{1}{\left|X_{s}\right|^{2}} d s\right) ; \tau_{r_{n}}<\tau_{D} \leq \tau_{r_{n+1}}\right] \\
= & \sum E\left[\exp \left(\int_{0}^{\tau_{r_{n}}} c \frac{1}{\left|X_{s}\right|^{2}} d s\right)\right. \\
& \left.\cdot E_{X_{\tau_{r_{n}}}}\left[\exp \left(\int_{0}^{\tau_{r_{n+1}}} c \frac{1}{\left|X_{s}\right|^{2}} d s\right) ; \tau_{D} \leq \tau_{r_{n+1}}\right] ; \tau_{r_{n}}<\tau_{D} \leq \tau_{r_{n+1}}\right] \\
\leq & \sum E\left[\exp \left(\int_{0}^{\tau_{r_{n}}}{ }_{c} \frac{1}{\left|X_{s}\right|^{2}} d s\right)\right. \\
& \left.\cdot E_{X_{\tau_{r_{n}}}}\left[\exp \left(\int_{0}^{\tau_{r_{n+1}}} c \frac{1}{\left|X_{s}\right|^{2}} d s\right)\right] ; \tau_{r_{n}}<\tau_{D} \leq \tau_{r_{n+1}}\right]
\end{aligned}
$$

By (5.1) and (5.2)

$$
\left.\begin{array}{rl}
E_{X_{\tau_{r}}}[& \left.\exp \left(\int_{0}^{\tau_{r_{n+1}}} c \frac{1}{\left|X_{s}\right|^{2}} d s\right)\right]=E_{0}[
\end{array} \exp \left(c T_{\log r_{n+1} / r_{n}}\right)\right]<\infty, ~ 子, ~ u n i f o r m l y \text { in } n \quad \text { if } c<(n-2)^{2} / 8 .
$$

Then the last term in (6.1)

$$
\begin{aligned}
& =\sum E\left[\exp \left(\int_{0}^{\tau_{r_{n}}} c \frac{1}{\left|X_{s}\right|^{2}} d s\right) ; \tau_{r_{n}}<\tau_{D}\right] E_{0}\left[\exp \left(c T_{\log r_{n+1} / r_{n}}\right)\right] \\
& \leq \text { const. } \sum E\left[\exp \left(\int_{0}^{\tau_{r_{n}}} 2 c \frac{1}{\left|X_{s}\right|^{2}} d s\right)\right]^{1 / 2} P\left(\tau_{r_{n}}<\tau_{D}\right)^{1 / 2}
\end{aligned}
$$

(by Schwarz inequality.)

Using the observation in $\S 5$ again
(6.2) the last term $=$ const. $\sum E\left[\exp \left(2 c T_{\log r_{n+1} / r_{0}}\right)\right]^{1 / 2} P\left(\tau_{r_{n}}<\tau_{D}\right)^{1 / 2}$

It is easy to see

$$
E\left[\exp \left(2 c T_{\log r_{n+1} / r_{0}}\right)\right]^{1 / 2}=e^{\frac{1}{2}\left(\frac{n-2}{2}-\sqrt{\frac{(n-2)^{2}}{4}-4 c}\right) \log \frac{r_{n}}{r_{0}}}
$$

On the other hand if

$$
\infty>\underline{\lim }_{r \rightarrow \infty} \frac{1}{\log r} \int_{\delta}^{\nu r} \frac{1}{r}\left(-\frac{n-2}{2}+\sqrt{\lambda_{r} r^{2}+\frac{(n-2)^{2}}{4}}\right) d r>p
$$

then there exists r_{0} such that $P\left(\tau_{r}<\tau_{D}\right) \leq$ const. r^{-p} for $r>r_{0}$. Hence if $p>\frac{n-2}{2}-\sqrt{\frac{(n-2)^{2}}{4}-4 c}$ and set $\gamma=2 /\left(p-\frac{n-2}{2}+\sqrt{\frac{(n-2)^{2}}{4}-4 c}\right)$, then the right hand side of (6.2) is finite. This completes the proof.

Remark. In the case of $n=2$ we can easily see that $E\left[\exp \left(\int_{0}^{\tau_{D}} c \frac{1}{\left|X_{s}\right|^{2}} d s\right)\right]=\infty$ for any $c>0$ by the observation as in $\S 4$. Assume $0 \in D$. Then $E\left[\exp \left(\int_{0}^{\tau_{D}} c \frac{1}{\left|X_{s}\right|^{2}} d s\right)\right]=\infty$ for any $c>0$ even if D is bounded, because $\int_{0}^{\tau_{B(1)}} \frac{1}{\left|X_{s}\right|^{2}} d s=\sigma_{1}$:the first exit time from $(-\infty, 1]$ of one dimensional Brownian motion, which has only $L^{p}(0<p<1 / 2)$ integrability.

References

[1] Burkholder, D. L., Exit times of Brownian motion,harmonic majorization and Hardy spaces, Adv. in Math. 26 (1977), 182-201.
[2] Carleman, T., Sur une inégarite différentielle dans la théorie des fonctions analytiques, C.R. Acad. Sci. Paris 196 (1933).
[3] Cranston, M., Gradient estimates on manifolds using coupling, J. Funct. Anal. 99 (1991), 110-124.
[4] Davies, E. B., Heat kernels and spectral theory, Cambridge Univ. Press, Cambridge, 1989.
[5] Dante DeBlassie, R., Exit times from cones in \mathbf{R}^{n} of Brownian motion, Probab. Theory Rel. Fields 74 (1987), 1-29.
[6] Durret, R., Brownian motion and martingales in analysis, Wadsworth, Belmont, 1984.
[7] Hayman, W. K., Subharmonic functions, second vol. S, Academic Press, London, 1989.
[8] Ikeda, N. and S. Watanabe, Stochastic differential equations and diffusion processes, second ed., North-Holland : Kodansha, 1989.
[9] Ito, K. and H. Mckean, Diffusion Processes and Their Sample Paths, Springer, Berlin, 1965.
[10] Kendall, W. S., The radial part of Brownian motion on a manifolds :a semimartingale property, Ann. Probab. 15 (1987), 1491-1500.
[11] Meyre, T. and W. Werner, On the occupation times of cones by Brownian motion, Probab. Theory Rel. Fields 101 (1995), 409-419.
[12] Li, P. and L-F. Tam, Positive harmonic functions on complete manifolds with nonnegative curvature outside a compact set, Ann. Math. 125 (1987), 171-207.
[13] Nevanlinna, R., Analytic functions, Springer, Berlin, 1970.
[14] Pinsky, R., A spectral criterion for the finiteness or infiniteness of stopped Feynman-Kac functionals of diffusion processes, Ann. Prob. 14 (1986), 11801187.
[15] Revuz, D. and M. Yor, Continuous martingales and Brownian Motion, Springer, Berlin, 1991.
[16] Tsuji, M., Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.
[17] Vourinen, M., Conformal Geometry and Quasiregular Mappings, Lect. Note Math. Vol. 1319, Springer, Berlin, 1988.
(Received September 28, 1994)
Department of Mathematical Sciences
University of Tokyo
Komaba, Tokyo 153

Japan

Current address
Department of Mathematics
Graduated School of Science
Osaka University
Toyonaka, Osaka 560
Japan

