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Notes on the integrability of exit times from

unbounded domains of Brownian motion

By Atsushi Atsuji

Abstract. The integrability and the tail distribution of the first
exit time from unbounded domain of Brownian motions will be con-
sidered. They are characterized by the growth order of the first eigen
values of the intersection of domains and sphere with radius r and quasi-
hyperbolic distance.

§1. Introduction

Let D be an unbounded domain with smooth boundary in a noncompact

complete Riemannian manifold M and τD be the first exit time from D of

Brownian motion on M or a diffusion with the generator L = 1
2∆M + b; b is

a vector field. The purpose of this note is to give some conditions of some

characteristics of D for the integrability of τD and to get some information

on the tail of τD.

We consider some classes of diffusions such as Brownian motions on

Rn, spherically symmetric diffusions on Rn and Brownian motion on some

Riemannian manifolds with a curvature conditions. In the case that M =

Rn and L = ∆ we will see the following.

Let B(r) = {x ∈ Rn : |x| < r} and S(r) = {x ∈ Rn : |x| = r} . Suppose

that 0 ∈ D.

If for some ν ∈ (0, 1)

lim
r→∞

1

log r

∫ νr
0

αrdr > 2p,
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then E0[τ
p
D] < ∞, where αr = −n−2

2r +
√
λr + (n−2)2

4r2
and λr is the first

eigenvalue of the Laplacian with Dirichlet boundary condition on D∩S(r).

The key to the proof is an estimate on a hitting probability such as

(1.1) P (BτDr
∈ D ∩ S(r)) ≤ const. exp(−

∫ νr
0

αrdr),

where Dr denotes D ∩B(r).

This type estimate is known as Carleman-Tsuji inequality in classical

complex function theory ([2,7,13,16]). We can easily extend this inequality

for the other diffusions mentioned before. In combining Burkholder type

inequality([1]) with such an estimate we have our result.

The converse of the above result depends on the following lower estimate.

(1.2) Px(BτDr
∈ D ∩ S(r)) ≥ const. exp(−η(x,D ∩ S(r))),

where η(x,D ∩ S(r)) = infy∈D∩S(r) η(x, y) and η(x, y) is quasi-hyperbolic

distance in D from x to y ([17]). The definition of quasi-hyperbolic distance

will be given in §3.

We first discuss these estimates in §2 and §3. Then we note how the

above type estimates are joined to the Burkholder inequality in §4. Unfor-

tunately we have different characteristics which are appeared in the upper

and lower bounds in the right hand sides of (1.1) and (1.2) if D is general.

But when D is a cone in Rn, we can easily obtain equivalent upper and

lower estimates with a little stochastic calculus in §5. These estimates will

have several other applications to consider the tails of Brownian functionals.

To give an example in §6 we obtain a condition for the finiteness of a special

Feynman-Kac functional by using the method in the previous sections.

§2. A Carleman-Tsuji inequality

Let M be a complete Riemannian manifold. We first introduce geodesic

polar coordinates which we often use from now on. In these coordinates

the metric of M takes the form: ds2 = dr2 + gijdθidθj . Let G = det(gij)
1/2.

The Laplacian takes the form:

∆M =
∂2

∂r2
+
∂G
∂r

G

∂

∂r
+ G−1 ∂

∂θi
(Ggij

∂

∂θj
)

=
∂2

∂r2
+
∂G
∂r

G

∂

∂r
+ ∆θ,
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where (gij) is the inverse matrix of (gij) and ∆θ denotes the Laplacian on

S(r) with respect to the induced metric.

We here discuss a reason why we consider a Riemannian structure even

in Rn. Let n ≥ 3.

Let a second order differential elliptic operator on Rn : A =
∑ ∂
∂xi

(aij
∂
∂xj

)

(aij = aji) be given. Assume that A satisfies the uniform elliptic condition,

that is, there exists constant λ > 0 such that for any ξ ∈ Rn

λ−1|ξ|2 ≤
∑

aijξiξj ≤ λ|ξ|2.

We can find a Riemannian metric on Rn from (aij) by aij = Ggij , G =

det(aij)
1

n−2 . Hence we turn Rn into a Riemannian manifold M with a Rie-

mannian metric (gij) in a global coordinate. We have that ∆M = G−1A.

Then ∆M−diffusion is a time-changed process of A−diffusion. It should

be remarked that the uniform ellipticity of A implies that there exist con-

stants a1, a2 > 0 such that a1 ≤ G = det (aij)
1

n−2 ≤ a2. Let ∆M−diffusion

and A−diffusion be denoted by Bt and Xt respectively, and τ i, i = 1, 2 be

hitting times to a domain in Rn and σi, i = 1, 2 to another one of Bt and

Xt respectively. Then

P (τ1 < σ1) = P (

∫ τ1
0

G(Bt)dt <

∫ σ1

0
G(Bt)dt)

= P (τ2 < σ2).

And since P (τ1 > t) = P (
∫ τ1
0 G(Bt)dt >

∫ t
0 G(Bt)dt), hence there exist

constants c1, c2 > 0 such that

P (τ1 > c1t) ≤ P (τ2 > t) ≤ P (τ1 > c2t).

Thus, as for our problem, the problem on A−diffusion is equivalent to one

on ∆M−diffusion.

Remark. It is usual to set that gij = aij . But the setting bears a drift

term ∇ logG. Since it is easier to treat a time-changed object than to do

one with a drift, we prefer our setting to the other.
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The diffusion process we consider in this paper has a generator with the

form in this coordinates as

L =
1

2
∆M + b1(r)

∂

∂r
+ b2 · ∇θ,

where ∇θ is the component to TS(r) of ∇.

In this section we assume the following conditions on L.

G′(r, θ)

G(r, θ)
is a radial function.

Let us denote this function by ψ(r).

Remark. The above condition is satisfied in the cases that M is Rn

and the diffusion is a spherically symmetric diffusion (i.e. the distribution

of the diffusion is invariant under the actions of rotations. Of course this

class includes Brownian motion. ) and that a Riemannian maifold with

constant curvature.

We note that this assumption can be removed in the following discussions

with some conditions. But this yields the complicated forms of quantities in

the estimates, for example γ(r) in Proposition 2.1. For brevity we impose

this condition.

In this section we also assume that B(δ) ⊂ D for some δ.

Let θr = D ∩ S(r) and b2(r) = supθ∈θr |b2(r, θ)|.

Let λr be the first eigenvalue for the Laplacian on S(r) of the Dirichlet

problem on θr, that is,

λr = inf
u∈C∞(θr)
u=0 on ∂θr

∫
θr
|gradθu(x)|2dsr∫
θr
|u(x)|2dsr

for r > 0,

where dsr is the volume form on S(r) induced from the Riemannian metric

and λ0 = 0.

Let us write ”f ′(r)” for ”∂f∂r ”.
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Proposition 2.1. Let M have injectivity radius i(o) for a point o and

ψ(r) = G′(r,θ)
G(r,θ) independent of θ.

Assume that

2(n− 2)

(n− 1)2
ψ2 +

2(n− 2)

n− 1
ψ′ ≥ 0 for r < i(o)

and

b2(r)λ
−1/2
r ≤ 1.

(i) If b1 ≡ 0, then there exists a positive constant c1 such that for 0 < ν < 1

and for i(o) < r

Po(XτDr
∈ θr) ≤ c1 exp(−

∫ νr
δ

αrdr),

where

αr = −γ(r) +

√
(1 − b2(r)λ

−1/2
r )λr + γ(r)2,

γ(r) =

√
1

4
{(n− 2)2(

g′(r)

g(r)
)2 + 2(n− 2)

g′′(r)

g(r)
},

and g(r) is defined by

ψ(r) = (n− 1)g′(r)/g(r) with g(δ) = 1.

(ii) If b1 �≡ 0 and for some 0 < p < 1

sup
x∈M

∫
M

∫ ∞

d(x,y)
e−

∫ r
1 ψ(t)dtb1(r)

2drdV (y) ≤
√

2e−1p−1 + 1 − 1,

then there exists a positive constant c2 such that for i(o) < r

Po(XτDr
∈ θr) ≤ c2 exp(−(1 − 1

p
)

∫ νr
δ

αrdr),

where αr is same as (i).



20 Atsushi Atsuji

Proof of Proposition 2.1. (i) This proof is a slight modification of

[16].

Set u(x) = Px(XτDR
∈ θR) and m(r)2 =

∫
θr
u(x)2dsr, for r < R where dsr

is the volume form on S(r) induced by the Riemannian metric on M .

Since u vanishes on ∂Dr \ θr,by Green formula∫
θr

u2dsr =

∫
θr

u2∂r

∂r
dsr

=

∫
Dr

{
∆ru2+ < grad r, grad u2 >

}
dV

=

∫
Dr

{
G′

G
u2 + 2uu′

}
dV.

Differentiating m(r)2 in r, we have

(2.1) 2m(r)m′(r) = 2

∫
θr

uu′dsr +

∫
θr

u2G
′

G
dsr

Using Green formula again on (2.1), we have

the right hand side of (2.1)

=

∫
θr

∂

∂r
logG(r, θ)u2dsr + 2

∫
θr

uu′dsr

=

∫
Dr

{
∆ logG(r, θ)u2+ < grad u2, grad logG >

+2|grad u|2 + 2u∆u
}
dV

=

∫
Dr

u2(
∂2

∂r2
+

G′

G

∂

∂r
) logGdV +

∫
Dr

∆θ logG(r, θ)u2dV

+

∫
Dr

2uu′
G′

G
dV

+

∫
Dr

{< gradθ u
2, gradθ logG > +2|grad u|2 + 2u∆u}dV,

where gradθ denotes gradient on S(r).

Using Green formula on θu for δ < u < r again, we have that

the right hand side =

∫
Dr

{
G′′

G
u2 + 2uu′

G′

G
+ 2|grad u|2 + 2u∆u

}
dV.
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Then differentiating the both sides of (3.1) in r again, since u is L-harmonic,

(2mm′)′ =

∫
θr

{
G′′

G
u2 + 2uu′

G′

G
+ 2|grad u|2 + 2u∆u

}
dsr(2.2)

=

∫
θr

{
G′′

G
u2 + 2uu′

G′

G
+ 2|grad u|2 − 2(bu)u

}
dsr

=

∫
θr

{
G′′

G
u2 + 2uu′

G′

G
+ 2(u′)2

+ 2|gradθu|2 − 2b2uu

}
dsr.

By Schwarz inequality

−
∫
θr

b2uudsr ≥ −b2(r)
(∫
θr

|gradθu|2dsr
)1/2(∫

θr

u2dsr

)1/2

(2.3)

≥ −b2(r)λ−1/2
r

∫
θr

|gradθu|2dsr.

Using (2.1) and Schwarz inequality

∫
θr

(u′)2dsr(2.4)

≥ 1

m2

(∫
θr

uu′dsr

)2

=
1

m2

(
mm′ − 1

2

∫
θr

u2G
′

G
dsr

)2

=
1

m2

{
m2(m′)2 −mm′

∫
θr

u2G
′

G
dsr +

1

4
(

∫
θr

u2G
′

G
dsr)

2

}

≥ (m′)2 − ψmm′ +
1

4
ψ2m2.

From (2.1),(2.3),(2.4) the right hand side of (2.2) is bounded from below

by

{2(1 − b2(r)λ
−1/2
r )λr +

1

2
ψ2 + ψ′}m(r)2 + 2(m′)2.
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Hence, from this and (2.3), we obtain

(2.5) m′′(r) ≥ 1

2
{2(1 − b2(r)λ

−1/2
r )λr +

1

2
ψ2 + ψ′}m(r).

Let M(r)2 = 1
A(r)m(r)2 where A(r) =

∫
S(r) dsr.

From (2.5) we have

(2.6)
M ′′

M
+ ψ

M ′

M
≥ 1

2
(1 − b2(r)λ

−1/2
r )λr.

We define g(r) by

ψ(r) = (n− 1)
g′(r)

g(r)
with g(δ) = 1.

We set f(t) = logM(r)2 + (n − 2) log g(r) and change the variable by t =∫ r
δ
dr
g(r) . From (2.6), using ṙ = g(r) and r̈ = gg′, we have

(ṙ)−2(2f̈(t) + (ḟ(t))2) ≥4(1 − b2(r)λ
−1/2
r )λr

+ (ṙ)−2{(n− 2)2(g′(r))2 + 2(n− 2)g′′(r)g(r)}.

Our assumption implies that (n− 2)2(g′(r))2 + 2(n− 2)g′′(r)g(r) ≥ 0.

We let

γ̃(t) =

√
1

4
{(n− 1)2(g′(r))2 + 2(n− 2)g′′(r)g(r)}

(regarding as a function of t =
∫ r
δ
dr
g(r)),

β̃t = −γ̃(t) +

√
(1 − b2(r)λ

−1/2
r )λrg(r)2 + γ(t)2

and γ̃(t) = g(r)2γ(r), β̃t = g(r)2βr. We have

(
ḟ(t) +

f̈(t)

ḟ(t)

)2

≥ (2β̃t + 2γ̃(t))2.
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From (2.1) and Green formula we have

M ′

M
= 2

m′

m
− ψ

= 2

∫
θr

uu′dsr

=

∫
Dr

{u∆u + |grad u|2}dV

≥
∫
Dr

{(u′)2 + |gradθ u|2 − (b2 u)u}dV.

Then from Schwarz inequarity, (2.4) and the assumptions on b we have that
M ′
M > 0.

Since M
′

M > 0 implies that ḟ is positive, so is ḟ(t) + f̈(t)

ḟ(t)
, then

ḟ(t) +
f̈(t)

ḟ(t)
≥ 2β̃t + 2γ̃(t).

From this we have for t2 > t1 ≥ t(δ)∫ t2
t1

exp f(s)ḟ(s)ds ≥ exp f(t1)ḟ(t1)

∫ t2
t1

exp

(∫ s
t1

(2β̃u + 2γ̃(u))du

)
ds.

Rewriting this in the variable of r again

M(r2)
2g(r2)

n−2 −M(r1)
2g(r1)

n−2

≥ M(r1)
2g(r1)

n−2ḟ(t1)

∫ r2
r1

exp (

∫ s
r1

2βt + 2γ(t)dt)
ds

g(s)

≥ M(r1)
2g(r1)

n−2ḟ(t1)

∫ r2
νr2

exp (

∫ s
r1

2γ(t)dt)
ds

g(s)
· exp

∫ νr2
r1

βtdt.

Our assumption on the metric yields

2γ(r) ≥ (n− 2)g′(r)/g(r).

This implies that ∫ r2
νr2

exp (
∫ s
r1

2γ(t)dt)ds

g(r2)n−2
≥ const. > 0.
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Hence

1 ≥ M(r)2 ≥ const.M(δ)2 exp

∫ νr
δ

βtdt.

In combining this with sub-mean property of u2 or Harnack inequality on

u we obtain i). (We can show Harnack inequality in this situation ([3])).

(ii) Let Xt = (rt, θt) be the diffusion treated in (i) with b1 ≡ 0 and

drt = dBt +
1

2
ψ(rt)dt,

where Bt is an 1-dimensional standard Brownian motion.

Set

Mt = exp(

∫ t
0
b1(rs)dBs −

1

2

∫ t
0
b1(rs)

2ds).

Let X̂t be the diffusion in this case with b1 �≡ 0. The formula of transfor-

mation of drift ([8,15]) implies that

P̂x0(X̂τDr
∈ θr) = E[MτDr

; XτDr
∈ θr].

In rather vulgar way, using Hölder inequality the above right hand side is

bounded by

E[Mp
τDr

]1/pP (XτDr
∈ θr)

1−1/p.

Thus we estimate E[Mp
τDr

].

Set Yt =
∫ t
0 b1(rs)dBs −

1
2

∫ t
0 b1(rs)

2ds and cr = supx∈Dr
Ex[|YτDr

|].
From the proof of John-Nirenberg inequality for BMO-martingale([6,15])

we have

E[Mp
τDr

] ≤ cr
1 − epcr

.

On the other hand

Ex[|YτDr
|] ≤ Ex[|

∫ τr
0

b1(rs)dBs|] +
1

2
E[

∫ τr
0

b1(rs)
2ds]

≤ E[

∫ τr
0

b1(rs)
2ds]1/2 +

1

2
E[

∫ τr
0

b1(rs)
2ds]

≤ E[

∫ ∞

0
b1(rs)

2ds]1/2 +
1

2
E[

∫ ∞

0
b1(rs)

2ds].
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Unless the global green function for Xt exists, then the right hand side of

the above inequality is divergent. Thus we may assume that the global

green function exists.

It takes the form as

g(x, y) =

∫ ∞

d(x,y)
e−

∫ r
1 ψ(t)dtdr.

Then

cr ≤ sup
x∈M

{(
∫
M

∫ ∞

d(x,y)
e−

∫ r
1 ψ(t)dtb1(r)

2drdV (y))1/2

+
1

2

∫
M

∫ ∞

d(x,y)
e−

∫ r
1 ψ(t)dtb1(r)

2drdV (y)}.

Combining these estimates complete the proof. �

The above proposition gives us a bit information on the decay of the tail

distribution of τD.

Theorem 2.2. Suppose the assumption of Proposition 2.1 and that

i(o) = ∞.

(i) Assume that ψ(r) ≤ n−1
r .

If limr→∞
1

log r

∫ νr
0 αrdr < ∞, then

lim
t→∞

− 1

log t
logP (τD > t) ≥ lim

r→∞

1

2

1

log r

∫ νr
0

αrdr.

(ii) Suppose that 0 < a ≤ ψ(r).

If limr→∞
1

log r

∫ νr
0 αrdr < ∞, then

lim
t→∞

− 1

log t
logP (τD > t) ≥ lim

r→∞

1

log r

∫ νr
0

αrdr.

(iii) Suppose that 0 < a ≤ ψ(r). If 0 < σ = limr→∞
1
r

∫ νr
0 αrdr < ∞, then

lim
t→∞

−1

t
logP (τD > t) ≥ a2σ

8σ + 4a
.
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By the discussion in the beginning of this section and Corollary 2.5 below

we have the following.

Theorem 2.3. Let τD be an exit time from D of a spherical symmetric

diffusion on Rn whose generator A is uniformly elliptic.

If limr→∞
1

log r

∫ νr
0 αrdr < ∞, then there exists a constant c > 0 depending

only on the elliptic constant such that

lim
t→∞

− 1

log t
logP (τD > t) ≥ lim

r→∞

c

2

1

log r

∫ νr
0

αrdr.

In particular we can take c = 1 in the case that A is a usual Laplacian on

Rn.

To prove these we prepare an elementary estimate.

Lemma 2.4. Let D be a bounded domain in M and τD be the first exit

time from D of a diffusion corresponding to ∆M . Let QD(t, x, y) be a heat

kernel with Dirichlet boundary condition on D. Assume that QD(t, x, y) ≤
p(t). We have for t > 2

P (τD > t) ≤ e−
λ1
2
tvol(D)3/2p(t/2 − 1)p(2)1/2,

where λ1 is the first eigenvalue of Dirichlet problem of ∆M on D.

Proof. By eigenfunction expansion of it QD(t, x, y) =∑
e−λmtφm(x)φm(y). Since

∑
e−λmtφm(x)2 = QD(t, x, x) ≤ p(t),

then

(2.9)
∑

e−λmt =

∫
D
QD(t, x, x)dx ≤ vol(D)p(t)

And e−
λm
2
t|φm(x)| ≤ p(t)1/2, so

(2.10) e−λm |φm(x)| ≤ p(2)1/2.
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From (2.9) and (2.10), for t > 2

P (τD > t) =

∫
D
QD(t, x, y)dy

≤
∫
D

∑
e−λmt|φm(x)||φm(y)|dy

≤ vol(D)1/2p(2)1/2
∑

e−λm(t−1)

≤ vol(D)1/2p(2)1/2e−λ1t/2
∑

e−λm(t−1)+λmt/2

≤ vol(D)3/2p(2)1/2e−λ1t/2p(t/2 − 1). �

Corollary 2.5.

(i) If the assumption of Theorem 2.2 (i) is satisfied, or

τB(r) is the first exit time from B(r) of a diffusion on Rn whose generator

A is uniformly elliptic, then there exist constants c1, c2 > 0 in each case

such that for t > 2

P (τB(r) > t) ≤ c1e
−c2 t

r2 vol(B(r))3/2(t/2 − 1)−n/2.

(ii) Suppose that i(o) = ∞. If ψ(r) is away from 0, then there exist con-

stants c1, c2, c3 > 0 for t > 2

P (τB(r) > t) ≤ c1e
−c2( t

r2
+t)vol(B(r))3/2(t/2 − 1)−n/2.

Proof. (i) We have only to compare τ with one of radial motion of

Eucledian Brownian motion.

(ii) We have only to note that uniform ellipticity implies that p(t) =

const.t−n/2 ([4]) and λB(r) = const. 1
r2

. �

Lemma 2.6. Suppose that a ≤ ψ(r). Then

P (τr > t) ≤ e
a
2
−a2

8
t.
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Proof. Let r1
t −r0 = wt+

a
2 t where wt is an one dimensional standard

Brownian motion and τ1
r = inf{t > 0 : r1

t ≥ r}. Then direct calculation

says that

P (τ1
r ∈ ds) = e

a
2
−a2

8
s r√

2πs3
e−

r2

2s .

Hence by comparison argument we have

P (τr > t) ≤ P (τ1
r > t)

≤ e
a
2
−a2

8
t

∫ ∞

t

r√
2πs3

e−
r2

2s

≤ e
a
2
−a2

8
t. �

Proof of Theorem 2.2. (i) From lemma 2.4 and Corollary 2.5 we

have

P (τB(r) > t) ≤ const.e−c
t
r2 r3n/2(t/2 − 1)−n/2p(2)1/2

= const. exp(−{c t

r2
− log r3n/2 + log (t/2 − 1)n/2}).

Set t = r2 log(r3n/2(t/2 − 1)−n/2rp) for p > limr→∞
1

log r

∫ νr
0 αrdr. We note

that log t = 2 log r + o(log t). For such t by Proposition 2.1 we have as

r → ∞

P (τD > t) ≤ P (τD > τr) + P (τr > t)

≤ const.e−
∫ νr
δ αrdr + const. r−p

≤ const.e−
∫ νr
δ αrdr.

Therefore

1

log t
logP (τD > t) ≤ − log r

log t

1

log r

∫ νr
0

αrdr + o(1)

= −1

2

1

log r

∫ νr
0

αrdr + o(1).

(ii) and (iii) By lemma 2.6 we can carry the similar argument to (i). �
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§3. Lower estimate

In this section we treat diffusions with generator L = ∆M without a

bector field.

Before we mention the lower bound P (XτDr
∈ θr) we need some notations.

For a simple curve φ(t) (0 ≤ t < ∞) in D with φ(0) = x (x is the origin

of our coordinate) let ρ(t) denote the distance from φ(t) to ∂D.

Let Γr = {φ : [0, r) → Dr, simple rectifiable curve , φ(r) ∈ θr and φ(0) =

x}.
We first have the following.

Proposition 3.1. Assume RicM ≥ k.

We define g(r) by

g′′(r) + kg(r) = 0 with g(0) = 0 and g′(0) = 1.

Let v(x) be a positive subharmonic function on Dr. Let It = inf{v(x) :

d(x, φ(t)) ≤ κρ(t)} for 0 < κ < 1. Then we have

I0 ≥ Ir exp


−

∫ r
0

(κ + 1)
g(κρ(t))−n+1∫ ρ(t)
κρ(t) g(s)

−n+1ds
|φ̇|dt


 .

In particular if M = Rn and ∆M = ∆Rn,

I0 ≥ Ir exp(−c
∫ r

0
|φ̇| 1

ρ(t)
dt),

where c satisfies that c(log c − 1) = 1 if n = 2 and that c = (n − 1)
n−1
n−2 if

n ≥ 3.

Proof. We have only to modify the proposition in [13] only a little.

Let C(t) = {x|κρ(t) < d(φ(t), x) < ρ(t)}. We define u(x) by

u(x) =

∫ ρ(t)
d(φ(t),x) g(s)

−n+1ds∫ ρ(t)
κρ(t) g(s)

−n+1ds
It,
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where It = inf{v(x) : d(x, φ(t)) ≤ κρ(t)}. Take a polar coordinate around

φ(t).

We can write the radial part of Xt such as in [6] :

rt = r0 + wt +
1

2

∫ t
0

∂G

∂r
/G(Xs)ds− Lt,

where Lt is an increasing process which increases only on the cut locus of

φ(t). Set ũ(d(x, φ(t))) = u(x). Then comparison argument leads us ũ(rt) is

a submartingale, that is, u(x) is subharmonic on C(t). u satisfies that

u(x) = 0 on d(φ(t), x) = κρ(t) u(x) = It on d(φ(t), x) = ρ(t).

Thus maximum principle implies that u(x) ≤ v(x) on C(t).

We can calculate the left differential (It)
′
− of It in t as in [13]. By maximum

principle again

It−�t ≥ ũ(d(φ(t), φ(t−�t)) + κρ(t−�t)).

It is obvious that ρ(t−�t) ≤ d(φ(t), φ(t−�t)) + ρ(t). Then

It−�t ≥
∫ ρ(t)
(1+κ)d(φ(t),φ(t−�t))+κρ(t) g(s)

−n+1ds∫ ρ(t)
κρ(t) g(s)

−n+1ds
It

= It −
∫ (1+κ)d(φ(t),φ(t−�t))+κρ(t)
κρ(t) g(s)−n+1ds∫ ρ(t)

κρ(t) g(s)
−n+1ds

It.

We have
(It)

′
−

It
≤ (κ + 1)

g(κρ(t))−n+1∫ ρ(t)
κρ(t) g(s)

−n+1ds
|φ̇|.

Hence integrating the both sides fom 0 to r

I0 ≥ Ir exp


−

∫ r
0

(κ + 1)
g(κρ(t))−n+1∫ ρ(t)
κρ(t) g(s)

−n+1ds
|φ̇|dt


 . �
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We now return to our diffusion treated in §2, namely, its generator has

the form

L =
1

2
∆M =

1

2
(
∂2

∂r2
+ ψ(r)

∂

∂r
+ ∆θ).

Let Γ̃r denote all of simple smooth curves belonging to Γr and satisfying

the following condition. Let B(x, l) be a ball with center x and radius l.

The condition ;

∫ νρ(r)
κρ(r)

αtdt ≥ const. > 0, uniformly in r,

where αt is defined in Proposition 2.1 with L = ∆M and D = B(φ(r), ρ(r))∩
B(r).

Here we introduce quasi-hyperbolic distance ηD(x, y) on D ⊂ Rn.

ηD(x, y) = inf
φ∈Γ

∫
φ

1

d(x, ∂D)
|dx|,

where d(x, ∂D) is Euclidean distance from x to ∂D and

Γ = {φ : a rectifiable curve in D from x to y}.

Cororally 3.2.

i) Let M = Rn and

ηr = c inf
y∈θr

ηD(x, y)

where c is a sonstant satisfying that c(log c− 1) = 1 and c > 1 if n = 2 and

that c = (n− 1)
n−1
n−2 if n ≥ 3. Then there exists a constant C > 0 such that

Px(XτDr
∈ θr) ≥ C exp(−ηr).

ii) Assume that RicM ≥ k.(i.e. ψ(r) is bounded for all r and in any

local coordinates.) We define g(r) as in the Proposition 3.1. We have

Px(XτDr
∈ θr) ≥ c exp(−ηr) for i(x) > 2r,
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where

ηr = inf
φ∈Γ̃r

∫ r
0

(1 + κ)|φ̇| g(κρ(t))−n+1∫ ρ(t)
κρ(t) g(s)

−n+1ds
dt

and 0 < κ < 1.

Proof. i) We can evaluate Ir without any constraint on Γr. We con-

sider the region B̃ = B(φ(r), ρ(r))∩H−, where H− is a half space separated

by the hyperplane H tangential to ∂Dr at φ(r) and including Dr. We define

p̃(x) by

∆p̃(x) = 0 x ∈ B̃

p̃(x) = 0 on (∂B(φ(r), ρ(r))) ∩H− and

p̃(x) = 1 on B(φ(r), ρ(r)) ∩H.

Then maximum principle yields p̃(x) ≤ Px(XτDr
∈ θr) on C(φ(r)). Since B̃

is a cone with a vertex φ(r), we can estimate p̃(x) from below by Proposition

2.1 or direct calculation in §5. Then

Ir ≥ inf
x∈B(φ(r),κρ(r))

p̃(x)

≥ 1 − supPx(XτB̃ ∈ ∂B(φ(r), ρ(r)))

≥ 1 − exp(−const.
∫ ρ(r)
κρ(r)

dt

t
)

≥ const. > 0.

Then we have

I0 ≥ const. exp(− inf
φ∈Γr

cκ

∫ r
0

|φ̇| 1

ρ(t)
dt),

where cκ = (1 + 1/κ) log(1/κ) if n = 2 and = n−2
κ(1−κn−2)

if n ≥ 3.

We choose κ such that 1/κ(log(1/κ) − 1) = 1 if n = 2, κ = (n− 1)−
1

n−2

which are minimizing cκ.

ii) The condition of Γ̃r implies that Ir ≥ const. > 0, uniformly.

I0 ≥ const. exp(−ηr).
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This completes the proof. �

If the first eigenvalue of Dirichlet problem on B̃ could be estimated, we

could know whether Γ̃r is empty or not. But I don’t know such estimates

on the first eigenvalues in general. In the following two cases we are not

bothered with this problem.

Lemma 3.3. infr infφ∈Γr Ir > 0 holds in the following cases.

i) Xt is a spherically symmetric diffusion on Rn.

ii) ∆θ takes the form as

∆θ = div(A∇)

with satisfying that there exists a constant a > 0 such that

a−1|ξ|2 ≤< Axξ, ξ >≤ a|ξ|2

for all (x, ξ) ∈ TSn−1(r) where Sn−1(r) is a sphere with centere o and

radius r in Rn.

Proof. Immediate from the proof of Corollary 3.2. �

Theorem 3.4. Assume the assumption of Corollary 3.2 with k = 0

and that i(o) = ∞.

i) If

lim
r→∞

1

log r
ηr < ∞,

then

lim
t→∞

− 1

log t
logP (τD > t) ≤ lim

r→∞
1

2

1

log r
ηr.

ii) If

lim
r→∞

1

r
ηr < ∞,

then

lim
t→∞

−1

t
logP (τD > t) ≤ 4( lim

r→∞
1

r
ηr)

2.

Proof. The proof of ii) is quite similar to i)’s. Then we give only one

in the case of i). It is well-known that P (τr < t) ≤ const.e−
r2

4t for Eucledian
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Brownian motion. On the other hand let rt be the distance on M from o

to Xt. Set r
(0)
t − r

(0)
0 = wt +

∫ t
0
n−1
r0s

ds be the radial motion of a Brownian

motion on Rn. Then the curvature assumption and comparison theorem

imply that

rt ≤ r
(0)
t .

Then we have

P (t > τr) ≤ P (t > τ (0)
r ) ≤ const.e−

r2

4t .

Hence

P (τD > τr) ≤ P (τD > t) + P (t > τr) ≤ P (τD > t) + const.e−
r2

4t .

We set t = r2

4p log r with p > limr→∞
1

log rηr so that log r/ log t → 1/2 as

t → ∞. Then as Theorem 2.2 we have the desired result. �

§4. Burkholder type inequalities and a basic argument

Theorem 4.1. Assume the assumptions of Proposition 2.1 with i(o) =

∞ and that b1(r) ≥ 0. If a moderately increasing function φ(r) satisfies that

lim
r→∞

1

log φ(r)

∫ νr
0

αrdr > 1

and φ(d(o, x)) is L−subharmonic, then

{
E[φ(τD)] < ∞ if ψ(r) ≥ c > 0,

E[φ(τ
1/2
D )] < ∞ if ψ(r) ≥ 0.

We also have a necessary condition for the integrability of τD.

Theorem 4.2. Suppose the assumption of Theorem 3.4 and use the

notation there. Let φ(r) be a positive moderately increasing function.

If E[φ(τ
1/2
D )] < ∞, then

lim
r→∞

1

log φ(r)
ηr ≥ 1.
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Since φ(r) = rp is a moderately increasing and φ(d(o, x)) is L-subhar-

monic in each cases in the above theorems, in particular we recover the

following.

Corollary 4.3. i) Assume the assumption of Theorem 4.1 and that

ψ(r) ≥ 0.

If

lim
r→∞

1

log r

∫ νr
0

αrdr > 2p,

then E[τpD] < ∞.

ii) Assume the assumption of Theorem 4.1 and that ψ(r) ≥ c > 0.

If

lim
r→∞

1

log r

∫ νr
0

αrdr > p,

then E[τpD] < ∞.

iii) Assume the assumption of Theorem 4.2.

If E[τpD] < ∞, then

lim
r→∞

1

log r
ηr ≥ 2p.

We use the method in [1], so we need the following Burkholder type

inequalities. We define h(Bt)
∗ by sup0<s<t h(Bs).

Lemma 4.4. Let o ∈ M be fixed and φ(r) be a moderately increasing

function.

i)[1] Let Bt denote a Brownian motion on Rn . There exist constants c and

C such that for any stopping time τ

cE[φ(τ1/2)] ≤ E[φ(|Bτ |∗)] ≤ CE[φ(τ1/2)].

ii) Assume the assumption of Theorem 4.1.

If ψ(r) > c > 0, then there exist constants C, cp > 0 such that

cE[φ(τ)] ≤ E[φ(d(o,Xτ )
∗)] + C.
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If ψ(r) ≥ 0, then

cE[φ(τ1/2)] ≤ E[φ(d(o,Xτ )
∗)].

iii) Assume the assumption of Theorem 4.1. There exists a constant C such

that

E[φ(d(o,Xt)
∗)] ≤ CE[φ(τ1/2)]

Proof of ii) and iii). We write the radial part of Bt such as in [10]

again :

rt = r0 + wt +
1

2

∫ t
0

∂G

∂r
/G(Bs)ds− Lt,

where Lt is an increasing process which increases only on the cut locus of

B0. In the case of ii) Lt ≡ 0 and φ(r) = ∂G
∂r /G. Then we can compare rt

with

r
(1)
t = r

(1)
0 + wt + const.t

and

r
(2)
t = r

(2)
0 + wt.

It is easy to see that “good λ inequalities” for rt and any stopping time are

verified.

Set

r
(0)
t = r

(0)
0 + wt +

1

2

∫ t
0

n− 1

r
(0)
s

ds.

Comparing rt with r
(0)
t , iii) is a direct consequence of i). �

The following argument is essentially due to Tsuji([16]).

Proposition 4.5.

i)Assume the assumption of Theorem 4.1. If limr→∞− logP (XτDr
∈θr)

log φ(r) > 1

and φ(d(o, x)) is L-subharmonic for a moderately increasing function φ(r),

then E[φ(τD)] < ∞.

ii) Conversely if the assumption of Theorem 4.2 is satisfied and

E[φ(τ
1/2
D )] < ∞, then limr→∞− logP (Xτr∈θr)

log φ(r) ≥ 1.

Proof. We fix a reference point o ∈ D.

(i) From the assumption there is a r0 such that

Px(Xτr ∈ θr) ≤ const.φ(r)−1−ε for r ≥ r0, ε > 0.
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Define vr(x) as

Lvr(x) = 0 x ∈ D, vr(x) = 1 x ∈ ∂D \ ∂Dr
= 0 x ∈ ∂Dr \ θr.

Then vr(x) ≤ Px(XτDr
∈ θr) on Dr by the maximum principle.

Set v(x) =
∫∞
0 φ′(r)vr(x)dr. This is a bounded harmonic function on D.

And v(x) =
∫ r1
0 φ′(r)dr = φ(r1) if x ∈ ∂D and d(o, x) = r1. Since φ(d(o.x))

is L-subharmonic, by maximum principle on Dr we have

φ(d(o, x)) ≤ φ(r)Px(Xτr ∈ θr) + v(x).

Since b1(r) ≥ 0 , it is clear from lemma 4.4 that for any stopping time τ

const.E[τp] ≤ E[d(o,Xτ )
2p].

It is easy to see by the routine argument that E[τpD] < ∞ ([1]).

iv) immediately follows from lemma 4.4. �

Proof of Theorem 4.1 and 4.2. Combine Proposition 4.5 with

Proposition 2.1 and Corollary 3.2 respectively. �

Next we add a remark on the case D = M \U : U is an open set in M .

Let D = M \ B(1) and Xt be a Brownian motion on M . In view of our

problem it is reasonable to consider only the case that Px(τD < ∞) for any

x ∈ D, namely, Xt is recurrent. We borrow the results from [11]. P.Li and

L-F.Tam showed the following.

Lemma 4.6. Assume that the Ricci curvature of M is nonnegative on

D and
∫∞
1

dt
A(t) = ∞ where A(t) is n− 1 dimensional volume of S(t). Then

there exists a harmonic function g(x) on D satisfying that

g(x) is harmonic on D, g(x) = 0 on S(1),

g(x) → ∞ as d(o, x) → ∞,

and there exists r0 such that for r ≥ r0

c1

∫ r
1

dt

A(t)
≤ g(x) ≤ c2

∫ r
1

dt

A(t)
on S(r).
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The above lemma and maximum principle immediately lead us to the

following proposition.

Proposition 4.7. Under the condition of the Lemma 4.6 we have

c1(

∫ r
1

dt

A(t)
)−1 ≤ P (τr < τD) ≤ c2(

∫ r
1

dt

A(t)
)−1.

By Burkholder’s argument and the method we have done by now, we

get the following.

Theorem 4.8.

i) Assume the same condition of the Lemma 4.6. Let f(r) be a posi-

tive increasing function on [0,∞) satisfying that
∫ r
1
dt
A(t) ≤ f(r). Then

E[f(τD)] = ∞.

ii)Assume that A(t) ≥ δ > 0 for t ≥ 1 together with the assumption of

Lemma 4.6. We have for ε > 0

P (τD > t) ≥ const.(

∫ t 1
2−ε

1

dt

A(t)
)−1.

§5. Examples

1. Cone. Let M = Rn , G be an open set on S(1) and Xt be Brownian

motion Bt. We define a cone CG with respect to G by CG = {x|x =

aξ, ξ ∈ G, 0 < a < ∞}. We can directly compute P (BτDr
∈ θr) where

D = CG. It is well-known that Bt has skew-product representation [8] such

as

Bt = (rt,Θ(

∫ t
0

ds

r2
s

)).

Where rt is a Bessel process : rt = r0+wt+
∫ t
0

(n−1)
rs

ds and Θt is a Brownian

motion on Sn−1 independent of rt. We first consider the distribution of∫ t
0
ds
r2s

. By Ito’s formula

(5.1) log rt = log r0 + W (

∫ t
0

ds

r2
s

) +
n− 2

2

∫ t
0

ds

r2
s

.
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Where Wt is a one dimensional Brownian motion. We define one dimen-

sional diffusion Yt by

(5.2) Yt = r0 + Wt +
n− 2

2
t,

and Tl = inf{t > 0 : Yt = l}. Then it is easy to see that

(5.3) El0 [e
−αTl ] = exp{−(

−(n− 2) +
√

(n− 2)2 + 8α

2
)(l − l0)}.

Let τr denotes τB(r). From (5.1) we have
∫ τr
0
ds
r2s

= Tlog r. On the other hand

it is well known that P (σG > t) ∼ e−λGt/2(t ↑ ∞) (”a ∼ b” means that

there are constants c1, c2 such that c1b ≤ a ≤ c2b.), where σG = inf{t > 0 :

Θt /∈ G}. For simplicity we assume r0 = 1. Therefore

P (BτDr
∈ θr) = P (σG >

∫ τr
0

ds

r2
s

)

=

∫ ∞

0
P (σG > t)P (

∫ τr
0

ds

r2
s

∈ dt)

=

∫ ∞

0
P (σG > t)P (Tlog r ∈ dt)

∼ E[e−1/2λGTlog r ]

= exp{−(
−(n− 2) +

√
(n− 2)2 + 4λG
2

) log r}

Making the same argument as Theorem 2.2 and Theorem 3.3, we have

lim
t→∞

1

log t
logP (τCG

> t) = −−(n− 2) +
√

(n− 2)2 + 4λG
4

.

Hence our upper estimste in Theorem 2.2 is sharp in this case.

This fact has already been known ([5]). We remark that recently this

estimte was used for application to estimste occupation times at cone by

Meyre and Werner[11]. They have this estimate using direct calculation

without Dirichlet problem.
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When M has a constant negative sectional curvature and D is a cone,

P (τD = ∞) > 0. Hence this case is not fit for our problem. From Theorem

4.1 we know λr ∼ const.e
√
−kr/r2 is sufficient.

2. Let M = R2. Then λr = π2/l(r)2 : l(r) = length of θr. Define Dd by

Dd = {(x, y)|y > |x|d} d > 1.

We have

Proposition 5.1. i) There exist positive constants c1, c2, C1, C2 such

that

C1e
−c1r

d−1
d ≤ P (XτDr

∈ θr) ≤ C2e
−c2r

d−1
d .

ii) There exist positive constants c3, c4, C3, C4 such that

C3e
−c3t

d−1
d+1 ≤ P (τDd

≥ t) ≤ C4e
−c4t

d−1
3d−1

.

iii) E[τpDd
] < ∞ for 0 < p < ∞.

Proof. We have l(r) ∼ 2r1/d and ρ(r) ∼ r1/d. Proposition 2.1, Corol-

lary 3.2 and Theorem 4.1 imply the desire results. �

As for the case of d < 1 we consider Dcd with d > 1. Then we have

lDc(r) ∼ 2πr − 2r1/d ρDc ∼ r − r1/d.

§6. Finiteness of a stopped Feynman-Kac functional

Let q(x) be a measurable function on M . We call Ex[exp(
∫ τD
0 q(Xs)ds)]

the stopped Feynman-Kac functional on D. On the finiteness of stopped

Feynman-Kac functional on a bounded domain many authors have consid-

ered. It is known via large deviation theory that the one is either finite or

not according as supRe(spec(∆+ q)) is negative or not.([14]) case D is un-

bounded, then we cannot apply large deviation theory directly. We obtain

a sufficient condition on D for the finiteness of this functional for special

potentials. Let M = Rn(n ≥ 3), L = ∆ and Xt be a Brownian motion on

M throughout this section. We have the following result.
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Theorem 6.1.

i)Let 0 ≤ q(x) ≤ c 1
|x|2 . If

lim
r→∞

1

log r

∫ νr
δ

1

r
(−n− 2

2
+

√
λrr2 +

(n− 2)2

4
)dr

>
n− 2

2
−
√

(n− 2)2

4
− 4c,

then

Ex[exp(

∫ τD
0

q(Xs)ds)] < ∞ x ∈ D \ {0},

where λr is defined in §2.
ii)Let D be a cone CG defined in §5 and q(x) = c 1

|x|2 . We have

Ex[exp (

∫ τD
0

q(Xs)ds)] < ∞ x ∈ D \ {0}

if and only if 2c < λG.

Proof. ii) is obvious by skew product representation of Xt in §5. We

are going to show i). Set rn = nγr0, n = 1, 2, . . . , with |X0| = r0 and γ > 0.

E[exp(

∫ τD
0

q(Xs)ds)](6.1)

≤ E[exp(

∫ τD
0

c
1

|Xs|2
ds)]

≤
∑

E[exp(

∫ τrn+1

0
c

1

|Xs|2
ds); τrn < τD ≤ τrn+1 ]

=
∑

E[exp(

∫ τrn
0

c
1

|Xs|2
ds)

· EXτrn
[exp(

∫ τrn+1

0
c

1

|Xs|2
ds); τD ≤ τrn+1 ]; τrn < τD ≤ τrn+1 ]

≤
∑

E[exp(

∫ τrn
0

c
1

|Xs|2
ds)

· EXτrn
[exp(

∫ τrn+1

0
c

1

|Xs|2
ds)]; τrn < τD ≤ τrn+1 ]
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By (5.1) and (5.2)

EXτrn
[exp(

∫ τrn+1

0
c

1

|Xs|2
ds)] =E0[exp(cTlog rn+1/rn)] < ∞,

uniformly in n if c < (n− 2)2/8.

Then the last term in (6.1)

=
∑

E[exp(

∫ τrn
0

c
1

|Xs|2
ds); τrn < τD]E0[exp(cTlog rn+1/rn)]

≤ const.
∑

E[exp(

∫ τrn
0

2c
1

|Xs|2
ds)]1/2P (τrn < τD)1/2

(by Schwarz inequality.)

Using the observation in §5 again

(6.2) the last term = const.
∑

E[exp(2cTlog rn+1/r0)]
1/2P (τrn < τD)1/2

It is easy to see

E[exp (2cTlog rn+1/r0)]
1/2 = e

1
2
(n−2

2
−
√

(n−2)2

4
−4c) log rn

r0

On the other hand if

∞ > lim
r→∞

1

log r

∫ νr
δ

1

r
(−n− 2

2
+

√
λrr2 +

(n− 2)2

4
)dr > p,

then there exists r0 such that P (τr < τD) ≤ const.r−p for r > r0. Hence if

p > n−2
2 −

√
(n−2)2

4 − 4c and set γ = 2/(p− n−2
2 +

√
(n−2)2

4 − 4c), then the

right hand side of (6.2) is finite. This completes the proof.

Remark. In the case of n = 2 we can easily see that

E[exp (
∫ τD
0 c 1

|Xs|2ds)] = ∞ for any c > 0 by the observation as in §4. As-

sume 0 ∈ D. Then E[exp (
∫ τD
0 c 1

|Xs|2ds)] = ∞ for any c > 0 even if D

is bounded, because
∫ τB(1)

0
1

|Xs|2ds = σ1 :the first exit time from (−∞, 1]

of one dimensional Brownian motion, which has only Lp(0 < p < 1/2)

integrability.
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