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The Heat Flows of Harmonic Maps from S2 to S2

By Keisui Asai

Abstract. In this paper we show that the heat flow u(x, t) with
a rotationally symmetric initial map u0(x, t) converges to a harmonic
map as t → ∞ if n = 1 and 0 < h(θ) < π (θ ∈ (0, π)). Here we call u0 :
S2 → S2 rotationally symmetric if there exists a function h : [0, π] → R
such that h(0) = 0, h(π) = nπ, and u(cos τ sin θ, sin τ sin θ, cos θ) =
(cos τ sinh(θ), sin τ sinh(θ), cosh(θ)).

§0. Introduction

The heat flows of harmonic maps between compact Riemannian mani-

folds made their first appearance in the paper by Eells and Sampson [E-S].

In general the heat flows of harmonic maps are given by nonlinear parabolic

partial differential systems. They showed that there exist global solutions

of the heat flows of harmonic maps if the sectional curvatures of target

manifolds are non-positive.

In 1981 Sacks and Uhlenbeck [S-U] proved that weakly harmonic maps

from a compact Riemann surface to a compact Riemannian manifold with

positive sectional curvatures are not always regular, using Ljusternik-

Schnileman theory for a suitable sequence of functionals. In 1985, Struwe

([S1][S2]) established the existence of unique global solutions of the heat

flows of harmonic maps from Riemannian surfaces. This unique solution is

regular with the exception of at most finitely many singular points where

non-constant harmonic maps of S2 into the target manifolds.

It will be an interesting problem to obtain the maximal existence time of

the regular solutions. Is it finite or infinite ? Chang, Ding, and Ye [C-D] [C-

D-Y] showed in 1990 that either case occurs. They considered rotationally
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symmetric (see the definition in §1) initial maps from D2 to S2. (Their ter-

minology is “spherically symmetric” instead of “rotationally symmetric”.)

In this case the partial differential system of the heat flow is reduced to a

one-dimensional parabolic equation, which satisfies the Maximum Principle

and the comparison theorem so that the behaviour of the solution is well

controlled.

In this paper we shall consider the heat flows of harmonic maps from S2

to S2 ((1.4)) with rotationally symmetric initial maps. In §1, we recall the

result of Struwe (Theorem[S2]) and state ours (Theorem). In §2, we study

the rotationally symmetric solutions. In this case our partial differential

system of the heat flow is reduced to a one-dimensional parabolic equation

which is singular on the boundary. We shall show the Hopf boundary lemma

does hold even in this case so that the comparison theorem can be applied

under very milder conditions on initial maps. We prove our Theorem in §3.

The author would like to thank Professor T. Ochiai, H. Matano, H.

Nakajima, and M. Toda for their advice, N. Ishimura for having informed

us of the paper [C-D] [C-D-Y] and giving constant encouragement and the

referee for the useful suggestions.

§1. The Heat Flows of the Harmonic Maps

Let S2 be the unit sphere in the Euclidean space R3. In order to formu-

late the problem, we introduce some notation: we denote by C1,α(S2, S2)

the sets of u : S2 → S2 whose first differentials are α-Hölder continuous,

where 0 < α < 1. For u ∈ C1,α(S2, S2), the Hilbert-Schmidt norm |∇u| is

defined by

(1.1) |∇u|2 =
2∑

i=1

γαβ(x)
∂ui

∂xα

∂ui

∂xβ
,

where x = (x1, x2) is a local coordinate system on S2 with the metric tensor

γ = (γαβ)1≤α,β≤2, where (γαβ) = (γαβ)−1 and u = (u1, u2, u3) ∈ S2 ⊂ R3.

The energy of u ∈ C1,α(S2, S2) is defined by

(1.2) E(u) =
1

2

∫
S2

|∇u|2dS2.
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We call a critical points of E a harmonic map. A harmonic map u : S2 → S2

satisfies the Euler-Lagrange Equation

(1.3) ∆u + |∇u|2u = 0,

where

∆ =
1√

det γ

∂

∂xα

(√
det γ γαβ ∂

∂xβ

)
.

The solutions to the evolution problem

(1.4)

{ ∂u

∂t
= ∆u + |∇u|2u

u(0, t) = u0 ∈ C1,α(S2, S2)

are called the heat flows of Harmonic maps.

Theorem (Struwe)[S2, p.197]. Let u0 ∈ C1,α(S2, S2). Then there ex-

ists a solution of (1.4), E(u(·, t)) ≤ E(u0), which is regular with the excep-

tion of at most finitely many points, and which is unique in this class. Let

S = {(xi, ti) ∈ S2 ×R+; 1 ≤ i ≤ K} be the set consisting of all the singular

points.

For (x̄, t̄) ∈ S, there exist sequences Rm ↘ 0, tm ↗ t̄, xm → x̄ such that

(1.5) um(x) ≡ u(expxm
(Rmx), tm) : R2 → S2

converges to ū : S2 � R2 ∪ +∞ → S2 uniformly on each compact subsets

in R2.

Finally u(·, t) converges to a harmonic map u∞ : S2 → S2 on any

compact subsets in S2\{xi; ti = +∞} uniformly.

Remark. Struwe proved the existence of the solution u with initial

map u0 ∈ H1,2(Σ, N), Σ being a Riemannian surface and N a Riemannian

manifold. He shows that for a singular point (x̄, t̄ < +∞) ∈ Σ× [0,∞] and

for any R ∈]0, iΣ[ (iΣ is the injective radius of the domain manifold Σ), we

have the following:

(i) if t̄ < +∞,

lim sup
tm↗t̄

E(u(tm);BR(x̄)) ≥ ε1,
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(ii) if t̄ = +∞,

lim inf
tm↗t̄

E(u(tm);BR(x̄)) ≥ ε1

2
,

where ε1 is a positive constant which depends on only the geometry of Σ

and N . See Chapter 5 of [S2] for the detail.

We call the points of S the blow up points for u and the minimum of

{ti} the maximal existence time (denoted by T ) of the regular solution for

u0. We are concerned with T. Chang and Ding showed that a solution with

an initial map from D2 to S2 does not always converge to a harmonic map

even if it is regular for all time. On the other hand we shall show that a

solution with a particular initial map from S2 to S2 is regular for all time

and converges to a harmonic map.

We call u : S2 → S2 rotationally symmetric if there exists a function

h : [0, π] → R such that h(0) = 0, h(π) = nπ, and

(1.6) u(ϕ(τ, θ)) = ϕ(τ, h(θ)),

tag1.6 where ϕ(τ, θ) = (cos τ sin θ, sin τ sin θ, cos θ).

The main result of this paper is as follows.

Theorem. Let u0 ∈ C1,α(S2, S2) be a rotationally symmetric map

which is given by continuous h0 : [0, π] → R in form (1.6). If h0 satis-

fies that 0 ≤ h0(θ) ≤ π, h0 = (0), and h0(π) = π, then there exists uniquely

the smooth solution u(x, t) of (1.4) for all time t and u(x, t) converges to a

harmonic map u∞ : S2 → S2 uniformly as t → ∞.

§2. Solutions with Rotationally Symmetric Initial Maps

At first we give some lemmas for rotationally symmetric maps. Now let

Rη be the rotation around the x3-axis by an angle η and R13 the reflection

with respect to the x1x3 plane.

Lemma 2.1. u0 ∈ C1,α(S2, S2) is rotationally symmetric if and only if

u0 is Rη-invariant for all η and R13-invariant.

Proof. We remark that u is Rη-invariant if and only if

(2.1) u ◦Rη = Rη ◦ u,
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and that u is R13-invariant if and only if

(2.2) u ◦R13 = R13 ◦ u.

If u is rotationally symmetric, it is easy to see u satisfies (2.1) (2.2).

Conversely suppose u satisfies (2.1) (2.2). Let

Cτ = {(ϕ(τ, θ)); 0 ≤ θ ≤ π} ⊂ S2

and

C̃τ = Cτ ∪ Cτ+π = Cτ ∪Rπ(Cτ ).

C0 is in the x1x3 plane, then R13(C0) = C0. By (2.2) R13 ◦ u(C0) = u ◦
R13(C0) = u(C0). Since R13(C0) = C0, u(C0) ⊂ C̃0.

The behaviour of u from u(C0) to C̃0 exactly decides u : S2 → S2. So u

is rotationally symmetric. �

We can easily prove lemmas 2.2 and 2.3 by lemma 2.1 and the uniqueness

of the solution (Theorem [S2]).

Lemma 2.2. Let u : S2 → S2 be rotationally symmetric and repre-

sented by h in form (1.6). u ∈ C1,α if and only if h ∈ Φ1,α = {h ∈
C1,α([0, π]);h(0) = 0, h(π) = nπ, n = 0,±1,±2, . . . }.

Lemma 2.3. If u0 ∈ C1,α(S2, S2) is rotationally symmetric, then so

is the solution u(x, t) of (1.4) for all t ∈ [0, T ], where T is the maximal

existence time of the regular solution for u0.

We suppose u0 is rotationally symmetric. Without loss of generality,

we may assume u((0, 0, 1)) = (0, 0, 1). Then there exists a function h0 :

[0, π] → R such that h0(0) = 0, h0(π) = nπ, and u0(ϕ(τ, θ)) = ϕ(τ, h0(θ)).

By lemma 2.3 the solution of (1.4) is also rotationally symmetric and there

exists a function h : [0, π] × R → R such that h(0, t) = 0, h(π, t) = nπ,

and u(ϕ(τ, θ)) = ϕ(τ, h(θ)). Then (1.4) is reduced to the one-dimensional

parabolic equation,

ht = hθθ +
cos θ

sin θ
hθ −

sin 2h

2 sin2 θ
,(2.3)

h(θ, 0) = h0(θ), θ ∈ [0, π](2.4)

h(0, t) = 0, h(π, t) = nπ.
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For our theorem, we need only to consider the case n = 1, that is

(2.5) h(0, t) = 0, h(π, t) = π.

Lemma 2.4. Let h(θ, t) be the solution of (2.3) (2.4) (2.5), where h0 ∈
Φ1,α. Suppose that 0 ≤ h0(θ) ≤ π for θ ∈ (0, π). Then 0 < h(θ, t) < π on

(0, π)×(0, T ), where T is the maximal existence time of the regular solution

for h0.

Proof. At first we shall prove h(θ, t) > 0.

We write the equation in the form of

ht = hθθ +
cos θ

sin θ
hθ + q(θ, t)h,

where

(2.6) q(θ, t) =




− sin 2h

2h sin2 θ
(h(θ, t) �= 0)

− 1

sin2 θ
(h(θ, t) = 0).

We shall check whether q(θ, t) is bounded from above on the neighborhood

of θ = 0 and π. Since h(0, t) = 0, for each s ∈ (0, T ), there exists δ = δs
such that q(θ, t) < 0 on (0, δs) × (0, s).

On the neighborhood of θ = π, since h(π, t) = π, by choosing ε = εs
sufficiently small we may assume

(2.7) h(θ, t) >
π

2
(> 0) for θ ∈ (π − εs, π).

q(θ, t) is a continuous function on (0, π)×(0, s), then q(θ, t) is upper bounded

on (0, π− εs)× (0, s). Namely there exists a positive constant c = cs which

is independent of θ and t such that q(θ, t) < c.

We replace h(θ, t) by h̃(θ, t) = e−cth(θ, t). Since h(θ, t) satisfies (2.3), h̃

satisfies

h̃t = h̃θθ +
cos θ

sin θ
h̃θ + (q − c)h̃.

Using q−c < 0, we can apply the Strong Maximum Principle on each of the

domain whose boundary is contained in (0, π − εs) × (0, s). Consequently
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h̃(θ, t) > 0 on (0, π − εs) × (0, s). By (2.7) we can conclude h(θ, t) > 0 on

(0, π)×(0, s). Because each s is in (0,T), we have h(θ, t) > 0 on (0, π)×(0, T ).

Next we shall prove that h(θ, t) < π.

Let f = π − h and f0 = π − h0 ≥ 0. We can write the equation in the

form of

ft = fθθ +
cos θ

sin θ
fθ −

sin 2f

2 sin2 θ
.

By the same argument as above we can conclude f(θ, t) > 0 on (0, π)×(0, T ).

Then h(θ, t) < π on (0, π) × (0, T ). �

We can prove next lemma by applying the same argument in the proof

of lemma 2.4 to g = h2 − h1 > 0. We omit details.

Lemma 2.5. Let h1, h2 be the solutions of (2.3)(2.4)(2.5) with initial

values h1
0, h2

0 ∈ Φ1,α, and their maximal existence time T 1, T 2 for the

regular solution for h1
0, h

2
0 respectively.

If

0 ≤ h1
0(θ) < h2

0(θ) ≤ π for all θ ∈ (0, π),

then

h1(θ, t) < h2(θ, t) for all (θ, t) ∈ (0, π) × (0, T ),

where T = min{T 1, T 2}.

Let us study the stationary solution of (2.3).

The solution h̄ : [0, π] → [0, π] which satisfies

(2.8)




h̄θθ +
cos θ

sin θ
h̄θ −

sin 2h̄

2 sin2 θ
= 0

h̄(0) = 0

h̄(π) = π

is given by tag2.9

(2.9) tan
h̄

2
= A tan

θ

2
,

where A is a positive number. In fact we replace θ by s = log tan θ
2 . Then

h̃(s) = h̄(θ) satisfies

h̃ss =
1

2
sin 2h̃.
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We can solve this equation and obtain (2.9). By (2.9) h̄′(0) = A and

h̄′(π) = 1
A . h̄(θ) converges to h̄(θ) ≡ 0 uniformly as A → 0 except θ = π.

Also h̄(θ) converges to h̄(θ) ≡ π uniformly as A → ∞ except θ = 0.

Now we show that Hopf boundary lemma (see [P-W] p.170 Theorem 3)

holds in our case. We note again that the equation is singular itself at the

boundary. Although the method of the proof is well-known, we perform the

details because of their importance.

Lemma 2.6. Let h0 ∈ Φ1,α and 0 ≤ h0(θ) ≤ π for θ ∈ (0, π). Then the

solution of h(θ, t) of (2.3)(2.4)(2.5) satisfies

hθ(0, t) > 0 for 0 < t < T,

and

hθ(π, t) < 0 for 0 < t < T.

Proof. We show hθ(0, t0) > 0, where 0 < t0 < T. On the (θ, t), let

K be a disk plane whose center is (R, t0) and radius is R, where 0 < R <

min{t0, T − t0,
π
2 }. Let K ′ be a half disk whose center is (0, t0) and radius

is θ̄, where θ̄ is a small positive number such that h(θ, t) < π
2 if (θ, t) ∈ K ′.

Let C = ∂K ∩K ′ and C ′ = K ∩ ∂K ′, where C contains its end points and

C ′ does not contain its end points. Let D be a domain which is enclosed

with C ∪ C ′.
By lemma 2.5,

h(0, t0) = 0

h(θ, t) > 0 (θ, t) ∈ C \ {(0, t0)}
h(θ, t) ≥ η > 0 (θ, t) ∈ C ′

where η is a positive constant. Let

v(θ, t) = e−α{(θ−R)2+(t−t0)2} − e−αR2
.

It is easy to see

v > 0 in D \ ∂D

v ≡ 0 on C.
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Let us assume tag2.10

(2.10) vθθ +
cos θ

sin θ
vθ + q(θ, t)v − vt > 0 in D ∪ ∂D,

where q(θ, t) is defined by (2.6). Later we shall prove this assumption holds

for sufficiently large α.

Set

w(θ, t) = h(θ, t) − εv(θ, t).

By choosing a small positive constant ε, we have

w(0, t0) = 0

w(θ, t) = h(θ, t) > 0 (θ, t) ∈ C \ {(0, t0)}
w(θ, t) ≥ η − εv > 0 (θ, t) ∈ C ′.

Namely we have

wθθ +
cos θ

sin θ
wθ + q(θ, t)w − wt < 0

on D ∪ ∂D \ {(0, t0)} by (2.10). Since θ̄ is a small positive number such

that h(θ, t) < π
2 , we can see q(θ, t) < 0 in D ∪ ∂D. Applying the Strong

Maximum Principle, the minimum of w attains on (0, t0) only. Then

wθ(0, t0) ≥ 0,

i.e. hθ(0, t0) − εvθ(0, t0) ≥ 0.

Consequently we can conclude that hθ(0, t0) > 0 by vθ(0, t0) > 0.

Finally we shall prove (2.10). Setting r2 = r2(θ, t) = (θ−R)2 +(t− t0)
2,

we have

vθθ +
cos θ

sin θ
vθ + q(θ, t)v−vt

= 2αe−αr2{2α(R− θ)2 − 1+(t− t0)}

+
e−αr2

sin2 θ
{2α(R− θ) cos θ sin θ − sin 2h

2h
(1 − e−α(R2−r2))}

≥ 2αe−αr2{2α(R− θ)2 − 1+(t− t0)} +
e−αr2

sin2 θ
I(θ),
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where

I(θ) = α(R− θ) sin 2θ − (1 − e−α(R2−r2)).

If θ = 0, then t = t0 on ∂D. So I(0) = 0. We have at t = t0,

I ′(θ) = 2α(R− θ){cos 2θ − e−α(R2−r2)} − α sin 2θ

I ′(0) = 0

I ′′(θ) = 2α(R− θ){−2 sin 2θ + 2α(R− θ)e−α(R2−r2)}
− 2α{cos 2θ − e−α(R2−r2)} − 2α cos 2θ

I ′′(0) = 2α(2αR2 − 1).

Choosing sufficiently large α, we get I ′′(0) > 0 and

lim
θ→0

I(θ)

sin2 θ
= lim

θ→0

I ′(θ)

sin 2θ
= lim

θ→0

I ′′(θ)

2 cos 2θ
=

1

2
I ′′(0) > 0.

Consequently by choosing α so large and θ̄ so small, we get (2.10). �

§3. The Proof of Theorem

In the proof of theorem [S2] in Ch.1, it is shown that the center of the

radiation of um at (1.5) is xm, which is chosen such that for some R0 > 0

and Rm → 0

E(u(tm);BRm(xm)) = sup
x∈2R0(x̄)

tm−τm≤t≤tm

E(u(t);BRm(x)) =
ε1

4
,

where τm depends on ε1, Rm, and E(u0). But we shall prove that we can

choose xm ≡ x̄ (independent of m) if the fixed point by rotation is a singular

point of the solution.

Lemma 3.1. Let u0 ∈ C1,α(S2, S2) be rotationally symmetric. Suppose

that the solution u(x, t) of (1.4) is singular at ((0, 0, 1), T ). Then ū : S2 �
R2 ∪ +∞ → S2 in theorem (Struwe[S2]) is rotationally symmetric.

Proof. If x̄ = ((0, 0, 1), T ) is a singular point, then there exist se-

quences Rm ↘ 0, tm ↗ T, xm → x̄ such that

E(u(tm);BRm(xm)) =
ε1

4
.
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We compare the convergence of Rm ↘ 0 with that of

dm := dist(xm, x̄) ↘ 0. As m → +∞, we have either

(i)
Rm

dm
→ 0 or (ii)

Rm

dm
> 0.

In case (i) we consider BRm+dm(x̄) and BRm(xm). Let θm be defined by

sin θm = Rm
dm

. By the symmetry there are [ 2π
2θm

] balls, BRm , whose centers

are on ∂BRm+dm(x̄) and which have no intersections. Then

E(u(tm);BRm+dm(x̄)) ≥ [
2π

2θm
]
ε1

4
→ +∞,

this is a contradiction. In case (ii) we have Bdm(x̄) ⊂ BRm(xm) for suffi-

ciently large m and

E(u(tm);BRm+dm(x̄)) ≥ ε1

4
.

By choosing R′
m(< Rm + dm) → 0 in the place of Rm, we have

E(u(tm);BR′
m

(x̄)) = sup
x∈2R0(x̄)

tm−τm≤t≤tm

E(u(t);BR′
m

(x)) =
ε1

4
.

Then we can take x̄ as the center of the radiation of um at (1.5). �

Now we shall prove Theorem.

Proof of Theorem. By lemma 2.3, if the initial map u0 is rotation-

ally symmetric, then so is the solutions of (1.4). The singular points are

at most finite (Theorem [S2]). So if there exist singular points, they must

be fixed points of Rη. Therefore they are included in (0, 0, 1), (0, 0,−1).

Namely θ ∈ 0, π in form (1.6).

We suppose the maximal existence time T ≤ +∞. If (0, 0, 1) is a singular

point, then

hm(θ) ≡ h(Rmθ, tm) → h∞(θ),

(We may choose xm ≡ (0, 0, 1) for all m in (1.5).) where h∞ : [0, π] →
R, h∞(0) = 0 in the form of (1.6). Because u∞ is non constant, there exists
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θ ∈ [0, π] such that h∞(θ) = π. Since Rmθ → 0 as m → +∞, there exist

θm = Rmθ and tm → T such that

(3.1) h(θm, tm) → π,

Fix any t0 ∈ (0, T ), for lemma 2.6 we have hθ(θ, t0) > 0. So choosing

stationary solutions h1, h2 properly given in (2,10), we have

h1(θ) < h(θ, t0) < h2(θ).

Then by lemma 2.5 we can concluded

h1(θ) < h(θ, t) < h2(θ).

This is a contradiction to (3.1).

Consequently we can conclude (0,0,1) is a regular point. Similarly, so is

(0,0,-1). Hence there is no singular point for all T ≤ +∞. �
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