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On the volume growth and the topology of complete

minimal submanifolds of a Euclidean space

By Qing Chen

Abstract. Let M be a n-dimensional complete properly immersed
minimal submanifold of a Euclidean space. We show that the number

of the ends of M is bounded above by k = sup
volume(M∩B(t))

ωntn
, where

B(t) is the ball of the Euclidean space of center 0 and radius t, ωn is
the volume of n-dimensional unit Euclidean ball. Moreover, we prove
that the number of ends of M is equal to k under some curvature decay
condition.

1. Introduction

The study of complete minimal surfaces in Euclidean space has flourished

for a long time and many results of their global geometric and topological

structure have been obtained ( for instance, [C.O], [O], [J.M] ). Recently

several author have begun the study of higher dimensional complete min-

imal submanifolds in Euclidean space. For example, Schoen([Sc]) studied

the behaviour of minimal hypersurfaces at infinity and has proved a unique-

ness theorem. Anderson ([A]) defined the generalized total scalar curvature

of minimal submanifolds in Euclidean space and gave a generalization of

Chern-Osserman theorem ([C.O]) to such submanifolds with finite total

scalar curvature. The behaviour of minimal submanifolds at infinity is also

investigated in [J.M]. At the same time, Kasue considered the “gap phe-

nomena” for minimal submanifolds, and several uniqueness theorems are

obtained in [K].[K.S] under the curvature decay conditions.
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Let M be a proper immersed complete minimal submanifold of a Eu-

clidean space. The number of the ends of M is defined to be the supremum

of the number of different components with non-compact closure of M −C,

for every compact subset C ⊂ M . It is known the number of ends of

M is the simplest topological invariant of M since M is non-compact. In

some case, M can be uniquely determined by the behavior of its ends, for

example, see [Sc] and [K] and [K,S].

The aim of this paper is to discuss some relation between the volume

growth of a minimal submanifold of a Euclidean space and the number of its

ends. By studying the tangent cone of a minimal submanifold at infinity, we

find the number of its ends is controlled by its volume growth (Theorem 2.1).

More precisely, the volume growth of a minimal submanifold determines the

number of its ends if it looks like flat n-planes from infinity (Theorem 2.2).

We shall state the theorems in the next section and the proof of the

theorems will be given in Section 3. At the end of the paper we discuss

some related results.

Acknowledgements. The author sincerely thanks professor T. Ochiai

for his inspiring guidance and consistent encouragement, and also thanks

professor A. Kasue for his kind help.

2. Curvature estimate and main theorems

Let M be a submanifold of an m-dimensional Euclidean space Rm

equipped with the standard flat metric 〈 , 〉. The covariant derivatives

of Rm and M are denoted by D and ∇ respectively. And the second fun-

damental form of M is defined by

A : TM ⊗ TM → T⊥M

A(X,Y ) = DXY −∇XY .(2.1)

Let r be the distance function of Rm with respect to the origin, and B(t)

denote the open distance ball of radius t of Rm. Our main theorems are

following:

Theorem 2.1. Let M be an n-dimensional complete properly im-

mersed minimal submanifold in Rm. Suppose

(2.2) sup
Vol(M ∩B(t))

ωntn
< +∞.
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Then the number of ends of M , say k(M), satisfies

(2.3) k(M) ≤ sup
Vol(M ∩B(t))

ωntn
,

where ωn is the volume of the unit ball in Rn.

Theorem 2.2. Let M be an n-dimensional complete properly im-

mersed minimal submanifold in Rm which satisfies

(2.4) lim
t→∞

sup
x∈M
r(x)≥t

r(x)|A|(x) = 0.

Then

(2.5) lim
t→∞

Vol(M ∩B(t))

ωntn
= k(M) < +∞

provided either of the following two conditions is satisfied:

(1) n = 2, m = 3 and each end of M is embedded.

(2) n ≥ 3.

Remark 2.3. It was showed in [B. deG. Gi] that for n ≥ 8, there exist

nonlinear minimal graphs f : Rn → R which have one end and satisfy

1 < sup
Vol(M ∩B(t))

ωntn
< +∞.

So the curvature decay assumption (2.4) is necessary. For n = 2, m = 3,

the embeddedness of each end of M is also necessary( a counter example is

Enneper’s surface).

The proof of the theorems will be given in the next section. First we

show some lemmas.

Denote

(2.6) f(t) = sup
x∈M
r(x)≥t

r(x)|A|(x),
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and also write r for r|M . We have the following estimate of the Hessian of

r2 on M . For any X ∈ TM , one has

1

2
∇2r2(X,X) =

1

2
D2r2(X,X) +

1

2
〈A(X,X),∇⊥r2〉(2.7)

≥ |X|2 − r|A(X,X)|
≥ |X|2(1 − f(r)),

where ∇⊥ is the normal connection of M .

Lemma 2.4. Suppose M is as in Theorem 2.2. Then

(1): M has finitely many ends, and each of its ends is of finite topological

type.

(2): limt→∞ infr≥t |∇r|2 = 1.

Proof. (1): By assumption, there exists a real number t0 > 0 such

that f(t) ≤ f(t0) < 1 for all t ≥ t0. From (2.7) we know r2 is a strictly

convex function on M−B(t0), in particular ∇r never vanishes on M−B(t0).

Let

φ : ∂(M −B(t0)) × [t0,+∞) → M −B(t0)

be the integral flow of a vector field ∇r
|∇r|2 with

φ(p, t0) = p ∈ ∂(M −B(t0)).

It is obvious that r(φ(p, t)) = t and

φ(·, t) : ∂(M ∩B(t0)) → ∂B(M ∩B(t))

is a diffeomorphism. So (1) is true.

(2): Along any curve φ(p, t) (t ∈ [t0,+∞)) as above, we have

d

dt
r|∇r|2 = |∇r|2 + r

d

dt
|∇r|2(2.8)

= |∇r|2 + 2r|∇r|−2〈∇∇r∇r,∇r〉
= |∇r|2 + 2r|∇r|−2(∇2r)(∇r,∇r)

= |∇r|2 + 2r〈A(∇r,∇r),∇⊥r〉|∇r|−2+

2|∇r|−2(|∇r|2 − |∇r|4)
≥ 1 − 2f(r).
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Therefore (2) follows from (2.8). �

Using Lemma 2.4, we shall work on each end separately, so denote by V

one of the ends of M .

Let V (t) = V ∩B(t) for each t > t0, and S(t) = ∂B(t). Then ∂V (t) is an

immersed closed submanifold in M (also in S(t)). The second fundamental

form At of ∂V (t) in M is given by

(2.9) At(X,Y ) = 〈∇XY,
∇r

|∇r| 〉
∇r

|∇r| = −|∇r|−2(∇2r(X,Y )) ∇r.

The following lemma is essentially due to [K.S] and [A].

Lemma 2.5. Suppose M is as in Theorem 2.2.

(1): The second fundamental form of ∂V (t) in S(t), denoted by Ct,

satisfies

|Ct| ≤
ε1(t)

t

and limt→∞ ε1(t) = 0.

(2): n ≥ 3, the sectional curvature of ∂V (t) is bounded below by

1

t2
(1 − cf(t))

for some constant c.

Proof. (1): Observe that the second fundamental form of S(t) in Rm

is

〈DXY,Dr〉Dr = −(D2r(X,Y ))Dr

for any X,Y ∈ TS(t), so that for X,Y ∈ T (∂V (t))

Ct(X,Y ) = A(X,Y ) + D2r(X,Y )Dr −∇2r(X,Y )
∇r

|∇r|2

= A(X,Y ) + D2r(X,Y )Dr − (D2r(X,Y ) +
o(1)

t
)
∇r

|∇r|2 .

Then (1) is follows from Lemma 2.4 (2).
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(2): For any 2-plane π(ei, ej) ⊂ T (∂V (t)), by (2.9), the sectional curva-

ture of π is given by

K(ei, ej) = 〈A(ei, ei), A(ej , ej)〉 − |A(ei, ej)|2+
|∇r|−2(∇2r(ei, ei)∇2r(ej , ej) − |∇2r(ei, ej)|2).

Hence we have

K(ei, ej) ≥
−2f2(t)

t2
+ |∇r|−2{ 1

t2
+

1

t
〈A(ei, ei) + A(ej , ej),∇⊥r〉+

〈A(ei, ei),∇⊥r〉〈A(ej , ej),∇⊥r〉 − 〈A(ei, ej),∇⊥r〉2}

≥ 1

t2
(1 − 2f(t) − 2f2(t)) − 2f2(t)

t2

≥ 1

t2
(1 − cf(t)). �

Finally we recall the following well known fact:

Lemma 2.6.

(2.10) Vol(M ∩B(t)) ≤ t

n
Vol (∂(M ∩B(t))).

3. The proof of theorems

To prove Theorem 2.1 we need some facts from Geometric Measure The-

ory. For the definitions, the terminology and proofs see [Al] or [Si](Chapter

8).

Suppose V is one of the ends of M , and consider the rescaling of V , by

a sequence {ri} of real numbers tending to infinity,

Vi =
V

ri
= { x

ri
: x ∈ V ⊂ Rm}.

By (2.2) we know for any 0 < δ < 1

sup
i

Vol(Vi ∩ (B(1) −B(δ))) < +∞.
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Then the compactness theorem of integral varifolds ( see, [Al] or [Si] Th

42.7) implies that there exists a subsequence of {Vi}, denoted again by

{Vi}, converging to a stationary integral varifold T in B(1) −B(δ).

Lemma 3.1. T is a cone.

Proof. For δ′ < δ we see {Vi} converges ( at least for a subsequence

) in B(1) −B(δ′). Thus we may assume Vi converges to T in B(1) − {0}.
Without lose of generality, we suppose ∂V ⊂ B(1) and denote

v(s) = Vol(V ∩ (B(s) −B(1))).

Since ∂(V ∩ (B(s) − B(1))) ⊂ ∂B(s) ∪ ∂B(1), integrate 1
2∆r2 = n over

V ∩ (B(s) −B(1)), by Green’s formula and the co-area formula, we obtain

nv(s) = s

∫
V ∩∂B(s)

〈∇r,
∇r

|∇r| 〉 −
∫
V ∩∂B(1)

〈∇r,
∇r

|∇r| 〉

≤ sv′(s) (v′(s) =

∫
V ∩∂B(t)

1

|∇r|).

This implies

(3.1) (
v(s)

sn
)′ ≥ 0, i.e.

v(s1)

sn1
≤ v(s2)

sn2

for s2 ≥ s1 ≥ 1.

Put M(T ) = lim Vol( 1
ri
V ∩ (B(1)−B( 1

ri
))), where M is the mass norm

of varifolds, then for given t ∈ (0, 1), by the monotone formula of stationary

varifolds (see [Si]) we have

M(T ∩B(t))

tn
≤ M(T ).

On the other hand, suppose rit > rj for some j (i > j and j → ∞ as

i → ∞), then by (3.1)

M(T ∩B(t))

tn
= lim

i→∞

Vol(Vri ∩ (B(t) −B( 1
ri

)))

tn
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= lim
i→∞

v(rit)

(rit)n

≥ lim
j→∞

v(rj)

rnj

= lim
j→∞

Vol(V ∩ (B(rj) −B(1)))

rnj
= M(T ).

Thus we obtain

M(T ∩B(t))

tn
≡ M(T ) for all t ∈ (0, 1).

Then the proof that T is a cone follows from the well-known methods in

the varifold theory. See the proof of Theorem 19.3 in [Si]. �

Proof of Theorem 2.1.

Since T is stationary in B(1) − B(δ), and we know the multiplicity

(density) function of T is everywhere great than or equal to 1 by the upper-

semicontinuity of the multiplicity function and almost everywhere regularity

of T (also cf.[L]). Thus we obtain

(3.2)
lim
i→∞

Vol(Vi ∩ (B(1) −B(δ))) = M(T ∩ (B(1) −B(δ)))

≥ ωn(1 − δn)

by means of the convergence and the fact that T is a cone.

By (3.2) we can deduce M has only finite many ends. Indeed, let

{V j}k(M)
j=1 be the collection of the ends of M . We can assume the sequences

of all ends rescaled by {ri} converge in B(1) − B(δ). By the monotonicity

formula of the volume growth of minimal submanifolds in Rm, we have

k := lim
t→∞

Vol(M ∩B(t))

ωntn
< ∞.

Note

(3.3)
M

ri
∩ (B(1) −B(δ)) =

k(M)⋃
j=1

V j

ri
∩ (B(1) −B(δ))
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when i is big enough. Then (3.2) implies

k = lim
i→∞

Vol(M ∩B(ri))

ωnrni

= lim
i→∞

ω−1
n Vol(

M

ri
∩ (B(1) −B(δ))) + lim

i→∞
Vol(M ∩B(δrni ))

ωnrni

= lim
i→∞

ω−1
n

k(M)∑
j=1

Vol(
V j

ri
∩ (B(1) −B(δ))) + kδn

≥ k(M)(1 − δn) + kδn.

This proves the theorem. �

Proof of Theorem 2.2.

First we have for one of the ends ( say V ) of M ,

(3.4) lim
t→∞

sup
Vol(∂V (t))

tn−1
≤ ωn−1 (the volume of the unit sphere in Rn).

This can be shown by Lemma 2.5 (2) and Bishop’s volume comparison

theorem for n ≥ 3. When n = 2 and m = 3, since ∂(V (t)
t ) is an embedded

closed curve in S2(1), Lemma 2.5 (1) implies

lim
t→∞

Vol(∂V (t))

2πt
= lim

t→∞
(2π)−1Vol(∂(

V (t)

t
)) = 1.

By Lemma 2.6 and Lemma 2.4 (1), for t > t0

Vol(M ∩B(t)) ≤ t

n
Vol (∂(M ∩B(t)))

=
t

n

k(M)∑
j=1

Vol (∂(V j(t))).

Thus we obtain

(3.5) lim
t→∞

sup
Vol (M ∩B(t))

ωntn
≤ k(M).

Then the theorem follows by (3.5) and Theorem 2.1. �
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4. Minimal submanifolds of finite total scalar curvature

In this section we consider M is a complete minimal submanifold with

total scalar curvature. Following Anderson [A] the total scalar curvature of

M is defined to be ∫
M

|A|n =

∫
M

(−R)
n
2

where R is the scalar curvature of M . In [A] Anderson showed the immer-

sion of M in Rm is proper if the total scalar curvature of M is finite. The

following two facts were also proved in [A].

Lemma 4.1. If
∫
M |A|n < +∞, then

(1) |A|(x) ≤ c1
r(x)n , for some constant c1;

(2) supx∈∂Bρ(r) |A|2(x) < µ(r)
r2

when r is big enough,

where limr→∞ µ(r) = 0, and Bρ(r) is the geodesic ball of M of radius r

around a fixed point of M .

Thus we have

Corollary 4.2. Let M be an n-dimensional complete minimal sub-

manifold in Rm with finite total scalar curvature. Then

lim
t→∞

Vol (M ∩B(t))

ωntn
= k(M)

provided either of the following two conditions is satisfied:

(1) n = 2, m = 3 and each end of M is embedded.

(2) n ≥ 3.

The next theorem states that Theorem 2.2 is also true for the volume

growth related to the intrinsic distance of M .

Theorem 4.3. Let M be an n-dimensional complete minimal subman-

ifold in Rm with finite total scalar curvature. Then

lim
t→∞

Vol (Bρ(t))

ωntn
= k(M)
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if either of the following two conditions is satisfied:

(1) n = 2, m = 3 and each end of M is embedded.

(2) n ≥ 3.

Here Bρ(t) is the geodesic ball of M with radius t around a fixed point of

M .

Proof. Without lose of generality, suppose 0 ∈ M . Let ρ(x) =

distM (0, x) and γ : [0, l] → M be a distance minimizing geodesic of M

starting from the origin. Let x be the position vector of M in Rm. Along

γ(t), by Lemma 4.1(2)

d

dt
〈x(γ(t)), γ′(t)〉 = 1 + 〈x,A(γ′(t), γ′(t))〉

≥ 1 − µ(t).

Thus for any ε > 0, there exists a t0 > 0 such that if l > t0,

(2.12)
d

dt
〈x(γ(t)), γ′(t)〉 ≥ 1 − ε for all t ∈ (t0, l].

Since 〈x(γ(t)), γ′(t)〉 ≤ r(γ(t)), integrating of (2.12) from t0 to t, we have

r(γ(t)) ≥ (1 − ε)t + c(t0) = (1 − ε)ρ(γ(t)) + c(t0)

for some constant c(t0), which means for t > t0 (notice r(x) ≤ ρ(x))

M ∩B((1 − ε)t + c(t0)) ⊂ Bρ(t) ⊂ M ∩B(t).

Hence we get

(1 − ε)nk(M) ≤ lim inf
t→∞

Vol(Bρ(t))

ωntn
≤ lim sup

t→∞

Vol(Bρ(t))

ωntn
≤ k(M).

Letting ε → 0, we have

lim
t→∞

Vol(Bρ(t))

ωntn
= k(M).

This completes the proof of the theorem. �
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A well known Cohn-Vossen theorem reads that if N is a 2-dimensional

complete Riemannian manifold with the total Gaussian curvature
∫
N KN

being absolutely convergence, then (1/2π)
∫
N KN ≤ χ(N), where χ(N) is

Euler characteristic of N . The difference χ(N)−(1/2π)
∫
N KN is interpreted

by several authors and recently Shiohama([Shi]) proved

lim
t→∞

A(t)

πt2
= χ(N) − 1

2π

∫
N
KN

where A(t) is the area of the geodesic ball of N of radius t around a fixed

point of M .

We can generalize this result to the class of minimal submanifolds in

Euclidean space with finite total curvature.

Corollary 4.4. Let M be as in Theorem 4.3 and n ≥ 3, then

χ(M) −
∫
M

Ω = lim
t→∞

V ol (Mρ(t))

ωntn
,

where Ω is the Gauss-Bonnet-Chern curvature form of M .

Proof. It is a direct consequence of Theorem 4.3 and Theorem 5.1 of

[A]. �
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