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Abstract. We consider singularities of the Bergman kernel at cor-
ner point for a two-dimensional tube pseudoconvex domain with corners
and obtain an asymptotic expansion from the microlocal point of view.

Introduction

The study on the Bergman kernel has a long history and contains enor-

mous works. Especially, the regularity of the Bergman kernel has inves-

tigated by many people. Let Ω = {z; f(z, z) < 0} � Cn be a strictly

pseudoconvex bounded domain with C∞ (resp. analytic) boundary; that is,

f is a C∞ (resp. analytic) function satisfying that df �= 0 at f = 0 and that

the matrix
(

∂2f
∂zj∂zk

)
is positive definite at every point of ∂Ω. We denote

the Bergman kernel for Ω by B(z, w). In 1974, C. Fefferman proved the

following:

0.1 Theorem. ([F]) Assume that Φ : Ω → Ω̃ is a biholomorphic map-

ping between bounded strictly pseudoconvex domains with C∞ boundary.

Then, Φ can be extended smoothly up to the boundary.

In order to prove this theorem, he obtained a new precise result on

singularities of B(z, z) near the boundary. In fact B(z, z) has a form of
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typical asymptotic expansion appearing in the theory of pseudodifferential

operators. Seeing his result, L. Boutet de Monvel and J. Sjöstrand found

out the following Fourier integral representation of the Bergman kernel in

1976:

0.2 Theorem. ([B-Sj]) Assume that f(z, z) is C∞, then B(z, w) has

the following asymptotic expansion:

(0.1) B(z, w) ≡
∫ ∞

0
e
√
−1tg(z,w)b(z, w, t) dt mod. C∞kernels.

Here g(z, w) is an almost holomorphic extension of the function g(z, z) =

−
√
−1f(z, z), and the amplitude b(z, w, t) is an element of Sn(Ω×Ωa×R+)

and allows an asymptotic expansion at t = ∞ of the form:∑∞
k=0 t

n−kbk(z, w) where Ωa denotes the complex conjugate of Ω.

Inspired by their result, M. Kashiwara obtained a holonomic system

satisfied by the Bergman kernel when Ω has analytic boundary:

0.3 Theorem. ([Kash]) Assume that f(z, z) is analytic. Then The

Bergman kernel B(z, w) satisfies the following microdifferential equations

near the hypersurface {f(z, w) = 0} which is the complexification of the

boundary ∂Ω: For any microdifferential operators P , Q satisfying

(0.2) P (z, ∂z)Y (−f(z, w)) = Q(w, ∂w)Y (−f(z, w)),

it follows that

(0.3) tP (z, ∂z)B(z, w) = tQ(w, ∂w)B(z, w).

Here t denotes the formal adjoint of operators, Y denotes the Heaviside

function, and the equalities (0.2) and (0.3) hold as holomorphic microfunc-

tions.

He also showed that the Bergman kernel can be determined locally mod-

ulo functions holomorphic at the boundary. Precisely he obtained the fol-

lowing theorem by using the microlocal Bergman kernel (that is, a microlo-

calization of the Bergman kernel):
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0.4 Theorem. (see also [Kash]) Under the same condition and nota-

tion, for any z0 ∈ ∂Ω there exist some neighborhood U � z0 and a(z, w),

b(z, w) ∈ O(U × Ua) such that the Bergman kernel has the following form

in U × Ua:

(0.4) B(z, w) =
a(z, w)

f(z, w)n+1
+ b(z, w) log(−f(z, w)).

Here O(U × Ua) denotes the set of holomorphic functions on U × Ua.

(See [Kan2] for proofs of theorems (0.3) (0.4) and further study, and also

note that if we replace the Bergman kernel and the Heaviside function with

the Szegö kernel and Dirac’s δ-function respectively, similar results hold).

Hence, if ∂Ω is analytic and strictly pseudoconvex on some neighborhood

of y1 ∈ ∂Ω, we see that the Bergman kernel has the form above at y1.

However, when a domain has non-smooth boundary, it seems that the study

of singularities of the Bergman kernel is not so satisfactory. Therefore in this

paper, as a simple example in non-smooth boundary cases we will consider

singularities of the Bergman kernel for a two-dimensional pseudoconvex

tube domain Ω = R2 +
√
−1W , with W = W1 ∩ W2, where each Wj is

strictly convex domain as follows:

(0.5)



Wj = {y ∈ R2;ϕj(y) < 0} with an analytic function

ϕj (j = 1, 2) such that

(1)∂ W1 and ∂W2 intersect transversally,

(2) if ϕj(y0) = 0, then dϕj(y0) �= 0 and the Hessian matrix(
∂2ϕj

∂yk∂y�
(y0)

)
1≤k,�≤2

is positive definite for j = 1, 2.

In this paper, we interpret the Bergman kernel as a microfunction on some

conormal bundle. We will denote the Bergman kernel for Ω by B(z, w). In

Section 1, we first recall the integral representation of the Bergman kernel

for the pseudoconvex tube domain. The Bergman kernel is holomorphic

except for the diagonal points {z = w} at the boundary. (Note that this

fact was already known before Fefferman’s work). Hence, setting z :=

x +
√
−1y, w := u +

√
−1v we study the singularity of B(z, w) at {x =

u, y + v = 0, y = y1} with y1 ∈ ∂W1 ∩ ∂W2 as a hyperfunction. Precisely,

we set a holomorphic function f(z, w) := B(z +
√
−1y1, w −

√
−1y1) and
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investigate singularity of f(z, w) at {x = u = 0, y = v = 0}. We can

see that hyperfunction f((x, u) +
√
−1(Γ× Γa)0) is well-defined, with Γ :=

{y; y + y1 ∈ W}, Γa := −Γ. We define θ1
j (j = 1, 2) by the relation

(0.6)
−dϕj(y

1)

|dϕj(y1)| = ω(θ1
j ) (j = 1, 2).

where and hereafter ω(θ) denotes (cos θ, sin θ). Without loss of generality,

we may assume that

(0.7) 0 < θ1
1 < θ1

2 < 2π, and 0 < θ1
2 − θ1

1 < π.

Thus we have the following:

(0.8) SS(f((x, u) +
√
−1(Γ × Γa)0)) ∩ {x = u}

⊂ {(x, u ;
√
−1(ω(θ),−ω(θ))) ∈

√
−1T ∗R4;x = u, θ1

1 ≤ θ ≤ θ1
2}

= {(x, u ;
√
−1

2∑
j=1

(t
∂ϕ1

∂yj
(y1) + (1 − t)

∂ϕ2

∂yj
(y1))(duj − dxj)) ∈

√
−1T ∗R4;

x = u, 0 ≤ t ≤ 1}.

where SS(·) denotes the singularity spectrum of a hyperfunction. Moreover

we can define a function g(z, w, θ) and also see that

sp(f((x, u) +
√
−1(Γ × Γa)0))(0.9)

= sp

(∫ θ12

θ11

g((x, u) +
√
−1(Γ × Γa)0, θ) dθ

)
.

Here sp: BR4−̃→π∗CR4 denotes the spectral isomorphism from the sheaf

of hyperfunctions to that of microfunctions. In Section 2 we obtain an

asymptotic expansion of f(z, w) above from the microlocal point of view

using the result of Section 1. Under the notations above, our main theorem

is the following:

Main Theorem. There exists a sequence {Rj(θ)}∞j=0 such that for any

ε > 0 the boundary value of

(0.10) f(z, w) − 1

(2π)2

∫ θ12−ε

θ11+ε
dθ

∫ ∞

Aj

∞∑
j=0

Rj(θ) r
3−je

√
−1〈z−w,ω(θ)〉 rdr
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is microanalytic at

(0.11) {(x, u ;
√
−1(ω(θ),−ω(θ))) ∈

√
−1T ∗R4;x = u, θ1

1+ε < θ < θ1
2−ε }.

Here {R(θ)}∞j=0 satisfies following conditions:

(1) there exists a complex neighborhood U of ]θ1
1, θ

1
2[ such that each Rj(θ)

is a holomorphic function of U with

(0.12) R0(θ) =
tan(θ2 − θ) tan(θ − θ1)

tan(θ2 − θ) + tan(θ − θ1)
,

(2) for any V � U there exist constants C̃, M̃ such that

(0.13) sup
θ∈V

|Rj(θ)| ≤ j!C̃M̃ j (∀j ≥ 0).

R Where in (0.10) Aj := max{0, (j−3)A} with A is some positive constant

depending on M̃ . In other words, on the set (0.11) the following equality

holds as a microfunction:

(0.14) f((x, u) +
√
−1(Γ × Γa)0) = R(Dx)δ(x− u).

Here R(Dx) denotes a microdifferential operator defined by the symbol
∞∑
j=0

Rj(θ)r
2−j where rω(θ) denotes the symbol of −

√
−1(∂/∂x1, ∂/∂x2) by

the polar coordinates. Moreover the second term of (0.10) is calculated as

follows:

3

2π2

∫ θ12−ε

θ11+ε

R0(θ)

〈z − w,ω(θ)〉4dθ(0.15)

+
1

(2π)2

3∑
j=1

∫ θ12−ε

θ11+ε
dθ

∫ ∞

0
Rj(θ) r

3−je
√
−1〈z−w,ω(θ)〉rdr

+
1

(2π)2

∞∑
j=4

∫ θ12−ε

θ11+ε
dθ

∫ ∞

(j−3)A
Rj(θ) r

3−je
√
−1〈z−w,ω(θ)〉rdr.
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§1. Preliminary

In this paper we will use the following notation: for z = (z1, . . . , zn) =

x +
√
−1y, w = (w1, . . . , wn) = u +

√
−1v ∈ Cn, 〈z, w〉 denotes

n∑
j=1

zjwj .

ω(θ) denotes (cos θ, sin θ). If U is an open subset of Cn, then we denote

the Hilbert space of square integrable and holomorphic functions on U by

OL2
(U).

Let W ⊂ Rn be a bounded domain, and

(1.1) Ω := Rn +
√
−1W = {z ∈ Cn ; Im z ∈ W}

be a pseudoconvex tube domain. It is well-known that this condition is

equivalent to the convexity of W . We denote the Bergman kernel for Ω

(that is, the reproducing kernel function for OL2
(Ω)) by B(z, w).

1.1 Proposition. (cf. [Kor]) The Bergman kernel B(z, w) for Ω has

the following form:

(1.2) B(z, w) =
1

(2π)n

∫
Rn

e
√
−1〈z−w,ξ〉∫

W e−2〈v,ξ〉dv
dξ.

Though it is a well-known fact, we will show this formula for the conve-

nience of the reader.

1.2 Lemma. For any f(w) ∈ OL2
(Ω) and (ξ, v) ∈ Rn×W , the integral

e〈v,ξ〉
∫

Rn

f(u +
√
−1v) e−

√
−1〈u,ξ〉du(1.3)

=

∫
Rn

f(u +
√
−1v) e−

√
−1〈u+

√
−1v,ξ〉du

does not depend on v.

Note that the integral (1.3) is well-defined in L2 sense, and that L2

convergence implies locally uniform convergence on OL2
. Hence (1.3) is a

holomorphic function of (ξ, v) variables.
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Proof of Lemma. For any v0, v1 ∈ W , we set

vt := tv1 + (1 − t)v0.

Since W is convex, vt is an element of W for any t ∈ [0, 1]. For any positive

number *, we define (n+1) chain γ� by

γ� := {u +
√
−1vt ; t ∈ [0, 1], |u| ≤ l}.

Hence, by the Cauchy-Poincaré theorem we have∫
∂γ�

f(w) e−
√
−1〈w,ξ〉dw = 0.

Here we classify the parts of ∂γ� as follows:

∂γ� = α0
{t=0}

− α1
{t=1}

+ β�
{|u|=l}

.

For any g(ξ) ∈ C∞
0 (Rn), we have∫

Rn

g(ξ) dξ

∫
β�

f(w) e−
√
−1〈w,ξ〉dw =

∫
β�

f(w) ĝ(w) dw

by the Fubini theorem, where

ĝ(w) :=

∫
Rn

g(ξ) e−
√
−1〈w,ξ〉dξ,

that is, the Fourier-Laplace transform of g(ξ).

Set

L := convex hull of supp g � Rn,

HL(w) := sup
x∈L

Im〈x,w〉 = sup
x∈L

〈x, Imw〉.

Therefore, by the Paley-Wiener theorem, for any positive integer N there

exists a positive constant CN such that

|ĝ(w)| ≤ CN

(1 + |w|)N eHL(w).



644 Susumu Yamazaki

Because Im w = v ∈ W on β�, there exists a positive constant C1 such that

eHL(w) ≤ C1 for any w ∈ β�.

On the other hand, there exists positive number r such that⋃
{∆r(w);w = u +

√
−1vt, u ∈ Rn, t ∈ [0, 1]} � Ω

where ∆r(w) denotes the polydisc of radii (r, . . . , r) with center w. Hence

if we apply Cauchy’s inequality to f(w)2, we have

|f(u +
√
−1vt)| ≤

1

(r
√
π)n

‖f‖L2
t ∈ [0, 1], u ∈ Rn.

Thus we have

(1.4)

∣∣∣∣∫
β�

f(w) ĝ(w) dw

∣∣∣∣ ≤ C1CN

(r
√
π)n

‖f‖L2

∫
β�

1

(1 + |w|)N dw,

and if we choose N so that N ≥ n+1, we can easily see that the right-hand-

side of (1.4) converges to zero as * tends to infinity. Thus, as a distribution,

we have

(1.5) lim
�→∞

∫
β�

f(w) e−
√
−1〈w,ξ〉dw = 0.

Because the equality (1.5) holds in L2 sense, we conclude the following

equality: ∫
Rn

f(u +
√
−1v0) e

−
√
−1〈u+

√
−1v0,ξ〉du

=

∫
Rn

f(u +
√
−1v1) e

−
√
−1〈u+

√
−1v1,ξ〉du. �

Proof of Proposition. By virtue of the preceding Lemma, we can

write (1.3) as I(f ; ξ) = e〈v,ξ〉f̂(ξ; v), where f̂(ξ; v) denotes the partial

Fourier transform with respect to u variables. Thus we have

(1.6) e−〈y,ξ〉I(f ; ξ) = f̂(ξ; y) for any y ∈ W.
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Hence, by Fourier’s inversion formula, the Fubini theorem and (1.6) we

obtain the following equality in L2 sense for any f(z) ∈ OL2
(Ω) :

f(z) =
1

(2π)n

∫
Rn

e
√
−1〈x,ξ〉f̂(ξ; y) dξ(1.7)

=
1

(2π)n

∫
Rn

e
√
−1〈x,ξ〉e−〈y,ξ〉I(f ; ξ) dξ

=
1

(2π)n

∫
Rn

e
√
−1〈z,ξ〉dξ

∫
W

e−〈2v,ξ〉∫
W e−2〈v,ξ〉dv

dv

·
∫

Rn

f(u +
√
−1v) e−

√
−1〈u,ξ〉 e〈v,ξ〉du

=
1

(2π)n

∫
Rn×W

e
√
−1〈z,ξ〉∫

W e−2〈v,ξ〉dv
dξdv

·
∫

Rn

f(u +
√
−1v) e−

√
−1〈u,ξ〉 e−〈v,ξ〉du

=

∫
Rn+

√
−1W

dudv f(w)
1

(2π)n

∫
Rn

e
√
−1〈z−w,ξ〉∫

W e−2〈v,ξ〉dv
dξ.

We easily see that both sides of (1.7) are holomorphic. Hence this equality

holds as holomorphic functions. Thus we prove the Proposition by the fact

that the Bergman kernel is uniquely determined by its reproducing property

on the space OL2
(Ω). �

Hereafter we assume that the dimension n = 2, W = W1 ∩ W2, where

each Wj is strictly convex domain as follows:

(1.8)



Wj = {y ∈ R2;ϕj(y) < 0} with an analytic function

ϕj (j = 1, 2) such that

(1)∂ W1 and ∂W2 intersect transversally,

(2) if ϕj(y0) = 0, then dϕj(y0) �= 0 and the Hessian matrix(
∂2ϕj

∂yk∂y�
(y0)

)
1≤k,�≤2

is positive definite for j = 1, 2.

As mentioned in Introduction the Bergman kernel B(z, w) is holomorphic

except for the diagonal points {z = w} at the boundary and our main
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concern is singularities at corner points. Thus, we investigate singularities

on the set

(1.9) {(x +
√
−1y, u +

√
−1v); x = u, y + v = 0, y = y0}.

Here y0 ∈ ∂W1∩∂W2. Set ∂W1∩∂W2 = {y1, y2, . . . , y2N} by the assumption

on W , and define θ�j by the following relation:

(1.10)
−dϕj(y

�)

|dϕj(y�)|
= ω(θ�j) = (cos θ�j , sin θ�j)

(recall that ω(θ) = (cos θ, sin θ)). Without loss of generality, we may assume

(1.11)

{
0 < θ1

1 < θ1
2 < θ2

2 < θ2
1 < · · · < θ2N

2 < θ2N
1 < 2π,

0 < θ2�−1
2 − θ2�−1

1 , θ2�
1 − θ2�

2 < π (* = 1, 2, . . . , N).

Thus, we can define the continuous surjection y(∗) : [0, 2π] � θ �→ y(θ) ∈
∂W by

(1.12) y(θ) :=


y2�−1 (θ2�−1

1 ≤ θ ≤ θ2�−1
2 ),

y2� (θ2�
2 ≤ θ ≤ θ2�

1 ),

y satisfying −dϕ2(y)
|dϕ2(y)| = ω(θ) (θ2�−1

2 < θ < θ2�
2 ),

y satisfying −dϕ1(y)
|dϕ1(y)| = ω(θ) (θ2�

1 < θ < θ2�+1
1 ),

where * = 1, 2, . . . , N and we set θ2N+1
1 := θ1

1. Hence we have

B(z, w) =
1

(2π)2

∫
R2

e
√
−1〈z−w,ω(θ)〉r∫

W e−2〈v,ω(θ)〉rdv
rdrdθ(1.13)

=
1

(2π)2

∫
R2

e
√
−1〈z−w−2

√
−1y(θ),ω(θ)〉r∫

W e−2〈v−y(θ),ω(θ)〉rdv
rdrdθ.

From now on we consider the singularity of B(z, w) at {x = u, y+v = 0, y =

y1} since singularities at {y2, . . . , yN} are similar. For any θ ∈ [0, 2π], s ≥ 0,

define

(1.14) H(s, θ) := {v ∈ W ; 〈v − sω(θ) − y(θ), sω(θ)〉 = 0}
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and let dv(s, θ) denote the volume element of the line {v ∈ W ; 〈v− sω(θ)−
y(θ), sω(θ)〉 = 0}. Thus by setting

(1.15) ρ(s, θ) :=

∫
H(s,θ)

dv(s, θ)

we have∫
W

e−2〈v−y(θ),ω(θ)〉rdv =

∫ cθ

0
ds

∫
H(s,θ)

e−2〈v−y(θ),ω(θ)〉rdv(s, θ)(1.16)

=

∫ cθ

0
e−2srρ(s, θ) ds,

where cθ is a constant depending on θ such that

(1.17)

∫ cθ

0
ds

∫
H(s,θ)

dv(s, θ) = µ(W ),

and µ(W ) denotes the Lebesgue measure of W . Note that by the assump-

tion on W we easily see

(1.18)

{
0 < inf

θ
cθ < sup

θ
cθ < ∞,

0 < µ(W ) < ∞.

Set

(1.19) K(r, θ) :=

∫ cθ

0
e−2srρ(s, θ) ds.

Define a holomorphic function f(z, w) by

f(z, w) :=B(z +
√
−1y1, w −

√
−1y1)(1.20)

=
1

(2π)2

∫
R2

e
√
−1〈z−w+2

√
−1(y1−y(θ)),ω(θ)〉r

K(r, θ)
rdrdθ.

Then, f(z, w) is holomorphic when Im z, Im w ∈ Γ := {y ∈ R2; y + y1 ∈
W}, and the singularity of B(z, w) at {x = u, y + v = 0, y = y1} is

equivalent to that of f(z, w) at {x = u, y = v = 0}. Hence, a hyperfunction
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f((x, u) +
√
−1(Γ × Γa)0) is well-defined, where Γa := −Γ (see [Kan1], [K-

K-K], and [S-K-K] for hyperfunctions and microfunctions theory). Define

a continuous function g(z, w, θ) by

(1.21) g(z, w, θ) :=
1

(2π)2

∫ ∞

0

e
√
−1〈z−w+2

√
−1(y1−y(θ)),ω(θ)〉r

K(r, θ)
r dr.

Thus we can define a hyperfunction g((x, u) +
√
−1(Γ × Γa)0, θ) similarly

to

f((x, u) +
√
−1(Γ × Γa)0). Clearly we have

(1.22) f(z, w) =

∫ 2π

0
g(z, w, θ) dθ,

or equivalently,

(1.22’) f((x, u) +
√
−1(Γ × Γa)0) =

∫ 2π

0
g((x, u) +

√
−1(Γ × Γa)0, θ) dθ.

By using the estimate of the singularity spectrum (= the analytic wave

front set) for a hyperfunction we have the following:

(1.23) SS(f((x, u) +
√
−1(Γ × Γa)0)) ∩ {x = u}

⊂ {(x, u ;
√
−1(ω(θ),−ω(θ))) ∈

√
−1T ∗R4;x = u, θ1

1 ≤ θ ≤ θ1
2}

= {(x, u ;
√
−1

2∑
j=1

(t
∂ϕ1

∂yj
(y1) + (1 − t)

∂ϕ2

∂yj
(y1))(duj − dxj)) ∈

√
−1T ∗R4;

x = u, 0 ≤ t ≤ 1}.

where SS(·) denotes the singularity spectrum of a hyperfunction. On the

other hand, by the definition of g(z, w, θ) we can also see that

sp(f((x, u) +
√
−1(Γ × Γa)0))(1.24)

= sp

(∫ θ12

θ11

g((x, u) +
√
−1(Γ × Γa)0, θ) dθ

)
.

Here sp: BR4−̃→π∗CR4 denotes the spectral isomorphism from the sheaf of

hyperfunctions to that of microfunctions.
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§2. Asymptotic expansion

In this section, we will obtain an asymptotic expansion of g(z, w, θ)

from the microlocal point of view. For ω(θ) = (cos θ, sin θ), we set tω(θ) :=

(− sin θ, cos θ). Hence we have 〈ω(θ), tω(θ)〉 = 0. For any v ∈ H(s, θ), there

exists a unique real number t such that

(2.1) v = y(θ) + s · ω(θ) + t · tω(θ),

that is, H(s, θ) is parametrized by t. For s ≥ 0, we have H(s, θ) ∩ ∂W =

{ws
1, w

s
2}. By the assumption on W and definition of y(θ), we can find the

function ws
j = wj(s, θ) and we have

(2.2) ρ(s, θ) = |w1(s, θ) − w2(s, θ)|.

On the other hand, we will consider equations

(2.3) ϕj(y(θ) + s · ω(θ) + t · tω(θ)) = 0 θ ∈ ]θ11, θ1
2[ , s ≥ 0, (j = 1, 2),

Thus, we can apply analytic version of the implicit function theorem by the

assumption that 0 < θ2
1 − θ1

1 < π; that is, we can find a strictly positive

constant δ and analytic functions tj = tj(s, θ) (j = 1, 2, θ ∈ ]θ11, θ1
2[ , 0 ≤

s ≤ δ) such that

(2.4) ϕj(y
1 + s · ω(θ) + tj(s, θ) · tω(θ)) = 0,

(2.5) tj(0, θ) = 0.

We note that there exist complex neighborhoods L and U of {s; 0 ≤ s ≤ δ}
and ]θ11, θ1

2[ respectively such that tj ’s are holomorphic on L×U (j = 1, 2).

The lemma below is proved by direct calculation so we omit the proof:

2.1 Lemma. If 0 ≤ s ≤ δ and θ ∈ ]θ11, θ1
2[ , then

ρ(s, θ) = t1(s, θ) − t2(s, θ),(2.6)

wj(s, θ) = y1 + s · ω(θ) + tj(s, θ) · tω(θ).(2.7)
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By replacing δ small enough, we can obtain for |s| ≤ δ, θ ∈ U the Taylor

expansion

(2.8) (t1 − t2)(s, θ) =
∞∑
j=1

aj(θ)

j!
sj .

We can see by the implicit function theorem that

(2.9) a1(θ) =
∂(t1 − t2)

∂s
(0, θ) =

1

tan(θ − θ1)
+

1

tan(θ2 − θ)
.

Hence by shrinking L and U , we may assume that

(2.10)

{
a1(θ) �= 0 (∀θ ∈ U),

|tj(s, θ)|’s are bounded on s ∈ L, θ ∈ V (∀V � U (j = 1, 2)).

Thus there exist constants C and M such that

(2.11)

{
sup
θ∈V

|aj(θ)| ≤ j!CM j (∀j ≥ 1),

Mδ < 1.

Thus we can prove the following Lemma:

2.2 Lemma. K(r, θ) has the following asymptotic expansion :

(2.12) K(r, θ) ∼
∞∑
j=1

aj(θ)

(2r)j+1
(r −→ ∞).

Precisely, for any V � U , there exist positive numbers r0 and CV such that

for every r ≥ r0, θ ∈ V ∩ R and N ≥ 1 the following inequality holds:

(2.13)

∣∣∣∣∣∣K(r, θ) −
N∑
j=1

aj(θ)

(2r)j+1

∣∣∣∣∣∣ < CN+1
V (N + 1)!

rN+2
.
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Proof. By (2.8) we can write on V ∩ R

K(r, θ) =

∫ δ

0
ρ(s, θ) e−2sr ds +

∫ cθ

δ
ρ(s, θ) e−2srds(2.14)

=

∫ δ

0

∞∑
j=1

aj(θ)

j!
sj e−sr ds +

∫ cθ

δ
ρ(s, θ) e−2srds

=

∫ δ

0

N∑
j=1

aj(θ)

j!
sj e−sr ds +

∫ δ

0

∞∑
j=N+1

aj(θ)

j!
sj e−sr ds

+

∫ cθ

δ
ρ(s, θ) e−2srds.

First, by (2.11) we have for 1 ≤ j ≤ N∣∣∣∣∣∣
N∑
j=1

aj(θ)

(2r)j+1
−
∫ δ

0

N∑
j=1

aj(θ)

j!
sj e−sr ds

∣∣∣∣∣∣(2.15)

=

∣∣∣∣∣∣
N∑
j=1

aj(θ)

(2r)j+1
−
∫ 2rδ

0

N∑
j=1

aj(θ)

j!

(
*

2r

)j

e−� d*

2r

∣∣∣∣∣∣
≤

N∑
j=1

CM j

(2r)j+1

(
j! −

∫ 2rδ

0
*je−�dl

)
=

N∑
j=1

CM j

(2r)j+1

∫ ∞

2rδ
*je−�d*.

For any j ≥ 1 and 2rδ ≥ 1 we have

(2.16-j)

∫ ∞

2rδ
*je−�d* ≤ (j + 1)!(2rδ)je−2rδ.

In fact, if j = 1 then

(2.16-1)

∫ ∞

2rδ
le−�d* = (2rδ + 1)e−2rδ ≤ 2 (2rδ)e−2rδ,

and assuming (2.16-j) we get∫ ∞

2rδ
*j+1e−�d* = (2rδ)j+1e−2rδ + (j + 1)

∫ ∞

2rδ
*je−�d*(2.16-(j+1))

≤ (1 + (j + 1)(j + 1)!)(2rδ)j+1e−2rδ

≤ (j + 2)!(2rδ)j+1e−2rδ.
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Hence we get (2.16-j) by induction. Thus we have∣∣∣∣∣∣
N∑
j=1

aj(θ)

(2r)j+1
−
∫ 2rδ

0

N∑
j=1

aj(θ)

j!

(
*

2r

)j

e−� d*

2r

∣∣∣∣∣∣(2.17)

≤
N∑
j=1

C(Mδ)j(j + 1)!
e−2rδ

2r
≤ CN(N + 1)!

e−2rδ

2r
.

Next, we have by (2.11)∣∣∣∣∣∣
∫ δ

0

∞∑
j=N+1

aj(θ)

j!
sj e−sr ds

∣∣∣∣∣∣ ≤
∞∑

j=N+1

CM j

∫ δ

0
sj e−sr ds(2.18)

=CMN+1
∞∑
j=0

M j

∫ δ

0
sN+1+j e−sr ds

≤CMN+1
∞∑
j=0

(Mδ)j
∫ δ

0
sN+1 e−sr ds

=CMN+1
∞∑
j=0

(Mδ)j
∫ 2rδ

0

(
*

2r

)N+1

e−� d*

2r

<
CMN+1

1 −Mδ

∫ ∞

0

(
*

2r

)N+1

e−� d*

2r
=

CMN+1

1 −Mδ

(N + 1)!

(2r)N+2

Lastly, we have

(2.19) 0 <

∫ cθ

δ
ρ(s, θ) e−2sr ds ≤ e−2rδ

∫ cθ

δ
ρ(s, θ) ds < e−2rδµ(W ).

Thus we prove the Lemma by (2.17), (2.18) and (2.19). �

On the other hand, by virtue of (2.10) we easily see that
∞∑
j=1

aj(θ)/(2r)
j+1

has formal inverse
∞∑
j=0

Rj(θ)r
2−j : that is, as formal power series with O(U)

coefficients the following equality holds:

(2.20)

 ∞∑
j=1

aj(θ)

(2r)j+1

−1

=
∞∑
j=0

Rj(θ)r
2−j .
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Here, R0(θ) := a1(θ)
−1 and Rj(θ)’s are determined inductively by (2.20).

Therefore, we can see that for any V � U each Rj(θ) satisfies a similar

inequality to (2.11) (j = 0, 1, 2, . . . ). Thus, we obtain the following theorem

(cf. [A], [B1] and [Kat] for symbolic calculus):

2.3 Theorem. There exists a sequence {Rj(θ)}∞j=0 such that for any

ε > 0 the boundary value of

(2.21) f(z, w) − 1

(2π)2

∫ θ12−ε

θ11+ε
dθ

∫ ∞

Aj

∞∑
j=0

Rj(θ) r
3−je

√
−1〈z−w,ω(θ)〉 rdr

is micro-analytic at

(2.22) {(x, u ;
√
−1(ω(θ),−ω(θ))) ∈

√
−1T ∗R4;x = u, θ1

1+ε < θ < θ1
2−ε }.

Here {R(θ)}∞j=0 satisfies following conditions:

(1) there exists a complex neighborhood U of ]θ1
1, θ

1
2[ such that each Rj(θ)

is a holomorphic function of U with

(2.23) R0(θ) =
tan(θ2 − θ) tan(θ − θ1)

tan(θ2 − θ) + tan(θ − θ1)
,

(2) for any V � U there exist constants C̃, M̃ such that

(2.24) sup
θ∈V

|Rj(θ)| ≤ j!C̃M̃ j (∀j ≥ 0).

Where in (2.21) Aj := max{0, (j − 3)A} with A is some positive constant

depending on M̃ . In other words, on the set (2.22) the following equality

holds as a microfunction:

(2.25) f((x, u) +
√
−1(Γ × Γa)0) = R(Dx)δ(x− u),

Here R(Dx) denotes a microdifferential operator defined by the symbol
∞∑
j=0

Rj(θ)r
2−j where rω(θ) denotes the symbol of −

√
−1(∂/∂x1, ∂/∂x2) by
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the polar coordinates. Moreover the second term of (2.21) is calculated as

follows:

3

2π2

∫ θ12−ε

θ11+ε

R0(θ)

〈z − w,ω(θ)〉4dθ(2.26)

+
1

(2π)2

3∑
j=1

∫ θ12−ε

θ11+ε
dθ

∫ ∞

0
Rj(θ) r

3−je
√
−1〈z−w,ω(θ)〉rdr

+
1

(2π)2

∞∑
j=4

∫ θ12−ε

θ11+ε
dθ

∫ ∞

(j−3)A
Rj(θ) r

3−je
√
−1〈z−w,ω(θ)〉rdr.

2.3 Remark. By (2.26), we can see that

B(z, z) = O
(
dist(y, y1)−4

)
(W � y −→ y1).

On the other hand, if v0 ∈ ∂(W1 ∩ W2)\ (∂W1 ∩ ∂W2), then we can apply

the proof of Kashiwara’s theorem (0.4) and obtain that

B(z, z) = O
(
dist(y, v0)

−3
)

(W � y −→ v0).

Hence we can hardly expect that similar result to theorem (0.3) holds at

(x, u ;
√
−1
∑2

j=1(t
∂ϕ1

∂yj
(y1) + (1 − t)∂ϕ2

∂yj
(y1))(duj − dxj)), (x = u, t = 0, 1).
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