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On invertibility of the windowed Radon transform

By Takashi Takiguchi

Abstract. The idea of the Windowed Radon Transform (WRT)
was first introduced by G.Kaiser. This transform is interpreted as a
generalization of several transforms. In this article, taking WRT for a
generalized wavelet transform, we show that its invertion formula holds
in various senses.

§0. Introduction

In this paper we study invertibility of the transform called the windowed

Radon transform (WRT). This is a tranform defined as

Rhf(x,A) ≡
∫
RRRd

h(t)f(x + At)dt,

where h is defined on RRRd, f is on RRRn and A = vRJ , v > 0, R ∈
SO(n)/SO(n−d), J is an inclusion. This concept was originally introduced

by G.Kaiser as the windowed x-ray transform (WXT) as a generalization of

Analytic-Signal transform to extend physical fields to complex space-time

(cf. [Ka1] and [Ka2]). After that he and R.Streater [KS] generalized it to

WRT so as to be considered as a generalization of the wavelet transforms.

In case of n = d by a suitable change of variables we can show that WRT

is almost the same as the wavelet transform (Proposition 1.6 below), which

implies that WRT is a generalization of a wavelet transform. Further, this

can be taken as generalization of other transforms. Therefore the study of

this transform seems to be of interest. Here in this paper we take WRT for

a generalization of the wavelet transform. First we give the definition of
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WRT and argue its relationship with other transforms. Then, restricting

window functions, we unify the inversion formulas which were established

by G.Kaiser-R.Streater (Theorem 2.1 below). Their theorem made use of all

the data {Rhf(x,A)| x ∈ RRRn, v > 0, R ∈ SO(n)/SO(n − d)} for invertion,

but here we claim that {Rhf(x,A)| x ∈ RRRn, v > 0, R ∈ SO(d)} are enough

to reconstruct f . Additionary, we generalize and extend their meanings.

Though the formula established by Kaiser-Streater holds in a very weak

sense (Theorem 2.0), in fact, a little improvement impies the validity as the

limit in the mean of L2 norm (Proposition 2.4) and pointwise (Theorems

2.5, 2.7 and 2.8). Our invertion formula holds as the limit in the mean of

L2 norm, as mentioned above, however, it does not as L1 mean, which we

show by constructing counterexamples (Section 3).

Before finishing Introduction, the author would like to express his truth-

ful appreciation to Professor Akira Kaneko for having valuable discussions

and continuous encouragement.

§1. Notations

First of all, let us define windowed Radon transforms (WRT).

Definition 1.1. Let 1 ≤ d ≤ n. The d dimensional windowed Radon

transform Rhf(x,A) of a function f defined on RRRn is

(1.1) Rhf(x,A) ≡
∫
RRRd

h(t)f(x + At)dt,

where h is a function defined on RRRd and

A ∈ {A = vRJ
∣∣J : RRRd 	→ RRRn (inclusion), R ∈ SO(n)/SO(n− d), v > 0,

J(x′) = (x′, 0)}.

By h̄ we mean the complex conjugate of h. We write Rhf(x,A) = fh(x,A).

Later we will prove that Rhf ∈ L2 in a sense for f ∈ L2(RRRn).

Throughout this paper, we use the expression A = vRJ .

Definition 1.2. For a function f defined on RRRn we call

(1.2) Xhf(x, ξ) ≡
∫
RRR
h(t)f(x + tξ)dt,
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the windowed x-ray transform (WXT) with window h, where h is a function

defined on RRR and ξ ∈ RRRn. From now on we utilize the notation ξ = vω, v >

0, ω ∈ Sn−1.

WXT can be interpreted as 1 dimensional WRT, since we are capable

of identifying SO(n)/SO(n− 1) with Sn−1 .

Let us express WRT by Fourier transforms, for which we need some

preparation.

Definition 1.3. Let h1 and h2 belongs to S ′(RRRd), and ĥ1(ξ)ĥ2(ξ)

|ξ|d ∈ L1.

We say (h1, h2) is admissible if

(1.3) Nh1,h2 ≡ 1

ωd−1

∫
RRRd

ĥ1(ξ)ĥ2(ξ)

|ξ|d dξ

converges, where ĥ(ξ) ≡ Fx→ξh(ξ) =
∫
e−2πix·ξh(x)dx is the Fourier trans-

form of h and ωd−1 =
∫
Sd−1 dω. Especially, h is called admissible if

(1.4) Nh ≡ 1

ωd−1

∫
RRRd

|ĥ(ξ)|2
|ξ|d dξ

is convergent.

Now let us express fh by Fourier transforms. Here we do not mind the

conditions to be assigned on f, h. Define

(1.5) ĥx,A(ξ) ≡ e−iξ·xĥ(tAξ),

where tA is the transposed transform of A (if A is an n× d matrix then tA

is a d× n matrix), and

(1.6) hx,A(y) ≡ 1

(2π)n

∫
RRRn

eiξ·(y−x)ĥ(tAξ)dξ.
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This defines a generalized wavelet. We have

Rhf(x,A) =
1

(2π)n

∫
RRRd

dt

∫
RRRn

eiξ·(x+At)h(t)f̂(ξ)dξ

=
1

(2π)n

∫
RRRn

eiξ·xĥ(tAξ)f̂(ξ)dξ

=
1

(2π)n
〈f̂ , ĥx,A〉

= 〈f, hx,A〉

(1.7)

where 〈f, g〉 =
∫
fḡ.

WRT is a generalization of several transforms. In order to state the

relation between WRT and other transforms, let us define some transforms.

Definition 1.4. Let f be a function on RRRn and ξ be a d dimensional

plane (1 ≤ d ≤ n− 1). The d dimensional Radon transform Rf(ξ) of f is

(1.8) Rf(ξ) ≡
∫
ξ
f(x)dx,

where dx is Euclidean measure on ξ. When d = 1 we write Xf instead of

Rf , which we call x-ray transform of f .

If h ≡ 1 and then Rhf(x,RJ) = Rf({x+RJRRRd}), Xhf(x, ω) = Xf({x+

RRRω}). As for the Radon transform, confer [He] Chapter I.

Next we consider wavelet transforms.

Definition 1.5. Consider f, h are functions onRRRn. The wavelet trans-

form of f with window h is

(1.9) Whf(x, v,R) ≡ v−n/2

∫
RRRn

f(y)h

(
R−1(y − x)

v

)
dx,

for v > 0, x ∈ RRRn, R ∈ SO(n).

Proposition 1.6. As for n dimensional WRT we have

(1.10) Rhf(x, vR) = v−n/2Wh(x, v,R).
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Proof. This is almost trivial.

Rhf(x, vR) =

∫
RRRn

h(t)f(x + vRt)dt

= v−n

∫
RRRn

h

(
R−1(y − x)

v

)
f(y)dy

= v−n/2Whf(x, v,R). �

(1.11)

In case d = n (1.6) becomes

hx,vR(y) =
1

(2π)n

∫
eiξ·(y−x)ĥ(tAξ)dξ

=
v−n

(2π)n

∫
eiη·A

−1(y−x)ĥ(η)dη

= v−nh

(
R−1(y − x)

v

)
.

(1.6)′

This equation and (1.7) gives another proof of Proposition 1.6 for f ∈ L2

and admissible h.

Before finishing this section, we mention analytic-signal transforms

(AST). Denote the Schwartz space by S. AST of f ∈ S(RRRn) is a func-

tion f̃ on CCCn defined by

f̃(x + iy) ≡ 1

2πi

∫
RRR

1

t− i
f(x + ty)dt.

This is written by Xhf(x, y) with h(t) = (2π(1 − it))−1. For more about

AST confer [Ka2], [Ka3] and [KS].

§2. Inversion formulas

In this section, we prove inversion formulas for WRT which hold in

several senses. To begin with, let us introduce inversion formulas proved

by G.Kaiser-R.Streater, which depend on the dimension of d.

Theorem 2.0. ([KS] subsection 2.2 and 2.3.)
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(i) the case of d = 1

Assume f ∈ L2(RRRn). For admissible h ∈ L1(RRR)

f(x) =
2

Nh

∫
RRRn×RRRn

|v|−nhy,v(x)Xhf(y, v)dydv

holds in L2 weak sense, where hy,v(x) = (2π)−n
∫
eiξ·(x−y)ĥ(ξ · v)dξ

(ii) the case of d > 1

Assume that f ∈ S(RRRn) and that h ∈ S(RRRd) satisfies

N−1 ≡
∫
RRR+×SO(n)

v−1|ĥ(vtJ tR1)|2dvdR < ∞,

where tJ : RRRn → RRRd is the projection and R1 is the first row of R. Then

there holds

f(x) = N

∫
RRRn×RRR+×SO(n)

v−1hy,A(x)fh(y,A)dydvdR

in L2 weak sense.

Here, it is stated that the data {Rhf(x,A)| x ∈ RRRn, v > 0, R ∈
SO(n)/SO(n−d)} are utilized, but we prove that {Rhf(x,A)| x ∈ RRRn, v >

0, R ∈ SO(d)} are enough to reconstruct f . Futhermore, we unify their

formulas into one and have succeeded in corresponding the admissible con-

dition in Theorem 2.0 (ii) to the counterpart of wavelet transforms.

Theorem 2.1. Let 1 ≤ d ≤ n and Ξ be a d plane in RRRn, f ∈ L2(RRRn)

and (h1, h2) ∈ S ′(Ξ), be admissible. Then we have the following reconstruc-

tion formula;

f(x′) = Nh1,h2
−1

∫
RRRn×RRR+×SO(d)

v−1fh1(x,A)h2,x,A(x′)dxdvdR(2.1)

=: R−1
h2

Rh1f(x′),

which holds weakly in L2 where dR is the Haar measure on SO(d) being the

rotation group on Ξ.
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Proof. It is sufficient to prove the case of Ξ = RRRd, x′ being expressed

as (x′, 0, · · · , 0) ∈ RRRn. Let g ∈ L2(RRRn). For simplicity we write

(2.2) dµ(x,A) ≡ 1

Nh1,h2

v−1dxdvdR

and

(2.3) X ≡ RRRn ×RRR+ × SO(d).

Noting that F−1
ξ→xf means Fourier inversion transform, we have

∫
X
fh1(x,A)gh2(x,A)dµ(x,A)(2.4)

=

∫
X
F−1
p→x{ĥ1(tAp)f̂(p)}F−1

p→x{ĥ2(tAp)ĝ(p)}dµ(x,A)

=
1

(2π)n

∫
X
ĥ1(tAx)ĥ2(

tAx)f̂(x)ĝ(x)dµ(x,A),

where y = (y′, 0, . . . , 0), y′ is a unit vector in RRRd. Here we let dµ(x,A) =

dxdρ(A). Since dρ is invariant under dilations and rotations we have

∫
RRR+×SO(d)

ĥ1(tAx)ĥ2(
tAx)dρ(A)(2.5)

=

∫
RRR+×SO(d)

ĥ1(tAy)ĥ2(
tAy)dρ(A)

=
1

Nh1,h2

∫
RRR+

v−1dv

∫
SO(d)

ĥ1(vR−1tJy)ĥ2(vR
−1tJy)dR

=
1

Nh1,h2ωd−1

∫
RRR+

v−1dv

∫
Sd−1

ĥ1(vθ)ĥ2(vθ)dθ

=
1

Nh1,h2ωd−1

∫
RRRd

ĥ1(t)ĥ2(t)

|t|d dt

= 1,
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where tJ : RRRn → RRRd is the projection. Up here, this proof is almost the

same as Kaiser-Streater’s, however, (of course, there were a few differences

in detail), we can proceed futher. Considering this and (2.4) gives us∫
RRRn

(
R−1

h2
Rh1f

)
(x)g(x)dx =

1

(2π)n

∫
RRRn

f̂(ξ)ĝ(ξ)dξ

=

∫
RRRn

f(x)g(x)dx.

(2.6)

Futhermore it has just been asserted that

(2.7)

∫
X
Rh1f(x,A)Rh2g(x,A)dµ(x,A) =

∫
RRRn

f(x)g(x)dx. �

Remark.

(1) Note that in case of n = d = 1, we also have a modified invertion

formulas above by replacing integral interval RRR+ in v with RRR and

the measure dv/|v| with dv/(2|v|), which, from now on, we apply

without mentioning.

(2) Theorem 2.1 requires less information for Rhf than Theorem 2.0,

which in his forthcoming paper, the author has intension to utilize

to establish invertion formulas of the Radon transform with weight

and to apply the problems of tomography with some improvements.

(2.7) implies the Plancherel type formula for WRT;

Corollary 2.2. Under the same condition on f, g, (h1, h2) as Theo-

rem 2.1 we have the formula of Plancherel type as follows∫
X
fh1(x,A)gh2(x,A)dµ(x,A) =

∫
RRRn

f(x)g(x)dx.

Remark that under the assumption of Theorem 2.1 fh is meaningless in

pointwise sense, for fh is not necessarily of absolute convergence. As an

element of L2(X ), however, fh makes sense. Thus we have from Corollary

2.2;
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Theorem 2.3. For admissible h, Rh is an isometry of L2(RRRn) to

L2(X ).

In addition, the reconstruction formula (2.1) holds in other senses, in

[KS], however, only a weak sense was proved (Theorem 2.0). Now we

show the invertibility as limit in the mean of L2 norm. The counterpart

of the following proposition for the wavelet transform was established by

I.Daubechies [D].

Proposition 2.4. Assume f ∈ L2(RRRn) and (h, h′) is admissible. De-

fine

Xα,β,γ ≡ {|x| < γ} × {α ≤ v ≤ β} × SO(d).

Then there holds

(2.8) lim
α→0,β→∞,γ→∞

∥∥∥∥∥f −
∫
Xα,β,γ

fh(x,A)h′x,A(x′)dµ(x,A)

∥∥∥∥∥
L2(RRRn)

= 0.

Proof. Denoting the complement of a set G by Gc, we obtain∥∥∥∥∥f −
∫
Xα,β,γ

fh(x,A)h′x,A(x′)dµ(x,A)

∥∥∥∥∥
L2(RRRn)

= sup
‖g‖L2=1

∣∣∣∣∣〈f −
∫
Xα,β,γ

fh(x,A)h′x,A(x′)dµ(x,A), g〉
∣∣∣∣∣

= sup

∣∣∣∣∣
∫
Xα,β,γ

c
fh(x,A)gh′(x,A)dµ(x,A)

∣∣∣∣∣
≤ sup

(∫
Xα,β,γ

c
|fh(x,A)|2dµ(x,A)

)1/2(∫
X
|gh′(x,A)|2

)1/2

.

The term in the first factor of the rightist hand side tends to 0 as α →
0, β → ∞, γ → ∞ and the term in the second one is 1 by Corollary 2.2.

Hence the proof is finished. �

I.Daubechies [D] noted for wavelet tramsforms that although the coun-

terpart for Proposition 2.4 holds in L2 sense it does not in the sense of

L1.
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We claim as the same for WRT. For more detail, we shall give similar

discussion in section 3. Next we show that our invertion formula holds

pointwise. The following theorem is our original formula in the sense that

it seems that there is no counterpart for the wavelet transform written in

the manuscript.

Thorem 2.5. Let h, h′ ∈ L1(RRRd), (h, h′) be admissible and f ∈ S(RRRn).

Then it is asserted that

R−1
h′ Rhf(x) = f(x).

Proof. We have

R−1
h′ Rhf(x) =

∫
X
dµ(y,A)h′y,A(x)

∫
RRRd

f(y + At)h(t)dt

=

∫
X
dµ(y,A)h′y,A(x)

1

(2π)n

∫
RRRn

f̂(ξ)eiξ·yĥ(tAξ)dξ

=
1

(2π)2n

∫
RRRn

f̂(ξ)dξ

∫
X
eiξ·yĥ(tAξ)dµ(y,A)

·
∫
RRRn

eiη·(x−y)ĥ′(tAη)dη

=
1

(2π)n

∫
RRRn

f̂(ξ)dξ

∫
RRR+×SO(d)

ĥ(tAξ)dρ(A)

·
∫
RRRn

eiη·xĥ′(tAη)
1

(2π)n

∫
RRRn

ei(ξ−η)·ydy

≡ 1

(2π)n

∫
RRRn

f̂(ξ)H(ξ)dξ,

(2.9)

where dρ was defined in the proof of Theorem 2.1, and we have let

H(ξ) :=
1

(2π)n

∫
RRR+×SO(d)

ĥ(tAξ)dρ(A)

∫
RRRn

eiη·xĥ′(tAη)dη

∫
RRRn

ei(ξ−η)·ydy.

Since f ∈ S it is allowed considering H as a tempered distribution, which

provides that

H(ξ) =

∫
RRR+×SO(d)

ĥ(tAξ)dρ(A)

∫
RRRn

eiη·xĥ′(tAη)δ(ξ − η)dη(2.9)′

= eiξ·x
∫
RRR+×SO(d)

ĥ(tAξ)ĥ′(tAξ)dρ(A).
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By the argument below (2.5) we conclude that H(ξ) = eiξ·x. Therefore

putting this into (2.9) proves the theorem. �

If we interpret all the Fourier invertion formulas in (2.9) as oscillatory

integrals, Theorem 2.5 holds for f ∈ L1. To prove this we need some

preparation.

Lemma 2.6. Let ϕ, ϕ̂ ∈ L1(RRRn),
∫
ϕ̂dξ = 1, and f ∈ C(RRRn) be bounded.

Then ϕ means of integral of 1
(2π)n

∫
ei(ξ−η)·yf(η)dydη;

lim
ε→0

1

(2π)n

∫
ei(ξ−η)·yϕ(εy)dyf(η)dη

converge to f(ξ) as a value for any ξ.

Proof. We write ϕ̂ε(ξ) := εnϕ̂(ξ/ε), sup |f | = M then we have

(ϕ̂ε ∗ f − f)(ξ) =

∫
(f(ξ − η) − f(ξ))εnϕ̂(η/ε)dη

=

∫
(f(ξ − εη) − f(ξ))ϕ̂(η)dη

The integrant is bounded by 2M |ϕ̂(η)| therefore we can apply Lebesgue

dominated convergence theorem and prove the Lemma. �

Applying this lemma yields

Theorem 2.7. Take h, h′ as the same as Theorem 2.5. If we interpret

all the Fourier invertion formula in (2.9) as oscillatory integrals, that is,

we consider the integrals with respect to dy and dξ in the sense of Lemma

2.6, then we have for f ∈ L1(RRRn)

R−1
h′ Rhf(x) = f(x).

for any x ∈ RRRn

In case that d = n we have another invertion formula, which is an

extension of [D] Proposition 2.4.2. This extension is likely not to have been

published.
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Theorem 2.8. Assume f ∈ L2 ∩ L∞, h, h′ ∈ L1, |ξ|
n+1

2 ĥ′(ξ) ∈ L2,

(h, h′) is admissible, and f is continuous at x. Put

XS,T ≡ RRRn × {S ≤ v ≤ T} × SO(n).

If there hold

M̂ ∈ Cn(RRRn),

(
∂

∂r

)n

M̂(rω) ∈ L2(RRRn) for

M̂(ξ) = Nh,h′−1

∫
|ξ|<|η|

ĥ(η)ĥ′(η)

|η|n dη.

Then there holds pointwise at this point x that

(2.10) f(x) = lim
S→0,T→∞

∫
XS,T

dµ(x′, A)

∫
RRRn

dyf(x′ + Ay)h(y)h′x′,A(x).

Proof. As was mentioned in (1.6)′ we have

h′x′,A(x) = v−nh′
(
R−1(x− x′)

v

)
,

we let

fS,T (x) =

∫
XS,T

v−2ndµ(x′, A)×(2.11)

×
∫
RRRn

dyf(y)h

(
R−1(y − x′)

v

)
h′
(
R−1(x− x′)

v

)
=

∫
RRRn

dyf(y)MS,T (x− y),

where

MS,T (x) =

∫
XS,T

v−2ndµ(x′, A)h

(
R−1(−x′)

v

)
h′
(
R−1(x− x′)

v

)
.
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The Fourier transform M̂S,T of MS,T is

M̂S,T (ξ) = Nh,h′−1

∫
XS,T

dρ(A)ĥ(vRξ)ĥ′(vRξ)

= Nh,h′−1

∫
S|ξ|<|η|<T |ξ|

dη
ĥ(η)ĥ′(η)

|η|n

≡ M̂(Sξ) − M̂(Tξ).

(2.12)

Considering that |ξ|
n+1

2 ĥ′(ξ) ∈ L2 gives us

|M̂(ξ)| ≤ Nh,h′−1

(∫
|ξ|<|η|

|ĥ(η)|2
|η|3n+1

dη

)1/2(∫
|η|n+1|ĥ′(η)|2dη

)1/2

≤ C|ξ|−n− 1
2

hence we obtain M̂ ∈ L1 ∩ L∞. Therefore M =
ˇ̂
M is well defined. From

the assumption we obtain∫
|M(x)|dx ≤

(∫
dx

1 + |x|2n
)1/2(∫

(1 + |x|2n)|M(x)|2dx
)1/2

≤ C

(∫
|M̂(ξ)|2 +

∣∣∣∣( ∂

∂r

)n

M̂(ξ)

∣∣∣∣2 dξ
)1/2

< ∞.

So M ∈ L1 and the fact M̂(0) = 1 implies that
∫
M(x)dx = 1. We rewrite

(2.10) utilizing (2.11) so that

fS,T (x) =

∫
RRRn

1

Sn
M

(
x− y

S

)
f(y)dy −

∫
RRRn

1

Tn
M

(
x− y

T

)
f(y)dy.

Because M is of integral 1, the first term tends to f(x) as S → 0. The

second term is bounded by∣∣ ∫ 1

Tn
M

(
x− y

T

)
f(y)dy

∣∣
≤
(∫

1

T 2n

∣∣∣∣M (
(x− y)

T

)∣∣∣∣2 dy
)1/2(∫

|f(y)|2dy
)1/2

≤ CT−n.
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This term tends to 0 as T → ∞. �

Utilizing Theorems 2.5 and 2.6 we can define WRT or wavelet transform

for tempered distributions. In our next paper we shall try to define WRT

and wavelet transform for generalized functions and discuss some topics

around them.

§3. Counterexamples

As was mentioned in Proposition 2.4, (2.8) holds in L2 sense under

suitable conditions. In the sense of L1, however, this formula is not true,

i.e,

lim
α→0,β→∞,γ→∞

∥∥∥∥∥f −
∫
Xα,β,γ

fh(x,A)h′x,A(x′)dµ(x,A)

∥∥∥∥∥
L1(RRRn)

does not necessarily vanish. In this section we study this concretely.

Take f ∈ S to be positive, and h to be admissible. Letting

Iα,β,γ(y) =

∫
Xα,β,γ

fh(x,A)hx,A(y)dµ(x,A)

gives us

Iα,β,γ(y) ≤
∫
X
|f ||h|(x,A)|hx,A|(y)dµ(x,A)

=

∫
X
F−1
p→x{|̂h|(tAp)|̂f |(p)}F−1

p→x{e−ix·y |̂h|(tAp)}dµ(x,A)

=

∫
X
||̂h|(tAx)|2e−ix·y |̂f |(x)dµ(x,A)

= |f |(y),

where |f |(x) = |f(x)|. Therefore Iα,β,γ ∈ L1(RRRn). Restricting n = 2 and

d = 1, we construct a counterexample.

Take h ∈ S(RRR) such that ĥ(p) = p for |p| ≤ 1 and ĥ ∈ C∞
0 , f ∈ S(RRR2).

(2.9)′ and Lemma 2.6 suggests for small α

Iα,∞,∞(y) ≈ αf(y).
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Hence we have

lim
α→0

‖f − Iα,∞,∞‖L1(RRRn) = ‖f‖L1(RRRn).

We can extend this counterexample to various cases.

In wavelet transform, another counterexample is stated in [D]; Let n =

1, f, h ∈ L1 ∩ L2, h being admissible,

Iα,β,γ(x) =

∫ β

α
v−3dv

∫
|x′|<γ

dx′h

(
x′ − x

v

)∫
RRRn

dyf(y)h

(
y − x′

v

)
.

Since this integral is bounded, we can change the order of integration. Ad-

missible condition implies that the integration of h is 0. If f − Iα,β,γ ≥ 0 or

≤ 0 then

‖f − Iα,β,γ‖L1(RRRn) ≡ ‖f‖L1(RRRn).

This counterexample does not apply to general WRTs.
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