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Asymptotic behaviour of the sequence

of norms of derivatives∗

By Ha Huy Bang

Abstract. Two exact asymptotic inequalities for derivatives,
which show a relation between behaviour of the sequence of norms of
derivatives of a function and the support of its Fourier transform, are
given in this paper.

Let I be an unbounded set of multi-indices α = (α1, . . . , αn) ∈ Z
n
+, 1 ≤

pα ≤ ∞ and let f(x) be a measurable function such that its generalized

derivative Dαf(x) belongs to Lpα(Rn) for any α ∈ I. In this paper we

will describe behaviour of the sequence ||Dαf ||pα , α ∈ I, in the connection

with suppFf , where Ff(ξ) = f̃(ξ) is the Fourier transform of the function

f(x). The necessity of the consideration is clear from the definition of the

Sobolev spaces of infinite order [5 - 6]. Note that Sobolev spaces of infinite

order, which arise in the study of nonlinear (or linear) differential equations

of infinite order, were introduced by Ju.A. Dubinskii in 1975 and studied

by him, T.D. Van, G.S. Balashova, L.I. Klenina, Ju.A. Konjaev, A.Ja.

Kobilov, S.R. Umarov, A.N. Agadzhanov and the author (see, for example,

[5 - 6] and their references). The obtained results improve the corresponding

results in [1 - 2], which are helpful for establishing nontriviality criteria and

imbedding theorems for Sobolev spaces of infinite order (see, for example,

[2 - 4]).

We will use the following standard notations: D = (D1, ..., Dn), Dj =
∂

∂xj
, j = 1, ..., n,Dα = Dα1

1 · · ·Dαn
n , sp(f) =suppf̃ and Wm,2(G), W 0

m,2(G) -
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the classical Sobolev spaces (see, for example, [7 - 8]). And we presuppose

that 00 = 0
0 = 1, λ0 = ∞ for λ > 0, f(x) ∈ S ′ and f(x) �≡ 0.

We will show the following

Theorem 1. Let I be an unbounded set of integral multi-indices α =

(α1, ..., αn), αj ≥ 0, j = 1, ..., n, 1 ≤ pα ≤ ∞ and let f(x) be a measurable

function such that its generalized derivative Dαf(x) belongs to Lpα(Rn), α ∈
I. Then

(1) (I) lim
|α|→∞

(||Dαf ||pα/|ξα|)1/|α| ≥ 1

for any point ξ ∈ sp(f), where the notation (I) means that we take the limit

only for α ∈ I.

Proof. Let ξ0 ∈ sp(f), ξ0
j �= 0, j = 1, ..., n. For the sake of con-

venience, we assume that ξ0
j > 0, j = 1, ..., n. We fix a number 0 < ε <

1
2 min
1≤j≤n

ξ0
j and choose a domain G with a smooth boundary such that ξ0 ∈ G

and G ⊂ {ξ : ξ0
j − ε ≤ ξj ≤ ξ0

j + ε, j = 1, ..., n}. Further we fix a function

ṽ(ξ) ∈ C∞
0 (G) such that ξ0 ∈ supp(ṽf̃). Then

(2) < ṽ(ξ)f̃(ξ), w̃(ξ) > = < f(x), ϕ(x) >,

where w̃(ξ) ∈ C∞
0 (G) is an arbitrary function, ϕ(x) =

∨
v ∗ ∨

w(x) and
∨
u(x) =

u(−x). Since the distribution ṽ(ξ)f̃(ξ) has a compact support, it can be

represented in the form

ṽ(ξ)f̃(ξ) =
∑

|α|≤m

Dαhα(ξ),

where m is a nonnegative integer and hα(ξ) are ordinary functions in G.

Without loss of generality we may assume that m ≥ 2n.

It is well - known that the Dirichlet problem for the elliptic differential

equation

L2mz̃(ξ) =
∑

|α|≤m

(−1)|α|Dα(Dαz̃(ξ)) = ṽ(ξ)f̃(ξ)
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has a (unique) solution z̃(ξ) ∈ W 0
m,2(G) (see, for example, [7, p. 82]).

Because of (2) we obtain

(3) < z̃(ξ), L2mw̃(ξ) > = < f(x), ϕ(x) >

for all w̃(ξ) ∈ C∞
0 (G). The left side of (3) admits a closure up to an

arbitrary function w̃(ξ) ∈ W 0
m,2(G). Hence, replacing w̃(ξ) by ξαw̃(ξ), we

get

(4) < z̃(ξ), L2m(ξαw̃(ξ)) > = (−i)|α| < Dαf(x), ϕ(x) >

for all w̃(ξ) ∈ W 0
m,2(G).

Now let w̃0(ξ) ∈ W 0
m,2(G) be the solution of the equation L2mw̃0(ξ) =

z̃(ξ). Since 0 /∈ G, we get

L2m(ξαw̃α(ξ)) =
n∏

j=1

(ξ0
j − 2ε)αj z̃(ξ),

where w̃α(ξ) =
∏n

j=1(ξ
0
j − 2ε)αjξ−αw̃0(ξ) and α ≥ 0. Therefore, it follows

from (4) that

(5)
n∏

j=1

(ξ0
j − 2ε)αj < z̃(ξ), z̃(ξ) > ≤ ||Dαf ||pα ||v||1||wα||qα ,

where 1/pα + 1/qα = 1.

On the other hand, there exists a constant C > 0 such that

(6) ||v||1||wα||qα ≤ C, α ≥ 0.

Indeed, let |β| ≤ 2n. Using

xβwα(x) = (−i)|β|
n∏

j=1

(ξ0
j − 2ε)αj

∫
G
eixξDβ(ξ−αw̃0(ξ))dξ,

the Leibniz formula and the definition of G, we get

sup
Rn

|xβwα(x)| ≤ C1

n∏
j=1

(
ξ0
j − 2ε

ξ0
j − ε

)αj
∑
γ≤β

(
β

γ

) n∏
k=1

αk...(αk + γk − 1),
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where

C1 = max{
∫
G
|ξ−γDβ−γw̃0(ξ)|dξ : γ ≤ β, |β| ≤ 2n}.

On the other hand, since

n∏
k=1

αk . . . (αk + γk − 1) < (|α| + 2n)2n

(because of |γ| ≤ |β| ≤ 2n),

2|β| =
∑
γ≤β

(β
γ

)

and

lim
|α|→∞

(|α| + 2n)2n
n∏

j=1

(ξ0
j − 2ε

ξ0
j − ε

)αj = 0 ,

we obtain

sup
x∈Rn

|xβωα(x)| ≤ C2

for all |β| ≤ 2n and α ≥ 0. Therefore, there is an absolute constant C3 such

that

sup
Rn

(1 + x2
1) · · · (1 + x2

n)|wα(x)| ≤ C3, α ≥ 0.

So we have proved (6) with C = C3π
n||v||1. Combining (5) and (6) we

obtain

1 ≤ lim
|α|→∞

(||Dαf ||pα
n∏

j=1

(ξ0
j − 2ε)−αj )1/|α|.

Therefore, since ε > 0 is arbitrarily chosen and

[ n∏
j=1

(ξ0
j − 2ε

ξ0
j

)−αj
]1/|α| ≤ max

1≤j≤n

ξ0
j

ξ0
j − 2ε

we obtain (1) (with ξ = ξ0) by letting ε → 0.

Now we prove (1) for “zero points”: Let ξ0 ∈ sp(f), ξ0 �= 0 and ξ0
1 ...ξ

0
n =

0. For the sake of convenience, we assume that ξ0
j > 0, j = 1, ..., k and

ξ0
k+1 = · · · = ξ0

n = 0(1 ≤ k < n). Then it is sufficient to show (1) only
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for indices α such that αk+1 = · · · = αn = 0. Then the proof is analogous

to the above one after the following modification of choosing ε: We fix a

number 0 < ε < 1
2 min
1≤j≤k

ξ0
j .

The proof is complete. �

If sp(f) is bounded, we have the following more exact result:

Theorem 2. Let I be an unbounded set of integral multi-indices α =

(α1, ..., αn), αj ≥ 0, j = 1, ..., n, 1 ≤ pα ≤ ∞, let f(x) be a measurable

function such that its generalized derivative Dαf(x) belongs to Lpα(Rn), α ∈
I and sp(f) be bounded. Then

(7) (I) lim
|α|→∞

(||Dαf ||pα/ sup
sp(f)

|ξα|)1/|α| ≥ 1.

Proof. It is sufficient to show that

(8) (P ) lim
|α|→∞

(||Dαf ||pα/ sup
sp(f)

|ξα|)1/|α| ≥ 1,

where P is the set of all α ∈ I such that sup
sp(f)

|ξα| > 0. Assume the contrary,

that there exist a subsequence I1 ⊂ P , a number λ < 1 and a vector

β ≥ 0, |β| = 1 such that

(I1) lim
|α|→∞

(||Dαf ||pα/ sup
sp(f)

|ξα|)1/|α| < λ ,(9)

(I1) lim
|α|→∞

α

|α| = β.(10)

Note that

(11) (I1) lim
|α|→∞

sup
sp(f)

|ξα|1/|α| > 0 .

Indeed, assume the contrary, that there exists a subsequence J ⊂ I1 such

that

(12) (J) lim
|α|→∞

sup
sp(f)

|ξα|1/|α| = 0.
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For any 1 ≤ k ≤ n and i1, . . . , ik ∈ {1, . . . , n} we put

Ti1...ik = {α ≥ 0 : αi1 �= 0, . . . , αik �= 0 and αj = 0 if j /∈ {i1, . . . , ik}} .

Then there exist 1 ≤ k ≤ n and i1, . . . , ik ∈ {1, . . . , n} such that Ji1...ik =

J ∩ Ti1...ik is unbounded. Therefore, we get

(Ji1...ik) lim
|α|→∞

sup
sp(f)

|ξα|1/|α| ≥ (Ji1...ik) lim
|α|→∞

|ηα|1/|α| > 0,

where η is any point of sp(f) such that ηi1 �= 0, . . . , ηik �= 0. This contradicts

(12). So we have proved (11).

Further, let αξ ∈ sp(f) : |αξα| = sup
sp(f)

|ξα|. Then αξi1 �= 0, . . . , αξik �= 0

for any α ∈ Ji1...ik and, by taking a subsequence, without loss of generality

we may assume that for some ξ∗ ∈ sp(f)

(13) (Ji1...ik) lim
|α|→∞

αξ = ξ∗ .

Now we consider two cases of ξ∗:
If ξ∗ij �= 0, j = 1, . . . , k. Then, obviously,

(Ji1...ik) lim
|α|→∞

|αξα|1/|α| = |ξ∗β| = (Ji1...ik) lim
|α|→∞

|ξ∗α|1/|α|

which together with ξ∗ ∈ sp(f), (1) and (9) implies

1 ≤ (Ji1...ik) lim
|α|→∞

(||Dαf ||pα/|ξ∗α|)1/|α| =

= (Ji1...ik) lim
|α|→∞

(||Dαf ||pα/ sup
sp(f)

|ξα|)1/|α| < λ < 1 ,

which is impossible.

Otherwise, without loss of generality we may assume that ξ∗i1 = · · · =

ξ∗im = 0 and ξ∗im+1
�= 0, . . . , ξ∗ik �= 0 for some 1 ≤ m ≤ k.
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From (11) and (13), it follows that ξ∗ �= 0, Therefore, m < k. Further,

by virtue of (10) - (11), (13), the definition of αξ and ξ∗i1 = · · · = ξ∗im = 0,

we obtain βi1 = · · · = βim = 0. Since, clearly,

(Ji1...ik) lim
|α|→∞

|αξ
αim+1

im+1
. . .αξ

αik
ik

|1/|α| = |ξ∗
βim+1

im+1
. . . ξ∗

βik

ik
|

= (Ji1...ik) lim
|α|→∞

|ξ∗
αim+1

im+1
. . . ξ∗

αik

ik
|1/|α| ,

there exist ν ∈ Ji1...ik and N > 0 such that

(14) |αξi� | ≤ λ−1|νξi� |, , = m + 1, . . . , k

for all |α| ≥ N,α ∈ Ji1...ik .

On the other hand, it follows from νξi1 �= 0, . . . ,νξik �= 0 and

(Ji1...ik) lim
|α|→∞

αξij = ξ∗ij = 0, j = 1, . . . ,m

that there exists M > 0 such that

|αξij | ≤ |νξij |, j = 1, . . . ,m

for all |α| ≥ M,α ∈ Ji1...ik . This together with (14) implies

|αξij | ≤ λ−1|νξij |, j = 1, . . . , k

for all |α| ≥ max{M,N}, α ∈ Ji1...ik . Therefore,

sup
sp(f)

|ξα|1/|α| = |αξα|1/|α| ≤ λ−1|νξα|1/|α|

which together with (1) and (9) implies

1 ≤(Ji1...ik) lim
|α|→∞

(||Dαf ||pα/|νξα|)1/|α| ≤

≤(Ji1...ik)λ
−1 lim

|α|→∞
(||Dαf ||pα/ sup

sp(f)
|ξα|)1/|α| < 1.
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We thus arrive at a contradiction. So we have proved (8) and then Theorem

2. �

Remark 1. Let σ = (σ1, . . . , σn), 0 < σj < ∞, j = 1, . . . , n,∆σ = {ξ ∈
R
n : |ξj | ≤ σj , j = 1, . . . , n}, 1 ≤ pα ≤ ∞, f ∈ L1(R

n) and sp(f) ⊂ ∆σ.

Then it follows from the Nikolskii inequality [9 - 10] and the Bernstein -

Nikolskii inequality [10, p. 114] that Dαf ∈ L1(R
n) for all α ≥ 0 and

||Dαf ||pα ≤ σα||f ||pα ≤ 2nσα(σ1 · · ·σn)1−1/pα‖f‖1, α ≥ 0.

Therefore, if sp(f) contains at least one vertex of the parallelepiped ∆σ

(such a function f exists), then because of (1), we get

(15) lim
|α|→∞

(||Dαf ||pα/ sup
sp(f)

|ξα|)1/|α| = lim
|α|→∞

(||Dαf ||pα/σα)1/|α| = 1,

which means that inequalities (1) and (7) hold with equality.

Remark 2. Because of (15), it is natural to ask whether we always

have

(I) lim
|α|→∞

(||Dαf ||pα/σα)1/|α| = 1

if sp(f) ⊂ ∆σ and sp(f) contains at least one vertex of ∆σ. Unfortunately,

this fact is false. For simplicity we will construct a counterexample for the

case n = 1 : Let f(x) = sinx
x . Then f(x) ∈ Lp(R) for any p > 1, f(x) �∈

L1(R) and sup
sp(f)

|ξm| = 1 for all m ≥ 1 because of

f̃(ξ) =

{
1, |ξ| ≤ 1,

0, |ξ| > 1.

We first observe that

(16) lim
p→1+

||Dmf ||p = ∞

for any m = 0,1, . . . Actually, case m = 0 is easy to show. Let m ≥ 1.

Then

Dmf(x) = f(x) +
m∑
k=1

(−1)kk!Ck
mx−k−1Dm−k sinx.
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Therefore, since

∫ ∞

1

∣∣∣Dm−k sinx

xk+1

∣∣∣pdx ≤
∫ ∞

1

dx

x2
= 1, k = 1, 2 . . . ,m,

we get

(17)

||Dmf ||p >
( ∫ ∞

1
|Dmf(x)|pdx

)1/p ≥

≥
( ∫ ∞

1
|f(x)|pdx

)1/p −
m∑
k=1

k!Ck
m.

On the other hand, we have

lim
p→1+

∫ ∞

1
|f(x)|pdx = ∞

which together with (17) imply (16).

In view of (16), there are pm > 1,m = 1, 2, . . . such that

||Dmf ||pm ≥ mm,m = 1, 2 . . . .

Therefore,

lim
m→∞

||Dmf ||1/mpm = lim
m→∞

(||Dmf ||pm/ sup
sp(f)

|ξm|)1/m = ∞.

Remark 3. Theorems 1 - 2 still hold for functions defined on the torus

T
n.

Remark 4. Theorems 1 - 2 still hold for 0 < pα ≤ ∞.
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