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A duality for finite t-modules

By Yuichiro Taguchi

Abstract. An Fq[t]-analogue of the Cartier duality is established.
Applications to π-divisible groups are given. Dual Drinfeld modules are
made explicit.

Introduction

In this paper, we establish a duality for finite t-modules and study its

basic properties. Our duality is the Fq[t]-analogue of the Cartier duality,

where the multiplicative group Gm is replaced by the Carlitz module C.

Finite t-modules are, roughly speaking, finite locally free group schemes

which are Fq[t]-submodules of abelian t-modules ([1]) with scalar t-action

on their tangent spaces. See (2.1) for the precise definition. In fact, it is

only for finite v-modules (Definition (3.1)) that we can define the duality

(Definition (4.1)), in a way with Dieudonné theoretic flavor. See Remarks

(4.4), (4.5), and Example (4.6) for accounts of the necessity of a v-module

structure.

A typical case of our duality is supplied by division points of Drinfeld

modules and dual Drinfeld modules , and is studied in some detail in Section

5. In Section 6, some results on the duality of π-divisible groups are given.

One may hope to have such a duality for a wider class of t-modules,

namely, torsion points of abelian t-modules which do not have scalar t-

action on the tangent spaces, such as higher Carlitz modules C⊗n ([2]).

But this would be possible only if the target C of the pairing was replaced

by a tensor power C⊗n with sufficiently large n.

Throughout the article, OS denotes the structure sheaf of a scheme S.

In general, we will use the following unusual
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Notation. A morphism of schemes is denoted by a capital letter, and

the corresponding morphism of the structure sheaves is denoted by the

corresponding small letter.

1. Finite ϕ-modules

For the moment, let A be any commutative ring, and recall the definition

of an A-module scheme. For an A-scheme S, we denote by α : A→ Γ(S,OS)

the structure morphism.

If G is a commutative group scheme over a scheme S, we denote by

Lie∗(G/S) the co-Lie module of G/S (i.e. the OS-module of invariant dif-

ferentials of G/S); thus one has OG ⊗OS
Lie∗(G/S) � Ω1

G/S .

Definition (1.1). An A-module scheme over an A-scheme S is a pair

(G,Ψ) consisting of a commutative group scheme G over S and a ring

homomorphism Ψ : A → End(G/S) ; a �→ Ψa such that, for each a ∈ A,

Ψa induces multiplication by α(a) on the OS-module Lie∗(G/S).

A morphism M : (G,Ψ)→ (G′,Ψ′) of A-module schemes is a morphism

M : G→ G′ of group schemes such that M ◦Ψa = Ψ′
a ◦M for all a ∈ A.

Example (1.2). A vector bundle G on S can be naturally regarded as

a Γ(S,OS)-module scheme. We shall mean by a vector group scheme such

a Γ(S,OS)-module scheme.

We will often write simply G for an A-module scheme in place of (G,Ψ).

Hereafter in this section, we consider the case where the ring A is the

finite field Fq of q elements and S an Fq-scheme.

For an Fq-module scheme (G,Ψ) over S, set EG := HomFq ,S(G, Ga).

(HomFq ,S denotes the Zariski sheaf on S of Fq-linear homomorphisms.) If

G/S is affine (as is always the case in the following), we may confuse OG

and π∗OG (where π is the structure morphism of G/S) and may think of

OG as an OS-algebra. Then EG is the OS-submodule of the augmentation

ideal IG of OG consisting of the local sections X which satisfy{
δ(X) = X ⊗ 1 + 1⊗X, and

ψa(X) = α(a)X for all a ∈ Fq.

Here δ : OG → OG ⊗OS
OG is the coproduct of OG and ψa : OG → OG is

the OS-algebra homomorphism corresponding to Ψa : G→ G.
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Note the correspondence G �→ EG is similar to the “t-motive” construc-

tion ([1], §1). See also Remark (3.7) below.

Definition (1.3). An Fq-module scheme (G,Ψ) over S is called a finite

ϕ-module if OG and EG are locally free of finite rank over OS (in particular,

G/S is affine) with rank(OG) = qrank(ES), and EG generates the OS-algebra

OG.

A morphism of finite ϕ-modules is by definition a morphism of Fq-module

schemes.

Remarks (1.4). (i) A finite ϕ-module G over S can be embedded

canonically into the vector group scheme EG := V(EG) = Spec(Sym·
OS
EG)

as an Fq-submodule scheme, because EG generates OG. Let us agree to call

EG/S the ambient space of G/S. It is clear that a morphism M : G → G′

of finite ϕ-modules extends uniquely to a morphism EM : EG → EG′ of

Fq-module schemes.

(ii) The group scheme µp of p-th roots of unity over an Fp-scheme is not

a finite ϕ-module because Eµp = HomFq ,S(µp, Ga) = 0.

Note that, if M : G → G′ is a morphism of Fq-module schemes, then

the corresponding morphism m : OG′ → OG restricts to an OS-module

homomorphism m : EG′ → EG. Since EG′ generates OG′ if G′ is a finite

ϕ-module, we have

Lemma (1.5). Let G and G′ be finite ϕ-modules. Then the natural

homomorphism Homϕ,S(G,G′)→ HomOS-mod(EG′ , EG) is injective.

In the following, for an OS-module E (resp. an OS-module homomor-

phism m), E(q) (resp. m(q)) denotes the base extension E ⊗OS
OS (resp.

m⊗1) by the q-th power mapOS → OS . For example, if G is a group scheme

over S, then O(q)
G is the structure sheaf of the Frobenius group scheme G(q)

of G. Also, we denote by FG : G → G(q) (resp. fG : O(q)
G → OG) the

Frobenius morphism . If G is an Fq-module scheme, then so is G(q) and FG

is a morphism of Fq-module schemes.

To understand the role of EG, recall

Definition (1.6). (Drinfeld [3], §2) A ϕ-sheaf is a pair (E , ϕ) consist-

ing of a locally free OS-module E on S of finite rank and an OS-module

homomorphism ϕ : E(q) → E .
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A morphism m : (E , ϕ) → (E ′, ϕ′) of ϕ-sheaves is an OS-module homo-

morphism m : E → E ′ which makes the diagram

E(q) m(q)

−−−→ E ′(q)

ϕ

� �ϕ′

E −−−→
m

E ′

commutative.

Let (E , ϕ) be a ϕ-sheaf and E = V(E) the vector bundle corresponding

to E . ϕ : E(q) → E induces a morphism Φ : E → E(q) of Fq-module schemes.

Drinfeld defines then

Gr(E , ϕ) := Ker(Φ− FE : E → E(q))

= Spec
(
S/[(ϕ− fS)(E(q))]

)
,

where S = OE is the symmetric algebra Sym·
OS
E , fS = fE is the Frobenius

morphism S(q) → S, and the bracket [· · · ] denotes the ideal generated by its

contents. This is a finite ϕ-module of rank qrank(EG), with Fq-action induced

by the natural Fq-module structure on E . Note EGr(E,ϕ) = E .
Conversely, if G is a finite ϕ-module over S, the Frobenius morphism

fG : O(q)
G → OG induces an OS-module homomorphism ϕG : E(q)

G →
EG. Then (EG, ϕG) is a ϕ-sheaf. The natural OS-algerbra homomorphism

Sym·
OS
EG → OG is surjective, and its kernel contains (ϕG − fEG

)(E(q)
G ).

Hence we have a surjection OGr(EG,ϕG) → OG of locally free OS-algebras.

The equality rank(OG) = qrank(EG) implies that Gr(EG, ϕG) � G.

The commutativity of m and ϕ in the definition of a morphism m :

(E , ϕ) → (E ′, ϕ′) of ϕ-sheaves means that m : E → E ′ extends to an OS-

Hopf algebra homomorphism

m : S/[(ϕ− fS)(E(q))] −→ S ′/[(ϕ′ − fS′)(E ′(q))].

(S ′ is the symmetric algebra made of E ′.) This is clearly compatible with

the natural Fq-actions. Noticing Lemma (1.5), we have thus
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Proposition (1.7). The category of finite ϕ-modules over S is anti-

equivalent to the category of ϕ-sheaves on S.

The set of valued points of Gr(E , ϕ) is described as follows:

Proposition (1.8). Let (E , ϕ) be a ϕ-sheaf on S, and let T be an S-

scheme. Then the set of T -valued points of Gr(E , ϕ) is

Gr(E , ϕ)(T ) = Homϕ,OS
(E ,OT ),

the set of OS-linear homomorphisms f : E → OT such that f(ϕ(x)) = f(x)q

for any local section x of E.

Proof. This is clear from the definition of Gr(E , ϕ). �

2. Finite t-modules

In the rest of the paper, A is the polynomial ring Fq[t] in one variable t

over Fq. We work over a fixed A-scheme S, and denote by θ the image of t

by the structure morphism α : A→ Γ(S,OS).

Definition (2.1). A finite t-module (G,Ψ) over S is an A-module

scheme over S such that

(1) G is killed by some a ∈ A− {0}; and

(2) (G,Ψ |Fq) is a finite ϕ-module over S.

A morphism of finite t-modules is by definition a morphism of A- module

schemes.

A typical example of a finite t-module is a finite Fq[t]-submodule of an

abelian t-module ([1]) with scalar t-action on its tangent space. As is well-

known, we have

Lemma (2.2). A finite t-module G/S which is killed by a ∈ A − 0 is

étale over S if a is invertible on S.

Proof. It is enough to see Ω1
G/S = 0, but a · Ω1

G/S = 0 and a is

invertible. �
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Remark (2.3). If (G,Ψ) is a finite t-module, Ψ induces an action of

A on the ambient space EG (Remark (1.4), (i)). But EG with this action

is not in general an A-module scheme in the sense of Definition (1.1).

Definition (2.4). A t-sheaf (E , ϕ, ψt) (or simply, (E , ϕ, ψ)) on S is a

pair consisting of a ϕ-sheaf (E , ϕ) and an endomorphism ψt of (E , ϕ) such

that

(1) there exists a polynomial a(X) ∈ Fq[X] − {0} such that a(ψt) = 0 on

E ; and

(2) ψt induces multiplication by θ on Coker(ϕ). (Recall that Coker(ϕ) is

canonically isomorphic to Lie∗Gr(E , ϕ) ([3], Proposition 2.1, 2)).)

Equivalently, we may think that ψ is a ring homomorphism A

→ Endϕ(E , ϕ); a �→ ψa such that ψa = 0 for some a ∈ A − {0} and,

for each a ∈ A, ψa induces multiplication by α(a) on Coker(ϕ).

A morphism m : (E , ϕ, ψt) → (E ′, ϕ′, ψ′
t) of t-sheaves is a morphism of

ϕ-sheaves such that m ◦ ψt = ψ′
t ◦m.

The following proposition, extending (1.7), is obvious.

Proposition (2.5). The category of finite t-modules over S is anti-

equivalent to the category of t-sheaves on S.

We write Gr(E , ϕ, ψ) for the finite t-module corresponding to a t-sheaf

(E , ϕ, ψ).

Example (2.6). Let (E,Ψ) be a Drinfeld A-module of rank r over S.

Assume for simplicity that S = Spec R with R an A-algebra, and that the

action of t is given by

ψt(X) = θX + a1X
q + · · ·+ arX

qr , ai ∈ R, ar ∈ R×,

with respect to a trivialization E � Ga = Spec R[X]. Then for a ∈ A−{0},
G := Ker(Ψa) is a finite t-module over R. EG is a free R-module of rank

r · deg(a) with a basis (Xqj ; 0 ≤ j ≤ r · deg(a) − 1), and ϕ : E(q)
G → EG is

given by

ϕ(Xqj ⊗ 1) = Xqj+1
.

Here Xqj+1
for j + 1 ≥ r · deg(a) should be rewritten in terms of (Xqj ; 0 ≤

j ≤ r · deg(a)− 1) according to the relation ψa(X) = 0.
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In the simple case where a = tk, we can take the basis (ψti(X)q
j
; 0 ≤

i ≤ k − 1, 0 ≤ j ≤ r − 1) of EG, with respect to which ψt is represented by

the matrix whose (i, j)-component is 1 if i = j + r and 0 otherwise.

3. Finite v-modules

To establish a nice duality, we need one more structure.

Recall that a finite ϕ-module G is embedded canonically into its ambient

space EG (Remark (1.4), (i)), which is a vector group scheme.

Definition (3.1). A finite v-module (G,Ψ, V ) over S is a finite t-

module (G,Ψ) over S together with a morphism V : E
(q)
G → EG of Fq-

module schemes such that Ψt = (θ + V ◦ FEG
) |G. (Here θ means multipli-

cation by θ = α(t) ∈ Γ(S,OS) on EG, and FEG
is the Frobenius morphism

of EG.)

A morphism M : (G,Ψ, V ) → (G′,Ψ′, V ′) of finite v-modules is a mor-

phism of finite ϕ-modules which renders the diagram

EG
EM−−−→ EG′

V

� �V ′

E
(q)
G −−−→

E
(q)
M

E
(q)
G′

commutative.

Definition (3.2). A v-sheaf (E , ϕ, v) on S is a pair consisting of a

ϕ-sheaf on S and an OS-module homomorphism v : E → E(q) such that

(E , ϕ, ψt) with ψt := θ+ϕ◦v is a t-sheaf on S. (Here θ means multiplication

by θ on E .)
A morphism m : (E , ϕ, v) → (E ′, ϕ′, v′) of v-sheaves is a morphism of

ϕ-sheaves which renders the diagram

E m−−−→ E ′

v

� �v′

E(q) −−−→
m(q)

E ′(q)
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commutative.

These definitions are made so that Proposition (2.5) extends to

Proposition (3.3). The category of finite v-modules over S is anti-

equivalent to the category of v-sheaves on S.

We write Gr(E , ϕ, v) for the finite v-module corresponding to a v-sheaf

(E , ϕ, v).

Example (3.4). Let (E,Ψ) and G = Ker(Ψa) be as in Example (2.6).

Then the finite t-module G is furnished with a standard v-module structure

by

v : EG → E(q)
G ,

Xqi �→ Xqi−1 ⊗ (θq
i − θ) + Xqi ⊗ aq

i

1 + · · ·+ Xqr+i−1 ⊗ aq
i

r .

(Here Xqi−1 ⊗ (θq
i − θ) := 0 if i = 0.) If G = Ker(Ψt) for example and if

we regard EG and E(q)
G as the column vectors of rank r by fixing the R-basis

(Xqj )0≤j≤r−1 and (Xqj ⊗ 1)0≤j≤r−1 respectively, then v is represented by

the matrix 


a1 −θ
...

. . .
... −θ

ar


 .

(The vacant components are 0.) Note that ψt = 0 on EG in this case, and

still v has enough information to recover the dual of G. But this v-module

structure is not unique unless Ker(ϕG : E(q)
G → EG) = 0.

In fact, finite v-modules over “mixed characteristic” bases are not so far

from finite t-modules, since we have:

Proposition (3.5). Assume that the base scheme S is reduced. Let

(G,Ψ) be a finite t-module which is étale over the generic points of S.

Then (G,Ψ) has a unique v-module structure VG extending the given t-

module structure; Ψt = (θ + VG ◦ FEG
) |G. If G and G′ are two such

finite t-modules, then a morphism G → G′ of finite t-modules preserves
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this v-module structure. In particular, if α : A → OS is injective (cf.

Lemma (2.2)), the two concepts, a finite t-module and a finite v-module,

are equivalent.

The same is valid for a t-sheaf (E , ϕ, ψt) such that ϕ : E(q) → E is

injective over the generic points.

Proof. We prove this for t-sheaves. By (2) of Definition (2.4), we have

Im(ψt − θ) ⊂ Im(ϕ).

Hence v := ϕ−1 ◦ (ψt − θ) : E → E(q) is well-defined (note that ϕ is in fact

injective all over S by the assumption of reducedness), and gives a unique

v-sheaf structure on (E , ϕ) extending the t-sheaf structure ψt.

Let m : (E , ϕ, ψt)→ (E ′, ϕ′, ψ′
t) be a morphism of t-sheaves. If ϕ and ϕ′

are generically injective, we have the diagram

E m−−−→ E ′

v

� �v′

E(q) m(q)

−−−→ E ′(q)

ϕ

� �ϕ′

E −−−→
m

E ′

in which v and v′ are defined as above and in which the outer and the lower

squares are commutative. Since ϕ′ is injective, the upper square is also

commutative, i.e., m is a morphism of v-sheaves. �

Example (3.6). Let C be the Carlitz module over Spec A, i.e., the rank

one Drinfeld A-module with underlying group scheme Ga = Spec A[Z]

and with t-action given by γt : Z �→ θZ + Zq. (Here, one may choose

another t-action Z �→ θZ + aZq for any a ∈ F
×
q , but then a−1t acts by

Z �→ α(a−1t)Z + Zq. So in the following, we fix t ∈ A and its action on

C as above.) Let G be a finite A-submodule of C. Then over A, G has a

unique v-module structure

vC : EG → E(q)
G ,

Zqi �→ Zqi−1 ⊗ (θq
i − θ) + Zqi ⊗ 1.
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In §4, we shall think of G ×Spec A S, over any base scheme S, as a finite

v-module with v-structure induced by this canonical one. Also, it would

be convenient in what follows to think of C itself as a “v-module” with

vC : EC → E(q)
C defined as above, though we deal in fact with its finite

subgroups.

The following Remark is not used in this paper, but provides us with

some feeling on EG.

Remark (3.7). Let G be a finite v-module over S. Then the OS-

module EG would deserve the name the “Dieudonné module” of G, be-

cause we have EG = Homv,S(G,CW ). Here CW is the v-module of “Witt

covectors”, defined as follows (we disregard the topology): CW is, as

a group scheme, the infinte direct product of Ga’s with affine algebra

OCW = OS [· · · , X−n, · · · , X−1, X0], and the t-module and v-module struc-

tures are defined by

t : X−n �→ θX−n + Xq
−n−1,

v : X−n �→ X−n−1 ⊗ 1

for all n ≥ 0.

4. The duality

For an OS-module E , put E∗ := HomOS
(E ,OS). If (E , ϕ, v) is a v-sheaf

on S, then ϕ and v induce respectively the OS-module homomorphisms

ϕ∗ : E∗ → E∗(q) and v∗ : E∗(q) → E∗.

It is easy to check that (E∗, v∗, ϕ∗) is a v-sheaf on S.

Definition (4.1). We define the dual (E , ϕ, v)∗ of a v-sheaf (E , ϕ, v)

to be the v-sheaf (E∗, v∗, ϕ∗). For a finite v-module G = Gr(E , ϕ, v), define

its dual G∗ to be Gr(E∗, v∗, ϕ∗).

Note that if, as in Proposition (3.5), the base scheme S is reduced and

(G,Ψ) is a finite t-module which is étale over the generic points (resp.
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(E , ϕ, ψt) is a t-sheaf such that ϕ is injective over the generic points), then

we can define its dual.

We have clearly the following

Proposition (4.2). Let G be a finite v-module.

(i) G∗ has the same rank as G.

(ii) The correspondence G �→ G∗ is functorial. This functor is exact.

(iii) G∗∗ is canonically isomorphic to G.

(iv) (G×S T )∗ � G∗ ×S T for any S-scheme T .

The same is true for the duality of v-sheaves.

Theorem (4.3). Let C be the Carlitz module over Spec A (cf. Example

(3.6)), and let G be a finite v-module over S.

(i) The functor

Homv,S(G,C) : (S-schemes)→ (A-modules)

T �→ Homv,T (G×S T, C ×Spec A T )

is represented by (the underlying finite t-module of) G∗.
(ii) There exists a canonical A-bilinear pairing of A-module schemes:

ΠG : G×S G∗ → C

such that:

(ii-1) If G′ is a finite t-module over S sitting in an A-bilinear pairing

Π′ : G ×S G′ → C, then there exists a unique morphism M : G′ → G∗ of

finite t-modules which makes the diagram

G×S G′ Π′
−−−→ C

1×M

� ∥∥∥
G×S G∗ −−−→

ΠG

C

commute.

(ii-2) If M : G→ H is a morphism of finite v-modules and M∗ : H∗ →
G∗ is its dual morphism induced by functoriality, then we have

ΠH ◦ (M × 1) = ΠG ◦ (1×M∗) on G×H∗.
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Conversely, M∗ is the unique morphism which has this property.

(ii-3) If α : A → OS is injective and S is integral with function field

K, then ΠG induces a non-degenerate Galois equivariant A-bilinear pairing

between the A-modules of geometric points:

G(Ksep)×G∗(Ksep)→ C(Ksep).

Proof. Recall that OC is the polynomial ring A[Z] with t-action γt :

Z �→ θZ + Zq and v-module structure vC : EC → E(q)
C ; Z �→ Z ⊗ 1.

Let G = Gr(EG, ϕG, vG). An OT -algebra homomorphism m : OC ⊗A OT →
OG⊗OS

OT corresponds to a morphism of v-modules G×S T → C×Spec AT

if and only if

m(Z) ∈ Γ(T, EG ⊗OS
OT ), and(4.3.1)

m(q) ◦ vC(Z) = (vG ⊗ 1) ◦m(Z).(4.3.2)

Let S∗ be the symmetric OS-algebra Sym·
OS
E∗G, and Z0 a global section

of EG⊗OS
E∗G which gives a basis of the rank one OS-submodule of EG⊗OS

E∗G
on which one has m ⊗ 1 = 1 ⊗ m∗ for all m ∈ EndOS

(EG). A canonical

choice for Z0 is
∑

i Xi⊗X∗
i , where (Xi)i is a local basis of EG and (X∗

i )i is

its dual basis. Let

ι : EG ⊗OS
E∗G → E

(q)
G ⊗OS

E∗(q)G

X ⊗ Y �→ (X ⊗ 1)⊗ (Y ⊗ 1)

be the natural map. Then we have (v ⊗ 1)(Z0) = (1 ⊗ v∗) ◦ ι(Z0) for all

v ∈ HomOS
(EG, E(q)

G ). If we take OT = S∗ and Z �→ Z0, then (4.3.2) reads

(1⊗ fS∗) ◦ ι(Z0) = (1⊗ v∗G) ◦ ι(Z0).

(fS∗ is the OS-linear Frobenius morphism S∗(q) → S∗.) Let J ∗ be the

smallest ideal of S∗ such that

(1⊗ (v∗G − fS∗)) ◦ ι(Z0) ∈ E(q)
G ⊗OS

J ∗.
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Then it follows from what we observed at the beginning of the proof that

the functor Homv,S(G,C) is represented by Spec(S∗/J ∗) = Gr(E∗G, v∗G),

with t-action induced by ψ∗
t on E∗G.

Remark (4.4). To represent the functor Homv,S(G,C), the v-module

structure of G∗ is not needed (and in fact a v-module structure on

Gr(E∗G, v∗G) may not be unique (cf. Example (3.4)), but for G to represent

Homv,S(G∗, C), G∗ must have the v-module structure ϕ∗
G.

Proof continued. The pairing G×S G∗ → C is given by

π : OC → OG ⊗OS
OG∗ ,

Z �→ Z1,

where Z1 is the image of Z0 in OG ⊗OS
(S∗/J ∗). The universality of G∗

(ii-1) is clear from the above discussion.

The non-degeneracy of (ii-2) is a consequence of a basic fact in linear

algebra; let (Xi) and (Yj) be OS-bases of EG and EH respectively, (X∗
i ) and

(Y ∗
j ) the dual bases, m : EH → EG an OS-linear map, and m∗ : E∗G → E∗H its

dual map. Then we have
∑

i Xi⊗m∗(X∗
i ) =

∑
j m(Yj)⊗Y ∗

j in EG⊗OS
E∗H .

Conversely, m∗ is the unique OS-linear map with this property.

Since G is étale over K if α is injective (Lemma (2.2)), (ii-3) follows

from the well-known equivalence between the category of finite étale Ksep-

schemes and the category of finite sets. �

Remark (4.5). If we consider only the t-module structure, we will

have the following:

(i) The functor

Homt,S(G,C) : (S-schemes)→ (A-modules)

T �→ Homt,T (G×S T, C ×SpecA T )

is represented by an A-module scheme G̃∗ over S.

(ii) Assume S is reduced. If G is étale over the generic points of S, then

G̃∗ is of the form G∗ ∪ G̃∗
0, where G∗ is (the underlying finite t-module of)

the dual finite v-module of G, G being considered to be a finite v-module

with the unique v-module structure (Proposition (3.5)), and where G̃∗
0 is
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supported on the locus in S over which G is not étale. In general, G̃∗
0 has

a positive dimension. For example:

Example (4.6). Let R be an (A/tA)-algebra (i.e., we are in the “char-

acteristic” (t) situation in the sense that the kernel of the structure map

α : A → R is (t)), and let G = Spec R[X1, X2]/(X
q
1 , X

q
2) be a finite t-

module with t acting by Xi �→ 0 for i = 1, 2. If we think of G as the

t-division points of the abelian t-module (E,Ψ) = C⊕2;

E = Spec R[X1, X2], ψt

(
X1

X2

)
= t

(
X1

X2

)
+

(
Xq

1

Xq
2

)
,

then it is natural to make G into a finite v-module by v : Xi �→ Xi ⊗ 1 for

i = 1, 2. On the other hand, G can be regarded as the t-division points of

another abelian t-module(E′,Ψ′) with

E′ = Spec R[X1, X2], ψ′
t

(
X1

X2

)
= t

(
X1

X2

)
+

(
Xq

2

Xq
1

)
.

Now it is natural to make G into a finite v-module by v : Xi �→ X3−i⊗1 for

i = 1, 2. In the former case, we have G∗ = Spec R[Y1, Y2]/(Y1−Y q
1 , Y2−Y q

2 )

(the constant group scheme Fq ⊕ Fq), whereas in the latter case, we have

G∗ = Spec R[Y ]/(Y − Y q2) (the étale group scheme Fq2). Of course, we

could choose any v-module structure v : Xi �→ X1⊗a1i+X2⊗a2i for i = 1, 2

with aji ∈ R. Without v-module structures, we will have G̃∗ � A
2
R in this

case.

Finally in this section, we describe a relation between the Frobenius and

the Verschiebung over a “finite characteristic” base.

Proposition (4.7). Let (G,Ψ, V ) be a finite v-module over S.

(i) Let d be a positive integer, and F d
G : G→ G(qd) the qd-th power Frobenius

morphism. Then G(qd) (resp. F d
G) is a finite v-module (resp. a morphism

of finite v-modules) if Im(α) ⊂ Fqd. If this is the case and M : G → G′ is

a morphism of finite v-modules, then we have M (qd) ◦ F d
G = F d

G′ ◦M .

(ii) Assume Ker(α : A → OS) = (p) with p ∈ A being a monic prime

element of degree d. Let VG,p : G(qd) → G be the dual morphism of FG∗,p :=

F d
G∗ : G∗ → G∗(qd). Then we have

Ψp = VG,p ◦ FG,p and Ψ
(qd)
p = FG,p ◦ VG,p.
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In particular, we have an exact sequence of finite t-modules

0→ Ker(FG,p)→ Ker(Ψp)→ Ker(VG,p)→ 0.

Proof. (i) The only point we must care about is the action of a ∈ A

on Lie∗(G(qd)), which is multiplication by α(a)(q
d). This should be equal to

α(a), which is the case if Im(α) ⊂ Fqd . The compatibility conditions for

v-module structures and morphisms are then automatically satisfied.

(ii) Let Z ∈ OC and Z1 ∈ OG⊗OS
OG∗ have the same meaning as in the

proof of Theorem (4.3). Let

π : OC → OG ⊗OS
OG∗

Z �→ Z1

be the OS-algebra homomorphism corresponding to the pairing ΠG : G×S

G∗ → C. Then the A-linearity of the pairing is written as

(ψp ⊗ 1)(Z1) = π(γp(Z)) = (1⊗ ψ∗
p)(Z1).

Here γ : A → EndOS
(OC); a �→ γa is the map describing the A-action on

C. Since γp(Z) ≡ Zqd(mod.p) (e.g. [5], Proposition 2.4), we have

(ψp ⊗ 1)(Z1) = π(Zqd) = (fG,p ⊗ fG∗,p) ◦ ι(Z1)

= (fG,p ◦ vG,p ⊗ 1)(Z1).

Hence ψp = fG,p ◦ vG,p, and Ψp = VG,p ◦ FG,p.

By (i), we have also the commutative diagram

G(qd) VG,p−−−→ G

F
G(qd),p

� �FG,p

G(q2d) −−−−−→
V
G(qd),p

G(qd),

from which follows the equality

Ψ
(qd)
p = V

G(qd),p
◦ F

G(qd),p
= FG,p ◦ VG,p. �
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5. Duality for Drinfeld modules

In this section, we construct explicitly the dual Ě of a Drinfeld Fq[t]-

module E, and prove the compatibility of this construction and the duality

of §4 for the torsion points of E and Ě. Ě is an (r−1)-dimensional abelian

t-module ([1]) if E is of rank r ≥ 2.

Let A = Fq[t] and R an A-algebra. The image of t ∈ A in R will be

denoted by θ. (Though all constructions below work over any A-scheme S,

we work over an affine S = Spec R for simplicity.)

Let (E,Ψ) be a Drinfeld module over R of rank r ≥ 2. Suppose the

action of t ∈ A is given by

ψt(X) = θX + a1X + · · ·+ arX
qr , ai ∈ R, ar ∈ R×

with respect to a coordinate X of E. (As before, we use a small letter ψ

to denote a map of affine rings.) On Ě := G
⊕(r−1)
a /R , define an A-module

scheme structure Ψ̌ : A −→ EndR(G
⊕(r−1)
a ), in terms of the coordinates

Y = t(Y1, · · · , Yr−1) of G
⊕(r−1)
a = SpecR[Y1, · · · , Yr−1], by

ψ̌t(Y) = θY + B1Y
(q) + B

(q)
2 Y

(q2),

with

B1 :=




−a−1
r a1

1
...

. . .
...

1 −a−1
r ar−1


 , B2 :=




a−1
r


 .

Here and elsewhere, for a matrix B, B
(qj) denotes the matrix B but with en-

tries raised to the qj-th power. We will call this type of A-module schemes

(Ě, Ψ̌) dual Drinfeld modules. Note that one can recover the Drinfeld mod-

ule E starting with a dual Drinfeld module Ě, so that we may think ˇ̌E = E.

Let C be the Carlitz module on which t acts by γt : Z �→ θZ + Zq with

respect to a coordinate Z of C.

Theorem (5.1). (i) If R is a perfect field, Ě is an abelian t-module of

t-rank r(Ě) = r, τ -rank ρ(Ě) = r− 1, and weight w(Ě) = (r− 1)/r in the

sense of [1].
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(ii) For a non-zero a ∈ A, the kernel aĚ of the action of a on Ě is a finite

t-module over R of rank qr·deg(a).

(iii) For a non-zero a ∈ A, there exists an A-bilinear pairing defined over

R:

aΠE : aE ×R aĚ −→ aC.

(iv) If we furnish aE with the standard v-module structure as in (3.4), then

we have aĚ � aE
∗, and the pairing aΠE of (iii) coincides with the pairing

ΠaE of Theorem (4.3).

Remarks (5.2). (i) Anderson takes A = Fp[t] with a prime p in [1].

So we should either assume in (5.1),(i) that q = p, or define the t-motive

M(Ě) = HomR(G
⊕(r−1)
a , Ga) to be the Fq-linear homomorphisms. Here we

will take the latter, and denote it, as before, by EĚ .

(ii) The statements of the Theorem are valid also for any d-dimensional

abelian t-module (E,Ψ) if Ψ : A −→ EndR(G⊕d
a ) is defined by an equation

of the form

ψt(X) = θX + a1X
(q) + · · ·+ arX

(qr), X = t(X1, · · · , Xd),

with ai ∈ Md(R) and ar ∈ GLd(R).

(iii) For a Drinfeld module E of rank 1, there exists an ind-finite étale A-

module scheme Ě (a twist of the constant A-module scheme Fq(t)/Fq[t]),

together with a pairing as in (iii) of the Theorem.

(iv) Even if E does not have good reduction over R, we can define an A-

bilinear pairing between the division points of E and Ě′, a twist of Ě, with

target C ′, a twist of C. Especially, we can take Ě′ to be the (r − 1)-st

exterior product ∧r−1E of E ([1]) defined by

ψ̌′
t(Y) = θY + B

′(q)
1 Y

(q) + B
′(q2)
2 Y

(q2)

with

B
′
1 := (−1)r




(−1)ra1

ar
...

. . . (−1)r+1−iai
. . .

...

ar ar−1




,
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B
′
2 := (−1)r




ar

 ,

and C ′ to be the r-th exterior product ∧rE of E ([1], [4]) defined by

γ′
t(Z) = θZ − (−1)rarX

q.

Ě′ and C ′ may have non-stable reduction. It would be interesting to seek

a good model of Ě′.

Proof of the Theorem. (i) This is clear; an R[ψ̌t]-base of EĚ =

HomFq ,R(G
⊕(r−1)
a , Ga) is (a−1

r Y q
r−1, Y1, · · · , Yr−1), which implies r(Ě) = r.

The other assertions are obvious.

(ii) Put G = aĚ. The affine ring OG of G can be identified with the

quotient R[Y1, · · · , Yr−1]/ψ̌a(Y). It is enough to show that OG is free over

R of rank qr·deg(a), and that EG is free over R of rank r · deg(a).

We may assume a ∈ A = Fq[t] is monic of degree k ≥ 1, and write

a = tk + g(t), g(t) =
∑k−1

i=0 git
i, gi ∈ Fq. Define elements Yij ∈ OG for

0 ≤ i ≤ k − 1 and 1 ≤ j ≤ r − 1 by

Yk−1,j = Yj (1 ≤ j ≤ r − 1),

and

(5.1.1) Yi−1 = ψ̌t(Yi) + giYk−1 (1 ≤ i ≤ k − 1),

where Yi := t(Yi1, · · · , Yi,r−1). Applying (5.1.1) repeatedly, we find

Yi = ψ̌tk−1−i(Yk−1) + gk−1ψ̌tk−2−i(Yk−1) + · · ·+ gi+1Yk−1

(5.1.1a) = ψ̌(tk−1−i+gk−1tk−2−i+···+gi+1)(Yk−1),

and especially,

Y0 = ψ̌(tk−1+gk−1tk−2+···+g1)(Yk−1),
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whence

ψ̌t(Y0) = ψ̌a(Yk−1) − g0Yk−1.

This shows that the equality ψ̌a(Yk−1) = 0 (which means G = aĚ) is equiv-

alent to

(5.1.2) ψ̌t(Y0) = −g0Yk−1.

We can thus regard OG as the quotient of R[Y01, · · · , Yk−1,r−1] by the rela-

tions (5.1.1) and (5.1.2).

By setting (Y ′
ij)

q := Yij if j < r − 1 and Y ′
i,r−1 := Yi,r−1, we embed OG

into the quotient O′ of R[Y ′
01, · · · , Y ′

k−1,r−1] by the same relations (5.1.1)

and (5.1.2). Then (5.1.1) and (5.1.2) read:

(unit)(Y ′
ij)

q2 + (lower terms) = 0, 0 ≤ i ≤ k − 1, 1 ≤ j ≤ r − 1.

By Lemma 1.9.1 of [2], O′ is free of rank q2k(r−1) over R, with a base

(
∏
i,j

(Y ′
ij)

lij ; 0 ≤ lij ≤ q2 − 1).

Since OG is the R-submodule of O′ generated by

(
∏
i,j

(Y ′
ij)

lij ; q|lij if 1 ≤ j ≤ r − 2),

it is also free, and of rank qk(r−2) · q2k = qkr. EG is also free on the R-base

(Yij ; 0 ≤ i ≤ k − 1, 0 ≤ j ≤ r − 1), so we have rank(OG) = qrank(EG).

(iii) Passing to the language of affine rings, we shall give an R-algebra

homomorphism

π : OaC −→ OaE ⊗R OaĚ
,

or more explicitly,

π : R[Z]/γa(Z) −→ R[X]/ψa(X) ⊗R R[Y1, · · · , Yr−1]/ψ̌a(Y)

which is compatible with the comultiplications (Z �→ Z⊗1+1⊗Z, etc.) and

the A-actions. Write a = tk + g(t), g(t) =
∑k−1

i=0 git
i and define Yij ∈ OaĚ

as in the proof of (ii). Set further

(5.1.3) Yi0 := a−1
r Y q

i,k−1 (0 ≤ i ≤ k − 1).



582 Yuichiro Taguchi

Simplifying the notation, we also set Xij := ψti(X)q
j

for i, j ≥ 0. Then we

have

(5.1.4) Xi+1,0 = ψt(Xi0) = θXi0 +

r∑
j=1

ajXij

and

(5.1.5) 0 = ψa(X) = ψtk(X) + ψg(t)(X) = Xk0 +
k−1∑
i=0

giXi0

(5.1.5a) = θXk−1,0 +
r∑

j=1

ajXk−1,j +
k−1∑
i=0

giXi0.

Now define the map π by

π : Z �→
k−1∑
i=0

r−1∑
j=0

Xij ⊗ Yij .

This is obviously compatible with the comultiplications and the actions

of Fq (⊂ A); it only remains to check the commutativity of the following

diagram:

OaC
π−−−→ OaE ⊗R OaĚ

γt

� �ψt⊗1, 1⊗ψ̌t

OaC −−−→
π

OaE ⊗R O
aĚ

.

The three composite maps in the diagram are calculated as follows:

(ψt ⊗ 1) ◦ π(Z) =
k−1∑
i=0

r−1∑
j=0

Xi+1,j ⊗ Yij

=
k−1∑
i=1

r−1∑
j=0

Xij ⊗ Yi−1,j −
k−1∑
i=0

r−1∑
j=0

giXij ⊗ Yk−1,j (by (5.1.5)q
j
)
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(5.1.6) = −
r−1∑
j=0

X0j ⊗ g0Yk−1,j +
k−1∑
i=1

r−1∑
j=0

Xij ⊗ (Yi−1,j − giYk−1,j) .

In view of (5.1.1) and (5.1.2), we find this equal to

(1⊗ ψ̌t) ◦ π(Z) =
k−1∑
i=0

r−1∑
j=0

Xij ⊗ ψ̌t(Yij) .

Finally,

π ◦ γt(Z) = θ(
k−1∑
i=0

r−1∑
j=0

Xij ⊗ Yij) + (
k−1∑
i=0

r−1∑
j=0

Xij ⊗ Yij)
q

(5.1.7) =
k−1∑
i=0

r−1∑
j=0

Xij ⊗ θYij +
k−1∑
i=0

r−1∑
j=1

Xij ⊗ Y q
i,j−1 +

k−1∑
i=0

Xir ⊗ Y q
i,r−1 .

If 0 ≤ i ≤ k − 2, we see from (5.1.4)

Xir = −a−1
r (θXi0 +

r−1∑
j=1

ajXij − Xi+1,0).

For i = k − 1, we see from (5.1.5a)

Xk−1,r = −a−1
r (θXk−1,0 +

r−1∑
j=1

ajXk−1,j +
k−1∑
i=0

giXi0).

Hence the companion with which Xij is tensored in the above expression

(5.1.7) of π ◦ γt(Z) is, if i = j = 0,

θY00 − a−1
r θY q

0,r−1 − a−1
r g0Y

q
k−1,r−1 = −g0Yk−1,0 (by (5.1.3));

if i = 0 and 1 ≤ j ≤ r − 1,

θY0j + Y q
0,j−1 − a−1

r ajY
q
0,r−1 = −g0Yk−1,j (by (5.1.2));
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if 1 ≤ i ≤ k − 1 and j = 0,

θYi0 − a−1
r θY q

i,r−1 + a−1
r Y q

i−1,r−1 − a−1
r giY

q
k−1,r−1

= Yi−1,0 − giYk−1,0 (by (5.1.3));

if 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ r − 1,

θYij + Y q
i,j−1 − a−1

r ajY
q
i,r−1 = Yi−1,j − giYk−1,j (by (5.1.1)).

Putting all these together, we find π ◦ γt(Z) is also equal to (5.1.6).

(iv) We may regard EaE and E
aĚ

dual to each other by making (Xij) and

(Yij) the dual bases. Then our construction of the pairing here coincides

with the construction in §4, and we have aĚ � aE
∗. �

Remark (5.3). In what follows, we regard aE
∗ = aĚ by this concrete

construction (iv).

Proposition (5.4). Let M : E → F be an isogeny of Drinfeld modules

(resp. dual Drinfeld modules) over R of rank r ≥ 2.

(i) There exists a unique isogeny M̌ : F̌ → Ě of dual Drinfeld modules

(resp. Drinfeld modules) such that, for all non-zero a ∈ A,

(5.4.1) aΠE ◦ (1× M̌) = aΠF ◦ (M × 1) on aE × aF̌ ,

where aΠE : aE × aĚ → aC and aΠF : aF × aF̌ → aC are the duality

pairings (5.1), (ii) on the a-division points.

(ii) Let M∗ : aF
∗ → aE

∗ be the morphism of finite t-modules which

M : aE → aF induces by functoriality of ∗. Then we have M∗ = M̌ on

aF
∗ = aF̌ (cf. (5.3)).

(iii) We have canonically Ker(M̌) = Ker(M)∗.

Proof. We assume E and F are Drinfeld modules; the dual case is

proved similarly.

(i) Let EE := HomFq ,R(E, Ga), the Fq-linear homomorphisms defined

over R. The rings R and A acts naturally on EE . It is easy to see, by the

explicit form of the defining equation of E, that EE is a free R[t]-module

of rank r. For E and F (resp. Ě and F̌ ), we use the common symbol
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(X0, X1, · · · , Xr−1) = (X,Xq, · · · , Xqr−1
) (resp. (Y0, Y1, · · · , Yr−1)) for the

R[t]-basis of EE and EF (resp. EĚ and EF̌ ), and regard (Xi) and (Yi) as the

dual bases each other (cf. Proof of (5.1)).

An isogeny M : E → F induces an R[t]-module homomorphism m :

EF → EE . Let m̌ be its transpose; m̌ is the unique R[t]-module homo-

morphism EĚ → EF̌ such that
∑r−1

i=0 m(Xi) ⊗ Yi =
∑r−1

i=0 Xi ⊗ m̌(Yi)

in EE ⊗R[t] EF̌ . If m(Xj) =
∑r−1

h=0 mhjXh, mhj ∈ R[t], then m̌(Yh) =∑r−1
j=0 mhjYj . Clearly m̌ defines an isogeny M̌ : F̌ → Ě. We will show M̌

has the required property.

Fix a non-zero a ∈ A, and let Za =
∑

Xij ⊗ Yij be the element of

EaE ⊗R EaĚ and EaF ⊗R EaF̌ as in the proof of (5.1), (iii) (we use again the

symbol Za in common for E and F ). Then the equality (5.4.1) is equivalent

to the equality

(5.4.2) (1⊗ m̌)(Za) = (m⊗ 1)(Za) in EaE ⊗R EaF̌ .

The uniqueness of M̌ follows from this equality, because it determines

m̌(Yi)(mod aEF̌ ) for all non-zero a ∈ A.

Let us prove the equality (5.4.2). Recall that Xij = tiXj (= abbreviation

of ψti(Xj)) and Yij = biYj (= abbreviation of ψ̌bi(Yj)). If a = tk+
∑k−1

l=0 glt
l

with gl ∈ Fq, then by (5.1.1a), we see that bi = tk−1−i + gk−1t
k−2−i + · · ·+

gi+1. Since m commutes with elements of A, we have

(m⊗ 1)(Za) = (m⊗ 1)
∑
i,j

(ti ⊗ bi)(Xj ⊗ Yj)

=
∑
i,j

(ti ⊗ bi)(
r−1∑
h=0

mhjXh)⊗ Yj

=
∑
h,j

(mhj ⊗ 1)(
k−1∑
i=0

ti ⊗ bi)(Xh ⊗ Yj).

Similarly,

(1⊗ m̌)(Za) =
∑
h,j

(1⊗mhj)(
k−1∑
i=0

ti ⊗ bi)(Xh ⊗ Yj).
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So the coincidence of these two elements is implied by the annihilation of

Xh ⊗ Yj by

(5.4.3) (mhj ⊗ 1− 1⊗mhj)
k−1∑
i=0

(ti ⊗ bi)

Since the ⊗ is over R and mhj ∈ R[t], it suffices to prove this for mhj = tn

for all n ≥ 1. But tn ⊗ 1 − 1 ⊗ tn has the factor t ⊗ 1 − 1 ⊗ t, so we may

assume mhj = t. In that case, a simple calculation shows that (5.4.3) equals

a⊗ 1− 1⊗ a. This kills Xh ⊗ Yj because we are now working on a-division

points.

(ii) is clear from the uniqueness of M∗ as shown in (ii-2) of (4.3).

(iii) Take any non-zero a ∈ A such that Ker(M) ⊂ aE. Then there exists

an isogeny N : F → E such that N ◦M = a on E and M ◦ N = a on F .

Restricting the dual maps to a-division points, we have Ker(M̌) = Im(Ň)

and Ker(Ň) = Im(M̌). Applying the exact functor ∗ to the exact sequence

0 −−−→ Ker(M) −−−→ aE
M−−−→ aF ,

we find the sequence

0 ←−−− Ker(M)∗ ←−−− aE
∗ M∗
←−−− aF

∗

exact. Using (ii), we conclude

Ker(M)∗ � aE
∗/Im(M∗) = aĚ/Im(M̌)

= aĚ/Ker(Ň) � Im(Ň) = Ker(M̌). �

6. Duality for π-divisible groups

Let π be a monic prime element of A = Fq[t], and let G be a π-divisible

group over an A-scheme S of hight h. Thus G is an inductive system

(Gn, in)n≥0 of finite v-modules Gn over S with transition maps in : Gn →
Gn+1 such that, for all n ≥ 0,

(1) Gn is killed by πn, and of rank |π|nh = qnh·deg(π); and

(2) the sequence

0 −−−→ Gn
in−−−→ Gn+1

πn

−−−→ Gn+1



A duality for finite t-modules 587

is exact.

An anti-equivalent definition can be stated in terms of v-sheaves; we call

a projective system E = (En, pn)n≥0 of v-sheaves a π-adic v-sheaf on S of

hight h if, for all n ≥ 0,

(1) En is killed by πn, and of rank nh · deg(π); and

(2) the sequence

En+1
πn

−−−→ En+1
pn−−−→ En −−−→ 0

is exact.

It is clear that the category of π-divisible groups over S is anti-equivalent

to the category of π-adic v-sheaves on S (cf. Proposition (3.3)).

The dual G∗ = (G∗
n, i

∗
n)n≥0 of G is defined as follows: G∗

n is the dual of

Gn in the sense of §4, and the transition map i∗n : G∗
n → G∗

n+1 is the dual

morphism of the surjective morphism π : Gn+1 → Gn. It is clear that G∗ is

a π-divisible group and has the same hight as G.

Assume now that S is integral and, for all n ≥ 0, Gn is étale over the

generic point of S. Let Ksep be a separable closure of the function field K

of S. Define two Galois modules Φπ(G) and Tπ(G) as usual:

Φπ(G) := lim−→
n

Gn(K
sep),

Tπ(G) := lim←−
n

Gn(K
sep),

where the transition maps are those induced by in and π respectively. If Aπ

denotes the π-adic completion of A, and Fπ denotes the fraction field of Aπ,

then Φπ(G) is a divisible Aπ-module, and Tπ(G) = HomAπ(Fπ/Aπ,Φπ(G))

is a free Aπ-module of rank h. Write Cn for the kernel of πn on the Carlitz

module C. Noticing the compatibility ((4.3), (ii-2)), and passing to the limit

as n→∞ of the pairing ((4.3), (ii-3)): Gn(K
sep) × G∗

n(K
sep) → Cn(K

sep),

inductively with Gn and Cn and projectively with G∗
n, we obtain:

Proposition (6.1). There exist canonical isomorphisms of Galois

modules:

Tπ(G
∗) � HomAπ(Φπ(G),Φπ(C))

� HomAπ(Tπ(G), Tπ(C)).
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Assume now that S = Spec R, where R is a complete noetherian local

A-algebra such that the structure morphism α : A → R is injective and

α(π) is in the maximal ideal of R. As was shown in (1.4) of [6], the cate-

gory of connected π-divisible groups over R is equivalent to the category of

divisible formal Aπ-modules over R. The dimension of a π-divisible group

G over R is defined to be the dimension of the formal Aπ-module corre-

sponding to the maximal connected sub-π-divisible group G0 of G. The

following proposition is proved in the same way as Proposition 3 of [7],

using Proposition (4.7).

Proposition (6.2). Let d and d∗ be the dimensions of G and its dual

G∗ respectively. Then we have d + d∗ = h, the hight of G and G∗.
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