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A duality for finite t-modules

By Yuichiro TAGUCHI

Abstract. An Fg[t]-analogue of the Cartier duality is established.
Applications to w-divisible groups are given. Dual Drinfeld modules are
made explicit.

Introduction

In this paper, we establish a duality for finite t~-modules and study its
basic properties. Our duality is the Fy[t]-analogue of the Cartier duality,
where the multiplicative group G,, is replaced by the Carlitz module C.
Finite t-modules are, roughly speaking, finite locally free group schemes
which are [Fy[t]-submodules of abelian ¢-modules ([1]) with scalar ¢-action
on their tangent spaces. See (2.1) for the precise definition. In fact, it is
only for finite v-modules (Definition (3.1)) that we can define the duality
(Definition (4.1)), in a way with Dieudonné theoretic flavor. See Remarks
(4.4), (4.5), and Example (4.6) for accounts of the necessity of a v-module
structure.

A typical case of our duality is supplied by division points of Drinfeld
modules and dual Drinfeld modules , and is studied in some detail in Section
5. In Section 6, some results on the duality of m-divisible groups are given.

One may hope to have such a duality for a wider class of t-modules,
namely, torsion points of abelian t-modules which do not have scalar t-
action on the tangent spaces, such as higher Carlitz modules C®™ ([2]).
But this would be possible only if the target C' of the pairing was replaced
by a tensor power C®™ with sufficiently large n.

Throughout the article, Og denotes the structure sheaf of a scheme S.
In general, we will use the following unusual

1991 Mathematics Subject Classification. Primary 11G09; Secondary 14105, 14L.15.

563



564 Yuichiro TAGUCHI

Notation. A morphism of schemes is denoted by a capital letter, and
the corresponding morphism of the structure sheaves is denoted by the
corresponding small letter.

1. Finite p-modules

For the moment, let A be any commutative ring, and recall the definition
of an A-module scheme. For an A-scheme S, we denote by o : A — I'(S, Og)
the structure morphism.

If G is a commutative group scheme over a scheme S, we denote by
Lie*(G/S) the co-Lie module of G/S (i.e. the Og-module of invariant dif-
ferentials of G/S); thus one has Og ®p4 Lie*(G/S) ~ QlG/S.

DEFINITION (1.1). An A-module scheme over an A-scheme S is a pair
(G, ¥) consisting of a commutative group scheme G over S and a ring
homomorphism ¥ : A — End(G/S) ; a — ¥, such that, for each a € A,
VU, induces multiplication by a(a) on the Og-module Lie*(G/S5).

A morphism M : (G, %) — (G', V') of A-module schemes is a morphism
M : G — G’ of group schemes such that M o ¥, = ¥/ o M for all a € A.

Ezample (1.2). A vector bundle G on S can be naturally regarded as
a I'(S, Og)-module scheme. We shall mean by a vector group scheme such
a I'(S, Og)-module scheme.

We will often write simply G for an A-module scheme in place of (G, ¥).

Hereafter in this section, we consider the case where the ring A is the
finite field F, of ¢ elements and S an Fy-scheme.

For an Fj-module scheme (G,¥) over S, set &g = }I()_m]FmS(G, Ga)-
(Homg g denotes the Zariski sheaf on S of Fy-linear homomorphisms.) If
G/S is affine (as is always the case in the following), we may confuse Og
and 7,Og (where 7 is the structure morphism of G/S) and may think of
Og as an Og-algebra. Then &g is the Og-submodule of the augmentation
ideal Zg of Og consisting of the local sections X which satisfy

{6(X):X®1+1®X, and
Yo(X) = a(a) X for all a € F,,.

Here 6 : Og — Og ®o4 Og is the coproduct of Og and ¢, : Og — Og is
the Og-algebra homomorphism corresponding to ¥, : G — G.
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Note the correspondence G — &g is similar to the “t-motive” construc-
tion ([1], §1). See also Remark (3.7) below.

DEFINITION (1.3). AnIFg,-module scheme (G, ¥) over S is called a finite
p-module if Og and Eg are locally free of finite rank over Og (in particular,
G/S is affine) with rank(Og) = ¢"*"%(€s) and &g generates the Og-algebra
Og¢.

A morphism of finite ¢p-modules is by definition a morphism of F,-module
schemes.

REMARKS (1.4). (i) A finite ¢-module G over S can be embedded
canonically into the vector group scheme E¢ := V(€g) = Spec(Symy Eq)
as an [F-submodule scheme, because £ generates Og. Let us agree to call
E¢/S the ambient space of G/S. Tt is clear that a morphism M : G — G’
of finite p-modules extends uniquely to a morphism FEy; : Eg — Eg of
F,-module schemes.

(ii) The group scheme p, of p-th roots of unity over an Fp-scheme is not
a finite ¢-module because &, = Homg,_ ¢(ptp, Gq) = 0.

Note that, if M : G — G’ is a morphism of Fy-module schemes, then
the corresponding morphism m : Og: — Og restricts to an Og-module
homomorphism m : &g — Eg. Since Eg generates O if G is a finite
p-module, we have

LEMMA (1.5). Let G and G’ be finite p-modules. Then the natural
homomorphism Hom,, s(G,G’) — Homogmod (£, Ec) is injective.

In the following, for an Og-module £ (resp. an Og-module homomor-
phism m), £@ (resp. m(@) denotes the base extension £ ®o, Og (resp.
m®1) by the ¢g-th power map Og — Og. For example, if G is a group scheme
over S, then Og) is the structure sheaf of the Frobenius group scheme G
of G. Also, we denote by Fg : G — G@ (resp. fg : Og) — Og¢) the
Frobenius morphism . If G is an Fy-module scheme, then so is G and Fg
is a morphism of F,-module schemes.

To understand the role of g, recall

DEFINITION (1.6). (Drinfeld [3], §2) A ¢-sheafis a pair (£, @) consist-
ing of a locally free Og-module £ on S of finite rank and an Og-module
homomorphism ¢ : £@ — €.
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A morphism m : (€,¢p) — (£',¢") of ¢-sheaves is an Og-module homo-
morphism m : £ — £’ which makes the diagram

commutative.

Let (&£, ¢) be a ¢p-sheaf and E = V(&) the vector bundle corresponding
to £. ¢ : €@ — € induces a morphism ¢ : E — E@ of [F,-module schemes.
Drinfeld defines then

Gr(g,gp) = Ker((I) —Fg: F— E(‘I))
= Spec (S/[(p — fs)(ED)])

where § = O is the symmetric algebra Sym, &, fs = fg is the Frobenius
morphism S@ — S, and the bracket [- - - ] denotes the ideal generated by its
contents. This is a finite p-module of rank qr*k(€e) | with Fg-action induced
by the natural F,-module structure on £. Note Eg,g o) = €.

Conversely, if G is a finite ¢-module over S, the Frobenius morphism
fo : O(GQ) — g induces an Og-module homomorphism ¢g : Eg) —
Ec. Then (Eg, pa) is a p-sheaf. The natural Og-algerbra homomorphism
Symy Ec — Og is surjective, and its kernel contains (pc — fEG)(Eé?)).
Hence we have a surjection Og,(gg,p5) — Og of locally free Og-algebras.
The equality rank(Og) = ¢"**¥(€6) implies that Gr(Eg, pg) ~ G.

The commutativity of m and ¢ in the definition of a morphism m :
(&,¢) — (&',¢') of p-sheaves means that m : £ — & extends to an Og-
Hopf algebra homomorphism

m:8/l(e = fs)(ED)] — S'/I(¢ = )€

(S’ is the symmetric algebra made of £’.) This is clearly compatible with
the natural F,-actions. Noticing Lemma (1.5), we have thus
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PROPOSITION (1.7). The category of finite p-modules over S is anti-
equivalent to the category of w-sheaves on S.

The set of valued points of Gr(&, ¢) is described as follows:

PROPOSITION (1.8). Let (£, ¢) be a p-sheaf on S, and let T' be an S-
scheme. Then the set of T-valued points of Gr(&, @) is

Gr(&,¢)(T) = Homy o4 (€, Or),

the set of Og-linear homomorphisms f : £ — Or such that f(p(zx)) = f(x)?
for any local section x of £.

Proor. This is clear from the definition of Gr(&,¢). O
2. Finite t-modules

In the rest of the paper, A is the polynomial ring [F,[t] in one variable ¢
over [F,. We work over a fixed A-scheme S, and denote by 6 the image of ¢
by the structure morphism a : A — I'(S, Og).

DEFINITION (2.1). A finite t-module (G, ¥) over S is an A-module
scheme over S such that
(1) G is killed by some a € A — {0}; and
(2) (G, ¥ [p,) is a finite p-module over S.

A morphism of finite t-modules is by definition a morphism of A- module
schemes.

A typical example of a finite -module is a finite F[t]-submodule of an
abelian t-module ([1]) with scalar ¢t-action on its tangent space. As is well-
known, we have

LEMMA (2.2). A finite t-module G/S which is killed by a € A — 0 is
étale over S if a is invertible on S.

Proor. It is enough to see QE/S = 0, but a - Q};/S = 0 and a is
invertible. [J
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REMARK (2.3). If (G,V¥) is a finite t-module, ¥ induces an action of
A on the ambient space Fg (Remark (1.4), (i)). But Eg with this action
is not in general an A-module scheme in the sense of Definition (1.1).

DEFINITION (2.4). A t-sheaf (€,¢,1:) (or simply, (€,¢,1)) on S is a
pair consisting of a y-sheaf (€, ) and an endomorphism 1, of (€, ¢) such
that
(1) there exists a polynomial a(X) € F,[X] — {0} such that a(¢;) = 0 on
&; and
(2) ¢ induces multiplication by 6 on Coker(y). (Recall that Coker(y) is
canonically isomorphic to Lie*Gr(€, ¢) (]3], Proposition 2.1, 2)).)

Equivalently, we may think that ¢ is a ring homomorphism A
— End,(&,¢); a — 1, such that ¢, = 0 for some a € A — {0} and,
for each a € A, 1, induces multiplication by a(a) on Coker(yp).

A morphism m : (€, p,¢1) — (E',¢',4]) of t-sheaves is a morphism of
-sheaves such that m oy = 1), o m.

The following proposition, extending (1.7), is obvious.

PROPOSITION (2.5). The category of finite t-modules over S is anti-
equivalent to the category of t-sheaves on S.

We write Gr(&, ¢,1) for the finite t-module corresponding to a t-sheaf
(€ 9,9).

Ezample (2.6). Let (E,¥) be a Drinfeld A-module of rank r over S.
Assume for simplicity that S = Spec R with R an A-algebra, and that the
action of ¢ is given by

U(X) = 0X + a1 X? +--+ &, X7, a;€R, a; € R",

with respect to a trivialization F ~ G, = Spec R[X]. Then for a € A—{0},
G := Ker(¥,) is a finite t-module over R. &g is a free R-module of rank
r - deg(a) with a basis (X7; 0 < j < r-deg(a) — 1), and ¢ : 581) — &g is
given by

o(X¥ ©1)=x7"".
Here X" for j+1 > r-deg(a) should be rewritten in terms of (X7'; 0 <
j <r-deg(a) — 1) according to the relation ¢,(X) = 0.
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In the simple case where a = ¥, we can take the basis (¢ (X)?; 0 <
1<k—1,0<j<r-—1)of &, with respect to which 1); is represented by
the matrix whose (i, j)-component is 1 if i = j + r and 0 otherwise.

3. Finite v-modules

To establish a nice duality, we need one more structure.
Recall that a finite p-module G is embedded canonically into its ambient
space Fg (Remark (1.4), (i)), which is a vector group scheme.

DEFINITION (3.1). A finite v-module (G, ¥,V) over S is a finite ¢-
module (G, ¥) over S together with a morphism V : Eg’) — Eqg of Fy-
module schemes such that U, = (0 +V o Fg,,) |¢. (Here # means multipli-
cation by 0 = «a(t) € I'(S,Og) on Eg, and Ffg,, is the Frobenius morphism
of E(;.)

A morphism M : (G, ¥,V) — (G, ¥, V') of finite v-modules is a mor-
phism of finite ¢-modules which renders the diagram

E
Egq it LN Eq

v] v

EY —— EY
B

commutative.

DEFINITION (3.2). A v-sheaf (£,¢,v) on S is a pair consisting of a
¢-sheaf on S and an @g-module homomorphism v : & — £@ such that
(&, p, 1) with ¥y := 0+ pow is a t-sheaf on S. (Here § means multiplication
by 6 on £.)

A morphism m : (€,p,v) — (£',¢',v") of v-sheaves is a morphism of
p-sheaves which renders the diagram

E =, ¢
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commutative.
These definitions are made so that Proposition (2.5) extends to

PROPOSITION (3.3). The category of finite v-modules over S is anti-
equivalent to the category of v-sheaves on S.

We write Gr(&, ¢, v) for the finite v-module corresponding to a v-sheaf

(€@, 0).

Ezample (3.4). Let (E,¥) and G = Ker(¥,) be as in Example (2.6).
Then the finite t-module G is furnished with a standard v-module structure
by

U:Eg—u‘)gl),

Xqi s Xqi7

1 r+i—1 i

R0 -0+ X" ®al +-+ X7 ®al.

(Here X7 ' @ (87 —0) :=0if i = 0.) If G = Ker(¥,) for example and if
we regard Eg and 5((]3) as the column vectors of rank r by fixing the R-basis
(X7 )o<j<r—1 and (X? ® 1)g<j<r—1 respectively, then v is represented by

the matrix
aq -0

—6
Ay
(The vacant components are 0.) Note that ¢, = 0 on &g in this case, and
still v has enough information to recover the dual of G. But this v-module
structure is not unique unless Ker(pg : Eéq) — &) =0.

In fact, finite v-modules over “mixed characteristic” bases are not so far
from finite t-modules, since we have:

PROPOSITION (3.5). Assume that the base scheme S is reduced. Let
(G,¥) be a finite t-module which is étale over the generic points of S.
Then (G,¥) has a unique v-module structure Vg extending the given t-
module structure; Uy = (0 + Vg o Fg,) |g. If G and G' are two such
finite t-modules, then a morphism G — G’ of finite t-modules preserves
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this v-module structure. In particular, if « : A — Qg is injective (cf.
Lemma (2.2)), the two concepts, a finite t-module and a finite v-module,
are equivalent.

The same is valid for a t-sheaf (£,p,1) such that ¢ : D — & is
injective over the generic points.

PROOF. We prove this for t-sheaves. By (2) of Definition (2.4), we have
Im(¢y — 0) C Im(ep).

Hence v := ¢~ ' o (¢py — 0) : £ — £D is well-defined (note that ¢ is in fact
injective all over S by the assumption of reducedness), and gives a unique
v-sheaf structure on (€, ) extending the t-sheaf structure ;.

Let m : (€, 0,¢) — (£, ¢, ;) be a morphism of t-sheaves. If ¢ and ¢’
are generically injective, we have the diagram

E 5 ¢

in which v and v’ are defined as above and in which the outer and the lower
squares are commutative. Since ¢’ is injective, the upper square is also
commutative, i.e., m is a morphism of v-sheaves. [

Ezample (3.6). Let C be the Carlitz module over Spec A, i.e., the rank
one Drinfeld A-module with underlying group scheme G, = Spec A[Z]
and with t-action given by v : Z +— 0Z + Z1. (Here, one may choose
another t-action Z — 0Z + aZ? for any a € F;, but then a~'t acts by
Z +— ala™'t)Z + Z%. So in the following, we fix t € A and its action on
C' as above.) Let G be a finite A-submodule of C. Then over A, G has a
unique v-module structure

Uctggﬁgg]),

74", 74

i—1

® (07 —0)+ 29 @ 1.
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In §4, we shall think of G Xgpec 4 S, over any base scheme S, as a finite
v-module with v-structure induced by this canonical one. Also, it would
be convenient in what follows to think of C itself as a “v-module” with
ve : Eo — 581) defined as above, though we deal in fact with its finite
subgroups.

The following Remark is not used in this paper, but provides us with
some feeling on &g.

REMARK (3.7). Let G be a finite v-module over S. Then the Og-
module £&; would deserve the name the “Dieudonné module” of G, be-
cause we have g = Hom,, ¢(G,CW). Here CW is the v-module of “Witt
covectors”, defined as follows (we disregard the topology): CW is, as
a group scheme, the infinte direct product of G,’s with affine algebra
Ocw = Ogl- -+, X_pn, -+, X_1,X0], and the t-module and v-module struc-
tures are defined by

t: X, — 00X, + X1

—n—1

v:X_p — X 5 1®1
for all n > 0.
4. The duality

For an Og-module &, put £ := Homy (&, Og). If (£, ¢,v) is a v-sheaf
on S, then ¢ and v induce respectively the Og-module homomorphisms

o & = & and v XD g,
It is easy to check that (£*,v*, ¢*) is a v-sheaf on S.
DEFINITION (4.1). We define the dual (£, p,v)* of a v-sheaf (£, p,v)
to be the v-sheaf (£*,v*, ¢*). For a finite v-module G = Gr(€, p,v), define
its dual G* to be Gr(&*,v*, p*).

Note that if, as in Proposition (3.5), the base scheme S is reduced and
(G,¥) is a finite t-module which is étale over the generic points (resp.
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(&, p, 1) is a t-sheaf such that ¢ is injective over the generic points), then
we can define its dual.
We have clearly the following

PROPOSITION (4.2). Let G be a finite v-module.
(i) G* has the same rank as G.
(ii) The correspondence G +— G* is functorial. This functor is exact.
(11i) G** is canonically isomorphic to G.
(iv) (G xgT)* ~G* xgT for any S-scheme T.
The same is true for the duality of v-sheaves.

THEOREM (4.3). Let C be the Carlitz module over Spec A (cf. Ezample
(3.6)), and let G be a finite v-module over S.
(i) The functor

Hom, ¢(G,C) : (S-schemes) — (A-modules)
T— HOHLUVT(G X8 T, C XSpec A T)

is represented by (the underlying finite t-module of ) G*.
(ii) There exists a canonical A-bilinear pairing of A-module schemes:

Hg:GXSG*HC

such that:

(ii-1) If G' is a finite t-module over S sitting in an A-bilinear pairing
Il : G xg G' — C, then there exists a unique morphism M : G' — G* of
finite t-modules which makes the diagram

axsaq L, ¢

T

GxsG" —— C

g

commute.
(i5-2) If M : G — H is a morphism of finite v-modules and M* : H* —
G* is its dual morphism induced by functoriality, then we have

Mgo(Mx1) = Hgo (1 xM*) on G x H*.
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Conversely, M* is the unique morphism which has this property.

(i5-3) If o : A — Qg is injective and S is integral with function field
K, then Ilg induces a non-degenerate Galois equivariant A-bilinear pairing
between the A-modules of geometric points:

G(K*P) x G*(K*P) — C(K*P).

PrOOF. Recall that O¢ is the polynomial ring A[Z] with t-action ~; :
Z — 0Z + Z7 and v-module structure vg : E¢ — Sg]) AN A
Let G = Gr(&g, va,va). An Op-algebra homomorphism m : Oc ® 4 Or —
Oa¢ ®og Ot corresponds to a morphism of v-modules G xgT — C Xgpec AT
if and only if

(4.3.1) m(Z) e I'(T,Eq ®og Or), and
(4.3.2) mD o ve(Z) = (vg ®1) om(Z).

Let &* be the symmetric Og-algebra Sym, &g, and Zj a global section
of Eg®o4EF which gives a basis of the rank one Og-submodule of E¢®o £,
on which one has m ® 1 = 1 ® m* for all m € Endo,(€g). A canonical
choice for Zy is ), X; ® X7, where (X;); is a local basis of £ and (X); is
its dual basis. Let

Vi€ ®os £ — ED @04 E19
XY~ X)) (Y®l)

be the natural map. Then we have (v ® 1)(Zp) = (1 ® v*) 0 1(Zp) for all
v € Homoy (Eg,gg])). If we take O = §* and Z — Zj, then (4.3.2) reads

(16 fs:) 0 uZo) = (L& vg) 0 u(Z0).

(fs+ is the Og-linear Frobenius morphism S*9 — S§*)) Let J* be the
smallest ideal of S* such that

(1® (v5 — fs+)) 0 t(Zo) € EY @0y T*.
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Then it follows from what we observed at the beginning of the proof that
the functor Hom, ¢(G,C) is represented by Spec(S*/J*) = Gr(&g,vE),
with ¢-action induced by 9} on &f.

REMARK (4.4). To represent the functor Hom, ¢(G,C), the v-module
structure of G* is not needed (and in fact a v-module structure on
Gr(&4,v5) may not be unique (cf. Example (3.4)), but for G to represent
Hom, ¢(G*,C), G* must have the v-module structure .

PROOF CONTINUED. The pairing G xg G* — C is given by

m: Oc — Og ®oy Oc+,
Zl—>Zl,

where Z; is the image of Zy in Og ®og4 (S*/J*). The universality of G*
(ii-1) is clear from the above discussion.

The non-degeneracy of (ii-2) is a consequence of a basic fact in linear
algebra; let (X;) and (Y;) be Og-bases of g and Ex respectively, (X;) and
(Y;") the dual bases, m : g — &g an Og-linear map, and m* : £¢, — &} its
dual map. Then we have >, X; @m* (X)) = Zj m(Yj) ®Y; in Ea®og &
Conversely, m* is the unique Og-linear map with this property.

Since G is étale over K if «a is injective (Lemma (2.2)), (ii-3) follows
from the well-known equivalence between the category of finite étale K®°P-
schemes and the category of finite sets. [

REMARK (4.5). If we consider only the t-module structure, we will

have the following:
(i) The functor

Hom, ¢(G, C) : (S-schemes) — (A-modules)
T — Homt,T(G Xs T, C XSpecA T)

is represented by an A-module scheme G* over S.

(ii) Assume S is reduced. If G is étale over the generic points of S, then
G* is of the form G* U éa, where G* is (the underlying finite ¢-module of)
the dual finite v-module of G, G being considered to be a finite v-module
with the unique v-module structure (Proposition (3.5)), and where és is
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supported on the locus in S over which G is not étale. In general, é(’; has
a positive dimension. For example:

Ezample (4.6). Let R be an (A/tA)-algebra (i.e., we are in the “char-
acteristic” (t) situation in the sense that the kernel of the structure map
a: A — Ris (t), and let G = Spec R[X1, Xo]|/(X{,XJ) be a finite t-
module with ¢ acting by X; +— 0 for ¢ = 1,2. If we think of G as the
t-division points of the abelian t-module (E, ¥) = C%2;

X X Xy
E = Spec R[X1, X2, ¢t<X;> - t<X;> * (XiJ),

then it is natural to make GG into a finite v-module by v : X; — X; ® 1 for
i = 1,2. On the other hand, G can be regarded as the t-division points of
another abelian t-module(E’, ¥') with

X1 X1 X5
/ / = :
E" = Spec R[X7, X2, %(XZ) - t(Xz) * (Xi]>.

Now it is natural to make G into a finite v-module by v : X; — X3_;®1 for
i = 1,2. In the former case, we have G* = Spec R[Y1, Ya2|/(Y1—-Y{!, Yo—Y3})
(the constant group scheme F, @ F,), whereas in the latter case, we have
G* = Spec R[Y]/(Y —Y?) (the étale group scheme F,2). Of course, we
could choose any v-module structure v : X; — X1®a1;,+Xo®ao; fori = 1,2
with a;; € R. Without v-module structures, we will have G* ~ A% in this
case.

Finally in this section, we describe a relation between the Frobenius and
the Verschiebung over a “finite characteristic” base.

PROPOSITION (4.7). Let (G, VU, V) be a finite v-module over S.

(i) Let d be a positive integer, and Fg : G — GY the q%-th power Frobenius
morphism. Then Gl (resp. Fg,) is a finite v-module (resp. a morphism
of finite v-modules) if Im(a) C Fya. If this is the case and M : G — G’ is
a morphism of finite v-modules, then we have M@ o Fg = Fg, oM.

(ii) Assume Ker(a : A — Og) = (p) with p € A being a monic prime
element of degree d. Let Vg : G — G be the dual morphism of Fgx p =
Fg* G — G*4Y). Then we have

Uy =VagpoFay and ) = FgyoVa,.
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In particular, we have an exact sequence of finite t-modules

0 — Ker(Fgp) — Ker(V,) — Ker(Vg,p) — 0.

PRrROOF. (i) The only point we must care about is the action of a € A
on Lie*(G@"), which is multiplication by a/(a)@"). This should be equal to
a(a), which is the case if Im(a) C F . The compatibility conditions for
v-module structures and morphisms are then automatically satisfied.

(ii) Let Z € O¢ and Z; € Og ®04 O+ have the same meaning as in the
proof of Theorem (4.3). Let

m:O0c — Og ®og Og*
Zl—>Z1

be the Og-algebra homomorphism corresponding to the pairing Ilg : G X g
G* — C'. Then the A-linearity of the pairing is written as

(Vo @ 1)(21) = m((2)) = (1 © ¢y)(Z1)-

Here v : A — Endp4(Oc¢); a — 7, is the map describing the A-action on
C. Since v (Z) = 74" (mod.p) (e.g. [5], Proposition 2.4), we have

(W @ 1)(Z1) = 1(Z27") = (fap ® farp) 0 U(Z1)
= (fapovap ®1)(Z1).

Hence ¥y = fgpovay, and Uy, = Vg, o Fgp.
By (i), we have also the commutative diagram

oty Ve G
FG(qd),pJ( lFG,p
G G",
Vatad) ,
from which follows the equality
V9 ZV 0 0F 4 = FapoVay. O
p Gah p © Falad) p Gip © VGop-
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5. Duality for Drinfeld modules

In this section, we construct explicitly the dual E of a Drinfeld F,[t]-
module F, and prove the compatibility of this construction and the duality
of §4 for the torsion points of E and E. E is an (r — 1)-dimensional abelian
t-module ([1]) if E is of rank r > 2.

Let A = F,[t] and R an A-algebra. The image of t € A in R will be
denoted by 6. (Though all constructions below work over any A-scheme S,
we work over an affine S = Spec R for simplicity.)

Let (E, V) be a Drinfeld module over R of rank r > 2. Suppose the
action of t € A is given by

(X)) = X + X +---+ a, X7, a;€R, a, € R

with respect to a coordinate X of E. (As before, we use a small letter
to denote a map of affine rings.) On E := G;e(;}g 1), define an A-module
scheme structure ¥ : A — EndR(Gée(T_l)), in terms of the coordinates

Y = t(Yla T 7Y;”—1) of G?(T_l) = SpeCR[Y17 T 7YI’—1]7 by

Bi(Y) = 0Y + BY® 4 By,
with
—ar_lal a-l
By := ) , Bo:=

-1
1 —a, ar_1

Here and elsewhere, for a matrix B, B(@) denotes the matrix B but with en-
tries raised to the ¢/-th power. We will call this type of A-module schemes
(E, ) dual Drinfeld modules. Note that one can recover the Drinfeld mod-
ule E starting with a dual Drinfeld module E, so that we may think £ = E.

Let C be the Carlitz module on which ¢ acts by v+ : Z — 07 + Z9 with
respect to a coordinate Z of C.

TurOREM (5.1). (i) If R is a perfect field, E is an abelian t-module of

t-rank r(E) = r, T-rank p(E) = r —1, and weight w(E) = (r — 1)/r in the
sense of [1].
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(i) For a non-zero a € A, the kernel F of the action of a on E is a finite
t-module over R of rank ¢"de8(a)
(iii) For a mon-zero a € A, there exists an A-bilinear pairing defined over
R:

JEg 0 JE xXp JE — LC.

() If we furnish o F with the standard v-module structure as in (3.4), then
we have B ~ 4E*, and the pairing (g of (iii) coincides with the pairing
II, g of Theorem (4.3).

REMARKS (5.2). (i) Anderson takes A = F,[t] with a prime p in [1].
So we should either assume in (5.1),(i) that ¢ = p, or define the ¢t-motive
M(E) = Homp(GE" ™V, G,) to be the F,-linear homomorphisms. Here we
will take the latter, and denote it, as before, by &5.

(ii) The statements of the Theorem are valid also for any d-dimensional
abelian t-module (E, ¥) if ¥ : A — Endg(G?) is defined by an equation
of the form

wt(X) = 0X + alX(q) + -+ arX(qr)> X = t(Xla"' 7Xd)7

with a; € Mg(R) and a, € GL4(R).

(iii) For a Drinfeld module E of rank 1, there exists an ind-finite étale A-
module scheme F (a twist of the constant A-module scheme F,(t)/F,[t]),
together with a pairing as in (iii) of the Theorem.

(iv) Even if E does not have good reduction over R, we can define an A-
bilinear pairing between the division points of F and E’, a twist of £, with
target C’, a twist of C. Especially, we can take I’ to be the (r — 1)-st
exterior product A""'E of E ([1]) defined by

PY) = oY + BOYD 4+ By

with
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Qr

= (-1 ,

and C’ to be the r-th exterior product A"FE of E ([1], [4]) defined by
vw(Z) = 0Z — (=1)"a, X1.

E’ and €’ may have non-stable reduction. It would be interesting to seek
a good model of E'.

PROOF OF THE THEOREM. (i) This is clear; an R[¢y]-base of £z =
Hom]FWR(G?(T*l),Ga) is (a;'Y,2 |, Y1,---,Y,_1), which implies 7(E) = r.
The other assertions are obvious.

(ii) Put G = ,F. The affine ring Og of G can be identified with the
quotient R[Y1,---,Y,_1]/%a(Y). It is enough to show that Og is free over
R of rank ¢"9°8(®) and that &g is free over R of rank 7 - deg(a).

We may assume a € A = F,[t] is monic of degree £k > 1, and write
a=tF+g(t), gt) = Zf;ol git', g; € F,. Define elements Y;; € Og for
0<i<k—land1<j<r—1by

Vi =Y (I<j<r=1),
and
(5.1.1) Yior = (V) + gYpey  (1<i<k-—1),
where Y; := (Y1, -+ ,Yi,—1). Applying (5.1.1) repeatedly, we find

Yi = Yp1-i(Yeo1) + geo1¥p—2-i(Ye—1) + -+ gip1 Vi1

(511&) = &(tk*1*i+gk_1tk727i+-~~+gi+1)(Yk—1)7

and especially,
Yo = Perigtb2prg))(Yi-1);
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whence

Vi(Yo) = ¥a(Yi-1) — go¥Yp-1.
This shows that the equality ¥, (Y_1) = 0 (which means G = ,E) is equiv-
alent to

(5.1.2) Yi(Yo) = —goYg-1.

We can thus regard O¢ as the quotient of R[Yp1, -+, Ys—1,-1] by the rela-
tions (5.1.1) and (5.1.2).

By setting (Y;;)?:=Y;; if j <r—1land Y/, _; =Y, 1, we embed Og
into the quotient O" of R[Yy;,---,Y/_,,_;] by the same relations (5.1.1)

and (5.1.2). Then (5.1.1) and (5.1.2) read:

(unit)(Yi'j)q2 + (lower terms) = 0, 0<i<k—1,1<j<r—1.
By Lemma 1.9.1 of [2], O’ is free of rank ¢**("=1) over R, with a base

(Tt s 0< by < *—1).
i,J
Since Og is the R-submodule of O’ generated by
QL) s aliyy it 1< <r—2),
i,J

it is also free, and of rank ¢*("=2) . ¢%% = ¢b" &4 is also free on the R-base
(Vij; 0<i<k—1,0<j<r—1),s0 we have rank(Og) = g@k(€a),

(iii) Passing to the language of affine rings, we shall give an R-algebra

homomorphism
T o Oac — OaE QR OQE’

or more explicitly,
™ R[Z]/f}’a(z) B R[X]/%(X) QR R[Yla o 7Y;ﬂfl]/1z)a(y)

which is compatible with the comultiplications (Z — Z®1+1®Z, etc.) and
the A-actions. Write a = t* + g(t), g(t) = Zi:ol git" and define Yj; € O g
as in the proof of (ii). Set further

(5.1.3) Yo = a, 'Y, (0<i<k-—1)
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Simplifying the notation, we also set X := 1y (X)qj for 4,7 > 0. Then we
have

(514) XZ'JFLO = ¢t(XZ(]) = 9X10 + Zan’U
j=1
and
k—1
(5.1.5) 0 = Y (X) = wtk(X)—f—l/Jg(t)(X) = XkO"‘ZgiXiO
=0
k—1
(5.1.5a) = 0Xp 10 + Za]Xk i+ > giXio.
j=1 1=0

Now define the map 7w by

k—1r—1

T4 ZZXZ] ®YLJ

i=0 j=0

This is obviously compatible with the comultiplications and the actions
of F, (C A); it only remains to check the commutativity of the following
diagram:
an L} OaE ®R OaE
th Jfl}t@l, 1@
O,c — O, ®r OaE'
K

The three composite maps in the diagram are calculated as follows:

k—1r—1

(¢t®1 O7T ZZXH—IJ(X)}/U

=0 j=0

— k—1r—1

k .
Z Z i ®Yi1; — Z ZgiXij ® Yi_1,; (by (5.1.5)7)

§=0 i=0 j=0
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r—1 k—1r—1
(5.1.6) = - ZXOj ® goYi-1,; + Z ZXij ® (Yic1,j — 9iYk-1,5) -
=0 i=1 j=0

In view of (5.1.1) and (5.1.2), we find this equal to

k—1r—1
1@¢)om(Z) = Y > Xy @h(Yiy) .
i=0 j—=0
Finally,
k—1r—1 k—1r—-1
Toyw(Z) = Q(Z ZXU ®Yi;) + (Z ZXZ-]- ® Yij)?
i=0 j=0 i=0 j=0
k—1r—1 k—1r—1 k-1
(5.1.7) = Z ZXij ®0Yi; + Z ZXZ'J' RV 1 + ZX“‘ DY -
i=0 j=0 i=0 j—1 i=0

If 0 <i<k—2, we see from (5.1.4)

r—1
Xy = —a; 1 (0X;0 + Zanij — Xit10)-

j=1

For i = k — 1, we see from (5.1.5a)
r—1 k—1

Xpo1, = —a, (0Xp—10 + Zankfl,j + ZgiXiO)~

j=1 i=0

Hence the companion with which Xj; is tensored in the above expression
(5.1.7) of moy(Z) is,if i = j =0,
Y0 — a;leyoq,r—1 - a;190qu71,r71 = —goYk-10 (by (5.1.3));

ifi=0and 1 <j<r—1,

0Yo; + Yo,y — o, a;Yy, = —goYeo1; (by (5.1.2));
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if1<i<k-—1landj=0,

-1 q —1yq _ 1 ya
0Yio — a, 0Y;,  + a;, Y4, 4 — a, 9iY 4, 4

= Y10 — 9Yk-10 (by (5.1.3));
fl<i<k—-land1<j<r—1,

0y + Y, 1 — a;lajlfi?r_1 = Yi1; — 9Yi—1; (by (5.1.1)).
Putting all these together, we find 7 o v,(Z) is also equal to (5.1.6).
(iv) We may regard &, g and € dual to each other by making (X;;) and
(Yi;) the dual bases. Then our construction of the pairing here coincides
with the construction in §4, and we have ,F ~ E*. [

REMARK (5.3). In what follows, we regard ,E* = ,E by this concrete
construction (iv).

PROPOSITION (5.4). Let M : E — F be an isogeny of Drinfeld modules
(resp. dual Drinfeld modules) over R of rank r > 2.
(i) There exists a unique isogeny M : F — E of dual Drinfeld modules
(resp. Drinfeld modules) such that, for all non-zero a € A,

(5.4.1) Jpo(1x M) = Jlpo(M x1) on oFE x F,

where JIg 1 oE X oF — oC and Jlp: oF x F — ,C are the duality
pairings (5.1), (ii) on the a-division points.

(ii) Let M* : F* — LE* be the morphism of finite t-modules which
M : E — .F induces by functoriality of *. Then we have M* = M on
oF* = JF (cf (5.3)).

(iii) We have canonically Ker(M) = Ker(M)*.

PrROOF. We assume E and F' are Drinfeld modules; the dual case is
proved similarly.

(i) Let &g := Homg, gr(F,G,), the Fy-linear homomorphisms defined
over R. The rings R and A acts naturally on €. It is easy to see, by the
explicit form of the defining equation of E, that £ is a free R[t]-module
of rank r. For E and F (resp. F and F ), we use the common symbol
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(Xo, X1, Xp1) = (X, X9, -+, XO77) (vesp. (Yo, Y1,-++, Y, 1)) for the
R[t]-basis of £ and & (resp. £ and &), and regard (X;) and (Y;) as the
dual bases each other (cf. Proof of (5.1)).

An isogeny M : E — F induces an R[t]-module homomorphism m :
Er — Eg. Let m be its transpose; m is the unique RJ[t]- module homo-
morphism €, — &p such that Zl am(X) @Y = Y0 X @ m(Y;)
in EE Qg Ep- I m(X;) = D72 o mniXn, mp; € RIt], then m(Yy) =
Z] —_omy;Y;. Clearly m defines an isogeny M : F — E. We will show M
has the required property.

Fix a non-zero a € A, and let Z, = ) X;; ® Yj; be the element of
E,r®RE pand E,r ®RE p as in the proof of (5.1), (iii) (we use again the
symbol Z, in common for E and F'). Then the equality (5.4.1) is equivalent
to the equality

(5.4.2) (1@M)(Z) = (m®1)(Z)  in Ep@rE p

The uniqueness of M follows from this equality, because it determines
m(Y;)(mod a&}) for all non-zero a € A.

Let us prove the equality (5.4.2). Recall that X;; = t'X; (= abbreviation
of 1 (X;)) and Yi; = b;Y; (= abbreviation of ¢y, (Y;)). If a = tk—i—zl o it
with g, € Fy, then by (5.1.1a), we see that b; = t*~ T +gp 1 tF 2Tt
gi+1. Since m commutes with elements of A, we have

(m®@1)(Za) = (m@ 1)) (' @b)(X; ®Y))

r—1
=> (E@b)(>_ mnXp) @Y;
2,] h=0
k—1

= (mp; @ Ot @b) (X, @ ;).
—

i=0
Similarly,
k—1

(1®m)(Za) = Z(l ® mhj)(z '@ bi) (X ®Y).
h,j i=0
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So the coincidence of these two elements is implied by the annihilation of
Xp ®Yj by

k—
(5.4.3) (mag @1 —1@ma;) > (£ @ by)
0

[y

~

Since the ® is over R and my,; € R]t], it suffices to prove this for mp; = t"
foralln > 1. But " ® 1 — 1 ® t" has the factor t ® 1 — 1 ® £, so we may
assume my; = t. In that case, a simple calculation shows that (5.4.3) equals
a®1—1®a. This kills X}, ® Y; because we are now working on a-division
points.

(ii) is clear from the uniqueness of M* as shown in (ii-2) of (4.3).

(iii) Take any non-zero a € A such that Ker(M) C ,E. Then there exists
an isogeny N : F — FE such that NoM =aon EFand M oN =a on F.

Restricting the dual maps to a-division points, we have Ker(M) = Im(N)

and Ker(N) = Im(M). Applying the exact functor * to the exact sequence

0—>Ker(M) — a,EL) aF7

we find the sequence

0 —— Ker(M)* «—— B* <L F*

exact. Using (ii), we conclude

Ker(M)* ~ E*/Im(M*) = ,E/Im(M)
= JE/Ker(N) ~ Im(N) = Ker(M). O

6. Duality for n-divisible groups

Let 7 be a monic prime element of A = Fy[t], and let G be a w-divisible
group over an A-scheme S of hight h. Thus G is an inductive system
(G, in)n>o0 of finite v-modules G,, over S with transition maps i, : G, —
Gp1 such that, for all n > 0,

(1) Gy, is killed by 7", and of rank |r|** = ¢**d°e(™); and

(2) the sequence

in s
0 G, Gn+1 I Gn+1
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is exact.

An anti-equivalent definition can be stated in terms of v-sheaves; we call
a projective system & = (&, pn)n>0 of v-sheaves a m-adic v-sheaf on S of
hight A if, for all n > 0,

(1) &, is killed by n™, and of rank nh - deg(m); and

(2) the sequence

il Pn
gn+1 - gn—l—l En 0

is exact.

It is clear that the category of w-divisible groups over S is anti-equivalent

to the category of m-adic v-sheaves on S (cf. Proposition (3.3)).
The dual G* = (G}, i} )n>0 of G is defined as follows: G}, is the dual of
G, in the sense of §4, and the transition map iy : G;, — G}, is the dual
morphism of the surjective morphism 7 : G,,;.1 — G,. It is clear that G* is
a m-divisible group and has the same hight as G.

Assume now that S is integral and, for all n > 0, GG, is étale over the
generic point of S. Let K*P be a separable closure of the function field K
of S. Define two Galois modules ®,(G) and T (G) as usual:

®7(G) := lim G (K™P),
Tr(G) := lim G (K™P),

:Ta 3la

where the transition maps are those induced by 4,, and m respectively. If A
denotes the m-adic completion of A, and F; denotes the fraction field of A,
then ®,(G) is a divisible A;-module, and T (G) = Homy, (Fr/Az, ©-(G))
is a free A;-module of rank h. Write C,, for the kernel of #™ on the Carlitz
module C. Noticing the compatibility ((4.3), (ii-2)), and passing to the limit
as n — oo of the pairing ((4.3), (ii-3)): G, (K*P) x G} (K%P) — C,(K5P),
inductively with G,, and C), and projectively with G}, we obtain:

PROPOSITION (6.1). There exist canonical isomorphisms of Galois
modules:

T:(G*) ~ Homy_(®,(G),P,(C))
~ Homgu, (T%(G),T:(C)).
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Assume now that S = Spec R, where R is a complete noetherian local
A-algebra such that the structure morphism o : A — R is injective and
a(m) is in the maximal ideal of R. As was shown in (1.4) of [6], the cate-
gory of connected w-divisible groups over R is equivalent to the category of
divisible formal A,-modules over R. The dimension of a m-divisible group
G over R is defined to be the dimension of the formal A;-module corre-
sponding to the maximal connected sub-m-divisible group G? of G. The
following proposition is proved in the same way as Proposition 3 of [7],
using Proposition (4.7).

PROPOSITION (6.2). Let d and d* be the dimensions of G and its dual
G* respectively. Then we have d + d* = h, the hight of G and G*.
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