A duality for finite t-modules

By Yuichiro TAGUCHI

Abstract. An $\mathbb{F}_q[t]$ -analogue of the Cartier duality is established. Applications to π -divisible groups are given. Dual Drinfeld modules are made explicit.

Introduction

In this paper, we establish a duality for finite t-modules and study its basic properties. Our duality is the $\mathbb{F}_q[t]$ -analogue of the Cartier duality, where the multiplicative group \mathbb{G}_m is replaced by the Carlitz module C. Finite t-modules are, roughly speaking, finite locally free group schemes which are $\mathbb{F}_q[t]$ -submodules of abelian t-modules ([1]) with scalar t-action on their tangent spaces. See (2.1) for the precise definition. In fact, it is only for *finite v-modules* (Definition (3.1)) that we can define the duality (Definition (4.1)), in a way with Dieudonné theoretic flavor. See Remarks (4.4), (4.5), and Example (4.6) for accounts of the necessity of a v-module structure.

A typical case of our duality is supplied by division points of Drinfeld modules and *dual Drinfeld modules*, and is studied in some detail in Section 5. In Section 6, some results on the duality of π -divisible groups are given.

One may hope to have such a duality for a wider class of t-modules, namely, torsion points of abelian t-modules which do not have scalar taction on the tangent spaces, such as higher Carlitz modules $C^{\otimes n}$ ([2]). But this would be possible only if the target C of the pairing was replaced by a tensor power $C^{\otimes n}$ with sufficiently large n.

Throughout the article, \mathcal{O}_S denotes the structure sheaf of a scheme S. In general, we will use the following unusual

¹⁹⁹¹ Mathematics Subject Classification. Primary 11G09; Secondary 14L05, 14L15.

Notation. A morphism of schemes is denoted by a capital letter, and the corresponding morphism of the structure sheaves is denoted by the corresponding small letter.

1. Finite φ -modules

For the moment, let A be any commutative ring, and recall the definition of an A-module scheme. For an A-scheme S, we denote by $\alpha : A \to \Gamma(S, \mathcal{O}_S)$ the structure morphism.

If G is a commutative group scheme over a scheme S, we denote by $\operatorname{Lie}^*(G/S)$ the co-Lie module of G/S (i.e. the \mathcal{O}_S -module of invariant differentials of G/S); thus one has $\mathcal{O}_G \otimes_{\mathcal{O}_S} \operatorname{Lie}^*(G/S) \simeq \Omega^1_{G/S}$.

DEFINITION (1.1). An A-module scheme over an A-scheme S is a pair (G, Ψ) consisting of a commutative group scheme G over S and a ring homomorphism $\Psi : A \to \operatorname{End}(G/S)$; $a \mapsto \Psi_a$ such that, for each $a \in A$, Ψ_a induces multiplication by $\alpha(a)$ on the \mathcal{O}_S -module Lie^{*}(G/S).

A morphism $M: (G, \Psi) \to (G', \Psi')$ of A-module schemes is a morphism $M: G \to G'$ of group schemes such that $M \circ \Psi_a = \Psi'_a \circ M$ for all $a \in A$.

Example (1.2). A vector bundle G on S can be naturally regarded as a $\Gamma(S, \mathcal{O}_S)$ -module scheme. We shall mean by a vector group scheme such a $\Gamma(S, \mathcal{O}_S)$ -module scheme.

We will often write simply G for an A-module scheme in place of (G, Ψ) .

Hereafter in this section, we consider the case where the ring A is the finite field \mathbb{F}_q of q elements and S an \mathbb{F}_q -scheme.

For an \mathbb{F}_q -module scheme (G, Ψ) over S, set $\mathcal{E}_G := \underline{\operatorname{Hom}}_{\mathbb{F}_q,S}(G, \mathbb{G}_a)$. $(\underline{\operatorname{Hom}}_{\mathbb{F}_q,S}$ denotes the Zariski sheaf on S of \mathbb{F}_q -linear homomorphisms.) If G/S is affine (as is always the case in the following), we may confuse \mathcal{O}_G and $\pi_*\mathcal{O}_G$ (where π is the structure morphism of G/S) and may think of \mathcal{O}_G as an \mathcal{O}_S -algebra. Then \mathcal{E}_G is the \mathcal{O}_S -submodule of the augmentation ideal \mathcal{I}_G of \mathcal{O}_G consisting of the local sections X which satisfy

$$\begin{cases} \delta(X) = X \otimes 1 + 1 \otimes X, & \text{and} \\ \psi_a(X) = \alpha(a)X & \text{for all } a \in \mathbb{F}_q. \end{cases}$$

Here $\delta : \mathcal{O}_G \to \mathcal{O}_G \otimes_{\mathcal{O}_S} \mathcal{O}_G$ is the coproduct of \mathcal{O}_G and $\psi_a : \mathcal{O}_G \to \mathcal{O}_G$ is the \mathcal{O}_S -algebra homomorphism corresponding to $\Psi_a : G \to G$.

Note the correspondence $G \mapsto \mathcal{E}_G$ is similar to the "t-motive" construction ([1], §1). See also Remark (3.7) below.

DEFINITION (1.3). An \mathbb{F}_q -module scheme (G, Ψ) over S is called a *finite* φ -module if \mathcal{O}_G and \mathcal{E}_G are locally free of finite rank over \mathcal{O}_S (in particular, G/S is affine) with rank $(\mathcal{O}_G) = q^{\operatorname{rank}(\mathcal{E}_S)}$, and \mathcal{E}_G generates the \mathcal{O}_S -algebra \mathcal{O}_G .

A morphism of finite φ -modules is by definition a morphism of \mathbb{F}_q -module schemes.

REMARKS (1.4). (i) A finite φ -module G over S can be embedded canonically into the vector group scheme $E_G := \mathbb{V}(\mathcal{E}_G) = \underline{\operatorname{Spec}}(\operatorname{Sym}_{\mathcal{O}_S}^{\cdot} \mathcal{E}_G)$ as an \mathbb{F}_q -submodule scheme, because \mathcal{E}_G generates \mathcal{O}_G . Let us agree to call E_G/S the *ambient space* of G/S. It is clear that a morphism $M : G \to G'$ of finite φ -modules extends uniquely to a morphism $E_M : E_G \to E_{G'}$ of \mathbb{F}_q -module schemes.

(ii) The group scheme μ_p of *p*-th roots of unity over an \mathbb{F}_p -scheme is *not* a finite φ -module because $\mathcal{E}_{\mu_p} = \underline{\operatorname{Hom}}_{\mathbb{F}_q,S}(\mu_p, \mathbb{G}_a) = 0.$

Note that, if $M : G \to G'$ is a morphism of \mathbb{F}_q -module schemes, then the corresponding morphism $m : \mathcal{O}_{G'} \to \mathcal{O}_G$ restricts to an \mathcal{O}_S -module homomorphism $m : \mathcal{E}_{G'} \to \mathcal{E}_G$. Since $\mathcal{E}_{G'}$ generates $\mathcal{O}_{G'}$ if G' is a finite φ -module, we have

LEMMA (1.5). Let G and G' be finite φ -modules. Then the natural homomorphism $\operatorname{Hom}_{\varphi,S}(G,G') \to \operatorname{Hom}_{\mathcal{O}_S\operatorname{-mod}}(\mathcal{E}_{G'},\mathcal{E}_G)$ is injective.

In the following, for an \mathcal{O}_S -module \mathcal{E} (resp. an \mathcal{O}_S -module homomorphism m), $\mathcal{E}^{(q)}$ (resp. $m^{(q)}$) denotes the base extension $\mathcal{E} \otimes_{\mathcal{O}_S} \mathcal{O}_S$ (resp. $m \otimes 1$) by the q-th power map $\mathcal{O}_S \to \mathcal{O}_S$. For example, if G is a group scheme over S, then $\mathcal{O}_G^{(q)}$ is the structure sheaf of the Frobenius group scheme $G^{(q)}$ of G. Also, we denote by $F_G : G \to G^{(q)}$ (resp. $f_G : \mathcal{O}_G^{(q)} \to \mathcal{O}_G$) the Frobenius morphism. If G is an \mathbb{F}_q -module scheme, then so is $G^{(q)}$ and F_G is a morphism of \mathbb{F}_q -module schemes.

To understand the role of \mathcal{E}_G , recall

DEFINITION (1.6). (Drinfeld [3], §2) A φ -sheaf is a pair (\mathcal{E}, φ) consisting of a locally free \mathcal{O}_S -module \mathcal{E} on S of finite rank and an \mathcal{O}_S -module homomorphism $\varphi : \mathcal{E}^{(q)} \to \mathcal{E}$. A morphism $m : (\mathcal{E}, \varphi) \to (\mathcal{E}', \varphi')$ of φ -sheaves is an \mathcal{O}_S -module homomorphism $m : \mathcal{E} \to \mathcal{E}'$ which makes the diagram

commutative.

Let (\mathcal{E}, φ) be a φ -sheaf and $E = \mathbb{V}(\mathcal{E})$ the vector bundle corresponding to $\mathcal{E}. \varphi : \mathcal{E}^{(q)} \to \mathcal{E}$ induces a morphism $\Phi : E \to E^{(q)}$ of \mathbb{F}_q -module schemes. Drinfeld defines then

$$Gr(\mathcal{E}, \varphi) := Ker(\Phi - F_E : E \to E^{(q)})$$
$$= \underline{Spec} \left(\mathcal{S} / [(\varphi - f_{\mathcal{S}})(\mathcal{E}^{(q)})] \right),$$

where $S = \mathcal{O}_E$ is the symmetric algebra $\operatorname{Sym}_{\mathcal{O}_S}^{\cdot} \mathcal{E}$, $f_S = f_E$ is the Frobenius morphism $\mathcal{S}^{(q)} \to \mathcal{S}$, and the bracket $[\cdots]$ denotes the ideal generated by its contents. This is a finite φ -module of rank $q^{\operatorname{rank}(\mathcal{E}_G)}$, with \mathbb{F}_q -action induced by the natural \mathbb{F}_q -module structure on \mathcal{E} . Note $\mathcal{E}_{\operatorname{Gr}(\mathcal{E},\varphi)} = \mathcal{E}$.

Conversely, if G is a finite φ -module over S, the Frobenius morphism $f_G : \mathcal{O}_G^{(q)} \to \mathcal{O}_G$ induces an \mathcal{O}_S -module homomorphism $\varphi_G : \mathcal{E}_G^{(q)} \to \mathcal{E}_G$. Then $(\mathcal{E}_G, \varphi_G)$ is a φ -sheaf. The natural \mathcal{O}_S -algerbra homomorphism $\operatorname{Sym}_{\mathcal{O}_S} \mathcal{E}_G \to \mathcal{O}_G$ is surjective, and its kernel contains $(\varphi_G - f_{E_G})(\mathcal{E}_G^{(q)})$. Hence we have a surjection $\mathcal{O}_{\operatorname{Gr}(\mathcal{E}_G, \varphi_G)} \to \mathcal{O}_G$ of locally free \mathcal{O}_S -algebras. The equality $\operatorname{rank}(\mathcal{O}_G) = q^{\operatorname{rank}(\mathcal{E}_G)}$ implies that $\operatorname{Gr}(\mathcal{E}_G, \varphi_G) \simeq G$.

The commutativity of m and φ in the definition of a morphism $m : (\mathcal{E}, \varphi) \to (\mathcal{E}', \varphi')$ of φ -sheaves means that $m : \mathcal{E} \to \mathcal{E}'$ extends to an \mathcal{O}_S -Hopf algebra homomorphism

$$m: \mathcal{S}/[(\varphi - f_{\mathcal{S}})(\mathcal{E}^{(q)})] \longrightarrow \mathcal{S}'/[(\varphi' - f_{\mathcal{S}'})(\mathcal{E}'^{(q)})].$$

 $(\mathcal{S}' \text{ is the symmetric algebra made of } \mathcal{E}'.)$ This is clearly compatible with the natural \mathbb{F}_{q} -actions. Noticing Lemma (1.5), we have thus

PROPOSITION (1.7). The category of finite φ -modules over S is antiequivalent to the category of φ -sheaves on S.

The set of valued points of $Gr(\mathcal{E}, \varphi)$ is described as follows:

PROPOSITION (1.8). Let (\mathcal{E}, φ) be a φ -sheaf on S, and let T be an S-scheme. Then the set of T-valued points of $\operatorname{Gr}(\mathcal{E}, \varphi)$ is

$$\operatorname{Gr}(\mathcal{E},\varphi)(T) = \operatorname{Hom}_{\varphi,\mathcal{O}_S}(\mathcal{E},\mathcal{O}_T),$$

the set of \mathcal{O}_S -linear homomorphisms $f : \mathcal{E} \to \mathcal{O}_T$ such that $f(\varphi(x)) = f(x)^q$ for any local section x of \mathcal{E} .

PROOF. This is clear from the definition of $\operatorname{Gr}(\mathcal{E}, \varphi)$.

2. Finite *t*-modules

In the rest of the paper, A is the polynomial ring $\mathbb{F}_q[t]$ in one variable t over \mathbb{F}_q . We work over a fixed A-scheme S, and denote by θ the image of t by the structure morphism $\alpha : A \to \Gamma(S, \mathcal{O}_S)$.

DEFINITION (2.1). A finite t-module (G, Ψ) over S is an A-module scheme over S such that

(1) G is killed by some $a \in A - \{0\}$; and

(2) $(G, \Psi |_{\mathbb{F}_q})$ is a finite φ -module over S.

A *morphism* of finite *t*-modules is by definition a morphism of *A*- module schemes.

A typical example of a finite t-module is a finite $\mathbb{F}_q[t]$ -submodule of an abelian t-module ([1]) with scalar t-action on its tangent space. As is well-known, we have

LEMMA (2.2). A finite t-module G/S which is killed by $a \in A - 0$ is étale over S if a is invertible on S.

PROOF. It is enough to see $\Omega^1_{G/S} = 0$, but $a \cdot \Omega^1_{G/S} = 0$ and a is invertible. \Box

REMARK (2.3). If (G, Ψ) is a finite *t*-module, Ψ induces an action of A on the ambient space E_G (Remark (1.4), (i)). But E_G with this action is *not* in general an A-module scheme in the sense of Definition (1.1).

DEFINITION (2.4). A *t*-sheaf $(\mathcal{E}, \varphi, \psi_t)$ (or simply, $(\mathcal{E}, \varphi, \psi)$) on S is a pair consisting of a φ -sheaf (\mathcal{E}, φ) and an endomorphism ψ_t of (\mathcal{E}, φ) such that

(1) there exists a polynomial $a(X) \in \mathbb{F}_q[X] - \{0\}$ such that $a(\psi_t) = 0$ on \mathcal{E} ; and

(2) ψ_t induces multiplication by θ on $\operatorname{Coker}(\varphi)$. (Recall that $\operatorname{Coker}(\varphi)$ is canonically isomorphic to $\operatorname{Lie}^*\operatorname{Gr}(\mathcal{E},\varphi)$ ([3], Proposition 2.1, 2)).)

Equivalently, we may think that ψ is a ring homomorphism $A \to \operatorname{End}_{\varphi}(\mathcal{E}, \varphi)$; $a \mapsto \psi_a$ such that $\psi_a = 0$ for some $a \in A - \{0\}$ and, for each $a \in A$, ψ_a induces multiplication by $\alpha(a)$ on $\operatorname{Coker}(\varphi)$.

A morphism $m : (\mathcal{E}, \varphi, \psi_t) \to (\mathcal{E}', \varphi', \psi'_t)$ of t-sheaves is a morphism of φ -sheaves such that $m \circ \psi_t = \psi'_t \circ m$.

The following proposition, extending (1.7), is obvious.

PROPOSITION (2.5). The category of finite t-modules over S is antiequivalent to the category of t-sheaves on S.

We write $\operatorname{Gr}(\mathcal{E}, \varphi, \psi)$ for the finite *t*-module corresponding to a *t*-sheaf $(\mathcal{E}, \varphi, \psi)$.

Example (2.6). Let (E, Ψ) be a Drinfeld A-module of rank r over S. Assume for simplicity that S = Spec R with R an A-algebra, and that the action of t is given by

$$\psi_t(X) = \theta X + a_1 X^q + \dots + a_r X^{q^r}, \quad a_i \in R, \ a_r \in R^{\times},$$

with respect to a trivialization $E \simeq \mathbb{G}_a = \operatorname{Spec} R[X]$. Then for $a \in A - \{0\}$, $G := \operatorname{Ker}(\Psi_a)$ is a finite *t*-module over R. \mathcal{E}_G is a free R-module of rank $r \cdot \operatorname{deg}(a)$ with a basis $(X^{q^j}; 0 \leq j \leq r \cdot \operatorname{deg}(a) - 1)$, and $\varphi : \mathcal{E}_G^{(q)} \to \mathcal{E}_G$ is given by

$$\varphi(X^{q^j} \otimes 1) = X^{q^{j+1}}.$$

Here $X^{q^{j+1}}$ for $j+1 \ge r \cdot \deg(a)$ should be rewritten in terms of $(X^{q^j}; 0 \le j \le r \cdot \deg(a) - 1)$ according to the relation $\psi_a(X) = 0$.

In the simple case where $a = t^k$, we can take the basis $(\psi_{t^i}(X)^{q^j}; 0 \le i \le k-1, 0 \le j \le r-1)$ of \mathcal{E}_G , with respect to which ψ_t is represented by the matrix whose (i, j)-component is 1 if i = j + r and 0 otherwise.

3. Finite *v*-modules

To establish a nice duality, we need one more structure.

Recall that a finite φ -module G is embedded canonically into its ambient space E_G (Remark (1.4), (i)), which is a vector group scheme.

DEFINITION (3.1). A finite v-module (G, Ψ, V) over S is a finite tmodule (G, Ψ) over S together with a morphism $V : E_G^{(q)} \to E_G$ of \mathbb{F}_q module schemes such that $\Psi_t = (\theta + V \circ F_{E_G})|_G$. (Here θ means multiplication by $\theta = \alpha(t) \in \Gamma(S, \mathcal{O}_S)$ on E_G , and F_{E_G} is the Frobenius morphism of E_G .)

A morphism $M : (G, \Psi, V) \to (G', \Psi', V')$ of finite v-modules is a morphism of finite φ -modules which renders the diagram

commutative.

DEFINITION (3.2). A *v*-sheaf $(\mathcal{E}, \varphi, v)$ on *S* is a pair consisting of a φ -sheaf on *S* and an \mathcal{O}_S -module homomorphism $v : \mathcal{E} \to \mathcal{E}^{(q)}$ such that $(\mathcal{E}, \varphi, \psi_t)$ with $\psi_t := \theta + \varphi \circ v$ is a *t*-sheaf on *S*. (Here θ means multiplication by θ on \mathcal{E} .)

A morphism $m : (\mathcal{E}, \varphi, v) \to (\mathcal{E}', \varphi', v')$ of v-sheaves is a morphism of φ -sheaves which renders the diagram

$$\begin{array}{cccc} \mathcal{E} & \stackrel{m}{\longrightarrow} & \mathcal{E}' \\ v \downarrow & & \downarrow v' \\ \mathcal{E}^{(q)} & \stackrel{m^{(q)}}{\longrightarrow} & \mathcal{E}'^{(q)} \end{array}$$

commutative.

These definitions are made so that Proposition (2.5) extends to

PROPOSITION (3.3). The category of finite v-modules over S is antiequivalent to the category of v-sheaves on S.

We write $\operatorname{Gr}(\mathcal{E}, \varphi, v)$ for the finite v-module corresponding to a v-sheaf $(\mathcal{E}, \varphi, v)$.

Example (3.4). Let (E, Ψ) and $G = \text{Ker}(\Psi_a)$ be as in Example (2.6). Then the finite *t*-module G is furnished with a standard *v*-module structure by

$$v: \mathcal{E}_G \to \mathcal{E}_G^{(q)},$$

$$X^{q^i} \mapsto X^{q^{i-1}} \otimes (\theta^{q^i} - \theta) + X^{q^i} \otimes a_1^{q^i} + \dots + X^{q^{r+i-1}} \otimes a_r^{q^i}.$$

(Here $X^{q^{i-1}} \otimes (\theta^{q^i} - \theta) := 0$ if i = 0.) If $G = \operatorname{Ker}(\Psi_t)$ for example and if we regard \mathcal{E}_G and $\mathcal{E}_G^{(q)}$ as the column vectors of rank r by fixing the R-basis $(X^{q^j})_{0 \leq j \leq r-1}$ and $(X^{q^j} \otimes 1)_{0 \leq j \leq r-1}$ respectively, then v is represented by the matrix

$$\begin{pmatrix} a_1 & -\theta & & \\ \vdots & & \ddots & \\ \vdots & & & -\theta \\ a_r & & & \end{pmatrix}$$

(The vacant components are 0.) Note that $\psi_t = 0$ on \mathcal{E}_G in this case, and still v has enough information to recover the dual of G. But this v-module structure is *not* unique unless $\operatorname{Ker}(\varphi_G : \mathcal{E}_G^{(q)} \to \mathcal{E}_G) = 0$.

In fact, finite v-modules over "mixed characteristic" bases are not so far from finite t-modules, since we have:

PROPOSITION (3.5). Assume that the base scheme S is reduced. Let (G, Ψ) be a finite t-module which is étale over the generic points of S. Then (G, Ψ) has a unique v-module structure V_G extending the given t-module structure; $\Psi_t = (\theta + V_G \circ F_{E_G}) |_G$. If G and G' are two such finite t-modules, then a morphism $G \to G'$ of finite t-modules preserves this v-module structure. In particular, if $\alpha : A \to \mathcal{O}_S$ is injective (cf. Lemma (2.2)), the two concepts, a finite t-module and a finite v-module, are equivalent.

The same is valid for a t-sheaf $(\mathcal{E}, \varphi, \psi_t)$ such that $\varphi : \mathcal{E}^{(q)} \to \mathcal{E}$ is injective over the generic points.

PROOF. We prove this for *t*-sheaves. By (2) of Definition (2.4), we have

$$\operatorname{Im}(\psi_t - \theta) \subset \operatorname{Im}(\varphi).$$

Hence $v := \varphi^{-1} \circ (\psi_t - \theta) : \mathcal{E} \to \mathcal{E}^{(q)}$ is well-defined (note that φ is in fact injective all over S by the assumption of reducedness), and gives a unique v-sheaf structure on (\mathcal{E}, φ) extending the t-sheaf structure ψ_t .

Let $m : (\mathcal{E}, \varphi, \psi_t) \to (\mathcal{E}', \varphi', \psi'_t)$ be a morphism of *t*-sheaves. If φ and φ' are generically injective, we have the diagram

in which v and v' are defined as above and in which the outer and the lower squares are commutative. Since φ' is injective, the upper square is also commutative, i.e., m is a morphism of v-sheaves. \Box

Example (3.6). Let C be the Carlitz module over Spec A, i.e., the rank one Drinfeld A-module with underlying group scheme $\mathbb{G}_a = \text{Spec } A[Z]$ and with t-action given by $\gamma_t : Z \mapsto \theta Z + Z^q$. (Here, one may choose another t-action $Z \mapsto \theta Z + aZ^q$ for any $a \in \mathbb{F}_q^{\times}$, but then $a^{-1}t$ acts by $Z \mapsto \alpha(a^{-1}t)Z + Z^q$. So in the following, we fix $t \in A$ and its action on C as above.) Let G be a finite A-submodule of C. Then over A, G has a unique v-module structure

$$v_C: \mathcal{E}_G \to \mathcal{E}_G^{(q)},$$
$$Z^{q^i} \mapsto Z^{q^{i-1}} \otimes (\theta^{q^i} - \theta) + Z^{q^i} \otimes 1.$$

In §4, we shall think of $G \times_{\text{Spec } A} S$, over any base scheme S, as a finite v-module with v-structure induced by this canonical one. Also, it would be convenient in what follows to think of C itself as a "v-module" with $v_C : \mathcal{E}_C \to \mathcal{E}_C^{(q)}$ defined as above, though we deal in fact with its finite subgroups.

The following Remark is not used in this paper, but provides us with some feeling on \mathcal{E}_G .

REMARK (3.7). Let G be a finite v-module over S. Then the \mathcal{O}_{S} module \mathcal{E}_{G} would deserve the name the "Dieudonné module" of G, because we have $\mathcal{E}_{G} = \underline{\operatorname{Hom}}_{v,S}(G, CW)$. Here CW is the v-module of "Witt covectors", defined as follows (we disregard the topology): CW is, as a group scheme, the infinite direct product of \mathbb{G}_{a} 's with affine algebra $\mathcal{O}_{CW} = \mathcal{O}_{S}[\cdots, X_{-n}, \cdots, X_{-1}, X_{0}]$, and the t-module and v-module structures are defined by

$$t: X_{-n} \mapsto \theta X_{-n} + X^q_{-n-1},$$

$$v: X_{-n} \mapsto X_{-n-1} \otimes 1$$

for all $n \ge 0$.

4. The duality

For an \mathcal{O}_S -module \mathcal{E} , put $\mathcal{E}^* := \underline{\operatorname{Hom}}_{\mathcal{O}_S}(\mathcal{E}, \mathcal{O}_S)$. If $(\mathcal{E}, \varphi, v)$ is a *v*-sheaf on *S*, then φ and *v* induce respectively the \mathcal{O}_S -module homomorphisms

$$\varphi^* : \mathcal{E}^* \to \mathcal{E}^{*(q)} \quad \text{and} \quad v^* : \mathcal{E}^{*(q)} \to \mathcal{E}^*.$$

It is easy to check that $(\mathcal{E}^*, v^*, \varphi^*)$ is a v-sheaf on S.

DEFINITION (4.1). We define the dual $(\mathcal{E}, \varphi, v)^*$ of a v-sheaf $(\mathcal{E}, \varphi, v)$ to be the v-sheaf $(\mathcal{E}^*, v^*, \varphi^*)$. For a finite v-module $G = \operatorname{Gr}(\mathcal{E}, \varphi, v)$, define its dual G^* to be $\operatorname{Gr}(\mathcal{E}^*, v^*, \varphi^*)$.

Note that if, as in Proposition (3.5), the base scheme S is reduced and (G, Ψ) is a finite t-module which is étale over the generic points (resp.

 $(\mathcal{E}, \varphi, \psi_t)$ is a *t*-sheaf such that φ is injective over the generic points), then we can define its dual.

We have clearly the following

PROPOSITION (4.2). Let G be a finite v-module.

(i) G^* has the same rank as G.

(ii) The correspondence $G \mapsto G^*$ is functorial. This functor is exact.

(iii) G^{**} is canonically isomorphic to G.

(iv) $(G \times_S T)^* \simeq G^* \times_S T$ for any S-scheme T.

The same is true for the duality of v-sheaves.

THEOREM (4.3). Let C be the Carlitz module over Spec A (cf. Example (3.6)), and let G be a finite v-module over S. (i) The functor

$$\underline{\operatorname{Hom}}_{v,S}(G,C): (S\text{-schemes}) \to (A\text{-modules})$$
$$T \mapsto \operatorname{Hom}_{v,T}(G \times_S T, \ C \times_{\operatorname{Spec}\ A} T)$$

is represented by (the underlying finite t-module of) G^* . (ii) There exists a canonical A-bilinear pairing of A-module schemes:

$$\Pi_G: G \times_S G^* \to C$$

such that:

(ii-1) If G' is a finite t-module over S sitting in an A-bilinear pairing $\Pi': G \times_S G' \to C$, then there exists a unique morphism $M: G' \to G^*$ of finite t-modules which makes the diagram

$$\begin{array}{ccc} G \times_S G' & \stackrel{\Pi'}{\longrightarrow} & C \\ 1 \times M & & & \parallel \\ G \times_S G^* & \stackrel{\Pi_G}{\longrightarrow} & C \end{array}$$

commute.

(ii-2) If $M: G \to H$ is a morphism of finite v-modules and $M^*: H^* \to G^*$ is its dual morphism induced by functoriality, then we have

$$\Pi_H \circ (M \times 1) = \Pi_G \circ (1 \times M^*) \quad on \quad G \times H^*.$$

Conversely, M^* is the unique morphism which has this property.

(ii-3) If $\alpha : A \to \mathcal{O}_S$ is injective and S is integral with function field K, then Π_G induces a non-degenerate Galois equivariant A-bilinear pairing between the A-modules of geometric points:

$$G(K^{\operatorname{sep}}) \times G^*(K^{\operatorname{sep}}) \to C(K^{\operatorname{sep}}).$$

PROOF. Recall that \mathcal{O}_C is the polynomial ring A[Z] with t-action $\gamma_t : Z \mapsto \theta Z + Z^q$ and v-module structure $v_C : \mathcal{E}_C \to \mathcal{E}_C^{(q)} ; Z \mapsto Z \otimes 1$. Let $G = \operatorname{Gr}(\mathcal{E}_G, \varphi_G, v_G)$. An \mathcal{O}_T -algebra homomorphism $m : \mathcal{O}_C \otimes_A \mathcal{O}_T \to \mathcal{O}_G \otimes_{\mathcal{O}_S} \mathcal{O}_T$ corresponds to a morphism of v-modules $G \times_S T \to C \times_{\operatorname{Spec} A} T$ if and only if

(4.3.1)
$$m(Z) \in \Gamma(T, \mathcal{E}_G \otimes_{\mathcal{O}_S} \mathcal{O}_T),$$
 and

(4.3.2)
$$m^{(q)} \circ v_C(Z) = (v_G \otimes 1) \circ m(Z).$$

Let S^* be the symmetric \mathcal{O}_S -algebra $\operatorname{Sym}_{\mathcal{O}_S}^* \mathcal{E}_G^*$, and Z_0 a global section of $\mathcal{E}_G \otimes_{\mathcal{O}_S} \mathcal{E}_G^*$ which gives a basis of the rank one \mathcal{O}_S -submodule of $\mathcal{E}_G \otimes_{\mathcal{O}_S} \mathcal{E}_G^*$ on which one has $m \otimes 1 = 1 \otimes m^*$ for all $m \in \operatorname{End}_{\mathcal{O}_S}(\mathcal{E}_G)$. A canonical choice for Z_0 is $\sum_i X_i \otimes X_i^*$, where $(X_i)_i$ is a local basis of \mathcal{E}_G and $(X_i^*)_i$ is its dual basis. Let

$$\iota: \mathcal{E}_G \otimes_{\mathcal{O}_S} \mathcal{E}_G^* \to \mathcal{E}_G^{(q)} \otimes_{\mathcal{O}_S} \mathcal{E}_G^{*(q)}$$
$$X \otimes Y \mapsto (X \otimes 1) \otimes (Y \otimes 1)$$

be the natural map. Then we have $(v \otimes 1)(Z_0) = (1 \otimes v^*) \circ \iota(Z_0)$ for all $v \in \operatorname{Hom}_{\mathcal{O}_S}(\mathcal{E}_G, \mathcal{E}_G^{(q)})$. If we take $\mathcal{O}_T = \mathcal{S}^*$ and $Z \mapsto Z_0$, then (4.3.2) reads

$$(1 \otimes f_{\mathcal{S}^*}) \circ \iota(Z_0) = (1 \otimes v_G^*) \circ \iota(Z_0).$$

 $(f_{\mathcal{S}^*} \text{ is the } \mathcal{O}_S\text{-linear Frobenius morphism } \mathcal{S}^{*(q)} \to \mathcal{S}^*.)$ Let \mathcal{J}^* be the smallest ideal of \mathcal{S}^* such that

$$(1 \otimes (v_G^* - f_{\mathcal{S}^*})) \circ \iota(Z_0) \in \mathcal{E}_G^{(q)} \otimes_{\mathcal{O}_S} \mathcal{J}^*.$$

Then it follows from what we observed at the beginning of the proof that the functor $\underline{\operatorname{Hom}}_{v,S}(G,C)$ is represented by $\underline{\operatorname{Spec}}(\mathcal{S}^*/\mathcal{J}^*) = \operatorname{Gr}(\mathcal{E}_G^*, v_G^*)$, with *t*-action induced by ψ_t^* on \mathcal{E}_G^* .

REMARK (4.4). To represent the functor $\underline{\operatorname{Hom}}_{v,S}(G,C)$, the *v*-module structure of G^* is not needed (and in fact a *v*-module structure on $\operatorname{Gr}(\mathcal{E}_G^*, v_G^*)$ may not be unique (cf. Example (3.4)), but for G to represent $\underline{\operatorname{Hom}}_{v,S}(G^*, C), G^*$ must have the *v*-module structure φ_G^* .

PROOF CONTINUED. The pairing $G \times_S G^* \to C$ is given by

$$\pi: \mathcal{O}_C \to \mathcal{O}_G \otimes_{\mathcal{O}_S} \mathcal{O}_{G^*},$$
$$Z \mapsto Z_1,$$

where Z_1 is the image of Z_0 in $\mathcal{O}_G \otimes_{\mathcal{O}_S} (\mathcal{S}^*/\mathcal{J}^*)$. The universality of G^* (ii-1) is clear from the above discussion.

The non-degeneracy of (ii-2) is a consequence of a basic fact in linear algebra; let (X_i) and (Y_j) be \mathcal{O}_S -bases of \mathcal{E}_G and \mathcal{E}_H respectively, (X_i^*) and (Y_j^*) the dual bases, $m : \mathcal{E}_H \to \mathcal{E}_G$ an \mathcal{O}_S -linear map, and $m^* : \mathcal{E}_G^* \to \mathcal{E}_H^*$ its dual map. Then we have $\sum_i X_i \otimes m^*(X_i^*) = \sum_j m(Y_j) \otimes Y_j^*$ in $\mathcal{E}_G \otimes_{\mathcal{O}_S} \mathcal{E}_H^*$. Conversely, m^* is the unique \mathcal{O}_S -linear map with this property.

Since G is étale over K if α is injective (Lemma (2.2)), (ii-3) follows from the well-known equivalence between the category of finite étale K^{sep} schemes and the category of finite sets. \Box

REMARK (4.5). If we consider only the *t*-module structure, we will have the following: (i) The functor

$$\underline{\operatorname{Hom}}_{t,S}(G,C): (S\operatorname{-schemes}) \to (A\operatorname{-modules})$$
$$T \mapsto \operatorname{Hom}_{t,T}(G \times_S T, \ C \times_{\operatorname{Spec} A} T)$$

is represented by an A-module scheme \widetilde{G}^* over S.

(ii) Assume S is reduced. If G is étale over the generic points of S, then \widetilde{G}^* is of the form $G^* \cup \widetilde{G}_0^*$, where G^* is (the underlying finite *t*-module of) the dual finite *v*-module of G, G being considered to be a finite *v*-module with the unique *v*-module structure (Proposition (3.5)), and where \widetilde{G}_0^* is

supported on the locus in S over which G is not étale. In general, \tilde{G}_0^* has a positive dimension. For example:

Example (4.6). Let R be an (A/tA)-algebra (i.e., we are in the "characteristic" (t) situation in the sense that the kernel of the structure map $\alpha : A \to R$ is (t)), and let $G = \text{Spec } R[X_1, X_2]/(X_1^q, X_2^q)$ be a finite *t*-module with *t* acting by $X_i \mapsto 0$ for i = 1, 2. If we think of G as the *t*-division points of the abelian *t*-module $(E, \Psi) = C^{\oplus 2}$;

$$E = \operatorname{Spec} R[X_1, X_2], \quad \psi_t \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = t \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} + \begin{pmatrix} X_1^q \\ X_2^q \end{pmatrix},$$

then it is natural to make G into a finite v-module by $v: X_i \mapsto X_i \otimes 1$ for i = 1, 2. On the other hand, G can be regarded as the t-division points of another abelian t-module (E', Ψ') with

$$E' = \text{Spec } R[X_1, X_2], \quad \psi'_t \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = t \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} + \begin{pmatrix} X_2^q \\ X_1^q \end{pmatrix}.$$

Now it is natural to make G into a finite v-module by $v: X_i \mapsto X_{3-i} \otimes 1$ for i = 1, 2. In the former case, we have $G^* = \operatorname{Spec} R[Y_1, Y_2]/(Y_1 - Y_1^q, Y_2 - Y_2^q)$ (the constant group scheme $\mathbb{F}_q \oplus \mathbb{F}_q$), whereas in the latter case, we have $G^* = \operatorname{Spec} R[Y]/(Y - Y^{q^2})$ (the étale group scheme \mathbb{F}_{q^2}). Of course, we could choose any v-module structure $v: X_i \mapsto X_1 \otimes a_{1i} + X_2 \otimes a_{2i}$ for i = 1, 2 with $a_{ji} \in R$. Without v-module structures, we will have $\widetilde{G}^* \simeq \mathbb{A}_R^2$ in this case.

Finally in this section, we describe a relation between the Frobenius and the Verschiebung over a "finite characteristic" base.

PROPOSITION (4.7). Let (G, Ψ, V) be a finite v-module over S. (i) Let d be a positive integer, and $F_G^d: G \to G^{(q^d)}$ the q^d -th power Frobenius morphism. Then $G^{(q^d)}$ (resp. F_G^d) is a finite v-module (resp. a morphism of finite v-modules) if $\operatorname{Im}(\alpha) \subset \mathbb{F}_{q^d}$. If this is the case and $M: G \to G'$ is a morphism of finite v-modules, then we have $M^{(q^d)} \circ F_G^d = F_{G'}^d \circ M$. (ii) Assume $\operatorname{Ker}(\alpha : A \to \mathcal{O}_S) = (\mathfrak{p})$ with $\mathfrak{p} \in A$ being a monic prime element of degree d. Let $V_{G,\mathfrak{p}}: G^{(q^d)} \to G$ be the dual morphism of $F_{G^*,\mathfrak{p}} :=$ $F_{G^*}^d: G^* \to G^{*(q^d)}$. Then we have

$$\Psi_{\mathfrak{p}} = V_{G,\mathfrak{p}} \circ F_{G,\mathfrak{p}} \quad and \quad \Psi_{\mathfrak{p}}^{(q^d)} = F_{G,\mathfrak{p}} \circ V_{G,\mathfrak{p}}.$$

In particular, we have an exact sequence of finite t-modules

$$0 \to \operatorname{Ker}(F_{G,\mathfrak{p}}) \to \operatorname{Ker}(\Psi_{\mathfrak{p}}) \to \operatorname{Ker}(V_{G,\mathfrak{p}}) \to 0.$$

PROOF. (i) The only point we must care about is the action of $a \in A$ on Lie^{*}($G^{(q^d)}$), which is multiplication by $\alpha(a)^{(q^d)}$. This should be equal to $\alpha(a)$, which is the case if $\operatorname{Im}(\alpha) \subset \mathbb{F}_{q^d}$. The compatibility conditions for v-module structures and morphisms are then automatically satisfied.

(ii) Let $Z \in \mathcal{O}_C$ and $Z_1 \in \mathcal{O}_G \otimes_{\mathcal{O}_S} \mathcal{O}_{G^*}$ have the same meaning as in the proof of Theorem (4.3). Let

$$\pi: \mathcal{O}_C \to \mathcal{O}_G \otimes_{\mathcal{O}_S} \mathcal{O}_{G^*}$$
$$Z \mapsto Z_1$$

be the \mathcal{O}_S -algebra homomorphism corresponding to the pairing $\Pi_G : G \times_S G^* \to C$. Then the A-linearity of the pairing is written as

$$(\psi_{\mathfrak{p}} \otimes 1)(Z_1) = \pi(\gamma_{\mathfrak{p}}(Z)) = (1 \otimes \psi_{\mathfrak{p}}^*)(Z_1).$$

Here $\gamma : A \to \operatorname{End}_{\mathcal{O}_S}(\mathcal{O}_C)$; $a \mapsto \gamma_a$ is the map describing the A-action on C. Since $\gamma_{\mathfrak{p}}(Z) \equiv Z^{q^d} (\operatorname{mod}.\mathfrak{p})$ (e.g. [5], Proposition 2.4), we have

$$(\psi_{\mathfrak{p}} \otimes 1)(Z_1) = \pi(Z^{q^d}) = (f_{G,\mathfrak{p}} \otimes f_{G^*,\mathfrak{p}}) \circ \iota(Z_1)$$
$$= (f_{G,\mathfrak{p}} \circ v_{G,\mathfrak{p}} \otimes 1)(Z_1).$$

Hence $\psi_{\mathfrak{p}} = f_{G,\mathfrak{p}} \circ v_{G,\mathfrak{p}}$, and $\Psi_{\mathfrak{p}} = V_{G,\mathfrak{p}} \circ F_{G,\mathfrak{p}}$.

By (i), we have also the commutative diagram

$$\begin{array}{ccc} G^{(q^d)} & \xrightarrow{V_{G,\mathfrak{p}}} & G \\ F_{G^{(q^d)},\mathfrak{p}} & & & \downarrow F_{G,\mathfrak{p}} \\ & & & & \downarrow F_{G,\mathfrak{p}} \\ & & & & & & \downarrow F_{G,\mathfrak{p} \\ & & & & & \downarrow F_{G,\mathfrak{p}} \\ & & & & & \downarrow F_{G,\mathfrak{p} \\ & & & & & \downarrow F_{G,\mathfrak{p}} \\ & & & & & & \downarrow F_{G,\mathfrak{p} \\ & & & & & \downarrow F_{G,\mathfrak{p} \\ & & & & & & \downarrow F_{G,\mathfrak{p} \\ & & & & & & \downarrow F_{G,\mathfrak{p} \\ & & & & & \downarrow F_{G,\mathfrak{p} \\ & & & & & & \downarrow F_{G,\mathfrak{p} \\ & & & & & & \downarrow F_{G,\mathfrak{p} \\ & & & & & \downarrow F_{G,\mathfrak{p} \\ & & & & & & \downarrow F_{G,\mathfrak{p} \\ & & & & & & \downarrow F_{G,\mathfrak{p} \\ & & & & & & \downarrow F_{G,\mathfrak{p} \\ & & & & & & & & & \downarrow F_{G,\mathfrak{p} \\ & & & & & & & \downarrow F_{G,\mathfrak{p} \\ & & & & & & & & & \downarrow F_{G,\mathfrak{p} \\ & & & & & & & & \downarrow F_$$

from which follows the equality

$$\Psi_{\mathfrak{p}}^{(q^d)} = V_{G^{(q^d)},\mathfrak{p}} \circ F_{G^{(q^d)},\mathfrak{p}} = F_{G,\mathfrak{p}} \circ V_{G,\mathfrak{p}}. \ \Box$$

5. Duality for Drinfeld modules

In this section, we construct explicitly the dual \check{E} of a Drinfeld $\mathbb{F}_q[t]$ module E, and prove the compatibility of this construction and the duality of §4 for the torsion points of E and \check{E} . \check{E} is an (r-1)-dimensional abelian t-module ([1]) if E is of rank $r \geq 2$.

Let $A = \mathbb{F}_q[t]$ and R an A-algebra. The image of $t \in A$ in R will be denoted by θ . (Though all constructions below work over any A-scheme S, we work over an affine S = Spec R for simplicity.)

Let (E, Ψ) be a Drinfeld module over R of rank $r \ge 2$. Suppose the action of $t \in A$ is given by

$$\psi_t(X) = \theta X + a_1 X + \dots + a_r X^{q^r}, \quad a_i \in R, \ a_r \in R^{\times}$$

with respect to a coordinate X of E. (As before, we use a small letter ψ to denote a map of affine rings.) On $\check{E} := \mathbb{G}_{a/R}^{\oplus (r-1)}$, define an A-module scheme structure $\check{\Psi} : A \longrightarrow \operatorname{End}_{R}(\mathbb{G}_{a}^{\oplus (r-1)})$, in terms of the coordinates $\mathbb{Y} = {}^{t}(Y_{1}, \cdots, Y_{r-1})$ of $\mathbb{G}_{a}^{\oplus (r-1)} = \operatorname{Spec} R[Y_{1}, \cdots, Y_{r-1}]$, by

$$\check{\psi}_t(\mathbb{Y}) = \theta \mathbb{Y} + \mathbb{B}_1 \mathbb{Y}^{(q)} + \mathbb{B}_2^{(q)} \mathbb{Y}^{(q^2)},$$

with

$$\mathbb{B}_1 := \begin{pmatrix} & & -a_r^{-1}a_1 \\ 1 & & \vdots \\ & \ddots & & \vdots \\ & & 1 & -a_r^{-1}a_{r-1} \end{pmatrix}, \quad \mathbb{B}_2 := \begin{pmatrix} & & a_r^{-1} \\ & & & \end{pmatrix}$$

Here and elsewhere, for a matrix \mathbb{B} , $\mathbb{B}^{(q^j)}$ denotes the matrix \mathbb{B} but with entries raised to the q^j -th power. We will call this type of A-module schemes $(\check{E}, \check{\Psi})$ dual Drinfeld modules. Note that one can recover the Drinfeld module \check{E} starting with a dual Drinfeld module \check{E} , so that we may think $\check{\check{E}} = E$.

Let C be the Carlitz module on which t acts by $\gamma_t : Z \mapsto \theta Z + Z^q$ with respect to a coordinate Z of C.

THEOREM (5.1). (i) If R is a perfect field, \check{E} is an abelian t-module of t-rank $r(\check{E}) = r$, τ -rank $\rho(\check{E}) = r-1$, and weight $w(\check{E}) = (r-1)/r$ in the sense of [1].

(ii) For a non-zero $a \in A$, the kernel ${}_{a}\check{E}$ of the action of a on \check{E} is a finite *t*-module over R of rank $q^{r \cdot \deg(a)}$.

(iii) For a non-zero $a \in A$, there exists an A-bilinear pairing defined over R:

$${}_{a}\Pi_{E} : {}_{a}E \times_{R} {}_{a}\check{E} \longrightarrow {}_{a}C.$$

(iv) If we furnish $_{a}E$ with the standard v-module structure as in (3.4), then we have $_{a}\check{E} \simeq _{a}E^{*}$, and the pairing $_{a}\Pi_{E}$ of (iii) coincides with the pairing Π_{aE} of Theorem (4.3).

REMARKS (5.2). (i) Anderson takes $A = \mathbb{F}_p[t]$ with a prime p in [1]. So we should either assume in (5.1),(i) that q = p, or define the *t*-motive $M(\check{E}) = \operatorname{Hom}_R(\mathbb{G}_a^{\oplus(r-1)}, \mathbb{G}_a)$ to be the \mathbb{F}_q -linear homomorphisms. Here we will take the latter, and denote it, as before, by $\mathcal{E}_{\check{E}}$.

(ii) The statements of the Theorem are valid also for any *d*-dimensional abelian *t*-module (E, Ψ) if $\Psi : A \longrightarrow \operatorname{End}_R(\mathbb{G}_a^{\oplus d})$ is defined by an equation of the form

$$\psi_t(X) = \theta X + a_1 X^{(q)} + \dots + a_r X^{(q^r)}, \quad X = {}^t(X_1, \dots, X_d),$$

with $a_i \in M_d(R)$ and $a_r \in GL_d(R)$.

(iii) For a Drinfeld module E of rank 1, there exists an ind-finite étale A-module scheme \check{E} (a twist of the constant A-module scheme $\mathbb{F}_q(t)/\mathbb{F}_q[t]$), together with a pairing as in (iii) of the Theorem.

(iv) Even if E does not have good reduction over R, we can define an Abilinear pairing between the division points of E and \check{E}' , a twist of \check{E} , with target C', a twist of C. Especially, we can take \check{E}' to be the (r-1)-st exterior product $\wedge^{r-1}E$ of E ([1]) defined by

$$\check{\psi}'_{t}(\mathbb{Y}) = \theta \mathbb{Y} + \mathbb{B}_{1}^{\prime(q)} \mathbb{Y}^{(q)} + \mathbb{B}_{2}^{\prime(q^{2})} \mathbb{Y}^{(q^{2})}$$

with

$$\mathbb{B}'_{1} := (-1)^{r} \begin{pmatrix} & & & (-1)^{r} a_{1} \\ & & & \vdots \\ & \ddots & & (-1)^{r+1-i} a_{i} \\ & & \ddots & & \vdots \\ & & & a_{r} & a_{r-1} \end{pmatrix},$$

$$\mathbb{B}_2' := (-1)^r \begin{pmatrix} & & a_r \\ & & & \\ & & & \end{pmatrix},$$

and C' to be the r-th exterior product $\wedge^r E$ of E([1], [4]) defined by

$$\gamma_t'(Z) = \theta Z - (-1)^r a_r X^q.$$

 \check{E}' and C' may have non-stable reduction. It would be interesting to seek a good model of \check{E}' .

PROOF OF THE THEOREM. (i) This is clear; an $R[\check{\psi}_t]$ -base of $\mathcal{E}_{\check{E}} = \operatorname{Hom}_{\mathbb{F}_q,R}(\mathbb{G}_a^{\oplus(r-1)},\mathbb{G}_a)$ is $(a_r^{-1}Y_{r-1}^q,Y_1,\cdots,Y_{r-1})$, which implies $r(\check{E}) = r$. The other assertions are obvious.

(ii) Put $G = {}_{a}\check{E}$. The affine ring \mathcal{O}_{G} of G can be identified with the quotient $R[Y_{1}, \cdots, Y_{r-1}]/\check{\psi}_{a}(\mathbb{Y})$. It is enough to show that \mathcal{O}_{G} is free over R of rank $q^{r \cdot \deg(a)}$, and that \mathcal{E}_{G} is free over R of rank $r \cdot \deg(a)$.

We may assume $a \in A = \mathbb{F}_q[t]$ is monic of degree $k \geq 1$, and write $a = t^k + g(t), g(t) = \sum_{i=0}^{k-1} g_i t^i, g_i \in \mathbb{F}_q$. Define elements $Y_{ij} \in \mathcal{O}_G$ for $0 \leq i \leq k-1$ and $1 \leq j \leq r-1$ by

$$Y_{k-1,j} = Y_j \qquad (1 \le j \le r-1),$$

and

(5.1.1)
$$\mathbb{Y}_{i-1} = \check{\psi}_t(\mathbb{Y}_i) + g_i \mathbb{Y}_{k-1} \quad (1 \le i \le k-1),$$

where $\mathbb{Y}_i := {}^t(Y_{i1}, \cdots, Y_{i,r-1})$. Applying (5.1.1) repeatedly, we find

$$\mathbb{Y}_{i} = \check{\psi}_{t^{k-1-i}}(\mathbb{Y}_{k-1}) + g_{k-1}\check{\psi}_{t^{k-2-i}}(\mathbb{Y}_{k-1}) + \dots + g_{i+1}\mathbb{Y}_{k-1}$$

(5.1.1a)
$$= \check{\psi}_{(t^{k-1-i}+g_{k-1}t^{k-2-i}+\cdots+g_{i+1})}(\mathbb{Y}_{k-1}),$$

and especially,

$$\mathbb{Y}_0 = \psi_{(t^{k-1}+g_{k-1}t^{k-2}+\dots+g_1)}(\mathbb{Y}_{k-1}),$$

whence

$$\check{\psi}_t(\mathbb{Y}_0) = \check{\psi}_a(\mathbb{Y}_{k-1}) - g_0 \mathbb{Y}_{k-1}.$$

This shows that the equality $\check{\psi}_a(\mathbb{Y}_{k-1}) = 0$ (which means $G = {}_a\check{E}$) is equivalent to

(5.1.2)
$$\check{\psi}_t(\mathbb{Y}_0) = -g_0 \mathbb{Y}_{k-1}.$$

We can thus regard \mathcal{O}_G as the quotient of $R[Y_{01}, \cdots, Y_{k-1,r-1}]$ by the relations (5.1.1) and (5.1.2).

By setting $(Y'_{ij})^q := Y_{ij}$ if j < r-1 and $Y'_{i,r-1} := Y_{i,r-1}$, we embed \mathcal{O}_G into the quotient \mathcal{O}' of $R[Y'_{01}, \cdots, Y'_{k-1,r-1}]$ by the same relations (5.1.1) and (5.1.2). Then (5.1.1) and (5.1.2) read:

$$(\text{unit})(Y'_{ij})^{q^2} + (\text{lower terms}) = 0, \quad 0 \le i \le k-1, \ 1 \le j \le r-1.$$

By Lemma 1.9.1 of [2], \mathcal{O}' is free of rank $q^{2k(r-1)}$ over R, with a base

$$(\prod_{i,j} (Y'_{ij})^{l_{ij}} ; \ 0 \le l_{ij} \le q^2 - 1).$$

Since \mathcal{O}_G is the *R*-submodule of \mathcal{O}' generated by

$$(\prod_{i,j} (Y'_{ij})^{l_{ij}} ; q | l_{ij} \text{ if } 1 \le j \le r-2),$$

it is also free, and of rank $q^{k(r-2)} \cdot q^{2k} = q^{kr}$. \mathcal{E}_G is also free on the *R*-base $(Y_{ij}; 0 \le i \le k-1, 0 \le j \le r-1)$, so we have rank $(\mathcal{O}_G) = q^{\operatorname{rank}(\mathcal{E}_G)}$.

(iii) Passing to the language of affine rings, we shall give an R-algebra homomorphism

$$\pi : \mathcal{O}_{aC} \longrightarrow \mathcal{O}_{aE} \otimes_R \mathcal{O}_{a\check{E}},$$

or more explicitly,

$$\pi : R[Z]/\gamma_a(Z) \longrightarrow R[X]/\psi_a(X) \otimes_R R[Y_1, \cdots, Y_{r-1}]/\check{\psi}_a(\mathbb{Y})$$

which is compatible with the comultiplications $(Z \mapsto Z \otimes 1 + 1 \otimes Z, \text{ etc.})$ and the *A*-actions. Write $a = t^k + g(t), g(t) = \sum_{i=0}^{k-1} g_i t^i$ and define $Y_{ij} \in \mathcal{O}_{a\check{E}}$ as in the proof of (ii). Set further

(5.1.3)
$$Y_{i0} := a_r^{-1} Y_{i,k-1}^q \quad (0 \le i \le k-1).$$

Simplifying the notation, we also set $X_{ij} := \psi_{t^i}(X)^{q^j}$ for $i, j \ge 0$. Then we have

(5.1.4)
$$X_{i+1,0} = \psi_t(X_{i0}) = \theta X_{i0} + \sum_{j=1}^r a_j X_{ij}$$

and

(5.1.5)
$$0 = \psi_a(X) = \psi_{t^k}(X) + \psi_{g(t)}(X) = X_{k0} + \sum_{i=0}^{k-1} g_i X_{i0}$$

(5.1.5a)
$$= \theta X_{k-1,0} + \sum_{j=1}^{r} a_j X_{k-1,j} + \sum_{i=0}^{k-1} g_i X_{i0}.$$

Now define the map π by

$$\pi : Z \mapsto \sum_{i=0}^{k-1} \sum_{j=0}^{r-1} X_{ij} \otimes Y_{ij}.$$

This is obviously compatible with the comultiplications and the actions of \mathbb{F}_q ($\subset A$); it only remains to check the commutativity of the following diagram:

The three composite maps in the diagram are calculated as follows:

$$(\psi_t \otimes 1) \circ \pi(Z) = \sum_{i=0}^{k-1} \sum_{j=0}^{r-1} X_{i+1,j} \otimes Y_{ij}$$
$$= \sum_{i=1}^{k-1} \sum_{j=0}^{r-1} X_{ij} \otimes Y_{i-1,j} - \sum_{i=0}^{k-1} \sum_{j=0}^{r-1} g_i X_{ij} \otimes Y_{k-1,j} \quad (by \ (5.1.5)^{q^j})$$

(5.1.6)
$$= -\sum_{j=0}^{r-1} X_{0j} \otimes g_0 Y_{k-1,j} + \sum_{i=1}^{k-1} \sum_{j=0}^{r-1} X_{ij} \otimes (Y_{i-1,j} - g_i Y_{k-1,j}) .$$

In view of (5.1.1) and (5.1.2), we find this equal to

$$(1 \otimes \check{\psi}_t) \circ \pi(Z) = \sum_{i=0}^{k-1} \sum_{j=0}^{r-1} X_{ij} \otimes \check{\psi}_t(Y_{ij}) .$$

Finally,

$$\pi \circ \gamma_t(Z) = \theta(\sum_{i=0}^{k-1} \sum_{j=0}^{r-1} X_{ij} \otimes Y_{ij}) + (\sum_{i=0}^{k-1} \sum_{j=0}^{r-1} X_{ij} \otimes Y_{ij})^q$$

(5.1.7) =
$$\sum_{i=0}^{k-1} \sum_{j=0}^{r-1} X_{ij} \otimes \theta Y_{ij} + \sum_{i=0}^{k-1} \sum_{j=1}^{r-1} X_{ij} \otimes Y_{i,j-1}^q + \sum_{i=0}^{k-1} X_{ir} \otimes Y_{i,r-1}^q$$
.

If $0 \le i \le k-2$, we see from (5.1.4)

$$X_{ir} = -a_r^{-1}(\theta X_{i0} + \sum_{j=1}^{r-1} a_j X_{ij} - X_{i+1,0}).$$

For i = k - 1, we see from (5.1.5a)

$$X_{k-1,r} = -a_r^{-1}(\theta X_{k-1,0} + \sum_{j=1}^{r-1} a_j X_{k-1,j} + \sum_{i=0}^{k-1} g_i X_{i0}).$$

Hence the companion with which X_{ij} is tensored in the above expression (5.1.7) of $\pi \circ \gamma_t(Z)$ is, if i = j = 0,

$$\theta Y_{00} - a_r^{-1} \theta Y_{0,r-1}^q - a_r^{-1} g_0 Y_{k-1,r-1}^q = -g_0 Y_{k-1,0}$$
 (by (5.1.3));

if i = 0 and $1 \le j \le r - 1$,

$$\theta Y_{0j} + Y_{0,j-1}^q - a_r^{-1} a_j Y_{0,r-1}^q = -g_0 Y_{k-1,j}$$
 (by (5.1.2));

if $1 \leq i \leq k-1$ and j = 0,

$$\theta Y_{i0} - a_r^{-1} \theta Y_{i,r-1}^q + a_r^{-1} Y_{i-1,r-1}^q - a_r^{-1} g_i Y_{k-1,r-1}^q$$

= $Y_{i-1,0} - g_i Y_{k-1,0}$ (by (5.1.3));

if $1 \le i \le k-1$ and $1 \le j \le r-1$,

$$\theta Y_{ij} + Y_{i,j-1}^q - a_r^{-1} a_j Y_{i,r-1}^q = Y_{i-1,j} - g_i Y_{k-1,j} \quad (by (5.1.1)).$$

Putting all these together, we find $\pi \circ \gamma_t(Z)$ is also equal to (5.1.6).

(iv) We may regard \mathcal{E}_{aE} and $\mathcal{E}_{a\check{E}}$ dual to each other by making (X_{ij}) and (Y_{ij}) the dual bases. Then our construction of the pairing here coincides with the construction in §4, and we have $_{a\check{E}} \simeq _{aE^*}$. \Box

REMARK (5.3). In what follows, we regard $_{a}E^{*} = _{a}\check{E}$ by this concrete construction (iv).

PROPOSITION (5.4). Let $M : E \to F$ be an isogeny of Drinfeld modules (resp. dual Drinfeld modules) over R of rank $r \ge 2$. (i) There exists a unique isogeny $\check{M} : \check{F} \to \check{E}$ of dual Drinfeld modules (resp. Drinfeld modules) such that, for all non-zero $a \in A$,

(5.4.1)
$$_{a}\Pi_{E} \circ (1 \times \check{M}) = _{a}\Pi_{F} \circ (M \times 1) \quad on \quad _{a}E \times \ _{a}\check{F},$$

where ${}_{a}\Pi_{E}: {}_{a}E \times {}_{a}\check{E} \to {}_{a}C$ and ${}_{a}\Pi_{F}: {}_{a}F \times {}_{a}\check{F} \to {}_{a}C$ are the duality pairings (5.1), (ii) on the a-division points. (ii) Let $M^{*}: {}_{a}F^{*} \to {}_{a}E^{*}$ be the morphism of finite t-modules which $M: {}_{a}E \to {}_{a}F$ induces by functoriality of *. Then we have $M^{*} = \check{M}$ on ${}_{a}F^{*} = {}_{a}\check{F}$ (cf. (5.3)).

(iii) We have canonically $\operatorname{Ker}(\check{M}) = \operatorname{Ker}(M)^*$.

PROOF. We assume E and F are Drinfeld modules; the dual case is proved similarly.

(i) Let $\mathcal{E}_E := \operatorname{Hom}_{\mathbb{F}_q,R}(E, \mathbb{G}_a)$, the \mathbb{F}_q -linear homomorphisms defined over R. The rings R and A acts naturally on \mathcal{E}_E . It is easy to see, by the explicit form of the defining equation of E, that \mathcal{E}_E is a free R[t]-module of rank r. For E and F (resp. \check{E} and \check{F}), we use the common symbol $(X_0, X_1, \dots, X_{r-1}) = (X, X^q, \dots, X^{q^{r-1}})$ (resp. $(Y_0, Y_1, \dots, Y_{r-1})$) for the R[t]-basis of \mathcal{E}_E and \mathcal{E}_F (resp. $\mathcal{E}_{\check{E}}$ and $\mathcal{E}_{\check{F}}$), and regard (X_i) and (Y_i) as the dual bases each other (cf. Proof of (5.1)).

An isogeny $M : E \to F$ induces an R[t]-module homomorphism $m : \mathcal{E}_F \to \mathcal{E}_E$. Let \check{m} be its transpose; \check{m} is the unique R[t]-module homomorphism $\mathcal{E}_{\check{E}} \to \mathcal{E}_{\check{F}}$ such that $\sum_{i=0}^{r-1} m(X_i) \otimes Y_i = \sum_{i=0}^{r-1} X_i \otimes \check{m}(Y_i)$ in $\mathcal{E}_E \otimes_{R[t]} \mathcal{E}_{\check{F}}$. If $m(X_j) = \sum_{h=0}^{r-1} m_{hj}X_h$, $m_{hj} \in R[t]$, then $\check{m}(Y_h) = \sum_{j=0}^{r-1} m_{hj}Y_j$. Clearly \check{m} defines an isogeny $\check{M} : \check{F} \to \check{E}$. We will show \check{M} has the required property.

Fix a non-zero $a \in A$, and let $Z_a = \sum X_{ij} \otimes Y_{ij}$ be the element of $\mathcal{E}_{aE} \otimes_R \mathcal{E}_{a\check{E}}$ and $\mathcal{E}_{aF} \otimes_R \mathcal{E}_{a\check{F}}$ as in the proof of (5.1), (iii) (we use again the symbol Z_a in common for E and F). Then the equality (5.4.1) is equivalent to the equality

(5.4.2)
$$(1 \otimes \check{m})(Z_a) = (m \otimes 1)(Z_a)$$
 in $\mathcal{E}_{aE} \otimes_R \mathcal{E}_{a\check{F}}$.

The uniqueness of \check{M} follows from this equality, because it determines $\check{m}(Y_i) \pmod{a\mathcal{E}_{\check{F}}}$ for all non-zero $a \in A$.

Let us prove the equality (5.4.2). Recall that $X_{ij} = t^i X_j$ (= abbreviation of $\psi_{ti}(X_j)$) and $Y_{ij} = b_i Y_j$ (= abbreviation of $\check{\psi}_{b_i}(Y_j)$). If $a = t^k + \sum_{l=0}^{k-1} g_l t^l$ with $g_l \in \mathbb{F}_q$, then by (5.1.1a), we see that $b_i = t^{k-1-i} + g_{k-1}t^{k-2-i} + \cdots + g_{i+1}$. Since *m* commutes with elements of *A*, we have

$$(m \otimes 1)(Z_a) = (m \otimes 1) \sum_{i,j} (t^i \otimes b_i)(X_j \otimes Y_j)$$
$$= \sum_{i,j} (t^i \otimes b_i) (\sum_{h=0}^{r-1} m_{hj} X_h) \otimes Y_j$$
$$= \sum_{h,j} (m_{hj} \otimes 1) (\sum_{i=0}^{k-1} t^i \otimes b_i) (X_h \otimes Y_j)$$

Similarly,

$$(1 \otimes \check{m})(Z_a) = \sum_{h,j} (1 \otimes m_{hj}) (\sum_{i=0}^{k-1} t^i \otimes b_i) (X_h \otimes Y_j).$$

So the coincidence of these two elements is implied by the annihilation of $X_h \otimes Y_j$ by

(5.4.3)
$$(m_{hj}\otimes 1 - 1\otimes m_{hj})\sum_{i=0}^{k-1} (t^i\otimes b_i)$$

Since the \otimes is over R and $m_{hj} \in R[t]$, it suffices to prove this for $m_{hj} = t^n$ for all $n \geq 1$. But $t^n \otimes 1 - 1 \otimes t^n$ has the factor $t \otimes 1 - 1 \otimes t$, so we may assume $m_{hj} = t$. In that case, a simple calculation shows that (5.4.3) equals $a \otimes 1 - 1 \otimes a$. This kills $X_h \otimes Y_j$ because we are now working on *a*-division points.

(ii) is clear from the uniqueness of M^* as shown in (ii-2) of (4.3).

(iii) Take any non-zero $a \in A$ such that $\operatorname{Ker}(M) \subset {}_{a}E$. Then there exists an isogeny $N : F \to E$ such that $N \circ M = a$ on E and $M \circ N = a$ on F. Restricting the dual maps to *a*-division points, we have $\operatorname{Ker}(\check{M}) = \operatorname{Im}(\check{N})$ and $\operatorname{Ker}(\check{N}) = \operatorname{Im}(\check{M})$. Applying the exact functor * to the exact sequence

$$0 \longrightarrow \operatorname{Ker}(M) \longrightarrow {}_{a}E \xrightarrow{M} {}_{a}F ,$$

we find the sequence

$$0 \longleftarrow \operatorname{Ker}(M)^* \longleftarrow {}_{a}E^* \xleftarrow{M^*} {}_{a}F^*$$

exact. Using (ii), we conclude

$$\operatorname{Ker}(M)^* \simeq {}_{a}E^*/\operatorname{Im}(M^*) = {}_{a}\check{E}/\operatorname{Im}(\check{M})$$
$$= {}_{a}\check{E}/\operatorname{Ker}(\check{N}) \simeq \operatorname{Im}(\check{N}) = \operatorname{Ker}(\check{M}). \Box$$

6. Duality for π -divisible groups

Let π be a monic prime element of $A = \mathbb{F}_q[t]$, and let G be a π -divisible group over an A-scheme S of hight h. Thus G is an inductive system $(G_n, i_n)_{n\geq 0}$ of finite v-modules G_n over S with transition maps $i_n : G_n \to G_{n+1}$ such that, for all $n \geq 0$,

(1) G_n is killed by π^n , and of rank $|\pi|^{nh} = q^{nh \cdot \deg(\pi)}$; and

(2) the sequence

$$0 \longrightarrow G_n \xrightarrow{i_n} G_{n+1} \xrightarrow{\pi^n} G_{n+1}$$

is exact.

An anti-equivalent definition can be stated in terms of v-sheaves; we call a projective system $\mathcal{E} = (\mathcal{E}_n, p_n)_{n \geq 0}$ of v-sheaves a π -adic v-sheaf on S of hight h if, for all $n \geq 0$,

(1) \mathcal{E}_n is killed by π^n , and of rank $nh \cdot \deg(\pi)$; and

(2) the sequence

$$\mathcal{E}_{n+1} \xrightarrow{\pi^n} \mathcal{E}_{n+1} \xrightarrow{p_n} \mathcal{E}_n \longrightarrow 0$$

is exact.

It is clear that the category of π -divisible groups over S is anti-equivalent to the category of π -adic v-sheaves on S (cf. Proposition (3.3)).

The dual $G^* = (G_n^*, i_n^*)_{n\geq 0}$ of G is defined as follows: G_n^* is the dual of G_n in the sense of §4, and the transition map $i_n^* : G_n^* \to G_{n+1}^*$ is the dual morphism of the surjective morphism $\pi : G_{n+1} \to G_n$. It is clear that G^* is a π -divisible group and has the same hight as G.

Assume now that S is integral and, for all $n \ge 0$, G_n is étale over the generic point of S. Let K^{sep} be a separable closure of the function field K of S. Define two Galois modules $\Phi_{\pi}(G)$ and $T_{\pi}(G)$ as usual:

$$\Phi_{\pi}(G) := \varinjlim_{n} G_{n}(K^{\operatorname{sep}}),$$
$$T_{\pi}(G) := \varinjlim_{n} G_{n}(K^{\operatorname{sep}}),$$

where the transition maps are those induced by i_n and π respectively. If A_{π} denotes the π -adic completion of A, and F_{π} denotes the fraction field of A_{π} , then $\Phi_{\pi}(G)$ is a divisible A_{π} -module, and $T_{\pi}(G) = \operatorname{Hom}_{A_{\pi}}(F_{\pi}/A_{\pi}, \Phi_{\pi}(G))$ is a free A_{π} -module of rank h. Write C_n for the kernel of π^n on the Carlitz module C. Noticing the compatibility ((4.3), (ii-2)), and passing to the limit as $n \to \infty$ of the pairing ((4.3), (ii-3)): $G_n(K^{\operatorname{sep}}) \times G_n^*(K^{\operatorname{sep}}) \to C_n(K^{\operatorname{sep}})$, inductively with G_n and C_n and projectively with G_n^* , we obtain:

PROPOSITION (6.1). There exist canonical isomorphisms of Galois modules:

$$T_{\pi}(G^*) \simeq \operatorname{Hom}_{A_{\pi}}(\Phi_{\pi}(G), \Phi_{\pi}(C))$$

$$\simeq \operatorname{Hom}_{A_{\pi}}(T_{\pi}(G), T_{\pi}(C)).$$

Assume now that S = Spec R, where R is a complete noetherian local A-algebra such that the structure morphism $\alpha : A \to R$ is injective and $\alpha(\pi)$ is in the maximal ideal of R. As was shown in (1.4) of [6], the category of connected π -divisible groups over R is equivalent to the category of divisible formal A_{π} -modules over R. The dimension of a π -divisible group G over R is defined to be the dimension of the formal A_{π} -module corresponding to the maximal connected sub- π -divisible group G^0 of G. The following proposition is proved in the same way as Proposition 3 of [7], using Proposition (4.7).

PROPOSITION (6.2). Let d and d^{*} be the dimensions of G and its dual G^* respectively. Then we have $d + d^* = h$, the hight of G and G^* .

References

- [1] Anderson, G. W., *t*-motives, Duke math. J. **53** (1986), 457–502.
- [2] Anderson, G. W. and D. S. Thakur, Tensor powers of the Carlitz module and zeta values, Ann. of Math. 132 (1990), 159–191.
- [3] Drinfeld, V. G., Moduli variety of F-sheaves, Funktsional'nyi Analiz i Ego Prilozheniya 21 (1987), 23–41.
- [4] Hamahata, Y., Tensor products of Drinfeld modules and v-adic representations, Manuscripta Math. 79 (1993), 307–327.
- [5] Hayes, D., Explicit class field theory for rational function fields, Trans. A.M.S. 189 (1974), 77–91.
- [6] Taguchi, Y., Semi-simplicity of the Galois representations attached to Drinfeld modules over fields of "infinite characteristics", J. of Number Theory 44 (1993), 292–314.
- Tate, J., p-divisible groups, in: Proceedings of a conference on local fields, Driebergen, 1966, Springer-Verlag, Berlin-Heidelberg-New York, 1967, 158– 183.

(Received November 24, 1992) (Revised August 4, 1995)

> Tokyo Metropolitan University Hachioji, Tokyo, 192–03 JAPAN taguchi@math.metro-u.ac.jp