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Gorenstein quotient singularities of

monomial type in dimension three

By Yukari Ito

Abstract. In this paper we give an explicit description of the con-
struction of 3-dimensional smooth varieties coming from a crepant reso-
lution of the underlying spaces of quotient singularities C3/G, which are
defined by certain monomial type finite subgroups G of SL(3,C). More-
over, we prove that the topological Euler number of these varieties equals
the number of conjugacy classes of the corresponding acting group. The
latter constitutes the verification of a part of the physicist’s conjecture
concerning “the orbifold Euler characteristics”.

§1. Introduction

The purpose of this paper is to describe an algorithmic strategy for the

construction of crepant resolution of the underlying spaces of quotient sin-

gularities C3/G, with certain monomial type defining groups G ⊂ SL(3,C),

and to give a direct interpretation of their “physical Euler characteristic”

as the number of the conjugacy classes of G.

The present work contains the results presented in an author’s talk,

which was given at Research Institute for Mathematical Sciences of Kyoto

University on 13th May,1994, and can be basically regarded as the contin-

uation of her previous works [5] and [6].

The problem of the geometrical investigations of various topological

properties of 3-dimensional desingularized orbit spaces with trivial canoni-

cal sheaf was initially arisen in superstring theory (cf. [2],[3]). In particular,

it was turned out that, if we consider a smooth compact Kähler complex
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threefold M being equipped with an action of a finite group G, such that

M has a G-invariant holomorphic volume form, then the quotient space

M/G is provided with a physical orbifold theory whose Witten-index can

be computed to be:

χ(M,G) =
1

|G|
∑

gh=hg

χ(M 〈g,h〉).

The above summation runs over all the pairs of commuting elements of

G, and M 〈g,h〉 denotes the common fixed set of g and h.

In fact, χ(M,G) corresponds to the definition of the “orbifold Euler

characteristic” of this theory (see [2], p.684). Direct arithmetical check-

ing for several examples, like those of suitable discrete group actions on

3-dimensional tori, showed that one should expect χ(M,G) to be the usual

Euler characteristic of an appropriate desingularization of M/G. More pre-

cisely we formulate the following:

Conjecture I. (global version [2],[3])

If ωM/G � OM/G, then there exists a resolution of singularities M̃/G of

M/G such that ω
M̃/G

� O
M̃/G

and

χ(M̃/G) = χ(M,G).

Since G is finite, this conjecture follows from its local version, if one takes

into account the natural stratification of the quotient space M/G being

determined by the orbit types, as well as the additive and multiplicative

properties of the topological Euler characteristic:

Conjecture II. (local version)

Let G ⊂ SL(3,C) be a finite group. Then there exists a resolution of

singularities σ : X̃ −→ C3/G with ω
X̃

� O
X̃

and

χ(X̃) = �{conjugacy classes of G}.
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From the viewpoint of algebraic geometry, the above conjecture says,

in particular, that the minimal model of C3/G is expected to be smooth

(cf.[10]). Moreover, it gives an enumerative characterization of a “McKay

Correspondence” for dimension 3. (For more general discussion on this

correspondence and further intrinsic group-theoretical and cohomological

properties of X̃, the reader is referred to [7].)

Conjecture II was proved for abelian groups by Roan ([10]), and inde-

pendently by Markushevich, Olshanetsky and Perelomov ([9]) by using the

toric method. It was also proved for 5 other groups, for which X’s can be ex-

pressed as hypersurfaces in C4: (i) for WA3
+,WB3

+,WC3
+, where WX+

denotes the positive determinant part of the Weyl group WX of a root sys-

tem X, by Bertin and Markushevich ([1]), (ii) for H168, by Markushevich

([8]), and (iii) for the icosahedral group I60, by Roan ([12]). Recently the

author proved Conjecture II for trihedral groups [5,6]:

Definition. A trihedral group is defined to be a finite group of the

form G = 〈A, T 〉 ⊂ SL(3,C), where A ⊂ SL(3,C) is a finite group gener-

ated by diagonal matrices and

T =

 0 1 0

0 0 1

1 0 0

 .

Definition. Quotient singularities being defined by trihedral groups

will be called trihedral singularities.

Definition. A resolution of singularities f : Y −→ X of a normal

variety X, where KX is Q-Cartier, is called crepant if KY = f∗KX .

Theorem 1.1[5,6].

Let X = C3/G be a quotient space by a trihedral group G. Then there

exists a crepant resolution of singularities

f : X̃ −→ X,

and

χ(X̃) = �{conjugacy classes of G}.
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Notation. For a diagonal matrix g = diag(exp(2πia/r), exp(2πib/r),

exp(2πic/r)) ∈ SL(3,C), we use the abbreviation g = 1
r (a, b, c). If g belong

to SL(3,C), then we have 0 ≤ a, b, c ≤ r and a + b + c = 0, 1 or 2.

Theorem 1.2 (Main Theorem).

The conjecture II holds true for the group of the following types:

(1) G1 = 〈A,S〉
(2) G2 = 〈A,A′, S〉
(3) G3 = 〈A,S, T 〉 (r �≡ 0(mod 3))

(4) G4 = 〈G3, C〉
(5) G5 = 〈C, S〉

where A := 1
r (0, 1,−1), A′ := 1

r (1,−1, 0), C := 1
3(1, 1, 1) and

S :=

−1 0 0

0 0 −1

0 −1 0

 .

Remark 1.3.

(1) Obviously, these singularities are different from the trihedral ones.

The defining groups of them belong, in fact, to that of type (B)

and (D) of the “big classification table” of finite G’s in SL(3,C) (cf.

[13]). Nevertheless, they are all monomial and solvable, and there-

fore the desired crepant resolutions of the corresponding quotient

singularities can be constructed and treated by making use of the

method which was applied in the trihedral case (cf. [5], [6]), i.e., by

dividing by normal subgroups of G, by extending (in an appropriate

way) the action of the so arising quotient groups on the toroidally

resolved parts and, finally, by resolving the new singularities coming

from the new fixed loci by means of suitable crepant morphisms.

(2) We should mention here, that our proof of Theorem 1.2. remains

valid, even if we replace the group 〈H〉 by an arbitrary finite abelian

subgroup of SL(3,C).

(3) Throughout §2-§5, G′ will denote the abelian subgroup of G which

is generated by the diagonal matrices within G. (Note that G′ is

a normal subgroup of G for any G among those being given in

formulation of Theorem 1.2.)
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The rest of this paper is devoted to the proof of the statements of the

Main Theorem. The proofs for the groups of types (1) and (2) are given in

sections 2 and 3. In sections 4 and 5 we deal with the remaining types (3),

(4) and (5) by using our Theorem 1.1 and the results of §3. We give some

examples in the last section.

Remark. After having finished this paper, we received a new preprint

of Prof. S.-S. Roan([14]) which deals with the same problem. Roan’s re-

sults also cover all the “remaining” groups of classes (B) and (D) of the (up

to conjugation) classification table of finite subgroups of SL(3,C) (cf.[13]).

Combining his and our results with those of [1], [5], [6], [8], [9], [11] and

[12], one obtains the verification of Conjecture II (and subsequently that of

Conjecture I) in all the possible cases. For “finer” versions of this corre-

spondence of “McKay type” we refer to the recent preprint [7].

§2. Proof for acting groups of type (1)

Proposition 2.1.

Let X = C3/G, and Y = C3/G′. We can construct a “two-storey desin-

gularization diagram”:

X̃�τ

Ỹ
µ̃−−−→ Ỹ /Z2�π

�π̃

C3 −−−→ C3/G′ = Y
µ−−−→ C3/G = X

where π is a resolution of the singularities of Y , π̃ the induced morphism,

τ a resolution of the singularities by Z2, and τ ◦ π̃ is a crepant resolution

of the singularities of X.

Proof. Let us first recall the method of how one constructs the toric

resolution of Y = C3/G′ (cf. [6], [9], [11]).

Let R3 be the 3-dimensional real vector space, {ei|i = 1, 2, 3} its standard

base, L the lattice generated by e1, e2 and e3, N := L +
∑

Zv, where the
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summation runs over all the elements v = 1
r (a, b, c) ∈ G′, and

σ :=

{
3∑

i=1

xie
i ∈ R3, xi ≥ 0,∀i, 1 ≤ i ≤ 3

}

the naturally defined rational convex polyhedral cone in NR = N ⊗Z R.

The corresponding affine torus embedding Xσ is defined as Spec(C[σ̌∩M ]),

where M is the dual lattice of N and σ̌ the dual cone of σ in MR defined

as σ̌ := {ξ ∈ MR|ξ(x) ≥ 0,∀x ∈ σ}.
We define:∆ := the simplex in NR

=

{
3∑

i=1

xie
i ;xi ≥ 0,

3∑
i=1

xi = 1

}
,

t : NR −→ R
3∑

i=1

xie
i �−→

3∑
i=1

xi

and

Φ :=

{
1

r
(a, b, c) ∈ G′ | a + b + c = r

}
.

Lemma 2.2.

Y = C3/G′ corresponds to the toric variety which is induced by the cone

σ within the lattice N = L +
∑

v∈Φ Zv.

Proof. Since Y = Spec(C[x, y, z]G
′
), xiyjzk is G′-invariant if and only

if αi + βj + γk ∈ Z for all (α, β, γ) ∈ G′. �

Remark 2.3. Let 1
r (a, b, c) �= (0, 0, 0) be an element of G′. We have to

make a distinction between two cases:

(1) abc �= 0

(2) abc = 0

We denote by G1 (resp. G2) the set of the elements of G′ fulfilling the

property (1) (resp. the property (2)). Note that G′\{e} = G1 �G2. Corre-

spondingly, we denote by Φ1 (resp. by Φ2) the set of lattice points from N

satisfying (1) (resp. (2)). Φ admits the following splitting: Φ = Φ1 � Φ2.
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Moreover, for i = 1, 2, we define two functions

λi : Gi −→ Φi,

where λ1 maps g = 1
r (a, b, c) (a+ b+ c = r) and g−1 = 1

r (r− a, r− b, r− c)

to the lattice point 1
r (a, b, c), and λ2 maps g = 1

r (a, b, c) to the lattice point
1
r (a, b, c).

{G1} 2:1−→ {Φ1} , {G2} 1:1−→ {Φ2} .

Obviously, there exists a correspondence between the sets of elements

of G′\{e} and Φ, which is 2:1 on G1 and 1:1 on G2. The elements of Φ

correspond to the exceptional (prime) divisors of the toric resolution given

below.

Claim I. There exists a unique toric resolution of Y for which Z2 acts

symmetrically on the exceptional divisors.

Proof. We can construct a unique simplicial decomposition S of the

triangle determined by e1, e2, e3 with Φ ∪
3⋃

i=1
{ei} as the set of its vertices.

(cf.[6], [9], [11]). �

Claim II. If Ỹ := XS is the corresponding torus embedding, then XS

is non-singular.

Proof. It is sufficient to show that the σ(s) are basic. We choose three

w1, w2, w3 ∈ Φ ∪
3⋃

i=1
{ei} which are linearly independent over R. Assume

that the simplex {
3∑

i=1

αiw
i | αi ≥ 0,

3∑
i=1

αi = 1

}

intersects Φ ∪
3⋃

i=1
{ei} only at {wi}3

i=1.

The lattice N0, which is generated by {wi}3
i=1, is a sublattice of N . If we

assume that N �= N0, then there exists β = β1w
1 + β2w

2 + β3w
3 ∈ N\N0

(0 ≤ βi < 1, βi ∈ R and the strict inequality holds at least for one i,

1 ≤ i ≤ 3. )
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Since t(β) =
3∑

i=1
βit(w

i) =
3∑

i=1
βi, 0 <

3∑
i=1

βi < 3 and t(N) ∈ Z, we

get either t(β) = 1 or 2. If t(β) = 2, then we can replace β by β′ =∑3
i=1(1 − βi)w

i. So we can always assume that t(β) = 1.

Now, there exists an element β in {
∑

αiw
i | αi ≥ 0,

∑
αi = 1} ∩ (N −

N0), which is contained in ∆ ∩N . Since

N =

{⋃
v∈Φ

(v ⊕ L)

}⋃
L,

∆ ∩ N = Φ ∪
3⋃

i=1
{ei}. From our assumption, we conclude that β = wi for

some i, which contradicts β �∈ N0. Therefore N = N0. �

We obtain a crepant resolution π = πS : Ỹ = XS −→ C3/G′ = Y ,

because XS is non-singular and Gorenstein.

Definition. G′ will be called of type (I) (resp. (II)), if |G′|=odd (resp.

even).

Claim III. Let F be the fixed locus on Ỹ under the natural action of

Z2
∼= G/G′, and E be the set of the exceptional divisors of Ỹ −→ Y . Then

F0 := F ∩ E =

{
1 point, if G′ is type of (I)

2 points, if G′ is type of (II).

Proof. Considering the dual graph of the exceptional divisors occur-

ring by the toric resolution and making use of Remark 2.3, we can identify

the two exceptional divisors by the action of Z2 away from the “central com-

ponent,” i.e., the component in the center of the exceptional locus. There

are 2 possibilities for this central component;

For G′ of type (I): It consists of one point.

For G′ of type (II): It consists of a divisor which is isomorphic to P1.

If (y : z) is a coordinate of this P1, then the action of Z2 is described by:

(y : z) �−→ (−z : −y).
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There are two fixed points with coordinates (1 : 1) and (1 : −1) respec-

tively. �

Furthermore, the Z2-action in a neighbourhood U of a fixed point is ana-

lytically isomorphic to some linear action. (In the forthcoming statements,

and up to a concrete choice of local coordinates, we shall write C3 instead

of U .)

Now, we consider the resolution of the singularity of C3 by the group

Z2.

F0 consists of 1 or 2 points, and F = F0 ∪ C ′, where C ′ is the strict

transform of the fixed locus C in Y under the action of Z2.

Claim IV. If Z := C3/Z2, then χ(Z̃) = χ(C3,Z2) = 2.

Proof. There is a representation of Z2 in SL(3,C):

S′ =

 1 0 0

0 −1 0

0 0 −1


The quotient singularities being created by S′ are of the form A1×{x−axis}.
They are not isolated and therefore the corresponding exceptional divisor

of the resolution is nothing but a P1-bundle over the x-axis. �

In this way we can construct a crepant desingularization τ : X̃ −→ Ỹ /Z2

by resolving the points of F0. To complete the proof of Proposition 2.1,

let π̃ : Ỹ /Z2 −→ X denote the corresponding quotient map.

Claim V. The resolution τ ◦ π̃ : X̃ −→ X is a crepant resolution of

the quotient X = C3/G.

Proof. Obvious from the fact that both τ and π are crepant mor-

phisms. �

Lemma 2.4.

Let X = C3/〈G′, S〉, and f : X̃ −→ X the crepant resolution as above.

Then the Euler number of X̃ is given by

χ(X̃) =
1

2
(|G′| − k) + 2k
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where

k :=

{
1, if G′ is of type (I)

2, if G′ is of type (II).

Proof. Since G′ is an abelian group, we have for a crepant toric res-

olution

π : Ỹ −→ Y = C3/G′,

with χ(Ỹ ) = |G′| (cf. [9],[11]).

By the action of Z2, the number of fixed points in the exceptional divisor

by σ is equal to k. Hence,

χ(Ỹ /Z2) =
1

2
(|G′| − k) + k.

By the resolution of the fixed loci, the Euler characteristic of each excep-

tional locus is 2 (by Claim IV).

Therefore,

χ(X̃) =
1

2
(|G′| − k) + 2k. �

Theorem 2.5.

χ(X̃) = �{conjugacy classes of G}.

Proof.

(1) Case (I) : |G′| = 2m + 1, (0 < m ∈ Z)

For a nontrivial element g ∈ G′, there are two conjugate ele-

ments: g itself and SgS. There are m couples of this type. On the

other hand, there exist 2 additional conjugacy classes of G, namely

[e] and [S]. Therefore, there are altogether m+ 2 conjugacy classes

in G.

Thus,

χ(X̃) =
1

2
(|G′| − 1) + 2

= m + 2

= �{ conjugacy classes of G}.
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(2) Case (II) : |G′| = 2m, (0 < m ∈ Z)

There are 2 elements in the center of G′: e, a = 1
2(0, 1, 1). The

remaining 2m− 2 elements in G′ are divided into m− 1 conjugacy

classes of G as in (1). Finally, there are 4 more conjugacy classes,

namely: e, a, [S], [aS]. Therefore, there are altogether m + 3 conju-

gacy classes in G.

Consequently,

χ(X̃) =
1

2
(|G′| − 2) + 4

= m + 3

= �{ conjugacy classes of G}. �

§3. Proof for acting groups of type (2)

In this case, we proceed similarly as for the type (1). We first check the

corresponding toric resolution:

Proposition 3.1. There exists a toric resolution of Y for which Z2

acts symmetrically on the exceptional divisors.

Proof. We show how we can construct a simplicial decomposition

{σ(s)}s∈S of the simplex ∆ which is Z2-invariant and whose set of vertices

is exactly Φ ∪ {ei}3
i=1.

Let us consider the distance d between 1
r (a, b, c) and 1

2(a, h, h), (h :=

(b + c)/2), given by

d

(
1

r
(a, b, c),

1

2
(a, h, h)

)
=

∣∣∣∣ br − 1

h

∣∣∣∣ +

∣∣∣∣ cr − 1

h

∣∣∣∣ .
The proof will be completed after the following steps:

(1) Find those lattice points P = 1
r (a, b, c), whose distance d is the

minimum among the points for each a in Φ in the domain D :=

{1/2 ≥ y}.
(2) Draw a triangle whose vertices are P and P ′ = 1

r (a, c, b) symmetri-

cally.
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(3) Decompose D whose vertices are all the P , P ′, (1, 0, 0) and (0, 0, 1),

into simplices by using the vertices in Φ. Call this decomposition

S1.

(4) By the action of Z2, we obtain an S2 for the other triangle. Therefore

we obtain a “symmetric” resolution. �

Next, we consider the singularities of Ỹ /Z2:

Proposition 3.2. Let F be the fixed locus on Ỹ under the action of

Z2, and E be the set of the exceptional divisors of Ỹ −→ Y . Then

F0 := F ∩ E = {r points }

Proof. Considering the dual graph of the exceptional divisors arising

by the toric resolution and using Remark 2.3, we can identify the two ex-

ceptional divisors by the action of Z2 away from the central components

which lie near the central part ( from (1,0,0) to 1
2(0, 1, 1)). Then there are

2 possibilities for the central component locally;

For G′ of type (I): It consists of one point.

For G′ of type (II): It consists of a divisor which is isomorphic to P1.

Analogously to the Claim III in section 2, there are n points in F0.

Furthermore, the Z2-action in a neighbourhood of a fixed point is ana-

lytically isomorphic to some linear action. �

Lemma 3.3.

Let X := C3/〈G′, S〉, and f : X̃ −→ X be the crepant resolution as

above. Then the Euler number of X̃ is given by

χ(X̃) =
1

2
(|G′| − r) + 2r

Theorem 3.4.

χ(X̃) = �{conjugacy classes of G}.
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Proof. |G′| = r2. There are r elements of type 1
r (ai, hi, hi) =: Ai.

For another nontrivial element g ∈ G′, there are two conjugate elements: g

and SgS. There exist r2−r
2 couples of this type and r additional conjugacy

classes, namely: [S] and [AiS]. Therefore, there are altogether r2−r
2 + 2r

conjugacy classes in G.

Thus

χ(X̃) = �{ conjugacy classes of G}. �

§4. Proof for acting groups of type (3)

In this section, we assume that r ≡ 1 or 2 (mod 3).

Proposition 4.1.

Let X = C3/G, and Y = C3/G′. Then we can construct the following

diagram:

X̃�τ

Ỹ
µ̃−−−→ Ỹ /S3�π

�π̃

C3 −−−→ C3/G′ = Y
µ−−−→ C3/G = X

where π is a resolution of the singularities of Y , π̃ the induced morphism, τ

a resolution of the singularities created by S3, and τ ◦ π̃ a crepant resolution

of the singularities of X.

(As in §2,3 we have:)

Claim I. There exists a toric resolution of Y with S3 acting symmet-

rically on the corresponding exceptional divisors.

Proof. We construct a simplicial decomposition satisfying the condi-

tions of trihedral case [5] and of Proposition 3.1 in §3. �

Claim II. Let F be the fixed locus on Ỹ under the action of S3, and

E be the exceptional set of divisors of Ỹ −→ Y . Then

F0 := F ∩ E = { 3r-2 points },
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where one of them is due to the action of S3, and all the others to that of

Z2.

Proof. Considering the dual graph of the exceptional divisors occur-

ring by the toric resolution and using away from Remark 2.3, we can identify

the two exceptional divisors by the action of Z2 except the “central com-

ponent,” i.e., the component in the center of the exceptional locus. This

central component is a point, which is fixed by the action of S3. �

Claim III. If Z := C3/S3, then χ(Z̃) = χ(C3,S3) = 3.

Proof. There is an equivalent representation of T in SL(3,C):

T ′ =

 1 0 0

0 ω 0

0 0 ω2


The quotient singularities being created by 〈S, T ′〉 are the same as in the

case of Theorem 1.2 (2). �

Lemma 4.2.

Let X = C3/ < G′, S >, and f : X̃ −→ X the crepant resolution as

above. Then the Euler number of X̃ is given by

χ(X̃) =
|G′| − 3(r − 1) − 1

6
+ 3 + 2(r − 1) (|G′| = r2)

Proof. Since G′ is an abelian group, we have for a toric crepant res-

olution

π : Ỹ −→ Y = C3/G′,

and χ(Ỹ ) = |G′| (cf.[9],[11]).

By the action of S3, the number of fixed points in the exceptional divisor

by σ is equal to r, hence

χ(Ỹ /S3) =
|G′| − 3(r − 1) − 1

6
+ r.
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By the resolution of the fixed loci, Euler characteristic of the exceptional

locus is 2 or 3. (see Claim IV of §2 and Claim III of §4)

Therefore,

χ(X̃) =
|G′| − 3(r − 1) − 1

6
+ 2(r − 1) + 3. �

Theorem 4.3.

χ(X̃) = �{conjugacy classes of G}.

Proof. For the 3(r-1) elements of type 1
r (ai, hi, hi) =: Ai, there are

three conjugate elements: Ai, TAiT
−1 and T−1AiT . For the remaining

nontrivial elements g, there are six conjugate elements: g, TgT−1, T−1gT ,

SgS, STgT−1S and ST−1gTS. In addition, there are r−1 conjugacy classes

of type [AiS] . Finally, there are 3 more conjugacy classes: [e], [S] and [T ].

So the number of the conjugacy classes is:

(r − 1) +
1

6
{r2 − 3(r − 1) − 1} + (r − 1) + 3.

Thus,

χ(X̃) = �{ conjugacy classes of G}. �

§5. Proof for acting groups of types (4) and (5)

Let now G be an acting group of type (4) or (5).

Proposition 5.1.

Let X = C3/G, and Y = C3/G′. Then we can again construct the

following diagram:

X̃�τ

Ỹ
µ̃−−−→ Ỹ /S3�π

�π̃

C3 −−−→ C3/G′ = Y
µ−−−→ C3/G = X
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where π is a resolution of the singularities of Y , π̃ the induced morphism, τ

a resolution of the singularities created by S3, and τ ◦ π̃ a crepant resolution

of the singularities of X.

There exists a toric resolution of Y with S3 acting symmetrically on the

exceptional divisors as in §4.

In the center of the triangle whose vertices are (1,0,0), (0,1,1) and (0,0,1),

there exists one P2 as a single exceptional component. For this reason, it is

sufficient to consider the case in which G′ = 〈1
3(1, 1, 1)〉.

Claim I. Let F be the fixed locus on Ỹ under the action of S3, and

E be the set of the exceptional divisors of Ỹ −→ Y . Then

F0 := F ∩ E = {3 points}.

Proof. Considering the dual graph of the exceptional divisors occur-

ring by the toric resolution, there is only one possibility for the central

component; it has to be a divisor which is isomorphic to P2. The number

of the fixed points under the action of S3 is three as in §4. Finally, the

S3-action in a neighbourhood of a fixed point is analytically isomorphic to

some linear action. �

Lemma 5.2.

Let X = C3/〈G′, T, S〉, and f : X̃ −→ X the crepant resolution as above.

Then the Euler number of X̃ equals

χ(X̃) = 9

Proof. For an abelian group G′, we have a toric resolution

π : Ỹ −→ Y = C3/G′,

and χ(Ỹ ) = |G′| = 3 (cf.[9],[11]).

By the action of S3, the number of fixed points in the exceptional divisor

by σ is three. Hence,

χ(Ỹ /A3) =
1

6
(|G′| − 3) + 3 = 3.
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By the resolution of the fixed loci, the Euler characteristic of each excep-

tional locus is 3 (by Claim III in §4).

Therefore,

χ(X̃) =
1

6
(|G′| − 3) + 3 × 3 = 9. �

Theorem 5.3.

χ(X̃) = �{conjugacy classes of G}.

Proof. There are nine conjugacy classes in G: the identity, 1
3(1, 1, 1),

1
3(2, 2, 2), S,13(1, 1, 1)S,13(2, 2, 2)S, T ,13(1, 1, 1)and 1

3(2, 2, 2). �

Before proceeding to the general case of type (4), we consider firstly the

type (5) of Theorem 1.2.

Theorem 5.4.

For G = G5, the conjecture II holds true.

Proof. In a similar manner as above we construct a crepant resolu-

tion:
X̃�τ

Ỹ
µ̃−−−→ Ỹ /Z2�π

�π̃

C3 −−−→ C3/〈C〉 = Y
µ−−−→ C3/G5 = X

There is an exceptional divisor which is isomorphic to P2 in Ỹ . Furthermore,

there exist three singularities in Ỹ /Z2, which become three P1-bundles in

X̃. The Euler number of X̃ is 6.

On the other hand, the conjugacy classes in G are also 6: id, C, C2, S,

CS and C2S. �

In general, we get the following result:

Theorem 5.5.
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Conjecture II is also true for acting groups G of type (4). In particular,

the desingularization space X̃ of X = C
3/G has Euler number

χ(X̃) =
1

2
(r2 − 3r + 2) + 6r + 3,

which equals the number of the conjugacy classes in G.

Proof. Obviously,

χ(Ỹ ) = 3r2.

There are 3+9(r-1) fixed points on the exceptional divisors in Ỹ , leading to

3+3(r-1) singularities on Ỹ /S3, which means that

χ(Ỹ /S3) =
1

6
{3r2 − 9(r − 1) − 3} + 3(r − 1) + 3

Then

χ(X̃) = 16{3r2 − 9(r − 1) − 3} + 2 × 3(r − 1) + 3 × 3,

and this number coincides with the number of conjugacy classes of G, be-

cause G4 = G3 �G3C �G3C
2. �

Hence, Main theorem (Theorem 1.2) is completely proved!

§6. Examples

In this section, we give some examples by drawing pictures, by means of

which one could visualize the toric-geometrical part of our construction.

Example 1. Firstly, we present a G of type (1)-(I). We take, for in-

stance, G = 〈1
5(0, 1, 4), S〉. Then we get a unique toric crepant resolution

Ỹ for the abelian normal subgroup G′ = 〈1
5(0, 1, 4)〉 of G as follows:

Fig. 1.1



Gorenstein quotient singularities 437

By the action of G/G′ ∼= Z2, Ỹ /Z2 has one singularity.

Fig. 1.2

Resolving it, we get X̃. We can calculate the Euler number by using the

following picture:

Fig. 1.3

We see that χ(X̃) = 4, which coincide with the number of the conjugacy

classes of G.

For the rest of the section, let us draw similar pictures for some other

cases.

Example 2. Let G = 〈1
4(0, 1, 3), S〉, whose type is (1)-(II). We can get

χ(X̃) = 5 from the pictures below.
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Fig. 2

Next example is one of most complicated in our construction.

Example 3. Let us consider G = 〈1
4(0, 1, 3), S, T 〉 which is of type (3)

with normal abelian subgroup G′ = 〈1
4(0, 1, 3), 1

4(1, 3, 0)〉 ∼= Z4 ⊕ Z4. Then

we have two possibilities for the toric crepant resolution of Y = C
3/G′ as

follows:

Fig. 3.1

In each of these cases, we find the Euler number of X̃ to be equal to 10.

We draw the corresponding picture only for the second of them here.



Gorenstein quotient singularities 439

Fig. 3.2
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