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Genuine solutions and formal
solutions with Gevrey type estimates of

nonlinear partial differential equations
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Dedicated to Professor Hikosaburo KOMATSU on his 60th birthday

Abstract. Let L(u) = L(z,0%;|a] < m) be a nonlinear partial
differential operator defined in a neighbourhood Q of z = 0 in C n+1,
where 2z = (29,2') € C x C"™. We consider a nonlinear partial differ-
ential equation L(u) = g(z), which has a formal solution u(z) of the
form

+oo
a(z) = 25> un(2)zg")  wo(2) £0,
n=0
wherege Rand 0 =qp < q1 < ... < gn < ... — 400, with

lun(2)] < ABq"F(i—" +1) >0,
*

which we often call the Gevrey type estimate. It is the main purpose to
show under some conditions that there exists a genuine solution ug, (2)
with the asymptotic expansion ug, (2) ~ @(z) as zp — 0 in some sector
S1. We apply the results to formal solutions constructed in Ouchi [7].

0. Contents

We summarize what we need and resluts in §1. We give notations and
definitions and introduce several notions for nonlinear partial differential
operators L(u). In particular we define for L(u) and r € R the characteris-
tic polygon X7 (r). Other notions related to them, the characteristic indices
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376 Sunao OUCHI

etc., are also introduced and investigated. Secondly we treat a nonlinear
equation L(u) = g(z) with g(z) ~ 0 as z9p — 0 and consider the existence
of u(z) ~ 0 as zp — 0 (Theorems 1.8 and 1.9). Thirdly we consider a non-
linear equation L(u) = g(z) stated in ABSTRACT and give a result of the
existence of genuine solutions (Theorem 1.12) and apply it to formal solu-
tions constructed in [7] (Theorems 1.16 and 1.17). The proofs of Theorems
and Propositions stated in §1 are mainly given in §3 - §5.

In §2 we prepare majorant functions and function spaces and give their
properties for our purposes.

In §3 and §4 we construct ug/(z) ~ 0 in a sector S’ satisfying (L(ug/) —
g(z)) ~ 0 with some exponential order, and show Theorems 1.8 and 1.9.

In §5 we give the proofs of Propositions and Theorems which are not yet
shown in the preceding sections.

1. Notations, definitions and theorems

Firstly we give usual notations and definitions: C means the set of
the complex numbers. z = (20, 21,...,2n) = (20,21,2”) = (20,2') is the
coordinate of C™*1. |z| = max{|z|; 0 < i < n} and @ = (0p, 01, ... ,0n)
= (0o, ), 0; = 0/0z;. R means the set of the real numbers and R = {z €
R;x > 0}. The set of all nonnegative integers (resp. integers) is denoted
by N (resp. Z). For multi-index a = (ag, a1, ... ,a,) = (o, &), |a| =
aptar+...+a, =ap+ ||, 0% = 68‘0(9“/ = 88‘06’0/ =1, 0/ and z* =
250 21" ... 28~ We introduce notations for products of multi-indices. Let
A€ (N5 where A = (A, Ag,...,As) and A; = (A0, A)) € N x N™.
Then we define s4 = s, ka = max{|A4;|; 1 <i<sa}, k) =max{|A};1<
i < sal, |Al=2204 1A, and 14 = Y54 |AL. Let A, B € (N™h)s. If
some rearrangement of the components A;’s coincides with B, we identify A
with B. We denote by N'¢ the set of all different elements of U4_, (N™*1)s.
For a real number a, [a] means the integral part of a. Let wy = {20; |20] < R}
and w = {2/ € C"; |Z/| < R}. Let S = {29 # 0; ¢_ < argzy < ¢4} be
a sector in C. Put Q = wg x w and Qg = (S Nwp) X w. Let §" = {z9 #
0; ¢ < argzy < ¢} and @ = {z € C"™;|z| < R'}. Then &’ cC S
(y CC Qg) means ¢_ < ¢ < ¢/, < ¢, and R' < R. We often use
the notation S(¢—,d4) = {z20; ¢— < argzp < ¢4,0 < |z0| < r} and
S(0) = S(—6,0) (6 > 0), where r > 0 is small if necessary. O(Q2) (O(f2s))
is the set of all holomorhic functions on Q (resp. {2g).
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For the simplicity we often denote different constants by the same nota-
tions A, B, B’, etc., if confusions will not occur.

DEFINITION 1.1. (1). F is the set of all formal series f(z) =
0 fa(2)20r, fa(2) € O(w), where w depends on f(z) and 79 < 71 <
e <rp <— +00.
(2). For f(z) € F, min{ry; fn(z') # 0} is said to be the formal valuation

of f(2). If f,(2') =0 for all n € N, then its formal valuation is 4oc.
DEerFINITION 1.2. (1). Let f(2) € O(Qg). f(z) is said to have the

asymptotic expansion f(z) ~ ¥ f,(2')z™, if the following holds: for
any sector Sop (Sp CC S) and any N,

N-1
(1.1) 1£(2) = > fa(2)25"| < Cnlzo™  as 20 — 0 in Sp.
n=0

Asy(Qg) is the totality of f(z) € O(Qg) which has the asymptotic expansion
such as (1.1)
(2). Let v > 0. Asy{g}(ﬂs) is the totality of f(z) € O(fg) such that for
any So CC S

(1.2) |f(2)] < Coexp(—colz0|") (co > 0),
where ¢y depends on Sj.

We treat a nonlinear partial differential operator with order m:

(1.3) L(u) := L(z,0%;|a| <m)
M s ,
=3 3 vale) [] 9 (2000) 40w,
s=1 {A; ss=s} i=1

The coefficients ba(z)’s are in F or Asy(Q2g). If ba(z) € F, L(u) is said to
be formal. In any case the formal valuation of ba(z) is 0 if ba(z) # 0. For
A with by = 0 we put e4 = +00. We suppose that L(u) is a polynomial
of {0%u; |a] < m} with degree M. But some definitions and results will be
hold for operators of non polynomial type.
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L(z,0) = Z ngbA(z)alA;(zo(?O)AivOu,
(14) {A; sa=1}
M(u) = L(z,0%; |a| < m) — L(z,0)u.

L(z,0) is the linear part of L(u) and M (u) is the nonlinear part of L(u).
We write often £(z,0) in the following form:

m k
(1.5) (2,0) = Z Z zS('“’”bk,z(z, ') (2000)F 7,

k=0 1=0

where by ;(2,&’) is homogeneous with order ! with respect to & and £(z,0)
is an operator with order < m.

We proceed to define the characteristic polygon for £(z,0) and L(u).
Put

L6 ex,c = min{e(k,l); 0 <1<k}

(1.6) lpc = max{l;e(k,l) = egr}

and for r € R

(1.7) er.r(r) = min{sar +ea; A € NM with ks = k}.

Define II(a,b) = {(z,y) € R*x < a, y > b} and TI(a, +00) = (). Put
X7 (r) = the convex hull of U (II(k,er (1)) and ¥} = the convexr hull
of Ul II(k,ex,c). The boundary of X7 (r) (X7}) consists of a vertical half
line 3¢ ; () (resp. X3 ), a horizontal half line X7 | (r) (resp. X7 /) and
segments X7, (1), 1 <i< pr— 1 (resp. X7, 1 <i < p—1). The set of
vertices of E,z(’l“) (X7}) consists of p, (resp. p) points (ki 1(7), ek, , (1)), 0 <
kpr—l,L(r) < kpr—Q,L(r) < ... < kl,L(T) < k‘o,L(T) =1m (T@Sp. (k@g,ekiﬁ),
0<kpirc<kpor<..<ki<kor<m)(seeFigure1). Let ~; (r)
(74,2) be the slope of ¥; L( ) (resp. X 2). Then 0 =, 1(r) < Yp,—1,L(r) <

< y,L(r) < vo,0(r) = +00) (resp. 0 = vpr < Y1 < ... < Y1c <
Yo,c = +00).



Nonlinear partial differential equations 379

5,L(")
(m’ CM,L(r))
1.2(r)
(k1, €x,,.(7))
o (k,ex(r)) 2.L(r)
(k27 ekz,L(r))
/C/(,C,', ek.‘.L(r))
0 z,:.,-LL(")
E;r,L(T’ kp,-—Z’ ekp,.-z,b(r))
——t-0Tkp, -1, €k, (7))
Fig. 1. Characteristic polygon
Define for 1 <i<p
(1.8)  Li(2,0) = > 2EDby (2, 0) (2000)" 7,

(kvl); e(kvl):ek,l:
ek;_q,L—ek,c=ic(ki—1—k)

which is a linear operator corresponding to the segment X7 . and we often
denote L;(z,0) by L;(z, 2000, 9’).

DEFINITION 1.3. (1) X7 is called “the characteristic polygon” of linear
partial differential operator L£(z,0) and X7 (r) is called the characteristic
polygon with valuation r, shortly “r-characteristic polygon”, of L(u).

(2) i is called “the i-th characteristic index” of L£(z,0) and ~; c(r) is
called the i-th characteristic index of L(u) with respect to valuation r,
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shortly “the i-th r-characteristic index”. In particular v,—1 2 (Vp,—1,(7))
is called “the minimal irregularity” ( resp. “the minimal irregularity with
respect to valuation r” ) and denoted by Ymin,z ( r€SP. Ymin,z.(7) )-

It follows from the definition that the r-characteristic polygon X7 (r) of
the linear operator £(z,0) is equal to X7 + (0, 7).

REMARK 1.4. Characteristic polygons and characteristic indices for a
linear partial differential operator £(z,d) were defined in Ouchi [6] with
other useful notions. The definitions in [6] are slightly different from those
in this paper. But the difference is not essential. The characteristic indices
were denoted by o; in [6] and it holds that v; 0 = 0; — 1.

DEFINITION 1.5. (1) A nonlinear partial differential operator L(u)
with order m is said to be linearly nondegenerate, if its linear part £(z,0)
is also an operator with order m.

(2) If the r-characteristic polygon X3},(r) of M (u), which is the nonlinear
part of L(u) ( see (1.4)), is included in the interior of the r-characteristic
polygon of L£(z,0), then the nonlinear operator L(u) is said to have the
strongly linear part with respect to valuation r.

(3) If L(u) has the strongly linear part for any valuation r > p, then it is
said to have the strongly linear part with respect to valuation p,.

PROPOSITION 1.6. (1) Put R(u) = L(zju). Then X7 (r' +r) = X5(r")
for any ', Ri(z,2000,0") = zjLi(2,2000,0) for 1 < i < p—1 and
Rp(z,2000,0") = 25Lp(2,2000 + 1,0"). Moreover if L(u) has the strongly
linear part with respect to valuation r, then R(u) has the strongly linear
part with respect to valuation 0.

(2) L(u) is linearly nondegenerate if and only if there is a p such that it
has the strongly linear part with respect to valuation p4.

Let v(2) € F, v(z) = 3.2 v,(2)2)". Define a formal operator
(1.9) LY(u) := L(u+v) — L(v)
and its linear part is denoted by L"(z, d), which we call the linearization of

L(u) at w = v(z). Put

l
(1.10) v i(2) =0, vj(2) =) vn(2)zf" for 1€ N.
n=0
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We can also define LV~ such as (1.9) and £LN.

PROPOSITION 1.7.  Suppose that L¥(u) is linearly nondegenerate. Then
there is an No € N such that if N > Ng, ¥}, = Ezvjﬁv and ¥%.,(r) =
EZ’“}V (r) for any r. Moreover there is a p such that if N > Ny,

(1.11) 7o(r) = EZU]*V (r) =Xr(r) = 22”7\7 (r) for r>np.

The proofs of Propositions 1.6 and 1.7 are given in §5.
Now consider an equation

{Eq’} L(u) = g(z) € Asy{gi,c}(ﬁs),

where we assume p > 2 and 1 < i < p— 1. We try to find a solution u(z)
of {Eq”} with exponential decay. We suppose that the coefficients b4’s of
L(u) are in Asy(Q2g) and give conditions to state results.

CONDITION 0.  L(u) is linearly nondegenerate.
We introduce a condition for £;(z, )
CONDITION 1-{i}. The following holds for L;(z,0):

(1) lkFl,g > lk7£
for ke {k; k<ki—1, en,_\,c—erc="ic(kio1—Fk)},
(2) bkiﬂ,lki,l,ﬁ(O?é/) ié 0.

The following Theorem 1.8 is fundamental in this paper.

THEOREM 1.8.  Suppose that for L(u) Condition-0 and Condition-1-{i}
hold. Let S’ = S(¢_, 1) be a sector such that S’ CC S.

(1) If 2<i<p-—1, for any S" with 1 — ¢_ < w/vi_1, there is a
ug(2) € Asy{gw}(Qg,) such that

(1.12) L(us') = g(2) = gs:(2) € Asyg,_, (Ys).
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(2) If i =1, for any S" with ¢4 — ¢ < w/y1,c there is a solution
ug(2) € Asy2, () of {EqC}.
Here € is a neighbourhood of z = 0.

THEOREM 1.9. Suppose that Condition-0 and Condition-1-{i} hold for
all 1 <1i<i,. Consider

(1.13) L(u) =g(z) € Asy{gi*,ﬁ}(Qs).

Let S; = S(¢1,—, ¢1,+) be a sector with Sy CC S and ¢p14+ — d1,— < 7T/71.-
Then there is a solution ug, (z) € Asy{gi ﬁ}(le) of (1.13), where Q' is a
neighbourhood of z = 0. ’

Now we proceed to the main purpose of this paper, that is, the investiga-
tion of the relation between solutions of formal series and genuine solutions
of nonlinear partial differential equations. For this purpose Theorems 1.8
and 1.9 are available. Let us introduce function spaces.

DEFINITION 1.10. Let S be a finitely generated additive semi-group,
S={g;; ie N}, 0=qg<q1 <...<q <— +o0.
(1) Fg is the set of all f(z) € F such that f(z) ~ 320 fu(2')28".
(2) Asy{‘z}(ﬂs) (0 < kK < 400) is the set of all f(z) € O(2g) with
asymtotic expansion f(z) ~ 1% f,(2/)2d" in the following sense: for any
sector S’ (S' cC S)

N-1
(L14)  1f(z) = Y ful)28" < ABW |2 T(Y 1) for z€ S
n=0

K
If Kk =400 and S = N, then Asyﬁm}(ﬁs) is holomorphic in a neigh-

bourhood of z = 0. In the following of this section & means a finitely
generated additive semi-group, S = {¢;; i € N}. We have

PROPOSITION 1.11.  Let {fn(")} (n € N) be a sequence in O(w') with

(1.15) ()] < ABq"F(% +1) (0< k< +00).
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Let S := S(¢p—,d1) = {z0;0— < argzyp < ¢4, 0 < |z < ro} be a sector
with ¢+ —d_ < w/k and a small ro > 0. Then there is a f(z) € Asy‘{sm}(QS)
such that for any S’ CC S

N—-1
(L16)  If(2) = 3 fule)el| < AlB‘fN|zO\qNF(q?N +1) forzeS,
n=0

where A1 and By depend on S’.

The proof of Proposition 1.11 will be given in §5. Let

(1.17) L(u) := L(z,0%; |a] <m)
M SA
=320 >0 tbaa) [0  0%u),
s=1 {A; sp=s) i=1

where ba(z) € Asy{‘g}(Qs) (0 <k < +00), ba(z) ~ 320 ban(2)zd", and
its formal valuation is 0 if by(z) # 0. The representation of L(u) in (1.17)
is different from (1.3) in order to cite the results in Ouchi [7], which is not
essential.

Now consider

{Eq} L(u) =g(z) 2z 9(2) € Asy{f}(QS) (v < k),

where g(2) ~ 2532729 gn(2')28"). We treat a solution of {Eq} of formal
series with formal valuation ¢

+o0o
(1.18) u(z) = zg(z un(2')28") € 24 Fs.
n=0

We put a few assumptions on {Eq}.

ASSUMPTION 1. There exists a formal solution @(z) = 2z3(3+2%

un(2)28") of {Eq} with formal valuation q.

As before let L%(u) be an operator defined by L%(u) = L(u + @) — L(@)
and its linear part is denoted by £%(z,9). L%(u) and L£%(z,0) are formal
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operators. We can also consider the characteristic polygons for L%(u) and

L%(z,0).
ASSUMPTION 2. L%(u) is linearly nondegenerate.

ASSUMPTION 3. The coefficients u,(z") (n > 0) of formal solution u(z)
satisfy |un(2")] < ABYT(qn/7;, ca + 1) for some ix (1 < ix < p—1) and
Viw£® S

Let S« = S(¢—, ¢+) be a sector with ¢, —¢_ <7/, ra and Sy CC S.
From Proposition 1.11 there is a v(z) € 2z Asy{f. N}(Qg*) such that
v(2) ~ 283 un(2')2d") in S,. Since L¥(u) = L(u + v) — L(v) is a
differential operator and the characteristic polygons of L?(u) and L%(u) are
same, we use L?(u) instead of L%(u).

ASSUMPTION 4. g.(2) := g(2) — L(v) € Asy)  1(Qs.).

We can consider Condition-0 and Condition-1-{i}’s for the operator
L¥(u), that is, by replacing L(u) by L"(u) and L(z,0) by LY(z,0). We
have

THEOREM 1.12.  Suppose Assumptions 1-4 hold and that L"(u) sat-
isfies Condition 1-(i)’s for all 1 < i < i.. Then for any sector S1 =
S(p1,—,¢1,4) with ¢p1 4 — d1,— < /vy, 20 and S; CC S there exists a solu-
tion ug, (2) € Asy,. cv(Qg,) of {Ea} with asymptotic expansion us, (z) ~
2o un(2)28") in S1, where ' is a neighbourhood of z = 0.

ProOOF. Consider

(1.19) LY(w) = L(v+w) — L(v) = g(z) — L(v)
— () € Asyd_1(05.).

Then it follows from Theorem 1.9 that there exists wg, (z) €
Asy{g_ LU}(QS*) such that L"(wg, (2)) = g«(2). Hence ug, (2) = v(z) +

wg, (2) is a desired solution. [J
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Now we cite a few results in Ouchi [7] concerning the existence of a
formal solution u(z) of {Eq} with a Gevrey type estimate. For a given
q € R, put

(1.20) ¢* =min{saq+eq; A€ ./\/M},
(1.21) Ap(q) ={Ae N spg+ea=q"}.

In Ouchi [7], we define ¢* and Af(q) using quantities d4 1, —|A| insted of e4.
But we will be able to easily notice that e4 = da 1, — |A| by representating
L(u) in the form (1.3).

Put for A € NM

(1.22) Lo.a(Z,1,p) =bao(z H” —1)...(u— Aig + Dpa

and
21 A( ! A ,u,p,@l)

(1.23) ao STl = 1) 0= Ano + )

i=1 h#t
XAA=1)... (A= Ao+ 1)0%},

where p = (py; & € N™) and A, p are parameters. £1 4(2', A\, p,p,d') is a
linear partial differential operator with order &y = max{|A};1 <i < sa}
and a polynomial of A and & with degree kg = max{|A;|;1 < i < sa}.
Define

Lo(2, p,p) = Z Lo.4(2', . p)
AeAL(q)

S\ wp )= Y LialZ, A pp,d).
AeAr(q)

(1.24)

£1(2', X\, u,p,d') is a linear partial differential operator with order £} (q) =
max{k’;; A € Ar(¢)} and a polynomial of X\ and ' with degree kr(q) =
max{ka; A € Ar(q)}.
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ConpITION L. (1) 8 D {saq+ea — ¢5A € NM} and g(z) ~
28 (50729 gn ()28, that is, r = ¢* in {Eq}
(2) There is a solution ug(z') Z 0 of

(125) 20(’2/7(]7 8a/u0(zl)) = 90(2/)7
which is holomorphic in a neighbourhood w of 2’ = 0.

Suppose Condition I holds. Using ug(2’) in Condition I, define
(1.26) L1200 = £1(2 N, ¢, 0% ug(2),0).

Let mg, be the order of £1(2',\,0’). Let P.S.£1(2/, \,&’) be the principal
symbol of £1(z’, A, d"), which is homogeneous in £ with degree mg,, and

kg, be its degree as a polynomial of (), &’). We note that mge, <k} (¢) and
ke, < kL(Q)’

CoNDITION II.  P.S.£,(0, )\, &), & = (1,0,...,0), is a polynomial of A

with degree kg, —mg, and does not vanish for \=q+qn, n=1,2,....

As for the existence of formal solutions with the formal valuation ¢, we
have in Ouchi [7]

THEOREM 1.13. Suppose that Conditions I and II hold. Then there

evists a uniquely formal series W(z) = 28(3212% un(2')28") satisfing {Eq}

formally and 07, (0,2") =0 (n > 1) for0<h<mg — 1.
Condition I assures the existence of the nonzero initial term ug(z"). We
can determine u,(2’) successively by Condition II.

Now we study the Gevrey estimate of the coefficients u,(z") (n > 0) of
@(z) in Theorem 1.13. We try to find 0 < v, < 400 such that

{Gev.y,} lun ()] < AB‘?”F(?y—” +1)

for some constants A and B.
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ConbpITION III. P.S.£1(O,/\,é/) is a polynomial of X\ with degree
kr(q) —me,.

Condition IIT means kg, = k1(¢q), which is important in order to obtain
an estimate such as {Gev.y,}. We have in Ouchi [7]

THEOREM 1.14. Put v« = Ymin,(q). Suppose that Conditions I, II
and IIT hold and v, < min{~y,x}. Then the coefficients u,(z')’s of formal
solution u(z) in Theorem 1.13 have the estimate {Gev.y,}.

We have given in Ouchi [7] the Gevrey index 7, more precisely. Let us
explain it. We assume that Conditions I, IT and IIT hold. For simpicity we
assume k = 400, that is, ba(z) € Asy{ioo}(QS). By using the coefficients
un(2') of 4(z) in Theorem 1.13, define

l
(1.27) uj(z) = zg(z un(2')28")  for 1>0, u*y(z)=0.
n=0

Let us consider operators LU (u) = L(u + u}) — L(u}) and £% (z,0) for
l=-1,0,1,2,... . We note L“~1(u) = L(u). Then we have shown in Ouchi
[7

THEOREM 1.15. Suppose that ~ L“ﬁl(q+ q) < v foralll € N.

min,
Then for each | € N the coefficients u,(2')’s of formal solution u(z) in

Theorem 1.13 have the estimate {Gev.v} for v, = Vi L (g+q).
We have

THEOREM 1.16. Suppose that L% is linearly nondegenerate and
Ymin,ci < Y. Then the coefficients un,(2')’s of formal solution u(z) in The-
orem 1.13 have the estimate {Gev.v.} for v« = Ypin pa-

THEOREM 1.17.  Put vs« = Vi ca and assume v« < 7 in {Eq}. Sup-
pose that
(1) L% is linearly nondegenerate, and
(2) L%u) satisfies Condition 1-(i)’s for 1 <i <p— 1.
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Then for any sector Sy = S(¢1,—,¢1,+) with ¢1.4 — ¢1— < /vy ca and
S1 CC S, there is a solution ug, (z) € Asy{i}(ﬂsl) of {Eq} with asymp-
totic expansion ug, (z) ~ u(z) in Si.

The proofs of Theorems 1.16 and 1.17 are given in §5.

REMARK 1.18. When L(u) is a linear partial differential operator, say
L(-) = L(z,0), the relation between solutions of formal power series and
genuine solutions of L(z,0)u = g(z) was investigated in Ouchi [5]. The
main result in [5], the existence of genuine solutions, follows from Theorem
1.17. The conditions in [5] to ensure it were given by the conditions on the
vertices of the characteristic polygon, which are stronger than Conditions
1-(i)’s. So Theorem 1.17 is a generalization of the main result in [5] to not
only nonlinear equations but also linear equations.

We give examples. Let
2
(1.28) L(u) = Py(¢, ) oou + 2] [[ (2, 9 )u,
i=1

where J € N, P;i(z/,0") is a linear partial differential operator of 9’ with
order mp, and its principal symbol is denoted by P.S.P;(z,¢). We assume

mp, >mp, >mp, +1>2
1.29 A R
(129) P.S.P(0,€") £ 0, & = (1,0,---,0), for i=0,1,2.
Let us consider L(u) = g(2), where g(z) = .72 g,(2')2§ is holomorphic

in a neighbourhood of z = 0. We put g,(z') = 0 for n < 0. We concern
with a formal solution @(z) with the formal valuation ¢ € Z. So S = N
and @(z) = 23 (3220 un(2)28). If @(2) exists, then

L) =L%(z, 0)u + M%(u)
£ﬂ(z, 8) :Po(zl, 6/)80 + Z(‘)](PQ(Z/ o' )”ZL)Pl(Z 8/)
(1.30) + 2] (P (2, 0)a)Py(7, D)

u) =z H (2, 0"u

=1
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Let ¢ > —J — 1. Then u,(2’) (n > 0) are determined by the following
recursion formula,

(1.31) q(Po(2', 0" )uo(2)) = gg-1(2")
and forn >1

(TZ + Q)PO(Z/a a/)un(z/)

+ Z H lDi(Z,’ a/)um(zl) = gn+q_1(z’).

{J+n1+n2+q+1:n} =1

(1.32)

Since Py(z’,d’) is noncharacteristic with respect to z; = 0, we can find ug(2’)
such that ug(0) # 0. If ¢ > 0, u,(2') (n > 1) are successively determined
by (1.32), by imposing on (1.32) the initial conditions 0u(0, 2”) = 0 (0 <
h<mp, —1). If —J—1<q <0, u_y4(z) is not always determined. But
here we assume

2
(1.33) > [P, 0)un () =0

{J+n1+n2+q+l=—q}i=1

for a suitable choice of {u,(2')} (0 < n < —q). Then u_4(2’) is arbitrary
and we can determine u,(2’) (n > —¢q) successively by (1.32), imposing on
(1.32) the initial conditions d%u(0,2”) = 0 (0 < h < mp, — 1). Let j; be
the the formal valuation of P;(2/,d')u (i = 1,2),

(1.34) Py, 8")a = 2 (by(2') + O(20))

and suppose j; < +0o. Then L£%(z,d) is a linear operator with order mp,
and L%(u) is linearly nondegenerate. Put Imp, = J+j2 and Jpmp = J + 1.
We have two cases:

(i) If (Jmp2 +1)/(mp, —mp, — 1) > (Jmp1 +1)/(mp, —mp, — 1), then

g, + 1

mp, —mpy, — 1

0="3c0 <7gra=
(1.35)

Imp, — J;

Py mpy

<Mygi=———— <Yi = +00.
mp, —mp,
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(ii) If (Jmp2 + 1)/(mp2 —mp, — 1) < (Jmpl + 1)/(mp1 —mpy — 1), then

g, + 1

mp, —mp, — 1

(136) 0= ’72’£ﬁ < 'Yl,l:a = < 'YO,l:a = +00.

For the case (i) (the case (ii)) we have by Theorem 1.16

(137) [un(2)] £ ABT(=+ 1), e = Yo g5
in a neighourhood of 2’ = 0, where vy, £a = V2 ga (Tresp. v za). Moreover
if b5(0)b3(0) # 0 (vesp. by(0) # 0) in (1.34), the conditions in Theorem 1.17
are satisfied. Hence for any sector S1 = S(¢1,—, ¢1,+) with ¢1 4 — @1 <
7/v1,ca, there exists a solution ug, € Asy(,,1(s,) of L(u) = g(z) with
ug, (z) ~ u(z) in .

Let ¢ < —J — 1. Then u,(z') (n > 0) are determined by the following
recursion formula,

(2", 0Nup(2) =0 if g<—J—1,
(1.38)
(2, 0 uol)) + a(Pol2, 0 Yuo()) = 0 if q=—J 1.

Il
I

and forn > 1

(P1(2,0")uo (2 ’))Pz(Z’ 0 un(2') + (P22, 0 )uo () Pr(2", 0 )un(2')

(1'39) + Z HP Z 8’ unz )

(i)

+ (’I’L + 2q + J + 1)P0(Z/, 6,)un+q+J+1(Z/) = gn—|—2q+J(Z,)-

Suppose that there is a solution wg(2’) of (1.38) such that
(P1(z,0)up(2"))|2=0 # 0. Since P(2’,0") is noncharacteristic with respect
to 21 =0, un(2’) (n > 1) are successively determined by (1.39), by impos-
ing the initial conditions 97u(0, 2”) = 0 (0 < h < mp, —1). Then it follows
from Ishii [2] and Ouchi [7] that 28(3220 u,(2')z) converges.
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Secondly let
(1.40) L(u) = 20(0?u)(01u) + (2000 — ag — a(2))u,

where a(z) = Y129 ax(21)zf is holomorphic at z = 0 and a9 > —1. We
concern with a formal solution @(z) of L(u) = 0 with formal valuation ay.
Let S be a semi-group generated by {1, ap + 1} and try to find @(z) =

25" ( Ii% Up(21)24"). We have

(1.41) ttn(21) = Y ag(z1)ung(?)

k+qny=gn
k>0

+ Z O up, ()01, () = 0.

Gnqtanytaot+1l=gqn

So we can take ug(z’) arbitrary and u,(z") (n > 1) are successively deter-
mined. Then we have

LU(u) = L%2,0)u + M*(u),
(1.42) L(2,0) = 200iu(2)0% + 2007(2)0] + 2000 — (ao + a(2)),
M (u) = zo(8Fu) (8] u).

Suppose that there is an Ny € N such that 0ju,(2') = 0 for all n with
0<n<Ny—1and dyupn,(2') Z0. Then L%(2,9) is a linear operator with
order 2 and 0 =y, pa < ¥y ca = qNp +ao+ 1 < 7y ca = +00. L¥(u) has the
strongly linear part with respect to the valuation (ag + Ny)+. We have by
Theorem 1.16

(1.43) un ()| < AB"T(= +1), 7 = qn, +ao + 1

*

in a neigbourhood of 2/ = 0. Furthermore assume 0jun,(0) # 0. Then
it follows from Theorem 1.17 that for any sector S1 = S(¢1,—, ¢1+) with
¢1,4+ — ¢1,— < /vy ca, there exists a solution ug, (2) € Asyg,,31(Qs,) of
L(u) = 0 with ug, (z) ~ @(z) in S.
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2. Majorant function

In order to show Theorems we need several estimates. So we make
preparations for them. Firstly let us introduce a majorant function which
is a modification of that in Lax [3] and Wagschal [8]. Put

= ct™
(2.1) 0(t) = Z —_—
n=0 (
where m € N.

LEMMA 2.1.  There is a constant ¢ > 0 in (2.1) such that for 0 < k' <
k<m

(2.2) 0" (£)0*) (1) < 0% (t).

PrROOF. We have

m+k)n+k—-1)...(n+1) ,
(2.3) Zc (RN t
and
o(k) (t)g(k’)(t)

—622{ Z n1+k (nl—l—l)X(ng—l—k’)...(nQ—i-l)}tn

m +k+ 1)m+2 (n2 + K+ 1)m+2

n=0 ni+n2=n

It holds that

B n+k)...(n+1) A
2.4 < <
( ) (n + 1)m—k+2 - (’I’L + k 4+ 1)m+2 - (n + 1)m—k+2’
where A, B > 0 depend on m. We have from (2.4)

$ (ni+k)...(n1+1)  (na+#k)...(na+1)
(n1 + k + 1)m+2 (na + K + 1)m+2

ni+nog=n

< Z A2 < ¢
= (1 + 1) F 2 (ny + 1)m—F2 = (4 1)mhr2’

ni1+ng=n
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So if we choose ¢ > 0 so that ¢2C < ¢B, (2.2) follows from (2.4). O
We fix ¢ > 0 so that (2.2) holds. We have

LemMMA 2.2, (1) 00 (1) < 57000 (1).
(2) Let 0 < k' <k <m. Then

n

n . I g p'p/' ’
25 gk+ptn—i) 1\ g(k'+i+p") (4 < _ " p(ktntptp’) ()
2 3(}) (OO0 < L ("

PROOF. Let us return to (2.3). We have

n+k)...(n+1) (n+k+2)m+2 <(n+k+2)m+2< C
m+k+1)m2 (n+k+1)...(n+1) ~ (n+k+1)mB ~n+k+1’

which means (1). Differentiate (2.2) p + p’ times. Then we have

/

p+p +
> <p ' p>9<’“+p+p’—i> (60" (1) < g*PH (1)

]
1=0

and in particular

Y| Iy /
o Exmgrng oo,
plp'!

By differentiate (2.6) n times, we have (2.5). O

Put ¢r(t) = 6(t/R), where 0 < R < 1. We have from Lemma 2.2

ProOPOSITION 2.3. (1) go%")(t) < k%lcp%”l)(t).
(2) Let 0 <k' <k <m. Then

" (n n—i "+i+p’ —K Ip/! n /
(2.7) Z(.)so%“* 40 ()W) () ¢ i PP Gttt gy

o\ (p+p) "
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Let us introduce a function space X, 4.c(S), where p € N, ¢,¢,y7 > 0
and ¢ = (G0, ¢') € (Ry)™,

DEFINITION 2.4. Let S = {zp;]argzo| < ¢,0 < |20| < r} and w =

{z/ € C™ Y, Glzi|l < R} XJ4.c(9) is the totality of u(z) € O(S x w)
with the following bounds: There is a constant C' such that for all n € N

(2.8) (2000)"u(2)¢f 20| exp(—c|z0] )W (¢ - 2)

as a holomorphic function of z’. The norm of u(z) is defined by the infimum
of C satisfying the above bounds and denoted by ||up.q,c,v-

It is obvious that X} 4.(S) is a Banach space and 25 € X{,.o(S) (r €
R, (o > |r|). We can define for u(z) € X 4.c(95)

u(t, 2")
t

(2.9) ((2000) " ) (2) = /O ” dt.

which is also in O(S x w) and
(2.10) (2000)(2000) " = (2000) " (2000) = Id.
We have from the definition

PROPOSITION 2.5. (1). Xpar C XJiigr

and ||UHP+1,q,c,'y <
c
p-‘,—l HUHP#LC»'Y'

(2). Let u(z) € X q.c(S). Then (2000)%0* u(z) € Xptlalgen(S) and

(2.11) H(Zoao)aoa/a u”pHaI,q,c,v < (*fJullp,ge-

PROPOSITION 2.6. Let S* be a sector in C such that S CC S* and w*
be a neighbourhood of z' = 0 such that w CC w*. Let a(z) € O(S* x w*).
If a(z) is bounded on S* x w*, then there exists a ( = {(o,('} € RTLI such
that a(z) € Xgg0(S5)-
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PROOF. Put S* = {2¢; |arg zo| < ¢*,0 < |29| < r*}, where ¢* > ¢ and
r* > r, r and ¢ being those in the definition of S. We have by Cauchy’s

formula | (t. )
n! a(t, z
oy =— [ —2—~ __dt.
hale) = o /c (t — 201

We choose the circle |t — zg| = 6 as the integration path C, where § =
min{|zo|sin((¢* — ¢)/2), (r* —r)/2}. So we have |z5dja(z)| < MC"n! for
all n € N, M = sup,cg«y.~ |a(z)|. Hence from these estimates, we have
|(2000)"a(z)| < MCpn! and there exists a ¢ = {(o,('} € R such that
a(z) € Xg0(5). O

We choose ¢ € RT’I in the following so that Propsition 2.6 holds, if
necessary.

PROPOSITION 2.7. Let u(z) € X

p+k,q,C(S) and U(Z) € X;’-&—k’,q’,c’(s);

where 0 < k' <k <m. Then u(z)v(z) € X;+p,+k’q+q,7c+c,(5') and
plp'!
(2.12) |wvllptp kgt ere y < mHquJrk,q,c,’Y||U||p/+k’7q/,6’ﬁ'

PROOF. We have

(2000)"uv = Zn: (?) (2080)™ " - (2080).

=0

From the definition of X, .(S) and Proposition 2.3

plp'!

o
(2000)"uv < R b W||UHp+k,q,cwHUHP’+R/,q’,C’,W

! _ k, /
X CP20] T exp(—(c+ &)z )l TP -2,
which means the statement. [J

COROLLARY 2.8. (1). Let (o > |r|. Then

(2.13) Iz0ullp.gtr.er < ll20

0,7,0,y [ |p,qm .
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(2).  Suppose that u(z) € Xpq.c(S) and a(z) € O(S* x w*) is bounded,
where S CC S* and w CC w*. Then a(2)u(z) € X 4.(S) and

(2.14) llau

Py Ha||0,0,0,7”u||p,q,c,7

The statement (1) is obvious and (2) follows from Proposition 2.6. We
have

PROPOSITION 2.9. Let u;(z) € Xp, 4:.e:(S) (1 <4 < s) and A € N*

. Al
with kg < m. Then Hle(zoao)A“Oa/ ui(2) € X;1+~~~+ps+kA,q1+~--+qs,c(5)

and
S A/
(p1 42+ -+ + D) T [ (2000) 400 il py 4 pa bk psgr+-+ 0.y
i=1
(2.15) .
S CSR_kA(s_l)CA HpZ'Hul”pw%aC»'Y
i=1

PrROOF. We have from Propositions 2.5 and 2.7

S
Ay Aj
(P14 P2+ -+ P [ (2000) 400 113 (2) lpy 4t po ks a4t 0.7
=1
S A/
< RTEACTD T pitl(2000) 00 sy 0 g0
i=1

S
< C R VAT pillsllp g - O
=1

PROPOSITION 2.10. (1) Let u(z) € Xpgc(S) (¢ > 0). Then
(2000) tu(z) € X 4.c(S) and

(2.16) 1(2000) " tllpg.er < a7 ullpgen

(2) Let u(z) € Xpq.c(S) (¢, > 0). Then zofv(zo@o)_lu(z) € Xpq.c(9)
and

_ _ C
(2.17) [EN (2000) 1UHMJM < 5”U||p7q7c,v-
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(3) Let u(z) € Xpq.c(S) (¢,7 >0). Then 25 'u(z) € X)), (S) and

C

PROOF. Put v(z) = ((2000) 1u)(2). Then
(20029)"0(2) = (2002) " (2002 )"u(z) = /OZO t=L(t0y) " u(t, 2')dt

)at.

|zo]
+ —_
< ullpgen Co ® (p " (¢ Z/)/O t]? exp(— |t]Y

Since
|ZO‘ 1 —1
/ 17" exp(— )t < ol expl -
0

]
we have (2.16). Let us show (2). Put v(z) = 2z 7 ((2000) "*u)(z). Then

(oth)"o2) = 3 () ()" o) ()

1=0
We have
25 ' (2002)" " u(2) = 25 " (2002) " (200 ) u(z)
20 )
= zOV/ t7(t0y ) u(t, 2)dt
0
b 120177 (¢ - )
/onq Vexp(— - )d
. t|1? " exp(——=)dt.
0 t]7
Since

. lz0] pa+v c . lzol 1 c
|z0] /0 P exp(— ﬂ)dt < 20| /0 e exp(—ﬁ)dt

and Y"! < C(pgg*i), we have (2.17) by Proposition 2.3. We show (3). We

have
I

_ _ C
||Zo 7(,2080) 175080“||p+1,q,c,“r < a”ZOaOUHpH,q,CN < aH“Hp,q,cm

which implies (3). O
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3. Construction of solutions with exponential decay I

Now we proceed to prove Theorem 1.8. So we assume that Condition 0
and Condition-1-{i} and construct u(z) with exponential decay satisfying
(1.12) or {Eq°}. For the simplicity we use the following notations:

Y=Y, V= Yi-1,0
(31) kE* = ki—h L= lkifl,ﬁa

€k = €k, L5 €k = €k L.

It follows from Proposition 1.6 that L(u) has the strongly linear part with
respect to valuation r and we may assume r = 0. Hence

(3.2) {eA—ek*:’V*(kA_k*)""Jj{ (JX>0) forka>Fk
ea—eps = —y(k" —ka)+J, (J4 20) forkasg<k"
Recall £;(z,0) introduced in §1. Put
(3.3)  £(2,0) =2z, " Li(2,0), M(z,0%) =z, *" (L(u) — Li(z,0)u).
Then

(3.4) £(2,0) = > 255N by (2, 0) (2000)% L

{ e(kli’l_)e;ki(sﬁgf b }

Condition-1-{i} means that by 1,(0,£) # 0 and L > [ in (3.4). We have
(3.5) M(z,0%) = M (z,0%) + M (2,0%),

where

SA
Mt (2,0%) = Z z()“’*(kA_k*H'J;\r ba(z) H 0% (200p) Y 0u
{A; ka>k*} i=1

JI >0,
(3.6) A=

SA
M (z,0%) = Z 20 YR TR A b4 (2) H % (200p) M 0u
{A; ka<k*} =1

Jy >0,



Nonlinear partial differential equations 399

where J, > 0 for A appearing in 9™ (z,0%u) follows from the assumption
that L(u) has the strongly linear part with respect to valuation 0. We fix
a positive constant o_:

(3.7) 0<é_ <min{J,;Ain M (z,0%)} with ~"/6— € N.

If i =1, M, (2z,0%) does not appear, v* = 400 (1/4* =0) and 0 < 6_ <
min{.J; Ain MM~ (z,0%)}. As for sectors in zy space we may assume that
they are symmetric in the positive real axis. So S = {z¢;|argzo| < 0, 0 <
|20] < r} and S = {z0;|arg z0| < ', 0 < |20] < 7'}, where 0 < § < 6 and
0 <7 <r. Let w and w’ be neighbourhood of 2’ = 0 such that ' CC w.
Recall Qg = S x w. In the sequel ¥ > 0 and &’ are chosen so small, if
necessary. Further we may assume that if ¢ > 1, 0 < ' < 7/27,_1, and
0<O<m/2vic,andifi=10<6 <0 <7/2y .

Multiplying {Eq"} by z, *** and denoting 2z, “**
consider

g(z) by g(2), we may

(B} £(z,0)u+ M(z,0%) = g(z) mod Asy{giilyﬁ}(Qg,) fori>1
L(z,0)u+M(z,0%) = g(z) fori=1

where g(z) € Asy 1(Qs), so |g(2)| < Coexp(—colzo|¢) (co > 0).
Thus Theorem 1.8 becomes the following:

THEOREM 3.1. There exists a solution u(z) € Asy{gi L}(Q’S,) of {Eq*}.

The proof of Theorem 3.1 is divided into 4 steps. We try to construct

= >0 u,(2), which does not always converge but formally satisfies

{Eq }. In this section we give a system of equations to determine u,(z),

which is the first step. Substituting u(z) into the left hand side of {Eq*},
we have

£(z,0)( Zun -I—Sﬁ,z@aZun

n=0
“+oo “+o0o

Z L(z,0)un(z) + Z My, (2, up (2);0 < m),

n=0 n=1



400 Sunao OUCHI

where
M (2, up (2);0 < n) = M (2w (2);0" < n) + M, (2, u (2);7n < n)

and

;

ML (2w (2)in' <m) = D a7 BT (z)
{A; ka>k*}
< ( 2 [ 0% (z000) s, (2))
Ny, ,Ns i=1
{n1+~~~+n5+'1y*(k:Afk*)/6_:n}
M (2, up (2);n' <n)= Z 20 YE TR A, (2)
{A; ka<k*}
(> JToM o) 0w (2)).

{ N1, ,Ns }i:l
L ni+--+ns=n—1

So we try to determine u,(z) with the following recursion formula:

{ £(z,0)uo(2) = g(2)

(310) £(2,0)un(2) + My (2, up (2);n < n) = 0.

So the second step is to solve (3.10). Firstly we show the solvability of
£(z,0)v(z) = g(z). Here

£(2,0) = > 265 by (2, 0)(2000)F
kbl) ; e(k,l)=e
(3.11) {0 =}
:bk*’L(Zoao)k*_L + E,Z(c;k_ek* bk‘,l(za 8) (ZOBO)k_la

where ¥ means the sum of (k,1) in {(k,1); (k,1) # (k*, L), e(k,l) = e, exx—
er = v(k* — k)}. In this section we use Condition-1-{i}. So it follows from
it that L := 1y, , >l in £(2,0) and we may assume bk*7L(O,é’) £0, & =
(1,0,...,0), that is, the coefficient b(z) of &~ in bi=.1,(0,0") does not vanish
in a neighbourhood of 2’ = 0. So, multiplying (3.11) by b(z)~!, we assume
b(z) = 1. Let ¢’ = (¢1,¢"), where (3 > (; for i > 2.
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LEMMA 3.2. Let g(2) € X))} .

solution v(z) € X;+k*_L’p7C(S’) of

(S") (p>0). Then there is a unique

Fu(z) = g(z
512 o) =2
Nv(z)|zy=0=0 for 0<h<L-1
such that
(3.13) HUHerk*fL,p,c,'y < Cl_LHngJrk*,P»C,’Y'

PROOF. Since
+ptk*—L ke
ol I ) = e,
we have the estimate. [J

LEMMA 3.3. Let g(z) € X

vk peS) (p>0). Then there is a (1 > 1
such that

(3.14)  {been(2.0) + 220" by 1(2,0) (2000) T TE 0 (2) = g(2)

has a solution v(z) € X;+k*7L’p7C(S’) with
(3.15) ||UHp+k*—L,p,c,'y < CHng—l—k*,p,c,v'

Proor. Put
;*’L(z,(’)’) = bk*vL(Z,ﬁl) — 61L

Define v, (2) (n > 0) :
Ofvo(2) =g(2),

(3.16) O vn(2) = = e (2,0 )on—1(2)

=X "R (2,0 (2000) R o, (2)
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with 07, (0, 2") = 0 for 0 < h < L — 1. We have by Lemma 3.2

—L
(3.17) lvollp+ks—Lopery < S0 Ngllp+k pieir-
We show
C i
(318) ||Un||p+k*—L,p,c;y < (a)nJr ||g||p+k*7/770ﬂ/

by induction. Then by Propositions 2.10, 2.5 and the inductive hypothesis

(K —F Lk
20" ka2, 0) (2000 v [y ey
<C||br(z, @) (2000)* " vp_1 | p-tk= prc.y

SClCOL_lgll ||Un—1 ||p+k*—L,p,C,'y < CQCmQ mrtld ||9||p+k*,p,cry-

Similarily we have

Hb%*,L(z, a/)vn—l(z)“mk*,p,c,’y < C3C1L_1HUH—1(Z)Hp-i—k*—Lp,CN
< 30" T lgllp e ey

Hence by Lemma 3.2 we have (3.18) for some C’ > 0. We take the constant
G > 1 with C"¢7 1 < 1/2. So v(z) = 3,720 v,(2) converges and is a desired
solution. [

We choose (; > 1 so that Lemma 3.3 holds.

LEMMA 3.4. Let v(z) € XJ,0(S') p > 0. Then there is a u(z) €
Xpp.e(S") such that (2000)* ~Fu(z) = v(2) and

—k*+L
(3.19) [ullppcry < Co™" T llppesy
where C' > 0 is independent of p.

PrROOF. Let u(z) = (2000)"* ~Muv(z). Then we have by Propostion
2.10-(1)

!/

O

I

Py S FHU D,0,CY
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By Lemmas 3.3 and 3.4 we have

PROPOSITION 3.5. Let g(2) € Xpii+ sn,c~(S") (6 > 0). Then there is a
w(z) € Xpihs—Lon,en(S") such that £(z,0)u(z) = g(z) and

(3.20) [wllptrs—L6ncr < Cn~ ML 19l p+#7 6m,e,7-

Thus we can find u,(2") satisfying (3.10) by Propostion 3.5. Let us
obtain the estimate of wu,(z), which is the third step. Recall the definition
of 6_ (see (3.7)).

ProrosiTION 3.6. The follwing estimate holds:

cB"
<
[enllpn,gn.cr < 1+ n2)((k* — D)n)!’

(3.21)

where p, = [(né_)/v*] + (k* — L)n and g, = no_.
Before the proof we note that if i = 1, v* = 400 and p, = (k* — L)n.

PROOF. Firstly we note that u,(z’) (n > 0) are determined by (3.10).
Let 0 < ¢ < ¢p. Then inequality (3.21) holds for n = 0. We assume
ur(2) € X apelS') and [rllp e < ABT/(1+12)((k* — L))l for al
r < n. Put

(3.22) U(z) = ba(2) f[ % (2080) 4 0uy, (2),

n =374 pl =30 pn, and ¢ = D04 qn,. Consider M, (2, ur(2); r <
n). So the terms appearing in it are corresponding to A € N* with k4 < k*.
Since n’ =n — 1, we have ¢, = ¢ + 6_ and

no_

*

|+ (K = D)= 1)+ ha > S pitka =9 + ha.
i=1

Pn+ka—kx+L =]
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So it follows from Corollary 2.8 and Propsitions 2.5, 2.9 and 2.10 that

—y(k*—k "
P/!HZO i AT U( )||pn+L ans ey S < /'HU( )||pn+kA—k*+L, q ¢y
sA

1
<CPNU ks, ¢ev < CfAJr Hp”i!H“niHin Gny, CY°
i=1

It follows from the inductive hypothesis and [[;4; p,,!((K* — L)n;)!™ 1<
P1((k* — L)n’)!™! that

|20 _’Y(k*_kAHJXU( )||pn+L qn, ¢y

1 p
<CSA+1CSABn I| -1 H H nL
(14 n;)?
s

1 1 a 1
<(sAtLisa n’ )
S ((k*—L)n’)!il;Il(l—l—ni)Q

Hence

||9ﬁ;(z,un/(z);n' < n)||pn+L, an, ¢

sa+1 s n’
<2 2 CprionB ) H T
A N1, M y
{n1+n2+~~-+nsA:n—1}
chManl -
“(1+n?)((k* — L)(n—1))!"

Now consider M} (2, un(2);n' < n). So the terms appearing in it are
corresponding to A € N with k4 > k*. Since n’ =n —~y*(ka — k*)/6_, we
have ¢, =né_ < ¢ +~*(ka — k*) and

5
pn—FL—(p/—i—k‘A):[nfy*]—i—(k*—L)n—{—L—p'—kA
n'é_ . . )
> po |+ (ka — k) 4+ (k" —Lyn+ L—p —ka
nlé_ * / * /
> po ]+ (kK —L)(n—1)—p > (k*—L)(n—n' - 1).
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Hence it follows from Corollary 2.8 and Propsitions 2.5, 2.9 and 2.10 that

SA
O [nibe /3 + (k= L) = D) 120" AU (@) g, e
i=1
SA ) ) N
<C(> [t /4] + (K = Lyn')! |27 ®Ba=E0+T5 0 (2)
=1

' Hp’+kA, q'+v*(ka—k*), ¢,y

1
<OV U@ lp+ha, grern < CTAT Hpm [tnillpn,. an,. e
i=1

and by the similar method to the preceding

K,cMpBr!
+ A2):n' < .
19 (2, uns (2); 0" < 1) lpot, guiey < (1+n2)((k* — L)(n —1))!

Thus we have

K/Bn—l
199 (2, unr (2); 0" < 1)l pptL, guiery < (1+n2)((k* —L)(n— 1)’

Hence by (3.10) and Proposition 3.5 we have for a large B > 0

Hun”pn, qn, €Y SC/n_k*+L]]mn(z,un/(z);n/ < n)”pn+L7 dn, Y
< KcMpn—1 < CB™
“(1+n?)((k* = L)(n—1)InF"—L = (1 +n?)((k* — L)n)!"

By Proposition 3.6 if 1 =1,
_ k*—L
(3.23)  un(2) < Jtnllp, gn, enl20/™ exp(—clzo| ™)l (-2,
which means

(3.24) lun(2)] < C’B"|ZO|”'5‘ exp(—c|zo|™7)

in a neighbourhood w’ of 2/ = 0. So 372 u,,(2) converges in S’ x o', where

S" ={20;0 < |z0| <7/, |arg 29| < '} for small ' > 0.
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If ¢ > 2, by Proposition 3.6,
(3.25) lun(2)] < CB"|20\”5* exp(—c|zo| " )T(né_/v* + 1)

REMARK 3.7. We assume Condition-1-(i) in order that there is a solu-
tion v(z) of

(3.26) £(z,0)v(z) = g(2),

which has a good estimate (Propositions 3.5 and 3.6). So if we put another
condition to assure the existence of a solution of (3.26) with a good estimate,
we will be able to obtain results similar to Theorems 1.8 and 1.9.

4. Construction of solutions with exponential decay 11

Now we proceed to the fourth step and complete the proof of Theorem
3.1 for ¢+ > 1. So suppose 7* < +o0o. For the proof we need lemmas
concering fuctions with zero asymtotic exapnsion. In the following of this
sections functions {u,(2)}, .y means that constructed in §3. As stated
in §1 we denote different constants by the same notations, if confusions
will not occur. w is a neighbourhood of 2/ = 0 and Q¢ = S X w. Recall
S = {zp;|arg zo| < 0, 0 < |z9| < '} be a sector such that S’ CC S, where
0 <0 <m/2v* and ' > 0 is chosen small, if necessary.

Let us define

. . Un(z) fn&i/’y*
Un(z7 6) - (Zonéf"r’Y* )I‘(néf/’}’* + 1)’
400

(4.1) an(z,6) = Y in(2,9),

n=N-+1

+oo
d(z,f) - Z ﬂn(Z,g)
n=0

\

It follows from the estimate (3.25) that @(z,§) and an(z,&) converges on
Qg x {[€] < &} for some & > 0. We have

LEMMA 4.1. There exist %, éo > é > 0, B and By such that

(4.2) lin (2, )| < ABNT 29|77 exp(—c|zo| ) || N/
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on Qg x {|¢] < &} and

N
(43) Y lim(2,6)] < ABY 20| exp(—clzof |V V-
n=0

on Qs x {|¢] > £}.

PROOF. We have easily the first inequality. By (3.25) there are & and
B; > B such that if [£] > ¢

N N
D i (2,6)] < Alzo| ™ exp(—clzo| )(Bu[¢]*-)N D (Bafgl )N
n=0 n=0

< Alzo| ™ exp(—clzo| ) (Bal€*-/HN T O

PROPOSITION 4.2.  There is a ug(z) € Asygy«)(Qsr) such that

(4.4) |uS/ Z un

(N +1)5_

*

< ABNHIT( + 1)| 20| N TV exp(—c|zo| ™)
m QSI.
PrROOF. Define

3 .
(4.5) usi(2) = [ expl(—g57 (e, €1

We have
uS/ E:Im

é . +o0 al

:/0 exp(—&zy ! )U(Zaf)df—/o exp(—&z, | Z

N

B é e J +o00
_ /0 exp(~£25 7 Vi (2, €)dE — /E exp(—£2y” Z

=Ly + 12N
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From lemma 4.1 if 29 € 5/,

3 . )
I | SABNF 2| exp(—c\z0|7)/ exp(—c€|zo| 77 )EWHD-/" ge
0

<SABYT((N + 1)6 /7" + 1) exp(—clz| ™) 2| N D2/

and

26| SABY 20l exp(elzo ) [ " exp(—delzol 7 ) HIS/ e
SABYFIT((N +1)6_ /v + 1) exp(—c|zo| ~7)| 20| NHDO-/7".
This completes the proof. [
We have

PROPOSITION 4.3. Let ug/(z) be a function defined by (4.5) and
9s/(2) = L(ug') — g(2). Then gs:(2) € Asyl ., (Qs).

Put vy (z) = Zi:;o un(z) and wy(z) = ug(z) —vn(z). Then we have

9s(2) =L(ugr) — g(2)
={L(z,0)(vn +wnN) + M(2,0%nN) — g(2)}
+ {M(z,0% N +wn)) — M(z,0%nN)}

N
(4.6) ={M(z,0%nN) — Zi)ﬁn(z, Upsn' < m)}
+{L(z,)wn + M(z,0%(vn +wyn)) — M(z,0%nN)}

=Jin + JoN.

So in order to show Proposition 4.3 we estimate J; x and Jo . Put
UNn(2) = up(z) (0 < n < N)and vnn(z) =0 (n > N+ 1). Then
on(2) = S 8 un(2) and Jy n = Yo N1 M2, vn s n' < n). We have

LEMMA 4.4. There are c1, ca > 0 such that if ¢ /(N + 1) < |27 <
Cl/Na

(4.7) | Jinls [Jon| < ACM exp(—eca/|zo0]").
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Proor. Firstly we show the inequality for J; . Put

VN(z) =ba(z) ﬁ aAi(anO)Aiv%jx(z).

=1

Note p, = [n6_/v*] + (k — L)n and n’ = >4, n,;. Then we have, by the
same way as in the proof of Proposition 3.6 for k4 < k*

||Z8A_6k* VN||pn+L7 (In,CfY
SA 1 SA D '
<Oyt peacm (!
1 zl_[l (1+ n?) 21:[1 ((k* — L)n;)!
Thus we have
SA SA
_ ~ _ 1
V) < OB e T T g TTmo )
i=1 i/ =1
By Stiring’s formula we have
TLZ‘(S_ ’ TLZ‘(S_ 6y +1/2, —(ni6_) /v
( ) < O (et e~ (nid—)/v
,y* ,-}/*
and
SA 6 SA 6
H(nz —)! < CISAefn'(S_/’y* H(nl —)nié_/'y*+1/2'
=1 7 =1
Hence
20"V ()] <CPTIBACY exp(—clzo| T = 0’6 /)
(48) 5 S 1 oA nz(s_ 6 * 1/2
><|Z0|n_ ( - )nz — /v +1/
Zl:[l 1+n? H v

Let ¢1/(N +1) < |2|”" < ¢1/N, where ¢; > 0 is chosen small later. Let
0<e<l Ifn; <N, we have for small ¢; > 0

20| ﬁ(”i‘sf)méf/v*ﬂ/? < (C_l)m?f/v* if[(%)”i‘sf/““/2 < A"
L1 oy N v
=1 i=1
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Since vy, (2') =0 for n > N + 1, if ¢ /(N + 1) < |2]"" < ¢1/N, we have

SA
eq—epx s n' n — * 1
(19) | VA () < By exp(—clzol T = o0 [[ 1

i=1 v

and by the same method as in the proof of Proposition 3.6
(410) |90, (z, o’ < n)] < BT Cp e expl(—clzol T — ' /7).

We also have an estimate for I (2, vn ;' < n) similar to (4.10). Thus
if c1 /(N +1) < |z <e1/N <1,

(4.11) 1M, (2, vn s’ < n)| < KOY~ L™ exp(—clzo| ™ — n'6_ /7%).

We choose ¢; > 0 so small that e(exp(—d_/7*)C2)"™ < 1/2. Hence if ¢1 /(N +
1) <|z|"" <ei/N,

“+o00
Nl <) Mz, on 0 < n)
n=N-+1
—+00
< Kexp(—clzo| ") Y exp(—nd_/7)Cy e
n=N+1

< K'27 N exp(—elz0] )

< K’ exp(—ea|20| 77 = ¢l20] 7).

Secondly we show the inequality for Jy n. We have

1
(412) oy = £z, 0)un + 3 Owy / 0, Mz, 0° (v + By ))do.
0

laj<m

It follows from Proposition 4.2 that for 0 < ¢’ < ¢, ¢ being that in Propo-
sition 4.2,

(N +1)6-

*

(4.13) | Jon| < A'BNFID( + 1)] 20| N exp(—¢/|20] 7).
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If ¢1 /(N +1) < |z|"" < ¢1/N, where ¢; > 0 is chosen so small, we have

(N +1)5_

*

| Ja, | SA'BYHT +1)(er/N) NPT exp (= z0] )

SA/BN—H( (N +*1)6— )N§,/7*+1/26—N6,/7*
v
(e /N)YNFDE=IT exp(—/|20] )
N+1
N
<A exp(—cz\zo\_'Y* —20]77).

<AV YNFVI exp(—/[z0] )

Thus we have (4.7). O
By Lemma 4.4 for ¢; /(N 4+ 1) < |2|"" < ¢1/N
(4.14) |95 (2)] < Aexp(—eslz] "),

where ¢; and A are independent of N. So we have gg/(2) € Asy{g*}(Qfg)
and this completes the proof of Proposition 4.3.

Thus we have Theorem 3.1 for ¢ > 1 from Proposition 4.3 and as men-
tioned before Theorem 1.8 follows from Theorem 3.1.

PrROOF OF THEOREM 1.9. Let S; = {z0; |argzo| < 60;, 0 < 20| <
rit (1 <4 <i*), where 6 < ... < 0 and 0 < 0; < /2. If i* =
1, Theorem 1.9 follows from Theorem 1.8-(2). Suppose that * > 2. It
follows from Theorem 1.8-(1) that there exist u;(z) € Asy{gi*}(QSitl)

and g;+_1(z) € Asy{gi*_l}(Qgi*il) such that

(4.15) Lui) = g(2) = gi—1(2)-

Put L<">(u) = L(u) and g;«(z) = g(z). Suppose that there exist u;(z) €
Asy{gi}(Qgiil), gi-1(z) € Asy{gi_l}(Qgiil) and nonlinear operators
L<%(u) for k+1 <1i <i* such that

(4.16) L7 (ug) = gi(2) — gi—1(2).

Define
L<k> (u) _ L<k+1> (u + Uk+1) _ L<k+1>(uk+1)-
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Consider the equation
(4.17) L<F> (u) = gr(2).

It follows again from Theorem 1.8 that there exist ug(z) € Asy {gk}(QSk_l)
and gr_1(z) € Asy{gkil}(QSk_l) such that

(4.18) L<k>(uk) = gi(z) — gr-1(2).
By repeating the method, we arrive at the following equation,
(4.19) LY () = g1(2),

where ¢1(z) € Asy{gl}(le). The equation (4.19) has a solution ui(z) €
Asy{gl}(le) by Theorem 1.8-(2). Hence we have

i*

Z L7 (u;) = Z(Qz‘(Z) —9i-1(2)) = 9(2)  (g0(z) = 0).

=1

Since Y707, L9 (ug) = LS, ui(2)) = g(2), ug = Yohr wi(2) satisfies
L(ug/) = g(z). Thus we have Theorem 1.9. (J

5. Proofs of Propositions and Theorems

In §5 we give the proofs of Propositions 1.6, 1.7, 1.11, Theorems 1.16
and 1.17.

PROOF OF PROPOSITION 1.6. Put R(u) = L(2ju). Then

s

M
(5.1) Ruy=>" 3 2524 b, (2) [T 0 (2080 + r)i0u,

s=1 {A7 SAZS} =1

from which we have X7 (' +r) = X5 (1), X% = X7 4+(0,7), Ri(2, 2000,0') =
25 Li(z, 2000,0') for 1 <i < p—1and Ry(z, 2000,0") = 25 Lp(2, 2000 +1,0").

Hence the following (i) and (ii) are equivalent: (i) L(u) has the strongly
linear part with respect to valuation r, (ii) R(u) has the stronly linear
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part with respect to valuation 0. We show (2). Let L(u) is an operator
with order m. Hence eq # +oo for some A € N'M with k4 = m. So if
L(u) has the strongly linear part with respect to valuation p,, we have
em # +0o. Conversely supppose that L(u) is linearly nondegenerate, that
is, e # +00. Thenif s4 > 2, sqgr+e4 > r+e,, for large r and this implies
¥y (r) CC ¥%(r) and p equals to the infimum of such r. O

Let us proceed to show Proposition 1.7. For v(z) € F and v(z) =

120 vn(2') 25" we have defined an formal operator LV (u) := L(u+v)—L(v)

and

l
(5.2) v i(2) =0, vj(z) =) on(2)zf" for 1€ N.

Let us give the forms of L¥(u) and LY(z,0) more concterely. Let A =
(A1, Ag, ..., Ag,) € NM T be a subset of {1,2,...,s4} and |Z| be the
cardinal number of the set |I|. By putting

( Lia(u) =2"ba(2)

A4S (JT 2" (z080) mo0) (T 0 (2000)40u)}

53) {Z;|Z|>1} hgZ i€z
5.3
LY(2,0) =25"ba(z {Z Ha’ " (2080)100) 0 (2000) 40}
i=1 h#i
M (u) =L (u) — L(z,0)u,

we have

L”(U)ZZL%(U), L(z,0) Zﬁﬂ(zﬁ),
(5.4) A A

M®(u) = M (u)

A

PROOF OF PROPOSITION 1.7. We have from (5.3)

L¥(u) =Y ealz0(2)) [T (2000) 40
(5.5) A =t
L7(2,0) = D7 la(zv(2)0 (2000)°

{lol<m}
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Let e(lo(v)) and e(ca(v)) be the formal valuation of [, (z,v(z)) and that
of ca(z,v(z)) respectively. From the assumption e, :=
Mingq,: |o|=m} €(la(v)) < +00. Let us consider only a with e(lq(v)) < +00
and A € N'M with e(ca(v)) < 4+oc. For such o and A there is an Ny such
that for N > Ny

(5.6) e(ca(v)) = e(ca(vy)),  ella(v)) = e(la(vy))-

The first assertion follows from (5.6). Since L"(u) is linearly nondegenerate,
by Proposition 1.6 there is a p such that ¥j.,(r) = X7, (r) for any r > p.
Thus we have the second assertion. [

PROOF OF PROPOSITION 1.11. We may assume S = S(7/2k). Put

Qn/’f

(5.7) Z ful2 /H —

which converges in {£;0 < || < &} for some & > 0. Define for 0 < £ < &

¢ A
(5.8) f(z) = 2" /0 exp(—E20") F (!, €)de.

It is obvious that f(z) € O(2g) and we can show f(z) € Asy{‘:} (Qg) with

asymptotic expasion f(z) ~ :;i% fn(2")z8" by the way similar to the proof
of Proposition 4.2. [

Before showing Theorem 1.16, we give

PROPOSITION 5.1. Let u(z) be that in Theorem 1.13. Suppose that
L%(u) is linearly nondegenerate. Then there is an N € N such that

Vimin,ci = Y =7 .t (@ +an).

min,ﬁu}k\’ min,L
Proor. Let Ny and p be those in Proposition 1.7. We choose N such
that N —1 > Ny and ¢+ gn > p. Then it follows from Proposition 1.7 that

(5.9) Xpalg+an) = Xpalg +an) =3 q+an) =%" 0 (q+an).

LN~ 1( L



Nonlinear partial differential equations 415

This means Vi, po = Vimin, % = Vmin 1M1 (¢+qn). O

min,

PrROOF OF THEOREM 1.16. By combinig Theorem 1.15 with Proposi-
tion 5.1, we have Theorem 1.16. [

We proceed to show Theorem 1.17. Before doing so, we give

PROPOSITION 5.2.  Let f(z),9(z) € Asyj{gw}(Qs). Then f(2)g(z) and

(anO)C“Oa’“'f(z) are functions in Asy‘{sv}(QS). Further if f(z) ~ 0, for any
S’ cC S there is a ¢ > 0 such that

|f(2)] < Cexp(=c|zo| ") in S

jﬁow Let 8" cC S, f(z) = SN0 ()28 + fN(2) and g(z) =
Zn -0 gn(2") 3” +9N(Z) where

(5.10) N ), 19V (2)] < ABQNP(%N + 1)z in S,

Put h(z) = f(2)g(z). Then we have

Z Far ()20 9(2) + N (2)9(2)

n1=0

N(nl)—l
—me VA S g2 + gN () + Y (2)g(2),
n1=0 no=0

where gny + qn(ny)-1 < gv-1 and ¢ny + qN(n;) = gn- We have

h(z) = Z ha(2) 28 + BN (2),

where

hn(z/) = Z S (Z,)gm (Z/) Jor0<n<N -1

qdnq +Qn2 =qn

Z Fr ()gN O (2) + SN (2)9(2)

n1=0
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If @uy + @ny = Gy | fry (2)gny(2))] < A'B?T(gy,/v + 1). Since S is finitely
generated, we have |h,(z')] < A'B""T(q,/v + 1). For h'V(z) we have by
the similar method |AN (2)| < A'B'""T'(qn/v + 1)|20|?. So f(2)g(z) €
Asy{f}(ﬂg). Let us show the second assertion. It is not difficult to show

8’alf(z) € Asy{‘j}(QS). So let us show zp0 f(2) € Asy{‘j}(ﬂs). We have

N-1
(5.11) 2000f(2) = Y aufu(2)20" + ((an + 2000) ¥ (2)) 28"
n=0

By Cauchy’s formula

ZoaofN(Z)— L /Mdt
c

T omi Jo (t—20)2

As the proof of Proposition 2.6, we choose the circle |t — 29| = ¢|zo| as the
integration path C, where c is a small constant depending on S’. We have
for zg € S’

1 2™ fN(z9 + c|z0|e?, 2/
000N (a)] < 5 [ LRl
™ Jo C

<A'BWT(qn /v + 1|1+ ¢)z|™ < A'B™T(gn /v + 1)|20| ™,

|4

which implies 290y f(2) € Asy{‘j}(QS). Suppose f(z) ~ 0. Then for all
gy €S

(5.12) [f(2)] < ABI™T(qn /v + 1)[z0] ™.

Let d > 0 be a generator of S. Then we have, by Stiring’s formula, for all
ne N.

[f(2)] < AB™T(nd/y + 1)|z0" < A'B™|z0"(nd/7)"*/" exp(—nd/).

For b(nd/~)~'7/2 < |z| < b(nd/~)~Y7 we have

F()] < AB™ exp(nd/) < 4B exp(—(2)7]2] ).
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Choose b with B’b < 1. Then |f(z)] < A’exp(—c|z|™7), which implies
f(z) € Asy{g}(QS). O

PrOOF OF THEOREM 1.17. We apply Theorem 1.12 to the proof. As-
sumptions 1 and 2 are obviously satisfied and Assumption 3 is satisfied for
ix = p— 1. Conditions for L% are assumed. So we only check Assumption 4.
Put v, = v,_1 ca and Six = S(¢—, 1) be a sector with ¢4 —¢_ < 7/7x. Let
v(z) € 2¢ Asy{f*}(Qg*) with v(z) ~ u(z). Then it follows from Proposition
5.2 that L(v) € Asy{i}(ﬁg*). Hence g«(2) := g(2) — L(v) € Asy{i}(ﬁg*).
Since g.(2) ~ 0, g«(z) € Asy{g*}(Qg*) by Proposition 5.2.
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