The $W^{k, p}$-continuity of wave operators for Schrödinger operators III, even dimensional cases $m \geq 4$

By Kenji Yajima

Abstract

Let $H=-\Delta+V(x)$ be the Schrödinger operator on $\mathbf{R}^{m}, m \geq 3$. We show that the wave operators $W_{ \pm}=\lim _{t \rightarrow \pm \infty} e^{i t H}$. $e^{-i t H_{0}}, H_{0}=-\Delta$, are bounded in Sobolev spaces $W^{k, p}\left(\mathbf{R}^{m}\right), 1 \leq p \leq$ $\infty, k=0,1, \ldots, \ell$, if V satisfies $\left\|D^{\alpha} V(y)\right\|_{L^{p_{0}}(|x-y| \leq 1)} \leq C(1+|x|)^{-\delta}$ for $\delta>(3 m / 2)+1, p_{0}>m / 2$ and $|\alpha| \leq \ell+\ell_{0}$, where $\ell_{0}=0$ if $m=3$ and $\ell_{0}=[(m-1) / 2]$ if $m \geq 4,[\sigma]$ is the integral part of σ. This result generalizes the author's previous result which appears in J. Math. Soc. Japan 47, where the theorem is proved for the odd dimensional cases $m \geq 3$ and several applications such as L^{p}-decay of solutions of the Cauchy problems for time-dependent Schrödinger equations and wave equations with potentials, and the L^{p}-boundedness of Fourier multiplier in generalized eigenfunction expansions are given.

1. Introduction

Let $H_{0}=D_{1}^{2}+\cdots+D_{m}^{2}, D_{j}=-i \partial / \partial x_{j}$, be the free Schrödinger operator on $L^{2}\left(\mathbf{R}^{m}\right)$ and $H=H_{0}+V$ its perturbation by the multiplication operator V with a real valued function $V(x)$. It is well known in the scattering theory (cf. [1], [3], [9]) that, if V is of short range in the sense that $\int_{1}^{\infty}\left\|F_{R} V\left(H_{0}+1\right)^{-1}\right\| d R<\infty$, where F_{R} is the multiplication with the characteristic function of $\left\{x \in \mathbf{R}^{m}:|x| \geq R\right\}$, then the wave operators $W_{ \pm}$ defined by

$$
W_{ \pm} u=\lim _{t \rightarrow \pm \infty} e^{i t H} e^{-i t H_{0}} u, \quad u \in L^{2}\left(\mathbf{R}^{m}\right)
$$

exist and they are isometries on $L^{2}\left(\mathbf{R}^{m}\right)$ with the final set $L_{c}^{2}(H)$, the continuous spectral subspace for H. The wave operators satisfy the intertwining property: $f(H) W_{ \pm}=W_{ \pm} f\left(H_{0}\right)$ for Borel functions f and they play important roles in the perturbation theory of continuous spectra as well as in the scattering theory ([14]).

[^0]In [21] and [22], we showed that $W_{ \pm}$are in fact bounded in Sobolev spaces $W^{\ell, p}\left(\mathbf{R}^{m}\right)$:

$$
W^{\ell, p}\left(\mathbf{R}^{m}\right)=\left\{f \in L^{p}\left(\mathbf{R}^{m}\right): \sum_{|\alpha| \leq \ell}\left\|D^{\alpha} f\right\|_{L^{p}}^{p} \equiv\|f\|_{W^{\ell, p}}^{p}<\infty\right\}
$$

if either (1) the spatial dimension $m \geq 3$ is odd, or (2) $m \geq 4$ is even and V is small or $V(x) \geq 0$, where for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right), D^{\alpha}=D_{1}^{\alpha_{1}} \cdots D_{m}^{\alpha_{m}}$ and $|\alpha|=\alpha_{1}+\cdots+\alpha_{m}$. More precisely, we proved the following theorem, where $\ell \geq 0$ is an integer and $m_{*}=(m-1) /(m-2) . \mathcal{F}$ is the Fourier transform, $\langle x\rangle=\left(1+|x|^{2}\right)^{1 / 2}$ and $H^{s}\left(\mathbf{R}^{m}\right)=W^{s, 2}\left(\mathbf{R}^{m}\right)$.

ThEOREM 1.1 ([21], [22]). Let $m \geq 3$. Let V be a real valued function such that, for some $\sigma>2 / m_{*}, \mathcal{F}\left(\langle x\rangle^{\sigma} D^{\alpha} V\right) \in L^{m_{*}}\left(\mathbf{R}^{m}\right)$ for $|\alpha| \leq \ell$, and satisfy one of the following conditions:

1. $\left\|\mathcal{F}\left(\langle x\rangle^{\sigma} V\right)\right\|_{L^{m_{*}}\left(\mathbf{R}^{m}\right)}$ is sufficiently small;
2. $m=2 m^{\prime}-1$ is odd and, with $\delta>\max (m+2,3 m / 2-2),\left|D^{\alpha} V(x)\right| \leq$ $C_{\alpha}\langle x\rangle^{-\delta}$ for $|\alpha| \leq \max \left\{\ell, \ell+m^{\prime}-4\right\}$;
3. m is even, $V(x) \geq 0$ and, with $\delta>3 m / 2+1,\left|D^{\alpha} V(x)\right| \leq C_{\alpha}\langle x\rangle^{-\delta}$ for $|\alpha| \leq m+\ell$.

Suppose in addition that zero is neither eigenvalue nor resonance of H. Then, the wave operators $W_{ \pm}$are bounded in $W^{k, p}\left(\mathbf{R}^{m}\right)$ for any $k=0, \ldots, \ell$ and $1 \leq p \leq \infty$,

REMARK 1. Zero is said to be resonance of H if the equation $-\triangle u(x)+$ $V(x) u(x)=0$ has a solution $u \notin L^{2}\left(\mathbf{R}^{m}\right)$ such that $(1+|x|)^{-1-\varepsilon} u \in L^{2}\left(\mathbf{R}^{m}\right)$ for any $\varepsilon>0$. If zero is resonance or eigenvalue of $H, W_{ \pm}$can not be bounded in L^{p} for all $1 \leq p \leq \infty$ (cf. [21]). It is known that H does not admit zero resonance if $m \geq 5$ or $V(x) \geq 0$.

Theorem 1.1, however, does not cover the case that the spatial dimension m is even and $V(x)$ can be large negative. The main purpose of this paper is to fill this gap and prove the following theorem, where $\ell \geq 0$ is an arbitrarily fixed integer; $p_{0}>m / 2$ and $\ell_{0}=[(m-1) / 2]$ if $m \geq 4$; and $p_{0}=2$ and $\ell_{0}=0$ if $m=3 .[\sigma]$ is the integral part of σ.

THEOREM 1.2. Let $m \geq 3$. Suppose that $V(x)$ is real valued and, with $\delta>(3 m / 2)+1$,

$$
\begin{equation*}
\sup _{x \in \mathbf{R}^{m}}\langle x\rangle^{\delta}\left(\int_{|x-y| \leq 1}\left|D^{\alpha} V(y)\right|^{p_{0}} d y\right)^{1 / p_{0}}<\infty \tag{1.1}
\end{equation*}
$$

for $|\alpha| \leq \ell+\ell_{0}$. Suppose further that zero is neither eigenvalue nor resonance of H. Then, $W_{ \pm}$are bounded in $W^{k, p}\left(\mathbf{R}^{m}\right)$ for any $k=0, \ldots, \ell$ and $1 \leq$ $p \leq \infty$.

Remark 2. Theorem 1.2 is a generalization of Theorem 1.1 when m is even and V is large, however, none of them is stronger than the other otherwise. We remark that under the condition of Theorem 1.2 it is possible to find $\sigma>2 / m_{*}$ such that $\mathcal{F}\left(\langle x\rangle^{\sigma} D^{\alpha} V\right) \in L^{m_{*}}\left(\mathbf{R}^{m}\right)$ for $|\alpha| \leq \ell$.

We refer to [21] for various applications of Theorems and the related reference, and shall be devoted to the proof of Theorem 1.2 in this paper. We shall only prove the L^{p} boundedness of W_{+}assuming $\ell=0$ and m is even ≥ 4. The odd dimensional cases may be proved by slightly modifying the following argument or by the method of [21]; the proof for W_{-}is similar; and the extension to general ℓ may be done by estimating the multiple commutators $\left[D_{j_{1}},\left[D_{j_{2}}, \cdots\left[D_{j_{\ell}}, W_{+}\right] \cdots\right]\right]$ as in section 5 of [21].

We outline the proof here, displaying the plan of this paper and introducing some notations. $B(X, Y)$ is the Banach space of bounded operators from Banach space X to Y and $B(X)=B(X, X) . R(z)=(H-z)^{-1}, R_{0}(z)=$ $\left(H_{0}-z\right)^{-1}$ are resolvents and $R^{ \pm}(\lambda)=R(\lambda \pm i 0), R_{0}^{ \pm}(\lambda)=R_{0}(\lambda \pm i 0)$ are their boundary values on the upper and lower banks of $\mathbf{C} \backslash[0, \infty)$. By using the stationary representation formula ([9], [14]):

$$
W_{+} u=u-\frac{1}{2 \pi i} \int_{0}^{\infty} R^{-}(\lambda) V\left\{R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right\} u d \lambda
$$

and the identity $R^{-}(\lambda)=R_{0}^{-}(\lambda)-R_{0}^{-}(\lambda) V R^{-}(\lambda)$, we write $W_{+} u=u+$ $W_{1} u+W_{2} u$, where

$$
\begin{gather*}
W_{1} u=-\frac{1}{2 \pi i} \int_{0}^{\infty} R_{0}^{-}(\lambda) V\left\{R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right\} u d \lambda, \tag{1.2}\\
W_{2} u=\frac{1}{2 \pi i} \int_{0}^{\infty} R_{0}^{-}(\lambda) V R^{-}(\lambda) V\left\{R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right\} u d \lambda . \tag{1.3}
\end{gather*}
$$

In the first half of section 2 , we study the mapping property of $R_{0}^{ \pm}(\lambda)$ and the decay and smoothness properties of the integral kernels of $R(0)$ and $\phi(H)$ for $\phi \in C_{0}^{\infty}(\mathbf{R})$. As we think them of independent interest, these properties will be stated and proved under much weaker assumptions on V than necessary in what follows. We then recall from [21] the argument that proves W_{1} is bounded in L^{p} : Express W_{1} explicitly in the form

$$
\begin{equation*}
W_{1} u(x)=\int_{\Sigma} d \omega \int_{2 x \omega}^{\infty} \widehat{K}_{V}(t, \omega) u\left(t \omega+x_{\omega}\right) d t \tag{1.4}
\end{equation*}
$$

where Σ is the unit sphere, $x_{\omega}=x-2(x \omega) \omega$ is the reflection of x along the ω-axis and

$$
\widehat{K}_{V}(t, \omega)=\frac{i}{2(2 \pi)^{m / 2}} \int_{0}^{\infty} \widehat{V}(r \omega) r^{m-2} e^{i t r / 2} d r
$$

it follows by Minkowski inequality and the fact that $x \rightarrow x_{\omega}$ is measure preserving that for any $\sigma>1 / 2$,

$$
\begin{align*}
\left\|W_{1} u\right\|_{L^{p}} & \leq 2\left\|\widehat{K}_{V}\right\|_{L^{1}([0, \infty) \times \Sigma)}\|u\|_{L^{p}} \tag{1.5}\\
& \leq C\left\|\langle x\rangle^{\sigma} V\right\|_{H^{(m-3) / 2}}\|u\|_{L^{p}} \leq C^{\prime}\|u\|_{L^{p}} .
\end{align*}
$$

We wish to show that W_{2} is bounded in L^{p} by proving the well known criterion:

$$
\begin{equation*}
\max \left\{\sup _{x \in \mathbf{R}^{m}} \int_{\mathbf{R}^{m}}\left|W_{2}(x, y)\right| d y, \quad \sup _{y \in \mathbf{R}^{m}} \int_{\mathbf{R}^{m}}\left|W_{2}(x, y)\right| d x\right\}<\infty \tag{1.6}
\end{equation*}
$$

for its integral kernel $W_{2}(x, y)$. It can be written as

$$
\begin{equation*}
W_{2}(x, y)=\frac{1}{2 \pi i} \int_{0}^{\infty}\left\langle R^{-}\left(k^{2}\right) V\left(G_{+, y, k}-G_{-, y, k}\right), V G_{+, x, k}\right\rangle d k^{2} \tag{1.7}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ is a coupling between suitable function spaces and $G_{ \pm, y, k}(x)=$ $G_{ \pm}(x-y, k)$ are the kernels of $R_{0}^{ \pm}\left(k^{2}\right)$ or the incoming-outgoing fundamental solutions of $-\triangle-k^{2}$. They satisfy $G_{ \pm}(x, k) \sim C e^{ \pm i k|x|}|x|^{-(m-1) / 2} k^{(m-3) / 2}$ as $|x| \rightarrow \infty$ and crude estimations would only yield
(1.8) $\quad \mid$ the integrand of $(1.7) \mid \leq C k^{m-3}\langle x\rangle^{-(m-1) / 2}\langle y\rangle^{-(m-1) / 2}$.

Thus we are faced with the two difficulties:
(1) High energy difficulty: The integral (1.7) does not converge absolutely at $k=\infty$;
(2) Low energy difficulty: If we restrict the integral (1.7) to finite intervals, (1.8) produces only $\left|W_{2}(x, y)\right| \leq C\langle x\rangle^{-(m-1) / 2}\langle y\rangle^{-(m-1) / 2}$ which is insufficient for (1.6). For obtaining improved decay property, we exploit the oscillation property of $G_{ \pm}(x, k)$ and apply integration by parts with respect to the variable k. However, the singularity at $k=0$ of $G_{ \pm}(x, k)$ prevents us from doing this as many times as necessary if m is even.

To separate two difficulties, we decompose W_{2} into the low and the high energy parts and consider $W_{2, \text { low }}=\phi_{1}(H) W_{2} \phi_{1}\left(H_{0}\right)$ and $W_{2, \text { high }}=$ $\phi_{2}(H) W_{2} \phi_{2}\left(H_{0}\right)$, where cut off functions $\phi_{1} \in C_{0}^{\infty}\left(R^{1}\right)$ and $\phi_{2} \in C^{\infty}\left(R^{1}\right)$ are such that $\phi_{1}(\lambda)^{2}+\phi_{2}(\lambda)^{2}=1$, and $\phi_{1}(\lambda)=1$ for $|\lambda| \leq 1$ and $\phi_{1}(\lambda)=0$ for $|\lambda| \geq 2$. Note that $W_{ \pm}=\sum_{j=1}^{2} \phi_{j}(H) W_{ \pm} \phi_{j}\left(H_{0}\right)$ thanks to the intertwining property of $W_{ \pm}$and $\phi_{j}\left(H_{0}\right)$ and $\phi_{j}(H), j=1,2$, are bounded in L^{p} as proved in section 2 . We show $W_{2, \text { low }}$ and $W_{2, \text { high }}$ are bounded in L^{p} separately.

In section 3 , we treat the low energy part $W_{2, \text { low }}$. We split $R^{-}(\lambda)=$ $R^{-}(0)+\tilde{R}^{-}(\lambda)$ to single out the contribution of $R^{-}(0)$ and decompose as $W_{2, \text { low }}=W_{2, \text { low }}^{(1)}+W_{2, \text { low }}^{(2)}$ accordingly. In virtue of the orthogonality of Hardy functions in the upper and the lower half planes, we have

$$
\begin{equation*}
W_{2, l o w}^{(1)} u=\phi_{1}(H)\left\{\frac{1}{2 \pi i} \int_{-\infty}^{\infty} R_{0}^{-}(\lambda) V R^{-}(0) V R_{0}^{+}(\lambda) d \lambda\right\} \phi_{1}\left(H_{0}\right) u \tag{1.9}
\end{equation*}
$$

using the identity $\left(R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right) \phi_{1}\left(H_{0}\right)=\left(R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right) \phi_{1}(\lambda)$, we write

$$
\begin{align*}
W_{2, l o w}^{(2)} u= & \frac{1}{2 \pi i} \int_{0}^{\infty} \phi_{1}(H) R_{0}^{-}(\lambda) V \tilde{R}^{-}(\lambda) V\left(R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right) \tag{1.10}\\
& \times \tilde{\phi}_{1}(\lambda) \phi_{1}\left(H_{0}\right) u d \lambda
\end{align*}
$$

where $\tilde{\phi}_{1} \in C_{0}^{\infty}(\mathbf{R})$ is such that $\tilde{\phi}_{1}(\lambda) \phi_{1}(\lambda)=\phi_{1}(\lambda)$. For dealing with $W_{2, \text { low }}^{(1)}$ it is important to observe the following: If we write the integral kernel of $R^{-}(0)$ by $K(x, y)$ and set $M_{y}(x)=V(x) K(x, x-y) V(x-y)$, then $W_{2, \text { low }}^{(1)}$ can be expressed as a superposition

$$
\begin{equation*}
W_{2, l o w}^{(1)} u=-\int_{R^{m}} \phi_{1}(H) W_{1}\left(M_{y}\right) \phi_{1}\left(H_{0}\right) u_{y} d y \tag{1.11}
\end{equation*}
$$

where $u_{y}(x)=u(x-y)$ and $W_{1}\left(M_{y}\right)$ is defined by (1.2) with M_{y} in place of V. We show in section 2 that

$$
\begin{equation*}
\int_{\mathbf{R}^{m}}\left\|\langle x\rangle^{\sigma} M_{y}\right\|_{H^{(m-3) / 2}\left(\mathbf{R}^{m}\right)} d y<\infty \tag{1.12}
\end{equation*}
$$

for some $\sigma>1 / 2$. Since (1.5) and (1.11) imply that $\left\|W_{2, l o w}^{(1)} u\right\|_{L^{p}}$ is bounded by a constant times

$$
\int_{R^{m}}\left\|W_{1}\left(M_{y}\right)\right\|_{B\left(L^{p}\right)}\left\|u_{y}\right\|_{L^{p}} d y \leq C \int_{R^{m}}\left\|\langle x\rangle^{\sigma} M_{y}\right\|_{H^{(m-3) / 2}\left(\mathbf{R}^{m}\right)} d y \cdot\|u\|_{L^{p}}
$$

$W_{2, \text { low }}^{(1)}$ is bounded in L^{p}.
We treat $W_{2, l o w}^{(2)}$ as follows. Set $G_{ \pm, x, k}(y)=e^{ \pm i k|x|} \tilde{G}_{ \pm, x, k}(y)$ to make oscillation property explicit and write its integral kernel in the form $W_{2, \text { low }}^{(2)}(x, y)=W_{2, \text { low }}^{(2),+}(x, y)-W_{2, \text { low }}^{(2),-}(x, y)$:

$$
\begin{align*}
W_{2, l o w}^{(2), \pm}(x, y)= & \frac{1}{2 \pi i} \int_{0}^{\infty} e^{-i k(|x| \mp|y|)}\left\langle\tilde{R}^{-}\left(k^{2}\right) V \tilde{G}_{ \pm, y, k}, V \tilde{G}_{+, x, k}\right\rangle \tag{1.13}\\
& \times \tilde{\phi}_{1}\left(k^{2}\right) d k^{2}
\end{align*}
$$

where we ignored the harmless factors $\phi_{1}\left(H_{0}\right)$ and $\phi_{1}(H)$. We then apply integration by parts with respect to k variable $\ell=(m+2) / 2$ times (when m is even):

$$
\begin{align*}
& =\frac{1}{2 \pi i} \int_{0}^{\infty} \frac{D_{k}^{\ell} e^{-i k(|x| \mp|y|)}}{(|y| \mp|x|)^{\ell}}\left\langle\tilde{R}^{-}\left(k^{2}\right) V \tilde{G}_{ \pm, y, k}, V \tilde{G}_{+, x, k}\right\rangle \tilde{\phi}_{1}\left(k^{2}\right) d k^{2} \tag{1.14}\\
& =\frac{1}{\pi i} \int_{0}^{\infty} \frac{e^{-i k(|x| \mp|y|)}}{(|x| \mp|y|)^{\ell}} D_{k}^{\ell}\left\{k\left\langle\tilde{R}^{-}\left(k^{2}\right) V \tilde{G}_{ \pm, y, k}, V \tilde{G}_{+, x, k}\right\rangle \tilde{\phi}_{1}\left(k^{2}\right)\right\} d k
\end{align*}
$$

and gain the addition decay factor $(|x| \mp|y|)^{-\ell}$. Here the boundary terms do not appear and the integral converges absolutely because $\tilde{R}^{-}\left(k^{2}\right)$ vanishes at $k=0$. (Actually we apply the integration by parts in a little more elaborate way. See the text for the details.) In this way we arrive at the estimate

$$
\begin{equation*}
\left|W_{2, l o w}^{(2), \pm}(x, y)\right| \leq C(1+||x| \mp| y| |)^{-(m+2) / 2}\langle x\rangle^{-(m-1) / 2}\langle y\rangle^{-(m-1) / 2} \tag{1.15}
\end{equation*}
$$

and $W_{2, l o w}^{(2)}(x, y)$ indeed satisfies the criterion (1.6). Though the splitting of $R^{-}(\lambda)$ as above is unnecessary when m is odd because of simpler structure of $G_{ \pm}(x, k)$, it makes the proof of the theorem simpler even in that case.

In section 4, we prove that the high energy part $W_{2, \text { high }}=$ $\phi_{2}(H) W_{2} \phi_{2}\left(H_{0}\right)$ is also bounded in L^{p}, overcoming the high energy difficulty by the method similar to one that was employed in section 4 of [21]:

We decompose W_{2} into $2 N+1$ summands: $W_{2}=\sum_{n=2}^{2 N+2}(-1)^{n} W^{(n)}$ by expanding $R^{-}\left(k^{2}\right)$ as

$$
\begin{align*}
R^{-}\left(k^{2}\right)= & \sum_{n=0}^{2 N-1}(-1)^{n} R_{0}^{-}\left(k^{2}\right)\left(V R_{0}^{-}\left(k^{2}\right)\right)^{n} \tag{1.16}\\
& +\left(R^{-}\left(k^{2}\right) V\right)^{N} R^{-}\left(k^{2}\right)\left(V R_{0}^{-}\left(k^{2}\right)\right)^{N}
\end{align*}
$$

and inserting (1.16) into (1.3). A repeated application of the argument leading to (1.4) shows that $W^{(2)}, \ldots, W^{(2 N+1)}$ have expressions similar to (1.4), and the estimate similar to the one used for proving (1.5) implies that they are all bounded in L^{p}.

To prove $W^{(2 N+2)}$ is bounded in L^{p}, we let $F_{N}\left(k^{2}\right)=$ $\left(R^{-}\left(k^{2}\right) V\right)^{N} R^{-}\left(k^{2}\right)\left(V R_{0}^{-}\left(k^{2}\right)\right)^{N}$ and define the integral operator $W_{\text {high }}^{(2 N+2)}$ with the integral kernel $W_{\text {high }}^{(2 N+2)}(x, y)=W_{\text {high }}^{(2 N+2),+}(x, y)-W_{\text {high }}^{(2 N+2),-}(x, y)$:

$$
\begin{align*}
W_{h i g h}^{(2 N+2), \pm}(x, y)= & \frac{1}{2 \pi i} \int_{0}^{\infty} e^{-i k(|x| \pm|y|)} \tag{1.17}\\
& \times\left\langle F_{N}\left(k^{2}\right) V \tilde{G}_{ \pm, y, k}, V \tilde{G}_{+, x, k}\right\rangle \tilde{\phi}_{2}\left(k^{2}\right) d k^{2}
\end{align*}
$$

where $\tilde{\phi}_{2} \in C^{\infty}(\mathbf{R})$ is such that $\tilde{\phi}_{2}(\lambda)=0$ near $\lambda=0$ and $\tilde{\phi}_{2}(\lambda) \phi_{2}(\lambda)=$ $\phi_{2}(\lambda)$. Then we have $\phi_{2}(H) W^{(2 N+2)} \phi_{2}\left(H_{0}\right)=\phi_{2}(H) W_{h i g h}^{(2 N+2)} \phi_{2}\left(H_{0}\right)$. If N is sufficiently large $F_{N}\left(k^{2}\right)$, as an operator valued function between suitable function spaces, decays rapidly as $k \rightarrow \infty$ and the integrals (1.17) converge absolutely. Moreover, integration parts with respect to k variable as in the proof of (1.15) yields

$$
\left|W_{\text {high }}^{(2 N+2), \pm}(x, y)\right| \leq C(1+||x| \mp| y| |)^{-(m+2) / 2}\langle x\rangle^{-(m-1) / 2}\langle y\rangle^{-(m-1) / 2},
$$

which shows that $W_{\text {high }}^{(2 N+2)}(x, y)$ satisfies the criterion (1.6). In this way the argument is very much similar to that of the previous section and of section 4 of [21], and therefore, we shall be very sketchy in section 4 .

Acknowledgement. We thank Professors Kazuhiro Kurata, Minoru Murata and Shu Nakamura for many helpful discussions.

2. Preliminaries

In this section we first study the mapping property of $R_{0}^{ \pm}(\lambda), \lambda \geq 0$, and the decay and smoothness properties of the integral kernels of $R^{ \pm}(0)$ and
$\phi(H), \phi \in C_{0}^{\infty}(\mathbf{R})$, under the conditions which are more general than in 1.2. We then recall from [21] the argument for proving the L^{p} boundedness of W_{1}. For $1 \leq p, q \leq \infty$ and $\delta, \ell \in \mathbf{R}, L_{\delta}^{p}\left(\mathbf{R}^{m}\right)$ is the weighted L^{p}-space:

$$
L_{\delta}^{p}\left(\mathbf{R}^{m}\right)=\left\{f \in L_{l o c}^{p}\left(\mathbf{R}^{m}\right):\|f\|_{L_{\delta}^{p}} \equiv\left\|\langle x\rangle^{\delta} f\right\|_{L^{p}}<\infty\right\}
$$

$H_{\delta}^{\ell}\left(\mathbf{R}^{m}\right)$ is the weighted Sobolev space:

$$
H_{\delta}^{\ell}\left(\mathbf{R}^{m}\right)=\left\{f \in \mathcal{S}^{\prime}\left(\mathbf{R}^{m}\right):\left\|\left(1+|x|^{2}\right)^{\delta / 2}(1-\triangle)^{\ell / 2} f\right\|_{L^{2}} \equiv\|f\|_{H_{\delta}^{\ell}}<\infty\right\}
$$

and $\ell_{\delta}^{p}\left(L^{q}\right)$ is the amalgam space:

$$
\ell_{\delta}^{p}\left(L^{q}\right)=\left\{f \in L_{l o c}^{q}\left(\mathbf{R}^{m}\right):\|f\|_{\ell_{\delta}^{p}\left(L^{q}\right)} \equiv\left(\sum_{n \in Z^{m}}\|f\|_{L^{q}\left(Q_{n}\right)}^{p}\langle n\rangle^{\delta p}\right)^{1 / p}<\infty\right\}
$$

where for $n=\left(n_{1}, \ldots, n_{m}\right), Q_{n}=\left[n_{1}, n_{1}+1\right) \times \cdots\left[n_{m}, n_{m}+1\right)$ is a unit cube.

2.1 Resolvent estimate for H_{0}

If $s>1$ and $t \in \mathbf{R}$, the resolvent $R_{0}(z)=\left(H_{0}-z\right)^{-1}$, which is originally defined as a $B\left(L^{2}\right)$-valued analytic function of $z \in \mathbf{C} \backslash[0, \infty)$, can be extended continuously to the closure $\overline{\mathbf{C} \backslash[0, \infty)}$ (in the Riemann surface of $\log z$) when considered as a $B\left(H_{s}^{t}, H_{-s}^{t+2}\right)$-valued function ([9]). We denote the boundary values on the upper and lower edges by $\lim _{\epsilon \rightarrow+0} R_{0}(\lambda \pm i \epsilon) \equiv$ $R_{0}^{ \pm}(\lambda), \lambda \in[0, \infty)$. The following mapping property of $R_{0}^{ \pm}(\lambda)$ is well known (cf. Murata [12] and Jensen [4]). In what follows, D_{k} will denote $-i \partial / \partial k$ and should not be confused with $-i \partial / \partial x_{k} .[\sigma]$ is the largest integer not greater than $\sigma \in \mathbf{R}$.

Lemma 2.1. Let $\ell=0,1,2, \cdots, t \in \mathbf{R}$ and $s>\ell+1 / 2$. Then, as a $B\left(H_{s}^{t}, H_{-s}^{t+2}\right)$-valued function of $k, R_{0}^{ \pm}\left(k^{2}\right)$ is C^{ℓ} in $k \in(0, \infty)$. Moreover:

1. For $j=0,1, \cdots$, ℓ and $0 \leq i \leq 2+[(j+1) / 2],\left\|D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right)\right\|_{B\left(H_{s}^{t}, H_{-s}^{t+i}\right)} \leq$ $C k^{-1+i}, k \geq 1$.
2. If $\ell \geq 2$, then $R_{0}^{ \pm}\left(k^{2}\right)$ has the following expansion in $B\left(H_{s}^{t}, H_{-s}^{t+2}\right)$ valid for $k \rightarrow 0$:

$$
R_{0}^{ \pm}\left(k^{2}\right)= \begin{cases}\sum_{j=0}^{2} G_{j} k^{j}+K_{2}(k), & \text { when } m=3 \tag{2.1}\\ \sum_{j=0}^{1} G_{j} k^{2 j}+F_{1} k^{2} \log k^{2}+K_{2}(k), & \text { when } m=4 \\ \sum_{j=0}^{1} G_{j} k^{2 j}+K_{2}(k), & \text { when } m \geq 5\end{cases}
$$

Here $F_{1}, G_{j} \in B\left(H_{s}^{t}, H_{-s}^{t+2}\right)$, and $K_{2}(k)$ stands for a $B\left(H_{s}^{t}, H_{-s}^{t+2}\right)$-valued C^{ℓ}-function of k such that, for $0 \leq j \leq \ell,\left\|D_{k}^{j} K_{2}\right\|=o\left(k^{2-j}\right)$ as $k \rightarrow 0$. Relation (2.1) remains valid if the boundary values $R_{0}^{ \pm}\left(k^{2}\right)$ are replaced by $R_{0}\left(k^{2}\right), \operatorname{Im} k>0$.

In section 4, we shall also use the following mapping property of $D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right)$ between L^{p} type spaces. For $0 \leq \ell<(m-1) / 2, \mathbf{P}_{\ell}^{m}$ is the pentagon in the (x, y)-plane surrounded by five lines $x=1, x=1 / 2+(2 \ell+$ 1) $/ 2 m, y=0, y=1 / 2-(2 \ell+1) / 2 m$ and $y=x-2(\ell+1) /(m+1)$, where the segments $\{(x, 0): 1 / 2+(2 \ell+1) / 2 m<x \leq 1\}$ and $\{(1, y): 0 \leq y<1 / 2-$ $(2 \ell+1) / 2 m\}$ are included. Note that $(1 / 2+(\ell+1) / m, 1 / 2-(\ell+1) / m) \in \mathbf{P}_{\ell}^{m}$ as long as $\ell+1<m / 2$.

Lemma 2.2. Let $j=0,1, \ldots$ and let $1 \leq p \leq q \leq \infty$ and $1 \leq r \leq \rho \leq$ ∞ be such that $1 / r \geq 1 / q-(j+2) / m$, where the equality is inclusive only when $1 / q-(j+2) / m>0$. Then, $D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right)$ satisfies the following mapping property:
(a) The case m is odd ≥ 3 :

1. If $0 \leq j<(m-1) / 2, D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right) \in B\left(\ell^{p}\left(L^{q}\right), \ell^{\rho}\left(L^{r}\right)\right)$ for $(1 / p, 1 / \rho) \in$ \mathbf{P}_{j}^{m} and

$$
\left\|D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right)\right\|_{B\left(\ell^{\rho}\left(L^{q}\right), \ell^{\rho}\left(L^{r}\right)\right)} \leq C_{j} k^{m(1 / p-1 / \rho)-2-j}, \quad k \geq 1
$$

2. If $(m-1) / 2 \leq j<m-2, \quad D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right) \in B\left(\ell_{j-(m-1) / 2}^{1}\left(L^{q}\right)\right.$, $\left.\ell_{-j+(m-1) / 2}^{\infty}\left(L^{r}\right)\right)$ and

$$
\left\|D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right)\right\|_{B\left(\ell_{j-(m-1) / 2}^{1}\left(L^{q}\right), \ell_{-j+(m-1) / 2}^{\infty}\left(L^{r}\right)\right)} \leq C_{j} k^{(m-3) / 2}, \quad k \geq 1
$$

3. If $j \geq m-2, D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right) \in B\left(L_{j-(m-1) / 2}^{1}, L_{-j+(m-1) / 2}^{\infty}\right)$ and

$$
\left\|D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right)\right\|_{B\left(L_{j-(m-1) / 2}^{1}, L_{-j+(m-1) / 2}^{\infty}\right)} \leq C_{j} k^{(m-3) / 2}, \quad k \geq 1
$$

(b) The case m is even ≥ 4 :

1. If $0 \leq j \leq(m-2) / 2, D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right) \in B\left(\ell^{p}\left(L^{q}\right), \ell^{\rho}\left(L^{r}\right)\right)$ for $(1 / p, 1 / \rho) \in$ \mathbf{P}_{j}^{m} and

$$
\left\|D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right)\right\|_{B\left(\ell^{\rho}\left(L^{q}\right), \ell^{\rho}\left(L^{r}\right)\right)} \leq C_{j} k^{m(1 / p-1 / \rho)-2-j}, \quad k \geq 1
$$

2. If $m / 2 \leq j \leq m-3, D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right) \in B\left(\ell_{j-(m-1) / 2}^{1}\left(L^{q}\right), \ell_{-j+(m-1) / 2}^{\infty}\left(L^{r}\right)\right)$ and

$$
\left.\left\|D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right)\right\|_{B\left(\ell_{j-(m-1) / 2}^{1}\left(L^{q}\right), \ell ⿱-j+(m-1) / 2\right.}^{\infty}\left(L^{r}\right)\right) \leq C_{j} k^{(m-3) / 2}, \quad k \geq 1
$$

3. If $j=m-2, D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right) \in B\left(\ell_{j-(m-1) / 2}^{1}\left(L^{q}\right), L_{-j+(m-1) / 2}^{\infty}\right)$ for any $1<q \leq \infty$.

$$
\left\|D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right)\right\|_{B\left(\ell_{j-(m-1) / 2}^{1}\left(L^{q}\right), L_{-j+(m-1) / 2}^{\infty}\right)} \leq C_{j} k^{(m-3) / 2}, \quad k \geq 1
$$

4. If $j \geq m-1, D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right) \in B\left(L_{j-(m-1) / 2}^{1}, L_{-j+(m-1) / 2}^{\infty}\right)$ and

$$
\left\|D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right)\right\|_{B\left(L_{j-(m-1) / 2}^{1}, L_{-j+(m-1) / 2}^{\infty}\right)} \leq C_{j} k^{(m-3) / 2}, \quad k \geq 1
$$

For proving Lemma 2.2, we use the following lemma. We write $u_{k}(x)=$ $u(x / k)$.

Lemma 2.3. (1) If $1 \leq p \leq q \leq \infty, \delta \geq 0$ and $k \geq 1$, then $\left\|u_{k}\right\|_{\ell_{\delta}^{p}\left(L^{q}\right)} \leq$ $C k^{m / p+\delta}\|u\|_{\ell_{\delta}^{p}\left(L^{q}\right)}$
(2) If $1 \leq r \leq \rho \leq \infty, \delta \geq 0$ and $k \geq 1$, then $\left\|u_{1 / k}\right\|_{\ell_{-\delta}^{\rho}\left(L^{r}\right)} \leq$ $C k^{-m / \rho+\delta}\|u\|_{\ell_{-\delta}^{\rho}\left(L^{r}\right)}$.

Proof. We only prove the first statement for integral $k \geq 1$. General case may be proved by a slight modification of the following argument. The
second statement follows from the first by the duality. If $k \geq 1$ is integral, we have by Hölder's inequality:

$$
\begin{aligned}
& \left\|f_{k}\right\|_{\ell_{\delta}^{p}\left(L^{q}\right)}^{p}=\sum_{n \in Z^{m}}\langle n\rangle^{p \delta}\left(\int_{Q_{n}}|f(x / k)|^{q} d x\right)^{p / q} \\
& \quad=\sum_{n \in Z^{m}} k^{m p / q}\langle n\rangle^{p \delta}\left(\int_{Q_{n} / k}|f(x)|^{q} d x\right)^{p / q} \\
& \quad=k^{m p / q} \sum_{j \in Z^{m}}\left\{\sum_{Q_{n} / k \subset Q_{j}}\left(\int_{Q_{n} / k}|f(x)|^{q} d x\right)^{p / q}\langle n\rangle^{p \delta}\right\}_{p / q}^{p / q} \\
& \quad \leq k^{m p / q} \sum_{j \in Z^{m}}\left(k^{m}\right)^{1-p / q}\left(\sum_{Q_{n} / k \subset Q_{j}} \int_{Q_{n} / k}|f(x)|^{q} d x\right)^{p / q}(C k\langle j\rangle)^{p \delta} \\
& \quad=C^{p \delta} k^{m+p \delta} \sum_{j \in Z^{m}}\left(\int_{Q_{j}}|f(x)|^{q} d x\right)^{p /}\langle j\rangle^{p \delta}=C^{p \delta} k^{m+p \delta}\|f\|_{\ell_{\delta}^{p}\left(L^{q}\right)}^{p},
\end{aligned}
$$

where the constant C depends only on the spatial dimension m.

Proof of Lemma 2.2. We prove the lemma when $m \geq 3$ is even. The proof for the other case is similar. It is well known that $R_{0}^{ \pm}\left(k^{2}\right), k \geq 0$, are convolution operators with the outgoing $(+)$ or incoming (-) fundamental solutions $G_{ \pm}(x, k)$ of $-\triangle-k^{2}([15])$:

$$
\begin{equation*}
G_{ \pm}(x, k)=\frac{ \pm i}{4(2 \pi)^{\nu}|x|^{m-2}}(k|x|)^{\nu} H_{\nu}^{(\pm)}(k|x|), \quad \nu=\frac{m-2}{2} \tag{2.2}
\end{equation*}
$$

where $H_{\nu}^{(\pm)}(z)$ is the Hankel function and by Hankel's formula ([20])

$$
\begin{equation*}
z^{\nu} H_{\nu}^{(\pm)}(z)=\frac{\sqrt{2} e^{\mp i(2 \nu+1) \pi / 4} e^{ \pm i z}}{\sqrt{\pi} \Gamma(\nu+1 / 2)} \int_{0}^{\infty} e^{-t} t^{\nu-1 / 2}\left(z \pm \frac{i t}{2}\right)^{\nu-1 / 2} d t \tag{2.3}
\end{equation*}
$$

Here and hereafter we use the superscript \pm in stead of the traditional 1,2 for Hankel functions and $\nu=(m-2) / 2$. A simple computation shows that $D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right)$ enjoys the homogeneity property

$$
\begin{align*}
& {\left[D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right) u\right](x)=k^{-j-2}\left\{\left.D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right)\right|_{k=1} u_{k}\right\}(k x),} \tag{2.4}\\
& u_{k}(x)=u(x / k)
\end{align*}
$$

We prove the lemma for the case $k=1$ first. Let $\phi \in C_{0}^{\infty}\left(\mathbf{R}^{m}\right)$ be such that $\phi(x)=1$ for $|x| \leq 1$ and $\phi(x)=0$ for $|x| \geq 2$. Write $G_{ \pm}^{(j)}(x)$ for the convolution kernel of $\left.D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right)\right|_{k=1}$ and set $G_{1, \pm}^{(j)}(x)=G_{ \pm}^{(j)}(x) \phi(x)$ and $G_{2, \pm}^{(j)}(x)=G_{ \pm}^{(j)}(x)(1-\phi(x))$. Differentiating (2.2) and (2.3) by k shows that $G_{1, \pm}^{(j)}(x)$ satisfies the following estimate:

$$
\left|G_{1, \pm}^{(j)}(x)\right| \leq \begin{cases}C_{j}\left(1+|x|^{2-m+j}\right), & \text { if } m \text { is odd } \\ C_{j}\left(\langle\log | x| \rangle+|x|^{2-m+j}\right), & \text { if } m \text { is even and } j \leq m-2 \\ C_{j}, & \text { if } m \text { is even and } j \geq m-1\end{cases}
$$

and that $G_{2, \pm}^{(j)}(x)$ can be written as

$$
\begin{equation*}
G_{2, \pm}^{(j)}(x)=e^{ \pm i|x|} a_{j, \pm}(x)|x|^{(2 j-m+1) / 2} \tag{2.5}
\end{equation*}
$$

where $a_{j, \pm}(x) \in C^{\infty}\left(\mathbf{R}^{m}\right)$ is supported by $\{|x| \geq 1\}$ and satisfies for any α

$$
\left|D^{\alpha} a_{j, \pm}(x)\right| \leq C_{j \alpha}|x|^{-|\alpha|}
$$

Since $G_{1, \pm}^{(j)}(x)$ is supported by the compact set $\{|x| \leq 2\}$, the convolution operator $G_{1, \pm}^{(j)}$ with $G_{1, \pm}^{(j)}(x)$ can be easily estimated by using the fractional integration theory and Young's inequality:
(i) If $0 \leq j \leq m-3, G_{1, \pm}^{(j)} \in B\left(\ell^{p}\left(L^{q}\right), \ell^{p}\left(L^{r}\right)\right)$ for any $1 \leq p \leq \infty$ and $1 \leq r \leq \infty$ if $1 / q<(j+2) / m ; 1 \leq r<\infty$ if $1 / q=(j+2) / m$; and $1 / q-(j+2) / m \leq 1 / r \leq 1$ if $1 / q>(j+2) / m$.
(ii) If $j=m-2, G_{1, \pm}^{(j)} \in B\left(\ell^{p}\left(L^{q}\right), \ell^{p}\left(L^{\infty}\right)\right)$ for any $1 \leq p \leq \infty$, and $1<q \leq \infty$ (if m is odd $q=1$ can be included);
(iii) If $j \geq m-1, G_{1, \pm}^{(j)} \in B\left(\ell^{p}\left(L^{1}\right), \ell^{p}\left(L^{\infty}\right)\right)$ for any $1 \leq p \leq \infty$.

On the other hand $G_{2, \pm}^{(j)}(x)$ contains the oscillating factor $e^{ \pm i|x|}$ and we estimate the convolution operator $G_{2, \pm}^{(j)}$ with the kernel (2.5) by a theorem of Sogge (cf. [19], Lemma 5.4). We combine the result with the fact $G_{2, \pm}^{(j)} \in B\left(L^{p}, L^{\infty}\right), 1 \leq p<2 m /(m+2 j+1)$, which follows from Young's inequality, by using the interpolation theorem and the duality. We obtain the followings:
(iv) If $j \leq(m-2) / 2$, then $G_{2, \pm}^{(j)} \in B\left(L^{p}, L^{\rho}\right)$ for any p and ρ such that $(1 / p, 1 / \rho) \in \mathbf{P}_{j}^{m}$ where \mathbf{P}_{j}^{m} is the pentagon defined as above.
(v) If $j \geq m / 2$, then $2 j-m+1>0$ and $G_{2, \pm}^{(j)} \in B\left(L_{j-(m-1) / 2}^{1}, L_{-j+(m-1) / 2}^{\infty}\right)$.

Note here that $\ell_{\delta}^{p_{1}}\left(L^{q_{1}}\right) \subset \ell_{\delta}^{p_{2}}\left(L^{q_{2}}\right)$ whenever $p_{1} \leq p_{2}$ and $q_{1} \geq q_{2}$. Thus, combing estimates (i) $\sim(\mathrm{v})$, we obtain the lemma for the case $k=1$.

It remains to estimate the operator norm for $k \geq 1$. When $j \leq(m-2) / 2$ the estimates in the lemma immediately follow from (2.4) and Lemma 2.3. When $j \geq m / 2$, the direct application of Lemma 2.3 would produce the superfluous power k^{j-1}. Note, however, that in this case $G_{2, \pm}^{(j)}(x-y)$ satisfies

$$
\left|G_{2, \pm}^{(j)}(x-y)\right| \leq C\left(|x|^{(2 j-m+1) / 2}+|y|^{(2 j-m+1) / 2}+1\right)
$$

and $G_{2, \pm}^{(j)}$ is in fact a sum of two operators, one in $B\left(L_{j-(m-1) / 2}^{1}, L^{\infty}\right)$ and the other in $B\left(L^{1}, L_{-j+(m-1) / 2}^{\infty}\right)$. Hence, say in the case (b.2), $D_{k}^{j} R_{0}^{ \pm}\left(k^{2}\right)$ may be written as a sum of two operators, one in $B\left(\ell_{j-(m-1) / 2}^{1}\left(L^{q}\right), \ell^{\infty}\left(L^{r}\right)\right)$ and the other in $B\left(\ell^{1}\left(L^{q}\right), \ell_{-j+(m-1) / 2}^{\infty}\left(L^{r}\right)\right)$. Applying Lema 2.3 to each summand separately and combining the results, we obtain the desired estimates.

2.2 Integral kernels of $\phi(H)$ and $R(0)$

In this subsection, we study the integral kernel of $\phi(H)$ (resp. $R(0)$) assuming that V is of Kato class (resp. very short range). A real valued function $V(x)$ is said to be of Kato-class if

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \sup _{x \in \mathbf{R}^{m}} \int_{|x-y| \leq \epsilon} \frac{|V(y)|}{|x-y|^{m-2}} d y=0 \tag{2.6}
\end{equation*}
$$

and to be very short range if, for some $\gamma>0,\langle x\rangle^{2+\gamma} V(x)$ satisfies (2.6). In particular, we have for very short range potential that

$$
\begin{equation*}
\|V\|_{(\gamma)} \equiv \sup _{x \in \mathbf{R}^{m}}\langle x\rangle^{2+\gamma} \int_{|x-y|<1} \frac{|V(y)|}{|x-y|^{m-2}} d y<\infty \tag{2.7}
\end{equation*}
$$

We note that V which satisfies the assumption of Theorem 1.2 is very short range.

If V is of Kato class, then, the multiplication operator V with $V(x)$ is H_{0}-form bounded with relative bound zero and $H=H_{0}+V$ defined via the form sum is self-adjoint([13]). If we write $A(x)=|V(x)|^{1 / 2}$ and $B(x)=V(x)^{1 / 2} \equiv|V(x)|^{1 / 2} \operatorname{sign} V(x)$ and A and B for the multiplications by $A(x)$ and $B(x)$, respectively, then

$$
\begin{equation*}
R(z)=R_{0}(z)-R_{0}(z) B\left(1+A R_{0}(z) B\right)^{-1} A R_{0}(z), \quad z \in \mathbf{C} \backslash \mathbf{R} \tag{2.8}
\end{equation*}
$$

The following lemma solves an open problem in Simon ([17]):
Lemma 2.4. Let V be of Kato-class and $\phi(\lambda) \in C_{0}^{\infty}(\mathbf{R})$. Then, the integral kernel $\Phi(x, y)$ of $\phi(H)$ satisfies $|\Phi(x, y)| \leq C_{\delta}(1+|x-y|)^{-\delta}$ for any $\delta \geq 0$. In particular, $\phi(H)$ is bounded in L^{p} for any $1 \leq p \leq \infty$.

Proof. The following argument which has simplified the original proof is due to Shu Nakamura (private communication). If we set $V_{a}(x)=V(x+a)$ and $H(a)=H_{0}+V_{a}, \Phi(x+a, y+a)$ is the integral kernel of $\phi(H(a))$. Hence, it suffices to show

$$
\begin{equation*}
\sup _{|y| \leq 1}|\Phi(x, y)| \leq C_{\delta}(1+|x|)^{-\delta} \tag{2.9}
\end{equation*}
$$

with constants C_{δ} which is independent of a if H is replaced by $H(a)$. (We say that an estimate holds uniformly in a if it does with the same constant when H is replaced by $\left.H(a), a \in \mathbf{R}^{m}\right)$. Write $\phi(\lambda)=(\lambda-z)^{-N} \psi(\lambda)(\lambda-$ $z)^{-N}$ so that $\phi(H)=R(z)^{N} \psi(H) R(z)^{N}$. By Theorem B.6.3 of [17], $R(z)^{N}$ is bounded uniformly in a from L_{δ}^{1} to L_{δ}^{2} and from L_{δ}^{2} to L_{δ}^{∞} for any $\delta \in \mathbf{R}$, if N and real $-z$ are large enough. On the other hand $\psi(H)$ is bounded in L_{δ}^{2} uniformly in a as will be shown below. Hence, $\phi(H)$ is bounded from L_{δ}^{1} to L_{δ}^{∞} uniformly in a and

$$
\begin{aligned}
& \sup _{x \in \mathbf{R},|y| \leq 1}\langle x\rangle^{\delta}|\Phi(x, y)| \\
& \quad \leq C_{\delta} \sup \left\{\|\phi(H) u\|_{L_{\delta}^{\infty}}:\|u\|_{L_{\delta}^{1}}=1, \text { supp } u \subset B(O, 1)\right\} \\
& \quad \leq C_{\delta}\|\phi(H)\|_{B\left(L_{\delta}^{1}, L_{\delta}^{\infty}\right)}<\infty
\end{aligned}
$$

It remains to show that $\psi(H)$ is bounded in L_{δ}^{2} for any $\delta>0$ uniformly in a. It suffices to show that for any choice of $1 \leq j_{k} \leq m, k=1, \ldots, \ell$ and $\ell=1,2, \ldots$

$$
\begin{equation*}
\left\|\left[x_{j_{1}},\left[x_{j_{2}}, \cdots,\left[x_{j_{\ell}}, \psi(H)\right] \cdots\right]\right]\right\|_{B\left(L^{2}\right)} \leq C_{\ell} \tag{2.10}
\end{equation*}
$$

uniformly in a. Let $\psi(z)$ be an almost analytic extension of $\psi(\lambda)$ which satisfies for any n and $N \geq 0$,

$$
|(\partial \psi / \partial \bar{z})(z)| \leq C_{n N}|\operatorname{Im} z|^{n}(1+|z|)^{-n-N}, \quad z \in \mathbf{C}
$$

and write

$$
\begin{equation*}
\psi(H)=\frac{-1}{2 \pi i} \int_{\mathbf{C}} \frac{\partial \psi}{\partial \bar{z}}(z)(H-z)^{-1} d \bar{z} \wedge d z \tag{2.11}
\end{equation*}
$$

(cf. [5]). Then, using inductively the obvious identity $i\left[x_{j}, R(z)\right]=$ $R(z) p_{j} R(z)$ and using the fact that $\|R(z)\| \leq|\operatorname{Im} z|^{-1}$ and $\left\|p_{j} R(z)\right\| \leq$ $C|\operatorname{Im} z|^{-1}$, where the constant C is independent of a (cf. [17]), we immediately obtain the desired boundedness (2.10).

If V is very short range, then V is form compact with respect to H_{0}; and in virtue of Lemma 2.1, the boundary values

$$
\lim _{\epsilon \rightarrow+0} A R_{0}(\lambda \pm i \epsilon) B \equiv Q_{0}^{ \pm}(\lambda)
$$

exist in the operator norm of L^{2} and are locally Hölder continuous in $\lambda \in$ $[0, \infty)$. Moreover, $1+Q_{0}^{ \pm}(\lambda)$ is an isomorphism of $L^{2}\left(\mathbf{R}^{m}\right)$ if and only if λ is not an eigenvalue of H (λ is not the eigenvalue or resonance of H if $\lambda=0$). Thus, if non-negative eigenvalues and zero resonance are absent from H, then the boundary values of the resolvent

$$
\begin{align*}
\lim _{\epsilon \rightarrow+0} R(\lambda \pm i \epsilon) & \equiv R^{ \pm}(\lambda) \tag{2.12}\\
& =R_{0}^{ \pm}(\lambda)-R_{0}^{ \pm}(\lambda) B\left(1+Q_{0}^{ \pm}(\lambda)\right)^{-1} A R_{0}^{ \pm}(\lambda)
\end{align*}
$$

exist for all $\lambda \in[0, \infty)$ in the operator norm of $B\left(L_{\delta}^{2}, L_{-\delta}^{2}\right)$ and are locally Hölder continuous in $\lambda \in[0, \infty)$ as well. Note that $R_{0}^{ \pm}(0)$ is independent of the sign \pm and so is $R^{ \pm}(0)$. We write $R_{0}^{ \pm}(0)=R_{0}(0)=G_{0}$ and $R^{ \pm}(0)=$ $R(0)$. We have the following lemma on the integral kernel of $R(0)$.

ThEOREM 2.5. Let $V(x)$ be very short range. Suppose that zero is not an eigenvalue nor resonance of $H=H_{0}+V$. Then, $R(0)$ has the integral kernel $K(x, y)$ which is jointly continuous for $x \neq y$ and satisfies $|K(x, y)| \leq C|x-y|^{2-m}$.

We begin the proof of Theorem 2.5 with the following elementary lemma. In what follows we assume that $\langle x\rangle^{2+\gamma} V(x)$ satisfies (2.6) for some $0<\gamma<$ 1.

Lemma 2.6. Let $0 \leq \rho<\gamma<1$. Then, with a constant C_{1} depending only on m, ρ and γ,

$$
\begin{equation*}
\int_{\mathbf{R}^{m}} \frac{\langle y\rangle^{\rho}|V(y)| d y}{|x-y|^{m-2}} \leq C_{1}\|V\|_{(\gamma)}\langle x\rangle^{\rho-\gamma} \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\mathbf{R}^{m}} \frac{|V(z)| d z}{|x-z|^{m-2}|z-y|^{m-2}} \leq \frac{C_{1}\left(\langle x\rangle^{-\gamma}+\langle y\rangle^{-\gamma}\right)\|V\|_{(\gamma)}}{|x-y|^{m-2}} . \tag{2.14}
\end{equation*}
$$

Proof. Take $\phi \in C_{0}^{\infty}\left(\mathbf{R}^{m}\right)$ such that $\phi(x)=0$ for $|x| \geq 1 / 2$ and $\int_{\mathbf{R}^{m}} \phi(z) d z=1$. We estimate the integral over $|x-y| \geq 1$ as follows:

$$
\begin{aligned}
& \int_{|x-y| \geq 1} \frac{\langle y\rangle^{\rho}|V(y)| d y}{|x-y|^{m-2}}=\int_{\mathbf{R}^{m}} d z\left\{\int_{|x-y| \geq 1} \frac{\langle y\rangle^{\rho}|V(y)| \phi(y-z) d y}{|x-y|^{m-2}}\right\} \\
& \leq 2^{m-2} \int_{\mathbf{R}^{m}} d z\left\{\int_{\mathbf{R}^{m}} \frac{\langle y\rangle^{\rho}|V(y)| \phi(y-z) d y}{(1+|x-z|)^{m-2}}\right\} \\
& \leq C_{2}\|V\|_{(\gamma)}\|\phi\|_{L^{\infty}} \int_{\mathbf{R}^{m}} \frac{d z}{(1+|x-z|)^{m-2}\langle z\rangle^{2+\gamma-\rho}} \leq C_{3}\|V\|_{(\gamma)}\langle x\rangle^{\rho-\gamma}
\end{aligned}
$$

Since the integral over $|x-y| \leq 1$ is obviously bounded by a constant times $\|V\|_{(\gamma)}\langle x\rangle^{\rho-2-\gamma}$, we obtain (2.13).

Write $w=x-y$ and change the variable z by $z+y$. Let $\Omega_{1}=\{z$: $|w| / 2 \leq|z|\}$ and $\Omega_{2}=\{z:|w| / 2 \leq|z-w|\}$. It is clear that $\mathbf{R}^{m}=\Omega_{1} \cup \Omega_{2}$ and by using (2.13) with $\rho=0$,

$$
\begin{aligned}
\int_{\Omega_{1}} \frac{|V(z+y)| d z}{|w-z|^{m-2}|z|^{m-2}} & \leq \frac{2^{m-2}}{|w|^{m-2}} \int_{\mathbf{R}^{m}} \frac{|V(z+y)| d z}{|w-z|^{m-2}} \\
& \leq C_{1}\langle x\rangle^{-\gamma}|w|^{2-m}\|V\|_{(\gamma)} \\
\int_{\Omega_{2}} \frac{|V(z+y)| d z}{|w-z|^{m-2}|z|^{m-2}} & \leq \frac{2^{m-2}}{|w|^{m-2}} \int_{\mathbf{R}^{m}} \frac{|V(z+y)| d z}{|z|^{m-2}} \\
& \leq C_{1}\langle y\rangle^{\gamma \gamma}|w|^{2-m}\|V\|_{(\gamma)} .
\end{aligned}
$$

Adding these up, we obtain (2.14).
The following is a corollary of Lemma 2.6 and proves Theorem 2.5 when V is small.

Lemma 2.7. There exists a constant $C_{0}>0$ such that, if $\|V\|_{(\gamma)}<C_{0}$, then the integral kernel $K(x, y)$ of $R(0)$ is continuous for $x \neq y$ and satisfies $|K(x, y)| \leq C|x-y|^{2-m}$.

Proof. The integral kernel of $G_{0}=R_{0}^{ \pm}(0)$ is given by the Newton potential $G_{0}(x-y)=c_{m}|x-y|^{2-m}, c_{m}=\Gamma(m-2 / 2) / 4 \pi^{m / 2}$. By Schwarz
inequality and (2.13) with $\rho=0$,

$$
\begin{aligned}
& \left|\left(Q_{0}^{ \pm}(0) u, v\right)\right| \leq c_{m} \int_{\mathbf{R}^{m}} \frac{|A(x)||v(x)||B(y)||u(y)|}{|x-y|^{m-2}} d y d x \\
& \quad \leq c_{m}\left(\int_{\mathbf{R}^{m}} \frac{|A(x)|^{2}|u(y)|^{2}}{|x-y|^{m-2}} d x d y\right)^{1 / 2}\left(\int_{\mathbf{R}^{m}} \frac{|B(y)|^{2}|v(x)|^{2}}{|x-y|^{m-2}} d y d x\right)^{1 / 2} \\
& \quad \leq c_{m} C_{1}\|V\|_{(\gamma)}\|u\|\|v\|
\end{aligned}
$$

Hence, $1+Q_{0}^{ \pm}(0)$ is invertible in $B\left(L^{2}\right)$ if $\|V\|_{(\gamma)}<\left(c_{m} C_{1}\right)^{-1}$, and we may expand $\left(1+Q_{0}^{ \pm}(0)\right)^{-1}$ into the Neumann series in (2.12) with $\lambda=0$ to obtain

$$
R(0)=G_{0}-G_{0} V G_{0}+G_{0} V G_{0} V G_{0}-\cdots
$$

Since any V with $\|V\|_{(\gamma)}<\infty$ may be approximated arbitrarily close by C_{0}^{∞} functions in the norm $\|\cdot\|_{\left(\gamma^{\prime}\right)}, \gamma^{\prime}<\gamma$, it is easy to see that the integral kernels of the summands of the series are continuous for $x \neq y$. Moreover estimating them inductively by using (2.14), we obtain a majorant series $\sum_{n=0}^{\infty} c_{m}^{n+1}\left(2 C_{1}\|V\|_{(\gamma)}\right)^{n}|x-y|^{2-m}$ for $K(x, y)$. The latter series converges uniformly on every compact subset of $\{(x, y): x \neq y\}$ and produces the bound $|K(x, y)| \leq C_{2}|x-y|^{2-m}$ if $2 c_{m} C_{1}\|V\|_{(\gamma)}<1$. This proves the Lemma.

For proving Theorem 2.5 for general potentials, we shall use the following lemma. For $0<\rho<\min (1, \gamma), \mathcal{X}_{\rho}$ is the Banach space defined by

$$
\begin{align*}
\mathcal{X}_{\rho}=\{u \in & C\left(\mathbf{R}^{m} \backslash\{0\}\right):\|u\|_{\mathcal{X}_{\rho}} \tag{2.15}\\
& \left.=\sup _{x \in \mathbf{R}^{m} \backslash\{0\}}\langle x\rangle^{-\rho}|x|^{m-2}|u(x)|<\infty\right\} .
\end{align*}
$$

We remark here that if $K(x, y)$ is as in Lemma 2.7, then $K_{y}(x) \equiv K(x+y, y)$ belongs to \mathcal{X}_{ρ} and $y \rightarrow K_{y}$ is an \mathcal{X}_{ρ} valued continuous function. This can be easily seen by the proof of the lemma (note that $K_{y}(x)$ is $K_{0}(x)$ corresponding to the potential $V_{y}(x)=V(x+y)$ and $y \rightarrow V_{y}$ is continuous in the $\|\cdot\|_{\left(\gamma^{\prime}\right)}$ norm, $\left.\gamma^{\prime}<\gamma\right)$.

Lemma 2.8. Let $V_{1} \in C_{0}^{\infty}\left(\mathbf{R}^{m}\right)$. Let $K_{0}(x, y)$ be continuous for $x \neq y$ and satisfy $\left|K_{0}(x, y)\right| \leq C|x-y|^{2-m}$. Define the integral operator Z_{y} for $y \in \mathbf{R}^{m}$ by

$$
\begin{equation*}
Z_{y} u(x)=\int_{\mathbf{R}^{m}} K_{0}(x+y, z+y) V_{1}(z+y) u(z) d z \tag{2.16}
\end{equation*}
$$

Then, Z_{y} is a compact operator in \mathcal{X}_{ρ} and is norm continuous with respect to $y \in \mathbf{R}^{m}$.

Proof. We prove the lemma for $m \geq 5$. The proof for $m=3,4$ may be given by slightly modifying the following argument. Let S be the unit ball of \mathcal{X}_{ρ}. Then for $u \in S$, we have as in (2.14)

$$
\begin{align*}
\left|Z_{y} u(x)\right| & \leq C \int_{\mathbf{R}^{m}} \frac{\left|V_{1}(z+y)\right|\langle z\rangle^{\rho} d z}{|x-z|^{m-2}|z|^{m-2}} \tag{2.17}\\
& \leq\left\{\begin{array}{l}
C|x|^{4-m}, \quad|x| \leq 1 \\
C_{y}|x|^{2-m},
\end{array}|x| \geq 1\right.
\end{align*}
$$

where C_{y} is a constant bounded for bounded y. Let $\psi \in C_{0}^{\infty}\left(\mathbf{R}^{m}\right)$ be such that $\psi(x)=1$ for $|x| \geq 2$ and $\psi(x)=0$ for $|x| \leq 1$. Set, for $\epsilon>$ $0, \psi_{\epsilon}(x)=\psi(x / \epsilon)$ and let $Z_{y, \epsilon}$ be the integral operator defined by (2.16) with $K_{0 \epsilon}(x, y)=\psi_{\epsilon}(x-y) K_{0}(x, y)$ in place of $K_{0}(x, y)$. Because of the estimate (2.17) and the fact that $K_{0 \epsilon}(x, y)$ is jointly continuous with respect to (x, y), it can be easily seen via Ascoli-Arzela's lemma that $Z_{y, \epsilon}$ is a compact operator in \mathcal{X}_{ρ} and is norm continuous with respect to y. On the other hand, for y in a compact subset of $\mathbf{R}^{m}, Z_{y, \epsilon} u(x)=Z_{y} u(x)$ for $|x| \geq C_{0}$ and we have for $u \in S$ and $\epsilon \rightarrow 0$

$$
\begin{aligned}
& \sup _{x \in \mathbf{R}^{m}}|x|^{m-2}\left|Z_{y, \epsilon} u(x)-Z_{y} u(x)\right| \\
& \quad \leq c_{m} \sup _{|x| \leq C_{0}}|x|^{m-2} \int_{|x-z|<2 \epsilon} \frac{\langle z\rangle^{\rho}\left|V_{1}(z+y)\right| d z}{|x-z|^{m-2}|z|^{m-2}} \\
& \quad \leq \sup _{|x| \leq C_{0}} C \int_{|x-z|<2 \epsilon} \frac{|x|^{m-2} d z}{|x-z|^{m-2}|z|^{m-2}} \\
& \quad \leq C \epsilon^{2} \sup _{x \in \mathbf{R}^{m}} \int_{|z|<2 /|x|} \frac{|x|^{2} d z}{|\hat{x}-z|^{m-2}|z|^{m-2}} \rightarrow 0
\end{aligned}
$$

uniformly with respect to y, where $\hat{x}=x /|x|$. This shows that $Z_{y, \epsilon}$ converges to Z_{y} in the operator norm of \mathcal{X}_{ρ} locally uniformly with respect to y. Hence Z_{y} is compact and is norm continuous.

Proof of Theorem 2.5. Decompose $V(x)=V_{0}(x)+V_{1}(x)$ in such a way that $\left\|V_{0}\right\|_{(\gamma)}<C_{0}$ and $V_{1} \in C_{0}^{\infty}\left(\mathbf{R}^{m}\right)$, where C_{0} is the constant
appeared in Lemma 2.7. Denote by $K_{0}(x, y)$ the integral kernel of $K_{0} \equiv$ $\lim _{\epsilon \rightarrow 0}\left(H_{0}+V_{0} \pm i 0\right)^{-1}$. In virtue of Lemma 2.7, $K_{0}(x, y)$ is continuous for $x \neq y$ and satisfies $\left|K_{0}(x, y)\right| \leq C|x-y|^{2-m}$. Thus, by Lemma 2.8, the integral operator Z_{y} defined in \mathcal{X}_{ρ} by (2.16) with this $K_{0}(x, y)$ and $V_{1}(x)$ is compact and is norm continuous with respect to y.

We show that $1+Z_{y}$ is an isomorphism of \mathcal{X}_{ρ}. Suppose that $u(x)+$ $Z_{y} u(x)=0, u \in \mathcal{X}_{\rho}$. Then $|u(x)|$ is bounded by a constant times the RHS of (2.17) and repeating the similar estimate implies that $u(x)$ is continuous and satisfies $|u(x)| \leq C\langle x\rangle^{2-m}$. (This may also be seen by the elliptic regularity theorem for Schrödinger operators with Kato class potentials, see e.g. [16].) Set $u_{y}(x)=u(x-y) . u_{y}$ is continuous, $\left|u_{y}(x)\right| \leq\langle x-y\rangle^{2-m}$, and it satisfies the integral equation

$$
\begin{equation*}
u_{y}(x)+\int_{\mathbf{R}^{m}} K_{0}(x, z) V_{1}(z) u_{y}(z) d z=0 \tag{2.18}
\end{equation*}
$$

By applying $-\triangle+V_{0}(x)$ to (2.18), we see $-\triangle u_{y}(x)+V(x) u_{y}(x)=0$. It follows that $u(x) \equiv 0$, since $u_{y} \in L_{-1-\epsilon}^{2}\left(\mathbf{R}^{m}\right)\left(\right.$ or $u_{y} \in L^{2}\left(\mathbf{R}^{m}\right)$ if $m \geq 5$), and since we are assuming that zero is not resonance nor eigenvalue of $H=H_{0}+V$. Thus $1+Z_{y}$ is an isomorphism of \mathcal{X}_{ρ}.

Set $K_{0 y}(x)=K_{0}(x+y, y)$. By the remark after the definition (2.15) of $\mathcal{X}_{\rho}, K_{0 y}$ is an \mathcal{X}_{ρ} valued continuous function. Hence, $K_{y}=\left(1+Z_{y}\right)^{-1} K_{0 y}$ is well defined and is also an \mathcal{X}_{ρ} valued continuous function. Set $K(x, y)=$ $K_{y}(x-y) . \quad K(x, y)$ is jointly continuous for $x \neq y ;|K(x, y)| \leq C_{y}\langle x-$ $y\rangle^{\rho}|x-y|^{2-m}$ with C_{y} bounded for bounded y; and it satisfies the integral equation

$$
\begin{equation*}
K(x, y)=K_{0}(x, y)-\int_{\mathbf{R}^{m}} K_{0}(x, z) V_{1}(z) K(z, y) d z \tag{2.19}
\end{equation*}
$$

Note that (2.19) and (2.17) imply that $K(x, y)$ in fact satisfies the estimate $|K(x, y)| \leq C_{y}|x-y|^{2-m}$, where C_{y} is again bounded for bounded y.

We show that $K(x, y)$ is the integral kernel of $R(0)$ and it satisfies the estimate mentioned in the theorem. Denote by K the integral operator with the integral kernel $K(x, y)$. Then, for $u \in C_{0}^{\infty}(\mathbf{R}), K u(x)$ is continuous, $|K u(x)| \leq C\langle x\rangle^{2-m}$ and, in virtue of (2.19), $K u=K_{0} u-K_{0} V_{1} K u$. Subtract $R(0) u=K_{0} u-K_{0} V_{1} R(0) u$ from this equation side by side and write $v=$ $R(0) u-K u$. Then $v \in L_{-1-\epsilon}^{2}, \epsilon>0$, and it satisfies $v+K_{0} V_{1} v=0$. Applying $H_{0}+V_{0}$ to both sides of this equation implies $-\triangle v(x)+V(x) v(x)=0$ and
we conclude $v=0$ because zero is not a resonance or an eigenvalue of H. Hence $K u=R(0) u$ for any $u \in C_{0}^{\infty}$ and $R(0)=K$. Since $R(0)^{*}=R(0)$, we have $K(x, y)=K(y, x)$ and $|K(x, y)| \leq C_{x}|x-y|^{2-m}$ with C_{x} bounded for bounded x. Going back to (2.19), we conclude $|K(x, y)| \leq C|x-y|^{2-m}$. This completes the proof of Theorem 2.5.

Since $K(x, y)$ satisfies $-\triangle_{x} K(x, y)+V(x) K(x, y)=\delta(x-y)$, we expect from the elliptic regularity that $K(x, y)$ is smooth where V is. We prove the following result.

Lemma 2.9. Suppose V is as in Theorem 2.5 and, in addition, $D^{\alpha} V(x)$ satisfies (2.7) for $|\alpha| \leq \ell$. Let $K(x, y)$ be the integral kernel of $R(0)$. Then, for $y \neq 0, K(x, x-y)$ is C^{ℓ} with respect to $x \in \mathbf{R}^{m}$ and $\left|D_{x}^{\alpha} K(x, x-y)\right| \leq$ $C_{\alpha}|y|^{2-m}, \quad|\alpha| \leq \ell$.

Proof. Let τ_{h} be the translation by h and $V_{h}(x)=V(x+h)$. Then $K(x+h, y+h)$ is the integral kernel of $\tau_{h} R(0) \tau_{h}^{-1}=\left(-\triangle+V_{h}\right)^{-1} \equiv R_{h}(0)$ and the resolvent equation $R_{h}(0)-R(0)=-R_{h}(0)\left(V_{h}-V\right) R(0)$ implies that
$K(x+h, y+h)-K(x, y)=-\int_{\mathbf{R}^{m}} K(x+h, z+h)(V(z+h)-V(z)) K(z, y) d z$.
Hence Theorem 2.5, Lemma 2.6 and the assumption on $D V$ together imply

$$
\left.\left(\partial / \partial h_{j}\right) K(x+h, y+h)\right|_{h=0}=-\int_{\mathbf{R}^{m}} K(x, z)\left(\partial V / \partial z_{j}\right)(z) K(z, y) d z
$$

Repeating this argument, we obtain

$$
\left.D_{h}^{\alpha} K(x+h, y+h)\right|_{h=0}=\sum_{\ell=1}^{|\alpha|} \sum_{\alpha_{1}+\cdots+\alpha_{\ell}=\alpha} C_{\alpha_{1}, \ldots, \alpha_{\ell}} G_{\alpha_{1}, \ldots, \alpha_{\ell}}(x, y)
$$

where $G_{\alpha_{1}, \ldots, \alpha_{\ell}}(x, y)$ is the integral kernel of $R(0) V^{\left(\alpha_{1}\right)} R(0) \cdots V^{\left(\alpha_{\ell}\right)} R(0)$. Applying Theorem 2.5 and Lemma 2.6 and using the assumptions on $D^{\alpha} V$ for estimating $G_{\alpha_{1}, \ldots, \alpha_{\ell}}(x, y)$, we obtain the lemma immediately.

We need the following lemma.
Lemma 2.10. Let $1 \leq p, q, r \leq \infty$ satisfy $r^{-1} \geq p^{-1}+q^{-1}-1$. Then:
(1) If $\rho, \sigma<m$ and $\rho+\sigma>m$. Then $\|f * g\|_{\ell_{\rho+\sigma-m}^{\infty}\left(L^{r}\right)} \leq C\|f\|_{\ell_{\rho}^{\infty}\left(L^{p}\right)}$.
$\|g\|_{\ell_{o}^{\infty}\left(L^{q}\right)}$.
(2) If ρ or $\sigma>m$, then $\|f * g\|_{\ell_{\min (\rho, \sigma)}\left(L^{r}\right)} \leq C\|f\|_{\ell_{p}^{\infty}\left(L^{p}\right)} \cdot\|g\|_{\ell_{\sigma}^{\infty}\left(L^{q}\right)}$.

Proof. Take $\phi \in C_{0}^{\infty}(|x|<1 / 2)$ such that $\int \phi(x) d x=1$ and set $f_{y}(x)=\phi(x-y) f(x)$ and etc. Clearly f_{y} is supported by $y+B(O, 1 / 2)$, $f(x)=\int f_{y}(x) d y$ and we may write

$$
(f * g)(x)=\int\left(f_{y} * g_{z}\right)(x) d y d z .
$$

Note that $f_{y} * g_{z}$ is supported by $y+z+B(O, 1)$. It follows by Young's inequality that, if Q^{*} is the cube of side 4 with center at the origin,

$$
\begin{aligned}
& \|f * g\|_{L^{r}\left(Q_{n}\right)} \leq C \int_{y+z-n \in Q^{*}}\left\|f_{y}\right\|_{L^{p}\left(\mathbf{R}^{m}\right)}\left\|g_{z}\right\|_{L^{q}\left(\mathbf{R}^{m}\right)} d y d z \\
& \quad \leq C\|f\|_{\ell_{\rho}^{\infty}\left(L^{p}\right)}\|g\|_{\ell_{\sigma}^{\infty}\left(L^{q}\right)} \int_{y+z-n \in Q^{*}}\langle y\rangle^{-\rho}\langle z\rangle^{-\sigma} d y d z .
\end{aligned}
$$

Estimating the last integral in a standard fashion, we obtain the lemma.
The following lemma implies the estimate (1.12) in the introduction.
Lemma 2.11. Let V satisfy (1.1) for $|\alpha| \leq[(m-2) / 2]$ and $\delta>(m+$ 3)/2. Then:
(2.20) $\int_{\mathbf{R}^{m}}\left\{\int\langle x\rangle^{2 \sigma}\left|D^{\alpha} V(x) D_{x}^{\beta} K(x, x-y) D^{\gamma} V(x-y)\right|^{2} d x\right\}^{1 / 2} d y<\infty$,
for $|\alpha+\beta+\gamma| \leq[(m-2) / 2]$ and $\sigma<\delta-2$.
Proof. In virtue of Lemma 2.9, the left hand side of (2.20) is bounded by a constant times

$$
\begin{equation*}
\int_{\mathbf{R}^{m}}\left\{\int\langle x\rangle^{2 \sigma}\left|D^{\alpha} V(x) D^{\gamma} V(x-y)\right|^{2} d x\right\}^{1 / 2} \frac{d y}{|y|^{m-2}} . \tag{2.21}
\end{equation*}
$$

We estimate (2.21) by applying Lemma 2.10. We denote the function $\{\cdots\}^{1 / 2}$ in (2.21) by $W_{\alpha \gamma}(y)$. If $m=3$, we have only the case $\alpha=\beta=\gamma=0$. By using Lemma 2.10, (2), we have

$$
W_{00}(y)=\left\{\int\langle x\rangle^{2 \sigma}|V(x) V(x-y)|^{2} d x\right\}^{1 / 2} \in \ell_{\delta-\sigma}^{\infty}\left(L^{2}\right) .
$$

Hence, if $\sigma<\delta-2$, we have $(2.21) \leq \int_{\mathbf{R}^{m}}\left(\left|W_{\alpha \gamma}(y)\right| /|y|\right) d y<\infty$.
When $m=4$ or $=5$, we only prove (2.20) for the case $|\alpha|=1$ and $\beta=\gamma=0$. We may assume $p_{0}(>m / 2)$ is close to $m / 2$. We have $|V|^{2} \in$ $\ell_{2 \delta}^{\infty}\left(L^{q_{0} / 2}\right), 1 / q_{0}=1 / p_{0}-1 / m$, by Sobolev's lemma. Thus Lemma $2.10 \mathrm{im}-$ plies $W_{\alpha \gamma} \in \ell_{\delta-\sigma}^{\infty}\left(L^{r}\right), 1 / r=2 / p_{0}-1 / m-1 / 2<2 / m$, and $\int_{\mathbf{R}^{m}}\left(\left|W_{\alpha \gamma}(y)\right| /|y|^{m-2}\right) d y<\infty$, if $\sigma<\delta-2$. The proof for $m \geq 6$ is similar (in fact easier) and we omit the details.

$2.3 \quad L^{p}$ boundedness of W_{1}

We close this section by recalling the argument in [21] that shows that W_{1} defined by (1.2):

$$
W_{1} u(x) \equiv-\frac{1}{2 \pi i} \lim _{\varepsilon \downarrow 0} \int_{-\infty}^{\infty} R_{0}(\lambda-i \varepsilon) V R_{0}(\lambda+i \varepsilon) u(x) d \lambda
$$

is bounded in L^{p}. We begin with the following lemma (Lemma 2.3 of [21]), which may be proved by computing the inverse Fourier transform of essentially one dimensional function $\xi \rightarrow\left(2 \eta \xi-\eta^{2}+i \varepsilon\right)^{-1}$.

Lemma 2.12. Let $\eta \in \mathbf{R}^{m} \backslash\{0\}$ and $\widehat{\eta}=\eta /|\eta|$. Then
(2.22) $\lim _{\varepsilon \downarrow 0} \frac{1}{(2 \pi)^{m / 2}} \int_{\mathbf{R}^{m}} \frac{e^{i x \xi} \widehat{f}(\xi)}{2 \eta \xi-\eta^{2}+i \varepsilon} d \xi=\frac{1}{2 i|\eta|} \int_{0}^{\infty} e^{-i t|\eta| / 2} f(x+t \widehat{\eta}) d t$.

The following proposition proves that W_{1} is bounded in L^{p} under a rather mild condition on $V(x) . \Sigma$ is the unit sphere of \mathbf{R}^{m} and $d \omega$ is its surface element.

Proposition 2.13. Set for $t \in \mathbf{R}$ and $\omega \in \Sigma$

$$
\begin{equation*}
\widehat{K}_{V}(t, \omega)=\frac{i}{2(2 \pi)^{m / 2}} \int_{0}^{\infty} \widehat{V}(r \omega) r^{m-2} e^{i t r / 2} d r \tag{2.23}
\end{equation*}
$$

We write $x_{\omega}=x-2(x \omega) \omega$ for the reflection of x along the ω-axis. Then:

1. The operator W_{1} can be expressed as follows:

$$
\begin{equation*}
W_{1} u(x)=\int_{\Sigma} d \omega \int_{2 x \omega}^{\infty} \widehat{K}_{V}(t, \omega) u\left(t \omega+x_{\omega}\right) d t \tag{2.24}
\end{equation*}
$$

2. For any $1 \leq p \leq \infty$, we have

$$
\begin{equation*}
\left\|W_{1} u\right\|_{L^{p}\left(\mathbf{R}^{m}\right)} \leq 2\left\|\widehat{K}_{V}\right\|_{L^{1}([0, \infty) \times \Sigma)}\|u\|_{L^{p}\left(\mathbf{R}^{m}\right)} \tag{2.25}
\end{equation*}
$$

3. Let $\sigma>1 / 2$ and $\rho>m / 2+\sigma$. Then, there exist constants C_{1}, C_{2} such that

$$
\begin{equation*}
\left\|\widehat{K}_{V}\right\|_{L^{1}([0, \infty) \times \Sigma)} \leq C_{1}\left\|\langle x\rangle^{\sigma} V\right\|_{H^{(m-3) / 2}} \leq C_{2} \sum_{|\alpha| \leq \ell_{0}}\left\|D^{\alpha} V\right\|_{\ell_{\rho}^{\infty}\left(L^{p_{0}}\right)} \tag{2.26}
\end{equation*}
$$

where p_{0}, ℓ_{0} are as in Theorem 1.2.
Proof. We compute the Fourier transform of $W_{1} u$. Performing the λ-integration first via the residue theorem, we see that it is equal to

$$
\begin{gather*}
\frac{-1}{(2 \pi i)} \frac{1}{(2 \pi)^{m / 2}} \lim _{\varepsilon \downarrow 0} \int_{-\infty}^{\infty}\left\{\int_{\mathbf{R}^{m}} \frac{\widehat{V}(\eta) \widehat{u}(\xi-\eta) d \eta}{\left(\xi^{2}-\lambda+i \varepsilon\right)\left((\xi-\eta)^{2}-\lambda-i \varepsilon\right)}\right\} d \lambda \tag{2.27}\\
=\lim _{\varepsilon \downarrow 0} \frac{-1}{(2 \pi)^{m / 2}} \int_{\mathbf{R}^{m}} \frac{\widehat{V}(\eta) \widehat{u}(\xi-\eta)}{2 \xi \eta-\eta^{2}+i \varepsilon} d \eta
\end{gather*}
$$

We then invert the Fourier transform. Applying (2.22), we deduce

$$
\begin{align*}
W_{1} u(x)= & \frac{-1}{(2 \pi)^{m / 2}} \tag{2.28}\\
& \times \int_{\mathbf{R}^{m}} \frac{\widehat{V}(\eta)}{2 i|\eta|}\left\{\int_{0}^{\infty} e^{-i t|\eta| / 2+i \eta(x+t \hat{\eta})} u(x+t \widehat{\eta}) d t\right\} d \eta
\end{align*}
$$

Introducing the polar coordinates $\eta=r \omega, r>0, \omega \in \Sigma$, and changing the order of integration, we obtain

$$
W_{1} u(x)=\int_{\Sigma} d \omega \int_{0}^{\infty} d t\left\{\frac{i}{2(2 \pi)^{m}} \int_{0}^{\infty} \widehat{V}(r \omega) e^{i(t+2 x \omega) r / 2} r^{m-2} d r\right\} u(x+t \omega)
$$

The identity (2.24) follows from this by the change of variable $t \rightarrow t-$ $2(x \omega)$. Observing that $x \rightarrow x_{\omega}$ is measure preserving, we apply Minkowski's inequality to (2.24) and obtain (2.25).

By Parseval-Plancherel formula we have

$$
\int_{0}^{\infty}\left|\widehat{K}_{V}(t, \omega)\right|^{2} d t=\frac{1}{2(2 \pi)^{m-1}} \int_{0}^{\infty}|\widehat{V}(r \omega)|^{2} r^{2 m-4} d r
$$

Integrating both sides with respect to ω over Σ gives

$$
\left\|\widehat{K}_{V}\right\|_{L^{2}([0, \infty) \times \Sigma)}^{2}=\frac{1}{2(2 \pi)^{m-1}} \int_{\mathbf{R}^{m}}|\xi|^{m-3}|\widehat{V}(\xi)|^{2} d \xi \leq C\|V\|_{H^{(m-3) / 2}}^{2}
$$

Similarly we have

$$
\begin{aligned}
\left\|t \widehat{K}_{V}\right\|_{L^{2}([0, \infty) \times \Sigma)}^{2} & \leq C \int_{\mathbf{R}^{m}}|\xi|^{m-3}\left(\left|\nabla_{\xi} \widehat{V}(\xi)\right|^{2}+|\xi|^{-2}|\widehat{V}(\xi)|^{2}\right) d \xi \\
& \leq C\|\langle x\rangle V\|_{H^{(m-3) / 2}}^{2}
\end{aligned}
$$

Interpolating these two estimates by the complex interpolation method, we deduce that for any $\sigma>1 / 2$,

$$
\left\|\widehat{K}_{V}\right\|_{L^{1}([0, \infty) \times \Sigma)} \leq C_{\sigma}\left\|\langle t\rangle^{\sigma} \widehat{K}_{V}\right\|_{L^{2}([0, \infty) \times \Sigma)} \leq C_{\sigma}\left\|\langle x\rangle^{\sigma} V\right\|_{H^{(m-3) / 2}}
$$

The second inequality of (2.26) is obvious since $p_{0} \geq 2$.

3. Estimate at low energy

In what follows we assume that V satisfies the condition of Theorem 1.2 with $\ell=0$. In this section, we prove that the low energy part $W_{ \pm} \phi_{1}\left(H_{0}\right)^{2}=$ $\phi_{1}(H) W_{ \pm} \phi_{1}\left(H_{0}\right)$ of $W_{ \pm}$is bounded in L^{p}, where $\phi_{1} \in C_{0}^{\infty}\left(R^{1}\right)$ is such that $\phi_{1}(\lambda)=1$ for $|\lambda| \leq 1$ and $\phi_{1}(\lambda)=0$ for $|\lambda| \geq 2$. We prove this for the case $m \geq 4$ is even only. Nevertheless, we state some results for the case $m \geq 3$ is odd as well when we think them of independent interest.

Since V is clearly very short range and $H=H_{0}+V$ admits no positive eigenvalues $([2])$, all statements in the previous section hold. Moreover, writing $V(x)=A(x) B(x)$ as before, we have the following properties which are all well known in scattering theory (cf. [1], [7], [14]):

1. $A R_{0}(\lambda \pm i 0) B \equiv Q_{0}^{ \pm}(\lambda) \in B\left(L^{2}\right)$ is uniformly bounded on $[0, \infty)$ and $1+Q_{0}^{ \pm}(\lambda)$ has a bounded inverse in $B\left(L^{2}\right)$ for all $\lambda \in[0, \infty)$. We have the resolvent equation (2.12):

$$
\begin{equation*}
R^{ \pm}(\lambda)=R_{0}^{ \pm}(\lambda)-R_{0}^{ \pm}(\lambda) B\left(1+Q_{0}^{ \pm}(\lambda)\right)^{-1} A R_{0}^{ \pm}(\lambda) \tag{3.29}
\end{equation*}
$$

2. $A R^{ \pm}(\lambda) B$ are uniformly bounded in $B\left(L^{2}\right)$ and locally Hölder continuous on $[0, \infty)$.
3. A and B are $H_{0^{-}}$as well as H-smooth in the sense of Kato:

$$
\begin{gather*}
\sup _{\epsilon>0} \int_{-\infty}^{\infty}\left\|A R_{0}(\lambda \pm i \epsilon) u\right\|^{2} d \lambda \leq C\|u\|^{2} \tag{3.30}\\
\sup _{\epsilon>0} \int_{0}^{\infty}\|A R(\lambda \pm i \epsilon) u\|^{2} d \lambda \leq C\|u\|^{2}
\end{gather*}
$$

4. The wave operators $W_{ \pm}$exist and have the stationary expression (1.2) $\sim(1.3)$.

In virtue of Proposition 2.13 the L^{p} boundedness of $\phi_{1}(H) W_{ \pm} \phi_{1}\left(H_{0}\right)$ is equivalent to that of $W_{2, \text { low }}=\phi_{1}(H) W_{2} \phi_{1}\left(H_{0}\right)$. We decompose $W_{2, \text { low }}=$ $W_{2, l o w}^{(1)}+W_{2, \text { low }}^{(2)}$ by splitting the resolvent as $R^{-}(\lambda)=\tilde{R}^{-}(\lambda)+R(0)$ in the formula (1.3):

$$
\begin{align*}
& W_{2, \text { low }}^{(1)} u=\phi_{1}(H) \tag{3.31}\\
& \quad \times\left\{\frac{1}{2 \pi i} \int_{0}^{\infty} R_{0}^{-}(\lambda) V R(0) V\left(R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right) d \lambda\right\} \phi_{1}\left(H_{0}\right) u
\end{align*}
$$

$$
\begin{align*}
& W_{2, l o w}^{(2)} u=\phi_{1}(H) \tag{3.32}\\
& \quad \times\left\{\frac{1}{2 \pi i} \int_{0}^{\infty} R_{0}^{-}(\lambda) V \tilde{R}^{-}(\lambda) V\left(R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right) d \lambda\right\} \phi_{1}\left(H_{0}\right) u
\end{align*}
$$

We prove that $W_{2, \text { low }}^{(1)}$ and $W_{2, \text { low }}^{(2)}$ are both bounded in L^{p} separately.
We rewrite (3.31) as follows. By using that $R_{0}^{+}(\lambda)=R_{0}^{-}(\lambda)$ for $\lambda \leq 0$, we extend the region of integration to the whole line and write

$$
\begin{aligned}
& \left(W_{2, l o w}^{(1)} u, v\right) \\
& \quad=\frac{1}{2 \pi i} \int_{0}^{\infty}\left(A R(0) B \cdot A\left(R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right) \phi_{1}\left(H_{0}\right) u, B R_{0}^{+}(\lambda) \phi_{1}(H) v\right) d \lambda
\end{aligned}
$$

Here, in virtue of (3.30), $A R_{0}^{-}(\lambda) \phi_{1}\left(H_{0}\right) u$ and $B R_{0}^{+}(\lambda) \phi_{1}(H) v$ are boundary values of L^{2}-valued Hardy functions in the lower and upper half planes respectively. Hence they are orthogonal to each other and we obtain

$$
\begin{equation*}
\left(W_{2, l o w}^{(1)} u, v\right)=\frac{1}{2 \pi i} \int_{0}^{\infty}\left\langle V R(0) V R_{0}^{+}(\lambda) \phi_{1}\left(H_{0}\right) u, R_{0}^{+}(\lambda) \phi_{1}(H) v\right\rangle d \lambda \tag{3.33}
\end{equation*}
$$

Recall that $\phi_{1}\left(H_{0}\right), \phi_{1}(H)$ are bounded in L^{p} as shown in section 2. Denote the integral kernel of $R(0)$ by $K(x, y)$, the multiplication with the function
$M_{y}(x)=V(x) K(x, x-y) V(x-y)$ by M_{y}, and the translation by $y \in \mathbf{R}^{m}$ by τ_{y}. Then we write $V R(0) V$ in the form

$$
\begin{align*}
V R(0) V u(x) & =\int_{\mathbf{R}^{m}} V(x) K(x, x-y) V(x-y) u(x-y) d y \tag{3.34}\\
& =\int_{\mathbf{R}^{m}} M_{y} \tau_{y} u(x) d y
\end{align*}
$$

and inserting (3.34) into (3.33), we obtain
(3.35) $\left(W_{2, l o w}^{(1)} u, v\right)$

$$
=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \int_{\mathbf{R}^{m}}\left\langle M_{y} R_{0}^{+}(\lambda) \phi_{1}\left(H_{0}\right) \tau_{y} u, R_{0}^{+}(\lambda) \phi_{1}(H) v\right\rangle d y d \lambda
$$

Here the integral is absolutely convergent with respect to $d y d \lambda$. Indeed, for $\sigma>1 / 2$ we have $\langle x\rangle^{\sigma} M_{y}(x) \in H^{(m-3) / 2}\left(\mathbf{R}_{x}^{m}\right)$ for some $\sigma>1 / 2$ in virtue of Lemma 2.11 and $\left\|M_{y}\right\|_{L^{m / 2}\left(\mathbf{R}_{x}^{m}\right)} \leq C\left\|\langle x\rangle^{\sigma} M_{y}(x)\right\|_{H^{(m-3) / 2}\left(\mathbf{R}_{x}^{m}\right)}$ by Sobolev's lemma. Hence $\left|M_{y}\right|^{1 / 2}$ is H_{0}-smooth for every $y \in \mathbf{R}^{m}([7])$:

$$
\int_{\mathbf{R}}\left\|\left|M_{y}\right|^{1 / 2} R_{0}^{ \pm}(\lambda) u\right\|^{2} d \lambda \leq C\left\|\langle x\rangle^{\sigma} M_{y}(x)\right\|_{H^{(m-3) / 2}\left(\mathbf{R}_{x}^{m}\right)}\|u\|_{L^{2}}^{2}
$$

and, thanks to (2.20) we have

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{\mathbf{R}^{m}}\left|\left\langle M_{y} R_{0}^{+}(\lambda) \phi_{1}\left(H_{0}\right) \tau_{y} u, R_{0}^{+}(\lambda) \phi_{1}(H) v\right\rangle\right| d \lambda d y \\
& \quad \leq C\left\|\phi_{1}\left(H_{0}\right) u\right\|_{L^{2}}\left\|\phi_{1}(H) v\right\|_{L^{2}} \int_{\mathbf{R}^{m}}\left\|\langle x\rangle^{\sigma} M_{y}\right\|_{H^{(m-3) / 2}} d y<\infty
\end{aligned}
$$

It follows by changing the order of integration in (3.35) that

$$
\begin{align*}
& \left(W_{2, l o w}^{(1)} u, v\right) \tag{3.36}\\
& \quad=\int_{\mathbf{R}^{m}}\left\{\frac{1}{2 \pi i} \int_{-\infty}^{\infty}\left\langle R_{0}^{-}(\lambda) M_{y} R_{0}^{+}(\lambda) \phi\left(H_{0}\right) \tau_{y} u, \phi_{1}(H) v\right\rangle d \lambda\right\} d y
\end{align*}
$$

and the application of Proposition 2.13 and (2.20) to (3.36) yields, with $\sigma>1 / 2$ and $1 / p+1 / q=1$ that

$$
\left|\left(W_{2, l o w}^{(1)} u, v\right)\right| \leq C \int_{\mathbf{R}^{m}}\left\|\langle x\rangle^{\sigma} M_{y}\right\|_{H^{(m-3) / 2}} d y \cdot\|u\|_{L^{p}}\|v\|_{L^{q}} \leq C_{1}\|u\|_{L^{p}}\|v\|_{L^{q}}
$$

Thus, we have proved the following lemma.

Lemma 3.14. $\quad W_{2, \text { low }}^{(1)}$ is bounded in L^{p} for any $1 \leq p \leq \infty$.
Before starting the proof of the L^{p} boundedness of $W_{2, \text { low }}^{(2)}$, we record some results about the differentiability of $R^{ \pm}(\lambda)$ that are necessary in what follows. They are simple consequences of the resolvent equation (3.29), Lemma 2.1 and the decay property of the potential $D^{\alpha} V \in \ell_{\delta}^{\infty}\left(L^{p_{0}}\right)$, and we omit the proof.

Lemma 3.15. Let $0 \leq j \leq(m+2) / 2$ and $\epsilon>0$. Then $R^{ \pm}(\lambda)$ is j times differentiable as a $B\left(L_{j+1 / 2+\epsilon}^{2}, L_{-j-1 / 2-\epsilon}^{2}\right)$ valued function of $\lambda \in(0, \infty)$.

Lemma 3.16. Let $2 \leq \rho \leq(m+2) / 2$ and $s>\rho+1 / 2$. Then, for $0<k<1$,

$$
\left\|(d / d k)^{j} \tilde{R}^{ \pm}\left(k^{2}\right)\right\|_{B\left(L_{s}^{2}, L_{-s}^{2}\right)} \leq \begin{cases}C_{j} k^{2-j}\langle\log k\rangle, & \text { if } m \geq 4 \tag{3.37}\\ C_{j} k^{1-j}, & \text { if } m=3\end{cases}
$$ for $0 \leq j \leq \rho$.

We show that the integral kernel $W_{2, \text { low }}^{(2)}(x, y)$ of $W_{2, \text { low }}^{(2)}$ satisfies the criterion (1.6). Using the identity $\left(R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right) \phi_{1}\left(H_{0}\right)=\left(R_{0}^{+}(\lambda)-\right.$ $\left.R_{0}^{-}(\lambda)\right) \phi_{1}(\lambda)$ and changing the variable $\lambda=k^{2}$, we write

$$
\begin{align*}
W_{2, l o w}^{(2)}= & \frac{1}{\pi i} \int_{0}^{\infty} \phi_{1}(H) R_{0}^{-}\left(k^{2}\right) V \tilde{R}^{-}\left(k^{2}\right) V\left(R_{0}^{+}\left(k^{2}\right)-R_{0}^{-}\left(k^{2}\right)\right) \tag{3.38}\\
& \times \phi_{1}\left(H_{0}\right) \tilde{\phi}_{1}\left(k^{2}\right) k d k
\end{align*}
$$

where $\tilde{\phi}_{1} \in C_{0}^{\infty}(\mathbf{R})$ is such that $\tilde{\phi}_{1}(\lambda) \phi_{1}(\lambda)=\phi_{1}(\lambda)$, Hence, if we denote the integral kernels of $R_{0}^{ \pm}\left(k^{2}\right) \phi_{1}\left(H_{0}\right)$ and $R_{0}^{ \pm}\left(k^{2}\right) \phi_{1}(H)$ respectively by $G_{ \pm}^{(*)}(x, y, k)$ and $G_{ \pm}^{(*)}(x, y, k)$, and if we set $G_{ \pm, k, y}^{(*)}(x)=G_{ \pm}^{(*)}(x, y, k)$ and $G_{ \pm, k, y}^{(* *)}(x)=G_{ \pm}^{(* *)}(x, y, k)$, then $W_{2, \text { low }}^{(2)}(x, y)$ is given by $W_{2, \text { low }}^{(2)}(x, y)=$ $W_{2, l o w}^{(2),+}(x, y)-W_{2, l o w}^{(2),-}(x, y)$, where

$$
\begin{equation*}
W_{2, l o w}^{(2), \pm}(x, y)=\frac{1}{\pi i} \int_{0}^{\infty} \tilde{\phi}\left(k^{2}\right)\left\langle\widetilde{R}^{-}\left(k^{2}\right) V G_{ \pm, k, y}^{(*)}, V G_{+, k, x}^{(* *)}\right\rangle k d k \tag{3.39}
\end{equation*}
$$

Recall that the integral kernel of $R_{0}^{ \pm}\left(k^{2}\right)$ is given by $G_{ \pm}(x-y, k)$ (see (2.2)) and that we are assuming m is even. Expanding $(z \pm(i t / 2))^{\nu}$ in the

Hankel formula (2.3):

$$
\begin{align*}
& \pm i \frac{z^{\nu} H_{\nu}^{(j)}(z)}{4(2 \pi)^{\nu}}=\sum_{s=0}^{\nu} C_{\nu s}^{ \pm} e^{ \pm i z} z^{s} H_{\nu s}^{ \pm}(z) \\
& H_{\nu s}^{ \pm}(z)=\int_{0}^{\infty} e^{-t} t^{2 \nu-s-1 / 2}\left(z \pm \frac{i t}{2}\right)^{-1 / 2} d t \tag{3.40}
\end{align*}
$$

and introducing $\varphi(x, y)=|x-y|-|x|$, we decompose

$$
\begin{align*}
G_{ \pm, x, k}(y) & =e^{ \pm i k|x|} \sum_{s=0}^{\nu} k^{s} C_{\nu s}^{ \pm} \frac{e^{ \pm i k \varphi(x, y)} H_{\nu s}^{ \pm}(k|x-y|)}{|x-y|^{m-2-s}} \tag{3.41}\\
& \equiv e^{ \pm i k|x|} \sum_{s=0}^{\nu} k^{s} G_{ \pm, x, k, s}(y)
\end{align*}
$$

where $C_{\nu s}^{ \pm}$are constants and the definition of $G_{ \pm, x, k, s}(y)$ should be obvious. We have obvious inequality $|\varphi(x, y)| \leq|y|$. We decompose $G_{ \pm}^{(*)}(x, y, k)$ and $G_{ \pm}^{(* *)}(x, y, k)$ accordingly: Write $\Phi_{0}(x, y)$ and $\Phi(x, y)$ for the kernels of $\phi\left(H_{0}\right)$ and $\phi(H)$ respectively, and define

$$
G_{ \pm, x, k, s}^{(*)}(y)=\int_{\mathbf{R}^{m}} e^{ \pm i k(|z|-|x|)} G_{ \pm, z, k, s}(y) \Phi_{0}(z, x) d z
$$

$$
\begin{equation*}
G_{ \pm, x, k, s}^{(* *)}(y)=\int_{\mathbf{R}^{m}} e^{ \pm i k(|z|-|x|)} G_{ \pm, z, k, s}(y) \Phi(z, x) d z \tag{3.42}
\end{equation*}
$$

We have

$$
\begin{align*}
G_{ \pm, x, k}^{(*)}(y) & =e^{ \pm i k|x|} \sum_{s=0}^{\nu} k^{s} G_{ \pm, x, k, s}^{(*)}(y), \tag{3.43}\\
G_{ \pm, x, k}^{(* *)}(y) & =e^{ \pm i k|x|} \sum_{s=0}^{\nu} k^{s} G_{ \pm, x, k, s}^{(* *)}(y),
\end{align*}
$$

and inserting (3.43) into (3.39) yields

$$
\begin{align*}
W_{2, l o w}^{(2), \pm}(x, y)= & \sum_{s, s^{\prime}=0}^{\nu} \frac{1}{\pi i} \int_{0}^{\infty} e^{-i k(|x| \mp|y|)} \tag{3.44}\\
& \times \tilde{\phi}_{1}\left(k^{2}\right)\left\langle\widetilde{R}^{-}\left(k^{2}\right) V G_{ \pm, y, k, s}^{(*)}, V G_{+, x, k, s^{\prime}}^{(* *)}\right\rangle k^{s+s^{\prime}+1} d k
\end{align*}
$$

We write each summand in the RHS of (3.44)

$$
\begin{align*}
T_{s s^{\prime}}^{ \pm}(x, y) & =\int_{0}^{\infty} e^{-i k(|x| \mp|y|)} \tilde{\phi}_{1}\left(k^{2}\right) L_{s s^{\prime}}^{ \pm}(x, y, k) k^{s+s^{\prime}+1} d k \tag{3.45}\\
L_{s s^{\prime}}^{ \pm}(x, y, k) & =(1 / \pi i)\left\langle\widetilde{R}^{-}\left(k^{2}\right) V G_{ \pm, y, k, s}^{(*)}, V G_{+, x, k, s^{\prime}}^{(* *)}\right\rangle \tag{3.46}
\end{align*}
$$

Lemma 3.17. Let $\alpha+\beta=0,1, \ldots,(m+2) / 2$ and $s=0, \ldots,(m-2) / 2$. Then, for some $\epsilon>0$,

$$
\begin{align*}
& \left\|V D_{k}^{\beta} G_{ \pm, x, k, s}^{(*)}\right\|_{L_{\alpha+1+\epsilon}^{2}} \quad \leq \begin{cases}C\langle x\rangle^{-m+s+3 / 2} k^{-1 / 2-\beta}, & \text { if } m \text { is even } \\
C\langle x\rangle^{-m+2+s}, & \text { if } m \text { is odd }\end{cases} \tag{3.47}
\end{align*}
$$

for $0<k \leq 2$. The estimate (3.47) remains true if $G_{ \pm, x, k, s}^{(*)}$ is replaced by $G_{ \pm, x, k, s}^{(* *)}$.

Proof. We prove only the case m is even. We have $|k| x \mid(k|x| \pm$ $(i t / 2))^{-1} \mid \leq 1$ and

$$
\begin{aligned}
& \left|D_{k}^{\beta} H_{\nu s}^{ \pm}(k|x|)\right| \leq C|x|^{\beta}\left|\int_{0}^{\infty} e^{-t} t^{2 \nu-s-1 / 2}(k|x| \pm(i t / 2))^{-1 / 2-\beta} d t\right| \\
& \quad \leq C|x|^{\beta}(k|x|)^{-1 / 2-\beta}=C k^{-1 / 2-\beta}|x|^{-1 / 2}
\end{aligned}
$$

It follows that $\left|D_{k}^{\beta} G_{ \pm, x, k, s}(y)\right| \leq C k^{-1 / 2-\beta}|x-y|^{3 / 2-m+s}\langle y\rangle^{\beta}$. On the other hand we know from Lemma 2.4 that $\left|\Phi_{0}(z, x)\right| \leq C_{N}\langle z-x\rangle^{-N}$ for any N. Using these, we deduce from (3.42) that

$$
\left|D_{k}^{\beta} G_{ \pm, x, k, s}^{(*)}(y)\right| \leq C k^{-1 / 2-\beta}\langle x-y\rangle^{3 / 2-m+s}\langle y\rangle^{\beta}
$$

Since $\left\|V(y)\langle y\rangle^{\beta}\langle y\rangle^{\alpha+1+\epsilon}\right\|_{L^{2}\left(Q_{n}\right)} \leq C\langle n\rangle^{\alpha+\beta+1+\epsilon-\delta}$ and $\delta-(\alpha+\beta+1+\epsilon)>$ $m-1$ for sufficiently small $\epsilon>0$, the estimate (3.47) for $G_{ \pm, x, k, s}^{(*)}$ follows. The proof for $G_{ \pm, x, k, s}^{(* *)}$ is similar.

Applying Lemma 2.1 and Lemma 3.17 with $\beta=0$, we obtain that

$$
\left|L_{s s^{\prime}}^{ \pm}(x, y, k)\right| \leq C k^{-1}\langle x\rangle^{-m+s^{\prime}+3 / 2}\langle y\rangle^{-m+s+3 / 2}
$$

and by integration

$$
\begin{equation*}
\left|T_{s s^{\prime}}^{ \pm}(x, y)\right| \leq C\langle x\rangle^{-m+s^{\prime}+3 / 2}\langle y\rangle^{-m+s+3 / 2} \tag{3.48}
\end{equation*}
$$

For improving the decay estimate of (3.48), we apply integrations by parts with respect to the variable $k \mu_{s s^{\prime}}=\max \left\{s, s^{\prime}\right\}+2$ times in (3.45). A computation with Leibniz' formula shows that

$$
\begin{align*}
& D_{k}^{\mu_{s s^{\prime}}}\left(\tilde{\phi}\left(k^{2}\right) k^{s+s^{\prime}+1} L_{s s^{\prime}}^{ \pm}(x, y, k)\right) \\
& =\sum_{\alpha+\beta+\gamma=\mu_{s s^{\prime}}} \tag{3.49}\\
& \times C_{\alpha \beta \gamma}\left\langle D_{k}^{\alpha}\left(\tilde{\phi}\left(k^{2}\right) k^{s+s^{\prime}+1} \widetilde{R}^{-}\left(k^{2}\right)\right) V D_{k}^{\beta} G_{ \pm, y, k, s}^{(*)}, V D_{k}^{\gamma} G_{+, x, k, s^{\prime}}^{(* *)}\right\rangle
\end{align*}
$$

and applying Lemma 3.17 and Lemma 3.16, we see that each summand in (3.49) is bounded in modulus by a constant times

$$
\begin{gather*}
k^{s+s^{\prime}+3-\alpha}\langle\log k\rangle k^{-1 / 2-\beta}\langle y\rangle^{-m+s+3 / 2} k^{-1 / 2-\gamma}\langle x\rangle^{-m+s^{\prime}+3 / 2} \\
\leq C\langle\log k\rangle\langle x\rangle^{-m+s^{\prime}+3 / 2}\langle y\rangle^{-m+s+3 / 2}, \quad 0 \leq k \leq 2 \tag{3.50}
\end{gather*}
$$

It follows that no boundary terms appear in the following integration by parts:

$$
\begin{aligned}
T_{s s^{\prime}}^{ \pm}(x, y)= & \int_{0}^{\infty} \frac{\left(-D_{k}\right)^{\mu_{s s^{\prime}}}\left(e^{-i k(|x| \mp|y|)}\right)}{(|x| \mp|y|)^{\mu_{s s^{\prime}}}} \tilde{\phi}\left(k^{2}\right) L_{s s^{\prime}}^{ \pm}(x, y, k) k^{s+s^{\prime}+1} d k \\
= & \frac{1}{(|x| \mp|y|)^{\mu_{s s^{\prime}}}} \\
& \times \int_{0}^{\infty} e^{-i k(|x| \mp|y|)} D_{k}^{\mu_{s s^{\prime}}}\left(\tilde{\phi}\left(k^{2}\right) L_{s s^{\prime}}^{ \pm}(x, y, k) k^{s+s^{\prime}+1}\right) d k
\end{aligned}
$$

and, in virtue of $(3.49) \sim(3.50)$,

$$
\left|T_{s s^{\prime}}^{ \pm}(x, y)\right| \leq\left. C_{s, s^{\prime}}\langle x\rangle^{-m+s^{\prime}+3 / 2}\langle y\rangle^{-m+s+3 / 2}| | x|\mp| y\right|^{-\mu_{s s^{\prime}}}
$$

Combining this with (3.48) and summing up for $0 \leq s, s^{\prime} \leq \nu=(m-2) / 2$, we obtain

$$
\begin{equation*}
\left|W_{2, l o w}^{(2), \pm}(x, y)\right| \leq \sum_{s, s^{\prime}=0}^{\nu} C_{s, s^{\prime}} \frac{\langle x\rangle^{-m+s^{\prime}+3 / 2}\langle y\rangle^{-m+s+3 / 2}}{\langle | x|\mp| y| \rangle^{\mu_{s s^{\prime}}}} \tag{3.51}
\end{equation*}
$$

Now we can complete the proof of the following
Lemma 3.18. The functions $W_{2, \text { low }}^{(2), \pm}(x, y)$ satisfy the estimates (1.6) and the operator $W_{2, \text { low }}^{(2)}$ is bounded in L^{p} for any $1 \leq p \leq \infty$.

Proof. We integrate (3.51) with respect to the variable x by using the polar coordinates: The $\left(s, s^{\prime}\right)$-summand in the RHS produces a constant times

$$
\begin{align*}
& \int_{\mathbf{R}^{m}} \frac{\langle x\rangle^{-m+s^{\prime}+3 / 2}\langle y\rangle^{-m+s+3 / 2}}{\langle | x|\mp| y\left\rangle^{\mu_{s s^{\prime}}}\right.} d x \\
& \leq C \int_{0}^{\infty} \frac{\langle r\rangle^{s^{\prime}}+1 / 2}{} d r \tag{3.52}\\
& \quad \leq C \int_{-\infty}^{\infty} \frac{\langle r-| y| \rangle^{\mu_{s s^{\prime}}}\langle y\rangle^{m-s-3 / 2}}{\langle r\rangle^{\prime}+1 / 2}+\langle y\rangle^{s^{\prime}+1 / 2} \\
&\langle r\rangle_{s s^{\prime}}\langle y\rangle^{m-s-3 / 2}
\end{align*} r .
$$

Here $s^{\prime}+1 / 2 \leq m-s-3 / 2$, since $s+s^{\prime} \leq m-2$, and the $\sup _{y \in \mathbf{R}^{m}}$ of the RHS is finite. Hence,

$$
\sup _{y \in \mathbf{R}^{m}} \int_{\mathbf{R}^{m}}\left|W_{2, l o w}^{ \pm}(x, y)\right| d x<\infty
$$

We may likewise prove the other relation of (1.6) and the lemma follows.

4. Estimate at high energy

In this section we prove that the high energy part $\phi_{2}(H) W_{2} \phi_{2}\left(H_{0}\right) u$ of W_{2} is also bounded in L^{p}. Recall that W_{2} is given by (1.3):

$$
W_{2} u=\frac{1}{2 \pi i} \int_{0}^{\infty} R_{0}^{-}(\lambda) V R^{-}(\lambda) V\left\{R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right\} u d \lambda
$$

and that $\phi_{2} \in C^{\infty}(\mathbf{R})$ is such that $\phi_{2}(\lambda)=1$ for $\lambda \geq 2$ and $\phi_{2}(\lambda)=0$ for $\lambda \leq 1$. As the argument in this section is very much similar to that of the previous section as well as of section 4 of [21], we shall be rather sketchy here.

Expand $R^{-}(\lambda)$ via the repeated use of the resolvent equation (3.29):

$$
R^{-}(\lambda)=\sum_{n=0}^{2 N-1}(-1)^{n} R_{0}^{-}(\lambda)\left(V R_{0}^{-}(\lambda)\right)^{n}+\left(R_{0}^{-}(\lambda) V\right)^{N} R^{-}(\lambda)\left(V R_{0}^{-}(\lambda)\right)^{N}
$$

and decompose $W_{2}=\sum_{n=2}^{2 N+2}(-1)^{n} W^{(n)}$ accordingly, where $W^{(n)}$ is given by

$$
\begin{aligned}
& W^{(n)} u=\frac{1}{2 \pi i} \int_{0}^{\infty} R_{0}^{-}(\lambda)\left(V R_{0}^{-}(\lambda)\right)^{n-1} V\left\{R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right\} u d \lambda, \\
& n=2, \ldots, 2 N+1 ; \\
& W^{(2 N+2)} u=\frac{1}{2 \pi i} \int_{0}^{\infty} R_{0}^{-}(\lambda) V F_{N}(\lambda) V\left\{R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right\} u d \lambda .
\end{aligned}
$$

Here we wrote $F_{N}(\lambda)=\left(R_{0}^{-}(\lambda) V\right)^{N} R^{-}(\lambda)\left(V R_{0}^{-}(\lambda)\right)^{N}$. It is shown in section 2 of [21] by repeated application of the argument similar to the one used in the proof of Proposition 2.13 that $W^{(n)} u, n=2, \ldots, 2 N+1$, has the following expression: Set for $s_{1}, \ldots, s_{n} \in \mathbf{R}^{1}$ and $\omega_{1}, \ldots, \omega_{n} \in \Sigma, \Sigma$ being the unit sphere of \mathbf{R}^{m},

$$
K_{n}\left(s_{1}, \cdots, s_{n}, \omega_{1}, \cdots, \omega_{n}\right)=C^{n}\left(s_{1} \cdots s_{n}\right)^{m-2} \prod_{j=1}^{n} \widehat{V}\left(s_{j} \omega_{j}-s_{j-1} \omega_{j-1}\right)
$$

where C is an absolute constant, whose precise value is not important here, and $s_{j} \omega_{j}=0$ if $j=0$; and denote its "Fourier transform" with respect to the radial variables $\left(s_{1}, \cdots, s_{n}\right)$ by

$$
\begin{aligned}
& \widehat{K}_{n}\left(t_{1}, \ldots, t_{n}, \omega_{1}, \ldots, \omega_{n}\right) \\
& \quad=\int_{[0, \infty)^{n}} e^{i \sum_{j=1}^{n} t_{j} s_{j} / 2} K_{n}\left(s_{1}, \ldots, s_{n}, \omega_{1}, \ldots, \omega_{n}\right) d s_{1} \cdots d s_{n}
\end{aligned}
$$

Then $W^{(n)} u, n=2, \ldots, 2 N+1$, can be written in the form

$$
\begin{aligned}
& W^{(n)} u(x)=\int_{[0, \infty)^{n-1} \times I \times \Sigma^{n}} \\
& \quad \times \widehat{K}_{n}\left(t_{1}, \ldots, t_{n-1}, \tau, \omega_{1}, \ldots, \omega_{n}\right) u\left(x_{\omega_{n}}+\rho\right) d t_{1} \cdots d t_{n-1} d \tau d \omega_{1} \cdots d \omega_{n}
\end{aligned}
$$

where $I=\left(2 x \cdot \omega_{n}, \infty\right)$ is the range of the integration by the variable τ, $x_{\omega_{n}}=x-2\left(\omega_{n} \cdot x\right) \omega_{n}$, is the reflection of x along ω_{n}, and $\rho=t_{1} \omega_{1}+\cdots+$ $t_{n-1} \omega_{n-1}+\tau \omega_{n}$. Since $x \rightarrow x_{\omega_{n}}$ is measure preserving and ρ is independent of x, Minkowski's inequality implies as in section 2 that

$$
\begin{equation*}
\left\|W^{(n)} u\right\|_{L^{p}} \leq 2\left\|\widehat{K}_{n}\right\|_{L^{1}\left([0, \infty)^{n} \times \Sigma^{n}\right)}\|f\|_{L^{p}}, \quad 1 \leq p \leq \infty \tag{4.53}
\end{equation*}
$$

We showed in Lemma 2.5 of [21] that for any $\sigma>1$

$$
\left\|\widehat{K}_{n}\right\|_{L^{1}\left([0, \infty)^{n} \times \Sigma^{n}\right)} \leq C^{n}\left\|\mathcal{F}\left(\langle x\rangle^{\sigma} V\right)\right\|_{L^{m *}}^{n}
$$

Set $\rho=(m-2) / 2$ if $m \geq 4, \rho=0$ if $m=3$ and $t=2(m-1) /(m-3)$. If $m \geq 4$, we have $t \rho>m$ and, by Hölder's inequality,

$$
\left\|\mathcal{F}\left(\langle x\rangle^{\sigma} V\right)\right\|_{L^{m_{*}}} \leq\left\|\langle\xi\rangle^{-\rho}\right\|_{L^{t}}\left\|\langle\xi\rangle^{\rho} \mathcal{F}\left(\langle x\rangle^{\sigma} V\right)\right\|_{L^{2}} \leq C\left\|\langle x\rangle^{\sigma} V\right\|_{H^{\rho}}
$$

for any σ and this holds obviously if $m=3$. On the other hand it is clearly possible to find $1<\sigma<\delta$ such that

$$
\left\|\langle x\rangle^{\sigma} V\right\|_{H^{\rho}} \leq C_{1} \sum_{|\alpha| \leq \ell_{0}}\left\|D^{\alpha} V\right\|_{\ell_{\delta}^{\infty}\left(L^{p_{0}}\right)} .
$$

This proves that $W^{(n)}$ hence $\phi_{2}(H) W^{(n)} \phi_{2}\left(H_{0}\right)$ are bounded in L^{p} if $n=$ $2, \ldots, 2 N+1$.

For completing the proof of Theorem 1.2, it remains only to prove that the operator $\phi_{2}(H) W^{(2 N+2)} \phi_{2}\left(H_{0}\right)$ is bounded in L^{p}. We write it in the following form:

$$
\phi_{2}(H) \frac{1}{2 \pi i}\left(\int_{0}^{\infty} R_{0}^{-}(\lambda) V F_{N}(\lambda) V\left\{R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right\} \tilde{\phi}_{2}(\lambda) d \lambda\right) \phi_{2}\left(H_{0}\right)
$$

Here $\tilde{\phi}_{2} \in C^{\infty}(\mathbf{R})$ is such that $\tilde{\phi}_{2}(\lambda) \phi_{2}(\lambda)=\phi_{2}(\lambda)$ and $\tilde{\phi}_{2}(\lambda)=0$ for $\lambda \leq 1 / 2$. We need only prove that the operator inside the parenthesis

$$
T_{ \pm}=\int_{0}^{\infty} R_{0}^{-}\left(k^{2}\right) V F_{N}\left(k^{2}\right) V R_{0}^{ \pm}\left(k^{2}\right) \tilde{\phi}_{2}\left(k^{2}\right) k d k
$$

is bounded in L^{p}. The integral kernel $T_{ \pm}(x, y)$ of $T_{ \pm}$can be computed as in the previous section and are given by

$$
\begin{align*}
T_{ \pm}(x, y) & =\int_{0}^{\infty}\left(F_{N}\left(k^{2}\right) V G_{ \pm, y, k}, V G_{+, x, k}\right) \tilde{\phi}_{2}\left(k^{2}\right) k d k \tag{4.54}\\
& =\int_{0}^{\infty} e^{-i k(|x| \mp|y|)}\left(F_{N}\left(k^{2}\right) V \tilde{G}_{ \pm, y, k}, V \tilde{G}_{+, x, k}\right) \tilde{\phi}_{2}\left(k^{2}\right) k d k
\end{align*}
$$

where we wrote as in (3.41):

$$
\begin{equation*}
G_{ \pm, x, k}(y)=e^{ \pm i k|x|} \sum_{s=0}^{\nu} k^{s} G_{ \pm, x, k, s}(y) \equiv e^{ \pm i k|x|} \tilde{G}_{ \pm, x, k}(y) \tag{4.55}
\end{equation*}
$$

Here, as can be easily see from (2.2) and (2.3), we have for $k \geq 1 / 4$:

$$
\begin{equation*}
\left|D_{k}^{\rho} \tilde{G}_{ \pm, x, k}(y)\right| \leq C_{\rho}\langle y\rangle^{\rho}|x-y|^{2-m}(1+k|x-y|)^{(m-3) / 2} \tag{4.56}
\end{equation*}
$$

Using Lemma 2.1 and Lemma 2.2 for the mapping property and the decay of the resolvent in the k variable, we obtain as in section 4 of [21] that, for sufficiently large N,

$$
\left|\tilde{\phi}_{2}\left(k^{2}\right)\left(F_{N}\left(k^{2}\right) V G_{ \pm, y, k}, V G_{+, x, k}\right)\right| \leq C\langle k\rangle^{-3}\langle x\rangle^{-(m-1) / 2}\langle y\rangle^{-(m-1) / 2}
$$

Integrating with respect to the variable k gives

$$
\begin{equation*}
\left|T_{ \pm}(x, y)\right| \leq C\langle x\rangle^{-(m-1) / 2}\langle y\rangle^{-(m-1) / 2} \tag{4.57}
\end{equation*}
$$

which is, however, is not sufficient for $T_{ \pm}(x, y)$ to satisfy the criterion (1.6). For proving that $T_{ \pm}(x, y)$ enjoys better decay property, we perform integrations by parts $\mu=(m+2) / 2$ times in (4.54) as in the previous section:

$$
\begin{align*}
T_{ \pm}(x, y)= & \int_{0}^{\infty}(|y| \mp|x|)^{-\mu}\left(D_{k}^{\mu} e^{-i k(|x| \pm|y|)}\right) \tag{4.58}\\
& \cdot\left(F_{N}\left(k^{2}\right) V \tilde{G}_{ \pm, y, k}, V \tilde{G}_{+, x, k}\right) \tilde{\phi}_{2}\left(k^{2}\right) k d k \\
= & \sum_{\alpha+\beta+\gamma+\delta=\mu} \int_{0}^{\infty} \frac{e^{-i k(|x|-|y|)}}{(|x| \mp|y|)^{\mu}} \\
& \times\left(D_{k}^{\alpha} F_{N}\left(k^{2}\right) V D_{k}^{\beta} \tilde{G}_{ \pm, y, k}, V D_{k}^{\gamma} \tilde{G}_{+, x, k}\right) D_{k}^{\delta}\left(\tilde{\phi}_{2}\left(k^{2}\right) k\right) d k
\end{align*}
$$

Note that we do not have to worry about singularities at $k=0$ because $\tilde{\phi}_{2}\left(k^{2}\right)=0$ for $0 \leq k \leq 1 / 4$. By using again Lemma 2.1 and Lemma 2.2, we see that

$$
\begin{align*}
& \left|\left(D_{k}^{\alpha} F_{N}\left(k^{2}\right) V D_{k}^{\beta} \tilde{G}_{ \pm, y, k}, V D_{k}^{\gamma} \tilde{G}_{+, x, k}\right)\right| \tag{4.59}\\
& \quad \leq C\langle k\rangle^{-3}\langle x\rangle^{-(m-1) / 2}\langle y\rangle^{-(m-1) / 2}
\end{align*}
$$

Thus applying (4.59) to (4.58), and combining the result with (4.57), we obtain

$$
\left|T_{ \pm}(x, y)\right| \leq C\langle x\rangle^{-(m-1) / 2}\langle y\rangle^{-(m-1) / 2}\langle | x|\mp| y| \rangle^{-(m+2) / 2}
$$

Thus the estimation as in the final paragraph of section 3 implies that $T_{ \pm}(x, y)$ satisfies (1.6). Thus $\phi_{2}(H) W^{(2 N+2)} \phi_{2}\left(H_{0}\right)$ is also bounded in L^{p}. This completes the proof of Theorem 1.2.

References

[1] Agmon, S., Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa, Ser. IV 2 (1975), 151-218.
[2] Cycon, H., Froese, R. G., Kirsch, W. and B. Simon., Schrödinger operators with applications to quantum mechanics and global geometry, Springer Verlag, Berlin (1987).
[3] Enss, V., Asymptotic completeness for quantum mechanical potential scattering I, Short range potentials, Commun. Math. Phys. 61 (1978), 285-291.
[4] Jensen, A., Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in $L_{2}\left(R^{m}\right), m \geq 5$, Duke Math. J. 47 (1980), 57-80.
[5] Jensen, A. and S. Nakamura, Mapping properties of functions of Schrödinger operators between Sobolev spaces and Besov spaces, Advanced Studies in Pure Math. 23, Spectral and Scattering Theory and Applications (1994), 187-210.
[6] Kato, T., Wave operators and similarity for some non-selfadjoint operators, Math. Ann. 162 (1966), 258-279.
[7] Kato, T. and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Reviews in Math. Phys. 1 (1989), 481-496.
[8] Kenig, A. E., Ruiz, A. and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J. 55 (1987), 329-347.
[9] Kuroda, S. T., An introduction to scattering theory, Lecture Notes Series 51 Aarhus University (1978), Aarhus, Denmark.
[10] Kuroda, S. T., Scattering theory for differential operators, I and II, J. Math. Soc. Japan 25 (1972), 75-104 and 222-234.
[11] Melin, A., Intertwining methods in multi-dimensional scattering theory, preprint, Lund University (1987).
[12] Murata, M., Asymptotic expansions in time for solutions of Schrödinger -type equations, J. Funct. Anal. 49 (1982), 10-56.
[13] Reed, M. and B. Simon, Methods of Modern Mathematical Physics II, Fourier Analysis, Selfadjointness, Academic Press, New York-San Francisco-London (1975).
[14] Reed, M. and B. Simon, Methods of Modern Mathematical Physics III, Scattering Theory, Academic Press, New York-San Francisco-London (1979).
[15] Shenk, N. and D. Thoe, Outgoing solutions of $\left(-\triangle+q-k^{2}\right) u=f$ in an exterior domain, J. Math. Anal. Appl. 31 (1970), 81-116.
[16] Simader, C. G., An elementary proof of Harnack's inequality for Schrödinger operators and related topics, Math. Z. 203 (1990), 129-152.
[17] Simon, B., Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447526.
[18] Simon, B., Functional integration and quantum physics, Academic press, New York-San Francisco-London (1979).
[19] Sogge, C. D., Oscillatory integrals and spherical harmonics, Duke Math. Jour. 53 (1986), 43-65.
[20] Watson, G. N., A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge (1922).
[21] Yajima, K., The $W^{k, p}$-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan 47 (1995), 551-581.
[22] Yajima, K., The $W^{k, p}$-continuity of wave operators for Schrödinger operators II, Positive potentials in Even dimensions $m \geq 4$, Lecture Notes in Pure and Appl. Math. 161, Spectral and Scattering Theory, ed. M. Ikawa, Marcel Dekker, New York (1994), 287-300.
(Received September 19, 1994)
Graduate School of Mathematical Sciences University of Tokyo
Komaba, Meguroku
Tokyo 153, Japan

[^0]: 1991 Mathematics Subject Classification. Primary 47A40; Secondary 35P25, 81Uxx.

