The $W^{k,p}$ -continuity of wave operators for Schrödinger operators III, even dimensional cases $m \ge 4$

Ву Кепјі ҮАЈІМА

Abstract. Let $H = -\Delta + V(x)$ be the Schrödinger operator on \mathbf{R}^m , $m \geq 3$. We show that the wave operators $W_{\pm} = \lim_{t \to \pm \infty} e^{itH} \cdot e^{-itH_0}$, $H_0 = -\Delta$, are bounded in Sobolev spaces $W^{k,p}(\mathbf{R}^m)$, $1 \leq p \leq \infty$, $k = 0, 1, \ldots, \ell$, if V satisfies $\|D^{\alpha}V(y)\|_{L^{p_0}(|x-y|\leq 1)} \leq C(1+|x|)^{-\delta}$ for $\delta > (3m/2) + 1$, $p_0 > m/2$ and $|\alpha| \leq \ell + \ell_0$, where $\ell_0 = 0$ if m = 3 and $\ell_0 = [(m-1)/2]$ if $m \geq 4$, $[\sigma]$ is the integral part of σ . This result generalizes the author's previous result which appears in J. Math. Soc. Japan 47, where the theorem is proved for the odd dimensional cases $m \geq 3$ and several applications such as L^p -decay of solutions of the Cauchy problems for time-dependent Schrödinger equations and wave equations with potentials, and the L^p -boundedness of Fourier multiplier in generalized eigenfunction expansions are given.

1. Introduction

Let $H_0 = D_1^2 + \cdots + D_m^2$, $D_j = -i\partial/\partial x_j$, be the free Schrödinger operator on $L^2(\mathbf{R}^m)$ and $H = H_0 + V$ its perturbation by the multiplication operator V with a real valued function V(x). It is well known in the scattering theory (cf. [1], [3], [9]) that, if V is of short range in the sense that $\int_1^\infty ||F_R V(H_0 + 1)^{-1}|| dR < \infty$, where F_R is the multiplication with the characteristic function of $\{x \in \mathbf{R}^m : |x| \ge R\}$, then the wave operators W_{\pm} defined by

$$W_{\pm}u = \lim_{t \to \pm \infty} e^{itH} e^{-itH_0} u \,, \quad u \in L^2(\mathbf{R}^m)$$

exist and they are isometries on $L^2(\mathbf{R}^m)$ with the final set $L^2_c(H)$, the continuous spectral subspace for H. The wave operators satisfy the intertwining property: $f(H)W_{\pm} = W_{\pm}f(H_0)$ for Borel functions f and they play important roles in the perturbation theory of continuous spectra as well as in the scattering theory ([14]).

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A40; Secondary 35P25, 81Uxx.

In [21] and [22], we showed that W_{\pm} are in fact bounded in Sobolev spaces $W^{\ell,p}(\mathbf{R}^m)$:

$$W^{\ell,p}(\mathbf{R}^m) = \{ f \in L^p(\mathbf{R}^m) : \sum_{|\alpha| \le \ell} \|D^{\alpha}f\|_{L^p}^p \equiv \|f\|_{W^{\ell,p}}^p < \infty \},\$$

if either (1) the spatial dimension $m \geq 3$ is odd, or (2) $m \geq 4$ is even and V is small or $V(x) \geq 0$, where for $\alpha = (\alpha_1, \ldots, \alpha_m)$, $D^{\alpha} = D_1^{\alpha_1} \cdots D_m^{\alpha_m}$ and $|\alpha| = \alpha_1 + \cdots + \alpha_m$. More precisely, we proved the following theorem, where $\ell \geq 0$ is an integer and $m_* = (m-1)/(m-2)$. \mathcal{F} is the Fourier transform, $\langle x \rangle = (1+|x|^2)^{1/2}$ and $H^s(\mathbf{R}^m) = W^{s,2}(\mathbf{R}^m)$.

THEOREM 1.1 ([21], [22]). Let $m \geq 3$. Let V be a real valued function such that, for some $\sigma > 2/m_*$, $\mathcal{F}(\langle x \rangle^{\sigma} D^{\alpha} V) \in L^{m_*}(\mathbf{R}^m)$ for $|\alpha| \leq \ell$, and satisfy one of the following conditions:

- 1. $\|\mathcal{F}(\langle x \rangle^{\sigma} V)\|_{L^{m_*}(\mathbf{R}^m)}$ is sufficiently small;
- 2. m = 2m' 1 is odd and, with $\delta > \max(m + 2, 3m/2 2), |D^{\alpha}V(x)| \le C_{\alpha} \langle x \rangle^{-\delta}$ for $|\alpha| \le \max\{\ell, \ell + m' 4\};$
- 3. *m* is even, $V(x) \ge 0$ and, with $\delta > 3m/2 + 1$, $|D^{\alpha}V(x)| \le C_{\alpha} \langle x \rangle^{-\delta}$ for $|\alpha| \le m + \ell$.

Suppose in addition that zero is neither eigenvalue nor resonance of H. Then, the wave operators W_{\pm} are bounded in $W^{k,p}(\mathbf{R}^m)$ for any $k = 0, \ldots, \ell$ and $1 \leq p \leq \infty$,

REMARK 1. Zero is said to be resonance of H if the equation $-\Delta u(x) + V(x)u(x) = 0$ has a solution $u \notin L^2(\mathbf{R}^m)$ such that $(1+|x|)^{-1-\varepsilon}u \in L^2(\mathbf{R}^m)$ for any $\varepsilon > 0$. If zero is resonance or eigenvalue of H, W_{\pm} can not be bounded in L^p for all $1 \leq p \leq \infty$ (cf. [21]). It is known that H does not admit zero resonance if $m \geq 5$ or $V(x) \geq 0$.

Theorem 1.1, however, does not cover the case that the spatial dimension m is even and V(x) can be large negative. The main purpose of this paper is to fill this gap and prove the following theorem, where $\ell \ge 0$ is an arbitrarily fixed integer; $p_0 > m/2$ and $\ell_0 = [(m-1)/2]$ if $m \ge 4$; and $p_0 = 2$ and $\ell_0 = 0$ if m = 3. $[\sigma]$ is the integral part of σ .

THEOREM 1.2. Let $m \ge 3$. Suppose that V(x) is real valued and, with $\delta > (3m/2) + 1$,

(1.1)
$$\sup_{x \in \mathbf{R}^m} \langle x \rangle^{\delta} \left(\int_{|x-y| \le 1} |D^{\alpha} V(y)|^{p_0} dy \right)^{1/p_0} < \infty$$

for $|\alpha| \leq \ell + \ell_0$. Suppose further that zero is neither eigenvalue nor resonance of H. Then, W_{\pm} are bounded in $W^{k,p}(\mathbf{R}^m)$ for any $k = 0, \ldots, \ell$ and $1 \leq p \leq \infty$.

REMARK 2. Theorem 1.2 is a generalization of Theorem 1.1 when m is even and V is large, however, none of them is stronger than the other otherwise. We remark that under the condition of Theorem 1.2 it is possible to find $\sigma > 2/m_*$ such that $\mathcal{F}(\langle x \rangle^{\sigma} D^{\alpha} V) \in L^{m_*}(\mathbf{R}^m)$ for $|\alpha| \leq \ell$.

We refer to [21] for various applications of Theorems and the related reference, and shall be devoted to the proof of Theorem 1.2 in this paper. We shall only prove the L^p boundedness of W_+ assuming $\ell = 0$ and m is even ≥ 4 . The odd dimensional cases may be proved by slightly modifying the following argument or by the method of [21]; the proof for W_- is similar; and the extension to general ℓ may be done by estimating the multiple commutators $[D_{j_1}, [D_{j_2}, \cdots, [D_{j_\ell}, W_+] \cdots]]$ as in section 5 of [21].

We outline the proof here, displaying the plan of this paper and introducing some notations. B(X, Y) is the Banach space of bounded operators from Banach space X to Y and B(X) = B(X, X). $R(z) = (H - z)^{-1}$, $R_0(z) = (H_0 - z)^{-1}$ are resolvents and $R^{\pm}(\lambda) = R(\lambda \pm i0)$, $R_0^{\pm}(\lambda) = R_0(\lambda \pm i0)$ are their boundary values on the upper and lower banks of $\mathbf{C} \setminus [0, \infty)$. By using the stationary representation formula ([9], [14]):

$$W_{+}u = u - \frac{1}{2\pi i} \int_{0}^{\infty} R^{-}(\lambda) V\{R_{0}^{+}(\lambda) - R_{0}^{-}(\lambda)\} u d\lambda$$

and the identity $R^{-}(\lambda) = R_{0}^{-}(\lambda) - R_{0}^{-}(\lambda)VR^{-}(\lambda)$, we write $W_{+}u = u + W_{1}u + W_{2}u$, where

(1.2)
$$W_1 u = -\frac{1}{2\pi i} \int_0^\infty R_0^-(\lambda) V\{R_0^+(\lambda) - R_0^-(\lambda)\} u d\lambda,$$

(1.3)
$$W_2 u = \frac{1}{2\pi i} \int_0^\infty R_0^-(\lambda) V R^-(\lambda) V \{R_0^+(\lambda) - R_0^-(\lambda)\} u d\lambda.$$

Kenji YAJIMA

In the first half of section 2, we study the mapping property of $R_0^{\pm}(\lambda)$ and the decay and smoothness properties of the integral kernels of R(0) and $\phi(H)$ for $\phi \in C_0^{\infty}(\mathbf{R})$. As we think them of independent interest, these properties will be stated and proved under much weaker assumptions on Vthan necessary in what follows. We then recall from [21] the argument that proves W_1 is bounded in L^p : Express W_1 explicitly in the form

(1.4)
$$W_1 u(x) = \int_{\Sigma} d\omega \int_{2x\omega}^{\infty} \widehat{K}_V(t,\omega) u(t\omega + x_{\omega}) dt$$

where Σ is the unit sphere, $x_{\omega} = x - 2(x\omega)\omega$ is the reflection of x along the ω -axis and

$$\widehat{K}_V(t,\omega) = \frac{i}{2(2\pi)^{m/2}} \int_0^\infty \widehat{V}(r\omega) r^{m-2} e^{itr/2} dr;$$

it follows by Minkowski inequality and the fact that $x \to x_{\omega}$ is measure preserving that for any $\sigma > 1/2$,

(1.5)
$$\|W_1 u\|_{L^p} \le 2 \|\widehat{K}_V\|_{L^1([0,\infty)\times\Sigma)} \|u\|_{L^p} \\ \le C \|\langle x \rangle^{\sigma} V\|_{H^{(m-3)/2}} \|u\|_{L^p} \le C' \|u\|_{L^p}.$$

We wish to show that W_2 is bounded in L^p by proving the well known criterion:

(1.6)
$$\max\left\{\sup_{x\in\mathbf{R}^m}\int_{\mathbf{R}^m}|W_2(x,y)|dy,\quad \sup_{y\in\mathbf{R}^m}\int_{\mathbf{R}^m}|W_2(x,y)|dx\right\}<\infty$$

for its integral kernel $W_2(x, y)$. It can be written as

(1.7)
$$W_2(x,y) = \frac{1}{2\pi i} \int_0^\infty \langle R^-(k^2) V(G_{+,y,k} - G_{-,y,k}), VG_{+,x,k} \rangle dk^2,$$

where $\langle \cdot, \cdot \rangle$ is a coupling between suitable function spaces and $G_{\pm,y,k}(x) = G_{\pm}(x-y,k)$ are the kernels of $R_0^{\pm}(k^2)$ or the incoming-outgoing fundamental solutions of $-\triangle - k^2$. They satisfy $G_{\pm}(x,k) \sim Ce^{\pm ik|x|}|x|^{-(m-1)/2}k^{(m-3)/2}$ as $|x| \to \infty$ and crude estimations would only yield

(1.8) |the integrand of (1.7)| $\leq Ck^{m-3} \langle x \rangle^{-(m-1)/2} \langle y \rangle^{-(m-1)/2}$.

Thus we are faced with the two difficulties:

(1) **High energy difficulty**: The integral (1.7) does not converge absolutely at $k = \infty$;

(2) Low energy difficulty: If we restrict the integral (1.7) to finite intervals, (1.8) produces only $|W_2(x,y)| \leq C\langle x \rangle^{-(m-1)/2} \langle y \rangle^{-(m-1)/2}$ which is insufficient for (1.6). For obtaining improved decay property, we exploit the oscillation property of $G_{\pm}(x,k)$ and apply integration by parts with respect to the variable k. However, the singularity at k = 0 of $G_{\pm}(x,k)$ prevents us from doing this as many times as necessary if m is even.

To separate two difficulties, we decompose W_2 into the low and the high energy parts and consider $W_{2,low} = \phi_1(H)W_2\phi_1(H_0)$ and $W_{2,high} = \phi_2(H)W_2\phi_2(H_0)$, where cut off functions $\phi_1 \in C_0^{\infty}(\mathbb{R}^1)$ and $\phi_2 \in C^{\infty}(\mathbb{R}^1)$ are such that $\phi_1(\lambda)^2 + \phi_2(\lambda)^2 = 1$, and $\phi_1(\lambda) = 1$ for $|\lambda| \leq 1$ and $\phi_1(\lambda) = 0$ for $|\lambda| \geq 2$. Note that $W_{\pm} = \sum_{j=1}^2 \phi_j(H)W_{\pm}\phi_j(H_0)$ thanks to the intertwining property of W_{\pm} and $\phi_j(H_0)$ and $\phi_j(H)$, j = 1, 2, are bounded in L^p as proved in section 2. We show $W_{2,low}$ and $W_{2,high}$ are bounded in L^p separately.

In section 3, we treat the low energy part $W_{2,low}$. We split $R^{-}(\lambda) = R^{-}(0) + \tilde{R}^{-}(\lambda)$ to single out the contribution of $R^{-}(0)$ and decompose as $W_{2,low} = W_{2,low}^{(1)} + W_{2,low}^{(2)}$ accordingly. In virtue of the orthogonality of Hardy functions in the upper and the lower half planes, we have

(1.9)
$$W_{2,low}^{(1)}u = \phi_1(H) \left\{ \frac{1}{2\pi i} \int_{-\infty}^{\infty} R_0^-(\lambda) V R^-(0) V R_0^+(\lambda) d\lambda \right\} \phi_1(H_0)u;$$

using the identity $(R_0^+(\lambda) - R_0^-(\lambda))\phi_1(H_0) = (R_0^+(\lambda) - R_0^-(\lambda))\phi_1(\lambda)$, we write

(1.10)
$$W_{2,low}^{(2)}u = \frac{1}{2\pi i} \int_0^\infty \phi_1(H) R_0^-(\lambda) V \tilde{R}^-(\lambda) V(R_0^+(\lambda) - R_0^-(\lambda)) \\ \times \tilde{\phi}_1(\lambda) \phi_1(H_0) u d\lambda,$$

where $\tilde{\phi}_1 \in C_0^{\infty}(\mathbf{R})$ is such that $\tilde{\phi}_1(\lambda)\phi_1(\lambda) = \phi_1(\lambda)$. For dealing with $W_{2,low}^{(1)}$ it is important to observe the following: If we write the integral kernel of $R^-(0)$ by K(x, y) and set $M_y(x) = V(x)K(x, x-y)V(x-y)$, then $W_{2,low}^{(1)}$ can be expressed as a superposition

(1.11)
$$W_{2,low}^{(1)}u = -\int_{R^m} \phi_1(H)W_1(M_y)\phi_1(H_0)u_ydy,$$

where $u_y(x) = u(x - y)$ and $W_1(M_y)$ is defined by (1.2) with M_y in place of V. We show in section 2 that

(1.12)
$$\int_{\mathbf{R}^m} \|\langle x \rangle^{\sigma} M_y\|_{H^{(m-3)/2}(\mathbf{R}^m)} dy < \infty$$

for some $\sigma > 1/2$. Since (1.5) and (1.11) imply that $||W_{2,low}^{(1)}u||_{L^p}$ is bounded by a constant times

$$\int_{R^m} \|W_1(M_y)\|_{B(L^p)} \|u_y\|_{L^p} dy \le C \int_{R^m} \|\langle x \rangle^{\sigma} M_y\|_{H^{(m-3)/2}(\mathbf{R}^m)} dy \cdot \|u\|_{L^p},$$

 $W_{2,low}^{(1)}$ is bounded in L^p .

We treat $W_{2,low}^{(2)}$ as follows. Set $G_{\pm,x,k}(y) = e^{\pm ik|x|} \tilde{G}_{\pm,x,k}(y)$ to make oscillation property explicit and write its integral kernel in the form $W_{2,low}^{(2)}(x,y) = W_{2,low}^{(2),+}(x,y) - W_{2,low}^{(2),-}(x,y)$:

(1.13)
$$W_{2,low}^{(2),\pm}(x,y) = \frac{1}{2\pi i} \int_0^\infty e^{-ik(|x|\mp|y|)} \langle \tilde{R}^-(k^2) V \tilde{G}_{\pm,y,k}, V \tilde{G}_{\pm,x,k} \rangle \\ \times \tilde{\phi}_1(k^2) dk^2,$$

where we ignored the harmless factors $\phi_1(H_0)$ and $\phi_1(H)$. We then apply integration by parts with respect to k variable $\ell = (m+2)/2$ times (when m is even):

$$(1.14) = \frac{1}{2\pi i} \int_0^\infty \frac{D_k^\ell e^{-ik(|x|\mp|y|)}}{(|y|\mp|x|)^\ell} \langle \tilde{R}^-(k^2) V \tilde{G}_{\pm,y,k}, V \tilde{G}_{+,x,k} \rangle \tilde{\phi}_1(k^2) dk^2 = \frac{1}{\pi i} \int_0^\infty \frac{e^{-ik(|x|\mp|y|)}}{(|x|\mp|y|)^\ell} D_k^\ell \{k \langle \tilde{R}^-(k^2) V \tilde{G}_{\pm,y,k}, V \tilde{G}_{+,x,k} \rangle \tilde{\phi}_1(k^2) \} dk,$$

and gain the addition decay factor $(|x| \mp |y|)^{-\ell}$. Here the boundary terms do not appear and the integral converges absolutely because $\tilde{R}^{-}(k^2)$ vanishes at k = 0. (Actually we apply the integration by parts in a little more elaborate way. See the text for the details.) In this way we arrive at the estimate

(1.15)
$$|W_{2,low}^{(2),\pm}(x,y)| \le C(1+||x|\mp|y||)^{-(m+2)/2} \langle x \rangle^{-(m-1)/2} \langle y \rangle^{-(m-1)/2}$$

and $W_{2,low}^{(2)}(x,y)$ indeed satisfies the criterion (1.6). Though the splitting of $R^{-}(\lambda)$ as above is unnecessary when m is odd because of simpler structure of $G_{\pm}(x,k)$, it makes the proof of the theorem simpler even in that case.

In section 4, we prove that the high energy part $W_{2,high} = \phi_2(H)W_2\phi_2(H_0)$ is also bounded in L^p , overcoming the high energy difficulty by the method similar to one that was employed in section 4 of [21]:

We decompose W_2 into 2N + 1 summands: $W_2 = \sum_{n=2}^{2N+2} (-1)^n W^{(n)}$ by expanding $R^-(k^2)$ as

(1.16)
$$R^{-}(k^{2}) = \sum_{n=0}^{2N-1} (-1)^{n} R_{0}^{-}(k^{2}) (VR_{0}^{-}(k^{2}))^{n} + (R^{-}(k^{2})V)^{N} R^{-}(k^{2}) (VR_{0}^{-}(k^{2}))^{N}$$

and inserting (1.16) into (1.3). A repeated application of the argument leading to (1.4) shows that $W^{(2)}, \ldots, W^{(2N+1)}$ have expressions similar to (1.4), and the estimate similar to the one used for proving (1.5) implies that they are all bounded in L^p .

To prove $W^{(2N+2)}$ is bounded in L^p , we let $F_N(k^2) = (R^-(k^2)V)^N R^-(k^2)(VR_0^-(k^2))^N$ and define the integral operator $W_{high}^{(2N+2)}$ with the integral kernel $W_{high}^{(2N+2)}(x,y) = W_{high}^{(2N+2),+}(x,y) - W_{high}^{(2N+2),-}(x,y)$:

(1.17)
$$W_{high}^{(2N+2),\pm}(x,y) = \frac{1}{2\pi i} \int_0^\infty e^{-ik(|x|\pm|y|)} \\ \times \langle F_N(k^2) V \tilde{G}_{\pm,y,k}, V \tilde{G}_{\pm,x,k} \rangle \tilde{\phi}_2(k^2) dk^2,$$

where $\tilde{\phi}_2 \in C^{\infty}(\mathbf{R})$ is such that $\tilde{\phi}_2(\lambda) = 0$ near $\lambda = 0$ and $\tilde{\phi}_2(\lambda)\phi_2(\lambda) = \phi_2(\lambda)$. Then we have $\phi_2(H)W^{(2N+2)}\phi_2(H_0) = \phi_2(H)W^{(2N+2)}_{high}\phi_2(H_0)$. If N is sufficiently large $F_N(k^2)$, as an operator valued function between suitable function spaces, decays rapidly as $k \to \infty$ and the integrals (1.17) converge absolutely. Moreover, integration parts with respect to k variable as in the proof of (1.15) yields

$$|W_{high}^{(2N+2),\pm}(x,y)| \le C(1+||x|\mp|y||)^{-(m+2)/2} \langle x \rangle^{-(m-1)/2} \langle y \rangle^{-(m-1)/2},$$

which shows that $W_{high}^{(2N+2)}(x, y)$ satisfies the criterion (1.6). In this way the argument is very much similar to that of the previous section and of section 4 of [21], and therefore, we shall be very sketchy in section 4.

Acknowledgement. We thank Professors Kazuhiro Kurata, Minoru Murata and Shu Nakamura for many helpful discussions.

2. Preliminaries

In this section we first study the mapping property of $R_0^{\pm}(\lambda)$, $\lambda \ge 0$, and the decay and smoothness properties of the integral kernels of $R^{\pm}(0)$ and $\phi(H), \phi \in C_0^{\infty}(\mathbf{R})$, under the conditions which are more general than in 1.2. We then recall from [21] the argument for proving the L^p boundedness of W_1 . For $1 \leq p, q \leq \infty$ and $\delta, \ell \in \mathbf{R}$, $L^p_{\delta}(\mathbf{R}^m)$ is the weighted L^p -space:

$$L^p_{\delta}(\mathbf{R}^m) = \{ f \in L^p_{loc}(\mathbf{R}^m) : \|f\|_{L^p_{\delta}} \equiv \|\langle x \rangle^{\delta} f\|_{L^p} < \infty \} ;$$

 $H^{\ell}_{\delta}(\mathbf{R}^m)$ is the weighted Sobolev space:

$$H^{\ell}_{\delta}(\mathbf{R}^m) = \{ f \in \mathcal{S}'(\mathbf{R}^m) : \| (1+|x|^2)^{\delta/2} (1-\Delta)^{\ell/2} f \|_{L^2} \equiv \| f \|_{H^{\ell}_{\delta}} < \infty \} ;$$

and $\ell^p_{\delta}(L^q)$ is the amalgam space:

$$\ell^{p}_{\delta}(L^{q}) = \{ f \in L^{q}_{loc}(\mathbf{R}^{m}) : \|f\|_{\ell^{p}_{\delta}(L^{q})} \equiv \left(\sum_{n \in Z^{m}} \|f\|^{p}_{L^{q}(Q_{n})} \langle n \rangle^{\delta p} \right)^{1/p} < \infty \},$$

where for $n = (n_1, ..., n_m)$, $Q_n = [n_1, n_1 + 1) \times \cdots (n_m, n_m + 1)$ is a unit cube.

2.1 Resolvent estimate for H_0

If s > 1 and $t \in \mathbf{R}$, the resolvent $R_0(z) = (H_0 - z)^{-1}$, which is originally defined as a $B(L^2)$ -valued analytic function of $z \in \mathbf{C} \setminus [0, \infty)$, can be extended continuously to the closure $\overline{\mathbf{C}} \setminus [0, \infty)$ (in the Riemann surface of log z) when considered as a $B(H_s^t, H_{-s}^{t+2})$ -valued function ([9]). We denote the boundary values on the upper and lower edges by $\lim_{\epsilon \to +0} R_0(\lambda \pm i\epsilon) \equiv$ $R_0^{\pm}(\lambda), \lambda \in [0, \infty)$. The following mapping property of $R_0^{\pm}(\lambda)$ is well known (cf. Murata [12] and Jensen [4]). In what follows, D_k will denote $-i\partial/\partial k$ and should not be confused with $-i\partial/\partial x_k$. $[\sigma]$ is the largest integer not greater than $\sigma \in \mathbf{R}$.

LEMMA 2.1. Let $\ell = 0, 1, 2, \dots, t \in \mathbf{R}$ and $s > \ell + 1/2$. Then, as a $B(H_s^t, H_{-s}^{t+2})$ -valued function of k, $R_0^{\pm}(k^2)$ is C^{ℓ} in $k \in (0, \infty)$. Moreover:

- 1. For $j = 0, 1, \dots, \ell$ and $0 \le i \le 2 + [(j+1)/2], \|D_k^j R_0^{\pm}(k^2)\|_{B(H_s^t, H_{-s}^{t+i})} \le Ck^{-1+i}, \ k \ge 1.$
- 2. If $\ell \geq 2$, then $R_0^{\pm}(k^2)$ has the following expansion in $B(H_s^t, H_{-s}^{t+2})$ valid for $k \to 0$:

Schrödinger operators III

$$(2.1) \quad R_0^{\pm}(k^2) = \begin{cases} \sum_{j=0}^{2} G_j k^j + K_2(k), & \text{when } m = 3; \\ \sum_{j=0}^{1} G_j k^{2j} + F_1 k^2 \log k^2 + K_2(k), & \text{when } m = 4; \\ \sum_{j=0}^{1} G_j k^{2j} + K_2(k), & \text{when } m \ge 5. \end{cases}$$

Here $F_1, G_j \in B(H_s^t, H_{-s}^{t+2})$, and $K_2(k)$ stands for a $B(H_s^t, H_{-s}^{t+2})$ -valued C^{ℓ} -function of k such that, for $0 \leq j \leq \ell$, $\|D_k^j K_2\| = o(k^{2-j})$ as $k \to 0$. Relation (2.1) remains valid if the boundary values $R_0^{\pm}(k^2)$ are replaced by $R_0(k^2)$, Im k > 0.

In section 4, we shall also use the following mapping property of $D_k^j R_0^{\pm}(k^2)$ between L^p type spaces. For $0 \leq \ell < (m-1)/2$, \mathbf{P}_{ℓ}^m is the pentagon in the (x, y)-plane surrounded by five lines $x = 1, x = 1/2 + (2\ell + 1)/2m, y = 0, y = 1/2 - (2\ell + 1)/2m$ and $y = x - 2(\ell + 1)/(m + 1)$, where the segments $\{(x, 0) : 1/2 + (2\ell + 1)/2m < x \leq 1\}$ and $\{(1, y) : 0 \leq y < 1/2 - (2\ell + 1)/2m\}$ are included. Note that $(1/2 + (\ell + 1)/m, 1/2 - (\ell + 1)/m) \in \mathbf{P}_{\ell}^m$ as long as $\ell + 1 < m/2$.

LEMMA 2.2. Let j = 0, 1, ... and let $1 \le p \le q \le \infty$ and $1 \le r \le \rho \le \infty$ be such that $1/r \ge 1/q - (j+2)/m$, where the equality is inclusive only when 1/q - (j+2)/m > 0. Then, $D_k^j R_0^{\pm}(k^2)$ satisfies the following mapping property:

- (a) The case m is odd ≥ 3 :
 - 1. If $0 \le j < (m-1)/2$, $D_k^j R_0^{\pm}(k^2) \in B(\ell^p(L^q), \ell^{\rho}(L^r))$ for $(1/p, 1/\rho) \in \mathbf{P}_j^m$ and

$$\|D_k^j R_0^{\pm}(k^2)\|_{B(\ell^p(L^q),\ell^\rho(L^r))} \le C_j k^{m(1/p-1/\rho)-2-j}, \qquad k \ge 1$$

2. If $(m-1)/2 \leq j < m-2$, $D_k^j R_0^{\pm}(k^2) \in B(\ell_{j-(m-1)/2}^1(L^q))$, $\ell_{-j+(m-1)/2}^{\infty}(L^r)$ and

$$\|D_k^j R_0^{\pm}(k^2)\|_{B(\ell^1_{j-(m-1)/2}(L^q),\ell^{\infty}_{-j+(m-1)/2}(L^r))} \le C_j k^{(m-3)/2}, \qquad k \ge 1.$$

Кепјі ҮАЈІМА

3. If
$$j \ge m-2$$
, $D_k^j R_0^{\pm}(k^2) \in B(L_{j-(m-1)/2}^1, L_{-j+(m-1)/2}^{\infty})$ and
 $\|D_k^j R_0^{\pm}(k^2)\|_{B(L_{j-(m-1)/2}^1, L_{-j+(m-1)/2}^{\infty})} \le C_j k^{(m-3)/2}, \qquad k \ge 1.$

(b) The case m is even ≥ 4 :

1. If $0 \le j \le (m-2)/2$, $D_k^j R_0^{\pm}(k^2) \in B(\ell^p(L^q), \ell^\rho(L^r))$ for $(1/p, 1/\rho) \in \mathbf{P}_j^m$ and

$$\|D_k^j R_0^{\pm}(k^2)\|_{B(\ell^p(L^q),\ell^\rho(L^r))} \le C_j k^{m(1/p-1/\rho)-2-j}, \qquad k \ge 1.$$

2. If $m/2 \le j \le m-3$, $D_k^j R_0^{\pm}(k^2) \in B(\ell_{j-(m-1)/2}^1(L^q), \ell_{-j+(m-1)/2}^{\infty}(L^r))$ and

$$\|D_k^j R_0^{\pm}(k^2)\|_{B(\ell_{j-(m-1)/2}^1(L^q), \ell_{-j+(m-1)/2}^{\infty}(L^r))} \le C_j k^{(m-3)/2}, \qquad k \ge 1.$$

3. If j = m - 2, $D_k^j R_0^{\pm}(k^2) \in B(\ell_{j-(m-1)/2}^1(L^q), L_{-j+(m-1)/2}^{\infty})$ for any $1 < q \le \infty$. $\|D_k^j R_0^{\pm}(k^2)\|_{B(\ell_{j-(m-1)/2}^1(L^q), L_{-j+(m-1)/2}^{\infty})} \le C_j k^{(m-3)/2}, \quad k \ge 1.$ 4. If $j \ge m - 1$, $D_k^j R_0^{\pm}(k^2) \in B(L_{j-(m-1)/2}^1, L_{-j+(m-1)/2}^{\infty})$ and

$$\|D_k^j R_0^{\pm}(k^2)\|_{B(L^1_{j-(m-1)/2}, L^{\infty}_{-j+(m-1)/2})} \le C_j k^{(m-3)/2}, \qquad k \ge 1.$$

For proving Lemma 2.2, we use the following lemma. We write $u_k(x) = u(x/k)$.

LEMMA 2.3. (1) If $1 \leq p \leq q \leq \infty$, $\delta \geq 0$ and $k \geq 1$, then $\|u_k\|_{\ell^p_{\delta}(L^q)} \leq Ck^{m/p+\delta} \|u\|_{\ell^p_{\delta}(L^q)}$ (2) If $1 \leq r \leq \rho \leq \infty$, $\delta \geq 0$ and $k \geq 1$, then $\|u_{1/k}\|_{\ell^p_{-\delta}(L^r)} \leq Ck^{-m/\rho+\delta} \|u\|_{\ell^p_{-\delta}(L^r)}$.

PROOF. We only prove the first statement for integral $k \ge 1$. General case may be proved by a slight modification of the following argument. The

second statement follows from the first by the duality. If $k \ge 1$ is integral, we have by Hölder's inequality:

$$\begin{split} \|f_k\|_{\ell^p_{\delta}(L^q)}^p &= \sum_{n \in Z^m} \langle n \rangle^{p\delta} \left(\int_{Q_n} |f(x/k)|^q dx \right)^{p/q} \\ &= \sum_{n \in Z^m} k^{mp/q} \langle n \rangle^{p\delta} \left(\int_{Q_n/k} |f(x)|^q dx \right)^{p/q} \\ &= k^{mp/q} \sum_{j \in Z^m} \left\{ \sum_{Q_n/k \subset Q_j} \left(\int_{Q_n/k} |f(x)|^q dx \right)^{p/q} \langle n \rangle^{p\delta} \right\} \\ &\leq k^{mp/q} \sum_{j \in Z^m} (k^m)^{1-p/q} \left(\sum_{Q_n/k \subset Q_j} \int_{Q_n/k} |f(x)|^q dx \right)^{p/q} (Ck\langle j \rangle)^{p\delta} \\ &= C^{p\delta} k^{m+p\delta} \sum_{j \in Z^m} \left(\int_{Q_j} |f(x)|^q dx \right)^{p/q} \langle j \rangle^{p\delta} = C^{p\delta} k^{m+p\delta} \|f\|_{\ell^p_{\delta}(L^q)}^p ; \end{split}$$

where the constant C depends only on the spatial dimension m. \Box

PROOF OF LEMMA 2.2. We prove the lemma when $m \ge 3$ is even. The proof for the other case is similar. It is well known that $R_0^{\pm}(k^2)$, $k \ge 0$, are convolution operators with the outgoing (+) or incoming (-) fundamental solutions $G_{\pm}(x,k)$ of $-\triangle - k^2$ ([15]):

(2.2)
$$G_{\pm}(x,k) = \frac{\pm i}{4(2\pi)^{\nu} |x|^{m-2}} (k|x|)^{\nu} H_{\nu}^{(\pm)}(k|x|), \quad \nu = \frac{m-2}{2}$$

where $H_{\nu}^{(\pm)}(z)$ is the Hankel function and by Hankel's formula ([20])

(2.3)
$$z^{\nu} H_{\nu}^{(\pm)}(z) = \frac{\sqrt{2}e^{\mp i(2\nu+1)\pi/4}e^{\pm iz}}{\sqrt{\pi}\Gamma(\nu+1/2)} \int_0^\infty e^{-t} t^{\nu-1/2} \left(z \pm \frac{it}{2}\right)^{\nu-1/2} dt.$$

Here and hereafter we use the superscript \pm in stead of the traditional 1, 2 for Hankel functions and $\nu = (m-2)/2$. A simple computation shows that $D_k^j R_0^{\pm}(k^2)$ enjoys the homogeneity property

(2.4)
$$[D_k^j R_0^{\pm}(k^2)u](x) = k^{-j-2} \{D_k^j R_0^{\pm}(k^2)|_{k=1} u_k\}(kx), u_k(x) = u(x/k).$$

Kenji YAJIMA

We prove the lemma for the case k = 1 first. Let $\phi \in C_0^{\infty}(\mathbf{R}^m)$ be such that $\phi(x) = 1$ for $|x| \leq 1$ and $\phi(x) = 0$ for $|x| \geq 2$. Write $G_{\pm}^{(j)}(x)$ for the convolution kernel of $D_k^j R_0^{\pm}(k^2)|_{k=1}$ and set $G_{1,\pm}^{(j)}(x) = G_{\pm}^{(j)}(x)\phi(x)$ and $G_{2,\pm}^{(j)}(x) = G_{\pm}^{(j)}(x)(1-\phi(x))$. Differentiating (2.2) and (2.3) by k shows that $G_{1,\pm}^{(j)}(x)$ satisfies the following estimate:

$$|G_{1,\pm}^{(j)}(x)| \leq \begin{cases} C_j(1+|x|^{2-m+j}), & \text{if } m \text{ is odd};\\ C_j(\langle \log |x| \rangle + |x|^{2-m+j}), & \text{if } m \text{ is even and } j \leq m-2;\\ C_j, & \text{if } m \text{ is even and } j \geq m-1, \end{cases}$$

and that $G_{2,\pm}^{(j)}(x)$ can be written as

(2.5)
$$G_{2,\pm}^{(j)}(x) = e^{\pm i|x|} a_{j,\pm}(x) |x|^{(2j-m+1)/2},$$

where $a_{j,\pm}(x) \in C^{\infty}(\mathbf{R}^m)$ is supported by $\{|x| \ge 1\}$ and satisfies for any α

$$|D^{\alpha}a_{j,\pm}(x)| \le C_{j\alpha}|x|^{-|\alpha|}$$

Since $G_{1,\pm}^{(j)}(x)$ is supported by the compact set $\{|x| \leq 2\}$, the convolution operator $G_{1,\pm}^{(j)}$ with $G_{1,\pm}^{(j)}(x)$ can be easily estimated by using the fractional integration theory and Young's inequality:

(i) If $0 \le j \le m-3$, $G_{1,\pm}^{(j)} \in B(\ell^p(L^q), \ell^p(L^r))$ for any $1 \le p \le \infty$ and $1 \le r \le \infty$ if 1/q < (j+2)/m; $1 \le r < \infty$ if 1/q = (j+2)/m; and $1/q - (j+2)/m \le 1/r \le 1$ if 1/q > (j+2)/m.

 $\begin{array}{l} 1 \leq r \leq \infty \text{ if } 1/q \leq (j+2)/m, \ 1 \leq r \leq \infty \text{ if } 1/q = (j+2)/m, \text{ and} \\ 1/q - (j+2)/m \leq 1/r \leq 1 \text{ if } 1/q > (j+2)/m. \\ (\text{ii)} \quad \text{If } j = m-2, \ G_{1,\pm}^{(j)} \in B(\ell^p(L^q), \ell^p(L^\infty)) \text{ for any } 1 \leq p \leq \infty, \text{ and} \\ 1 < q \leq \infty \text{ (if } m \text{ is odd } q = 1 \text{ can be included}); \end{array}$

(iii) If $j \ge m - 1$, $G_{1,\pm}^{(j)} \in B(\ell^p(L^1), \ell^p(L^\infty))$ for any $1 \le p \le \infty$.

On the other hand $G_{2,\pm}^{(j)}(x)$ contains the oscillating factor $e^{\pm i|x|}$ and we estimate the convolution operator $G_{2,\pm}^{(j)}$ with the kernel (2.5) by a theorem of Sogge (cf. [19], Lemma 5.4). We combine the result with the fact $G_{2,\pm}^{(j)} \in B(L^p, L^\infty), 1 \le p < 2m/(m+2j+1)$, which follows from Young's inequality, by using the interpolation theorem and the duality. We obtain the followings:

(iv) If $j \leq (m-2)/2$, then $G_{2,\pm}^{(j)} \in B(L^p, L^{\rho})$ for any p and ρ such that $(1/p, 1/\rho) \in \mathbf{P}_j^m$ where \mathbf{P}_j^m is the pentagon defined as above.

(v) If
$$j \ge m/2$$
, then $2j - m + 1 > 0$ and $G_{2,\pm}^{(j)} \in B(L^1_{j-(m-1)/2}, L^{\infty}_{-j+(m-1)/2})$.

Note here that $\ell_{\delta}^{p_1}(L^{q_1}) \subset \ell_{\delta}^{p_2}(L^{q_2})$ whenever $p_1 \leq p_2$ and $q_1 \geq q_2$. Thus, combing estimates (i) \sim (v), we obtain the lemma for the case k = 1.

It remains to estimate the operator norm for $k \ge 1$. When $j \le (m-2)/2$ the estimates in the lemma immediately follow from (2.4) and Lemma 2.3. When $j \ge m/2$, the direct application of Lemma 2.3 would produce the superfluous power k^{j-1} . Note, however, that in this case $G_{2,\pm}^{(j)}(x-y)$ satisfies

$$|G_{2,\pm}^{(j)}(x-y)| \le C(|x|^{(2j-m+1)/2} + |y|^{(2j-m+1)/2} + 1),$$

and $G_{2,\pm}^{(j)}$ is in fact a sum of two operators, one in $B(L_{j-(m-1)/2}^1, L^\infty)$ and the other in $B(L^1, L_{-j+(m-1)/2}^\infty)$. Hence, say in the case (b.2), $D_k^j R_0^{\pm}(k^2)$ may be written as a sum of two operators, one in $B(\ell_{j-(m-1)/2}^1(L^q), \ell^\infty(L^r))$ and the other in $B(\ell^1(L^q), \ell_{-j+(m-1)/2}^\infty(L^r))$. Applying Lema 2.3 to each summand separately and combining the results, we obtain the desired estimates. \Box

2.2 Integral kernels of $\phi(H)$ and R(0)

In this subsection, we study the integral kernel of $\phi(H)$ (resp. R(0)) assuming that V is of Kato class (resp. very short range). A real valued function V(x) is said to be of Kato-class if

(2.6)
$$\lim_{\epsilon \to 0} \sup_{x \in \mathbf{R}^m} \int_{|x-y| \le \epsilon} \frac{|V(y)|}{|x-y|^{m-2}} dy = 0$$

and to be **very short range** if, for some $\gamma > 0$, $\langle x \rangle^{2+\gamma} V(x)$ satisfies (2.6). In particular, we have for very short range potential that

(2.7)
$$\|V\|_{(\gamma)} \equiv \sup_{x \in \mathbf{R}^m} \langle x \rangle^{2+\gamma} \int_{|x-y|<1} \frac{|V(y)|}{|x-y|^{m-2}} dy < \infty.$$

We note that V which satisfies the assumption of Theorem 1.2 is very short range.

If V is of Kato class, then, the multiplication operator V with V(x) is H_0 -form bounded with relative bound zero and $H = H_0 + V$ defined via the form sum is self-adjoint([13]). If we write $A(x) = |V(x)|^{1/2}$ and $B(x) = V(x)^{1/2} \equiv |V(x)|^{1/2}$ sign V(x) and A and B for the multiplications by A(x) and B(x), respectively, then

(2.8)
$$R(z) = R_0(z) - R_0(z)B(1 + AR_0(z)B)^{-1}AR_0(z), \qquad z \in \mathbf{C} \setminus \mathbf{R}.$$

Kenji Yajima

The following lemma solves an open problem in Simon ([17]):

LEMMA 2.4. Let V be of Kato-class and $\phi(\lambda) \in C_0^{\infty}(\mathbf{R})$. Then, the integral kernel $\Phi(x, y)$ of $\phi(H)$ satisfies $|\Phi(x, y)| \leq C_{\delta}(1 + |x - y|)^{-\delta}$ for any $\delta \geq 0$. In particular, $\phi(H)$ is bounded in L^p for any $1 \leq p \leq \infty$.

PROOF. The following argument which has simplified the original proof is due to Shu Nakamura (private communication). If we set $V_a(x) = V(x+a)$ and $H(a) = H_0 + V_a$, $\Phi(x+a, y+a)$ is the integral kernel of $\phi(H(a))$. Hence, it suffices to show

(2.9)
$$\sup_{|y| \le 1} |\Phi(x, y)| \le C_{\delta} (1 + |x|)^{-\delta}$$

with constants C_{δ} which is independent of a if H is replaced by H(a). (We say that an estimate holds uniformly in a if it does with the same constant when H is replaced by H(a), $a \in \mathbf{R}^m$). Write $\phi(\lambda) = (\lambda - z)^{-N}\psi(\lambda)(\lambda - z)^{-N}$ so that $\phi(H) = R(z)^N\psi(H)R(z)^N$. By Theorem B.6.3 of [17], $R(z)^N$ is bounded uniformly in a from L^1_{δ} to L^2_{δ} and from L^2_{δ} to L^∞_{δ} for any $\delta \in \mathbf{R}$, if N and real -z are large enough. On the other hand $\psi(H)$ is bounded in L^2_{δ} uniformly in a as will be shown below. Hence, $\phi(H)$ is bounded from L^1_{δ} to L^∞_{δ} uniformly in a and

$$\sup_{\substack{x \in \mathbf{R}, |y| \leq 1 \\ \leq C_{\delta} \sup\{\|\phi(H)u\|_{L^{\infty}_{\delta}} : \|u\|_{L^{1}_{\delta}} = 1, \text{ supp } u \subset B(O, 1)\} \\ \leq C_{\delta} \|\phi(H)\|_{B(L^{1}_{\delta}, L^{\infty}_{\delta})} < \infty.$$

It remains to show that $\psi(H)$ is bounded in L^2_{δ} for any $\delta > 0$ uniformly in *a*. It suffices to show that for any choice of $1 \le j_k \le m, k = 1, \ldots, \ell$ and $\ell = 1, 2, \ldots$

(2.10)
$$||[x_{j_1}, [x_{j_2}, \cdots, [x_{j_\ell}, \psi(H)] \cdots]]||_{B(L^2)} \le C_\ell$$

uniformly in a. Let $\psi(z)$ be an almost analytic extension of $\psi(\lambda)$ which satisfies for any n and $N \ge 0$,

$$|(\partial \psi/\partial \overline{z})(z)| \le C_{nN} |\text{Im } z|^n (1+|z|)^{-n-N}, \qquad z \in \mathbf{C}$$

and write

(2.11)
$$\psi(H) = \frac{-1}{2\pi i} \int_{\mathbf{C}} \frac{\partial \psi}{\partial \overline{z}} (z) (H-z)^{-1} d\overline{z} \wedge dz$$

(cf. [5]). Then, using inductively the obvious identity $i[x_j, R(z)] = R(z)p_jR(z)$ and using the fact that $||R(z)|| \leq |\text{Im } z|^{-1}$ and $||p_jR(z)|| \leq C|\text{Im } z|^{-1}$, where the constant C is independent of a (cf. [17]), we immediately obtain the desired boundedness (2.10). \Box

If V is very short range, then V is form compact with respect to H_0 ; and in virtue of Lemma 2.1, the boundary values

$$\lim_{\epsilon \to +0} AR_0(\lambda \pm i\epsilon)B \equiv Q_0^{\pm}(\lambda)$$

exist in the operator norm of L^2 and are locally Hölder continuous in $\lambda \in [0, \infty)$. Moreover, $1 + Q_0^{\pm}(\lambda)$ is an isomorphism of $L^2(\mathbf{R}^m)$ if and only if λ is not an eigenvalue of H (λ is not the eigenvalue or resonance of H if $\lambda = 0$). Thus, if non-negative eigenvalues and zero resonance are absent from H, then the boundary values of the resolvent

(2.12)
$$\lim_{\epsilon \to +0} R(\lambda \pm i\epsilon) \equiv R^{\pm}(\lambda)$$
$$= R_0^{\pm}(\lambda) - R_0^{\pm}(\lambda)B(1 + Q_0^{\pm}(\lambda))^{-1}AR_0^{\pm}(\lambda)$$

exist for all $\lambda \in [0, \infty)$ in the operator norm of $B(L_{\delta}^2, L_{-\delta}^2)$ and are locally Hölder continuous in $\lambda \in [0, \infty)$ as well. Note that $R_0^{\pm}(0)$ is independent of the sign \pm and so is $R^{\pm}(0)$. We write $R_0^{\pm}(0) = R_0(0) = G_0$ and $R^{\pm}(0) = R(0)$. We have the following lemma on the integral kernel of R(0).

THEOREM 2.5. Let V(x) be very short range. Suppose that zero is not an eigenvalue nor resonance of $H = H_0 + V$. Then, R(0) has the integral kernel K(x, y) which is jointly continuous for $x \neq y$ and satisfies $|K(x, y)| \leq C|x - y|^{2-m}$.

We begin the proof of Theorem 2.5 with the following elementary lemma. In what follows we assume that $\langle x \rangle^{2+\gamma} V(x)$ satisfies (2.6) for some $0 < \gamma < 1$.

LEMMA 2.6.Let $0 \leq \rho < \gamma < 1$. Then, with a constant C_1 depending only on m, ρ and γ ,

(2.13)
$$\int_{\mathbf{R}^m} \frac{\langle y \rangle^{\rho} | V(y) | dy}{|x-y|^{m-2}} \le C_1 \| V \|_{(\gamma)} \langle x \rangle^{\rho-\gamma};$$

Кепјі ҮАЈІМА

(2.14)
$$\int_{\mathbf{R}^m} \frac{|V(z)|dz}{|x-z|^{m-2}|z-y|^{m-2}} \le \frac{C_1(\langle x \rangle^{-\gamma} + \langle y \rangle^{-\gamma}) \|V\|_{(\gamma)}}{|x-y|^{m-2}}$$

PROOF. Take $\phi \in C_0^{\infty}(\mathbf{R}^m)$ such that $\phi(x) = 0$ for $|x| \ge 1/2$ and $\int_{\mathbf{R}^m} \phi(z) dz = 1$. We estimate the integral over $|x - y| \ge 1$ as follows:

$$\int_{|x-y|\geq 1} \frac{\langle y\rangle^{\rho} |V(y)| dy}{|x-y|^{m-2}} = \int_{\mathbf{R}^m} dz \left\{ \int_{|x-y|\geq 1} \frac{\langle y\rangle^{\rho} |V(y)| \phi(y-z) dy}{|x-y|^{m-2}} \right\}$$

$$\leq 2^{m-2} \int_{\mathbf{R}^m} dz \left\{ \int_{\mathbf{R}^m} \frac{\langle y\rangle^{\rho} |V(y)| \phi(y-z) dy}{(1+|x-z|)^{m-2}} \right\}$$

$$\leq C_2 \|V\|_{(\gamma)} \|\phi\|_{L^{\infty}} \int_{\mathbf{R}^m} \frac{dz}{(1+|x-z|)^{m-2} \langle z\rangle^{2+\gamma-\rho}} \leq C_3 \|V\|_{(\gamma)} \langle x\rangle^{\rho-\gamma}.$$

Since the integral over $|x - y| \le 1$ is obviously bounded by a constant times $||V||_{(\gamma)} \langle x \rangle^{\rho-2-\gamma}$, we obtain (2.13).

Write w = x - y and change the variable z by z + y. Let $\Omega_1 = \{z : |w|/2 \le |z|\}$ and $\Omega_2 = \{z : |w|/2 \le |z - w|\}$. It is clear that $\mathbf{R}^m = \Omega_1 \cup \Omega_2$ and by using (2.13) with $\rho = 0$,

$$\int_{\Omega_1} \frac{|V(z+y)|dz}{|w-z|^{m-2}|z|^{m-2}} \le \frac{2^{m-2}}{|w|^{m-2}} \int_{\mathbf{R}^m} \frac{|V(z+y)|dz}{|w-z|^{m-2}} \le C_1 \langle x \rangle^{-\gamma} |w|^{2-m} \|V\|_{(\gamma)};$$

$$\int_{\Omega_2} \frac{|V(z+y)|dz}{|w-z|^{m-2}|z|^{m-2}} \leq \frac{2^{m-2}}{|w|^{m-2}} \int_{\mathbf{R}^m} \frac{|V(z+y)|dz}{|z|^{m-2}} \leq C_1 \langle y \rangle^{-\gamma} |w|^{2-m} \|V\|_{(\gamma)}.$$

Adding these up, we obtain (2.14). \Box

The following is a corollary of Lemma 2.6 and proves Theorem 2.5 when V is small.

LEMMA 2.7. There exists a constant $C_0 > 0$ such that, if $||V||_{(\gamma)} < C_0$, then the integral kernel K(x, y) of R(0) is continuous for $x \neq y$ and satisfies $|K(x, y)| \leq C|x - y|^{2-m}$.

PROOF. The integral kernel of $G_0 = R_0^{\pm}(0)$ is given by the Newton potential $G_0(x-y) = c_m |x-y|^{2-m}$, $c_m = \Gamma(m-2/2)/4\pi^{m/2}$. By Schwarz

inequality and (2.13) with $\rho = 0$,

$$\begin{aligned} |(Q_0^{\pm}(0)u,v)| &\leq c_m \int_{\mathbf{R}^m} \frac{|A(x)||v(x)||B(y)||u(y)|}{|x-y|^{m-2}} dy dx \\ &\leq c_m \left(\int_{\mathbf{R}^m} \frac{|A(x)|^2 |u(y)|^2}{|x-y|^{m-2}} dx dy \right)^{1/2} \left(\int_{\mathbf{R}^m} \frac{|B(y)|^2 |v(x)|^2}{|x-y|^{m-2}} dy dx \right)^{1/2} \\ &\leq c_m C_1 \|V\|_{(\gamma)} \|u\| \|v\|. \end{aligned}$$

Hence, $1 + Q_0^{\pm}(0)$ is invertible in $B(L^2)$ if $||V||_{(\gamma)} < (c_m C_1)^{-1}$, and we may expand $(1 + Q_0^{\pm}(0))^{-1}$ into the Neumann series in (2.12) with $\lambda = 0$ to obtain

$$R(0) = G_0 - G_0 V G_0 + G_0 V G_0 V G_0 - \cdots$$

Since any V with $||V||_{(\gamma)} < \infty$ may be approximated arbitrarily close by C_0^{∞} functions in the norm $|| \cdot ||_{(\gamma')}, \gamma' < \gamma$, it is easy to see that the integral kernels of the summands of the series are continuous for $x \neq y$. Moreover estimating them inductively by using (2.14), we obtain a majorant series $\sum_{n=0}^{\infty} c_m^{n+1} (2C_1 ||V||_{(\gamma)})^n |x-y|^{2-m}$ for K(x,y). The latter series converges uniformly on every compact subset of $\{(x,y) : x \neq y\}$ and produces the bound $|K(x,y)| \leq C_2 |x-y|^{2-m}$ if $2c_m C_1 ||V||_{(\gamma)} < 1$. This proves the Lemma. \Box

For proving Theorem 2.5 for general potentials, we shall use the following lemma. For $0 < \rho < \min(1, \gamma)$, \mathcal{X}_{ρ} is the Banach space defined by

(2.15)
$$\mathcal{X}_{\rho} = \{ u \in C(\mathbf{R}^{m} \setminus \{0\}) : ||u||_{\mathcal{X}_{\rho}} \\ = \sup_{x \in \mathbf{R}^{m} \setminus \{0\}} \langle x \rangle^{-\rho} |x|^{m-2} |u(x)| < \infty \}.$$

We remark here that if K(x, y) is as in Lemma 2.7, then $K_y(x) \equiv K(x+y, y)$ belongs to \mathcal{X}_{ρ} and $y \to K_y$ is an \mathcal{X}_{ρ} valued continuous function. This can be easily seen by the proof of the lemma (note that $K_y(x)$ is $K_0(x)$ corresponding to the potential $V_y(x) = V(x+y)$ and $y \to V_y$ is continuous in the $\| \cdot \|_{(\gamma')}$ norm, $\gamma' < \gamma$).

LEMMA 2.8. Let $V_1 \in C_0^{\infty}(\mathbf{R}^m)$. Let $K_0(x, y)$ be continuous for $x \neq y$ and satisfy $|K_0(x, y)| \leq C|x - y|^{2-m}$. Define the integral operator Z_y for $y \in \mathbf{R}^m$ by

(2.16)
$$Z_y u(x) = \int_{\mathbf{R}^m} K_0(x+y,z+y) V_1(z+y) u(z) dz.$$

Kenji YAJIMA

Then, Z_y is a compact operator in \mathcal{X}_{ρ} and is norm continuous with respect to $y \in \mathbf{R}^m$.

PROOF. We prove the lemma for $m \geq 5$. The proof for m = 3, 4 may be given by slightly modifying the following argument. Let S be the unit ball of \mathcal{X}_{ρ} . Then for $u \in S$, we have as in (2.14)

(2.17)
$$|Z_y u(x)| \le C \int_{\mathbf{R}^m} \frac{|V_1(z+y)| \langle z \rangle^{\rho} dz}{|x-z|^{m-2}|z|^{m-2}} \\ \le \begin{cases} C|x|^{4-m}, & |x| \le 1; \\ C_y |x|^{2-m}, & |x| \ge 1, \end{cases}$$

where C_y is a constant bounded for bounded y. Let $\psi \in C_0^{\infty}(\mathbf{R}^m)$ be such that $\psi(x) = 1$ for $|x| \ge 2$ and $\psi(x) = 0$ for $|x| \le 1$. Set, for $\epsilon > 0$, $\psi_{\epsilon}(x) = \psi(x/\epsilon)$ and let $Z_{y,\epsilon}$ be the integral operator defined by (2.16) with $K_{0\epsilon}(x,y) = \psi_{\epsilon}(x-y)K_0(x,y)$ in place of $K_0(x,y)$. Because of the estimate (2.17) and the fact that $K_{0\epsilon}(x,y)$ is jointly continuous with respect to (x,y), it can be easily seen via Ascoli-Arzela's lemma that $Z_{y,\epsilon}$ is a compact operator in \mathcal{X}_{ρ} and is norm continuous with respect to y. On the other hand, for y in a compact subset of \mathbf{R}^m , $Z_{y,\epsilon}u(x) = Z_yu(x)$ for $|x| \ge C_0$ and we have for $u \in S$ and $\epsilon \to 0$

$$\sup_{x \in \mathbf{R}^{m}} |x|^{m-2} |Z_{y,\epsilon} u(x) - Z_{y} u(x)|$$

$$\leq c_{m} \sup_{|x| \leq C_{0}} |x|^{m-2} \int_{|x-z| < 2\epsilon} \frac{\langle z \rangle^{\rho} |V_{1}(z+y)| dz}{|x-z|^{m-2} |z|^{m-2}}$$

$$\leq \sup_{|x| \leq C_{0}} C \int_{|x-z| < 2\epsilon} \frac{|x|^{m-2} dz}{|x-z|^{m-2} |z|^{m-2}}$$

$$\leq C\epsilon^{2} \sup_{x \in \mathbf{R}^{m}} \int_{|z| < 2/|x|} \frac{|x|^{2} dz}{|\hat{x} - z|^{m-2} |z|^{m-2}} \to 0$$

uniformly with respect to y, where $\hat{x} = x/|x|$. This shows that $Z_{y,\epsilon}$ converges to Z_y in the operator norm of \mathcal{X}_{ρ} locally uniformly with respect to y. Hence Z_y is compact and is norm continuous. \Box

PROOF OF THEOREM 2.5. Decompose $V(x) = V_0(x) + V_1(x)$ in such a way that $||V_0||_{(\gamma)} < C_0$ and $V_1 \in C_0^{\infty}(\mathbf{R}^m)$, where C_0 is the constant appeared in Lemma 2.7. Denote by $K_0(x, y)$ the integral kernel of $K_0 \equiv \lim_{\epsilon \to 0} (H_0 + V_0 \pm i0)^{-1}$. In virtue of Lemma 2.7, $K_0(x, y)$ is continuous for $x \neq y$ and satisfies $|K_0(x, y)| \leq C|x - y|^{2-m}$. Thus, by Lemma 2.8, the integral operator Z_y defined in \mathcal{X}_{ρ} by (2.16) with this $K_0(x, y)$ and $V_1(x)$ is compact and is norm continuous with respect to y.

We show that $1 + Z_y$ is an isomorphism of \mathcal{X}_{ρ} . Suppose that $u(x) + Z_y u(x) = 0$, $u \in \mathcal{X}_{\rho}$. Then |u(x)| is bounded by a constant times the RHS of (2.17) and repeating the similar estimate implies that u(x) is continuous and satisfies $|u(x)| \leq C \langle x \rangle^{2-m}$. (This may also be seen by the elliptic regularity theorem for Schrödinger operators with Kato class potentials, see e.g. [16].) Set $u_y(x) = u(x-y)$. u_y is continuous, $|u_y(x)| \leq \langle x-y \rangle^{2-m}$, and it satisfies the integral equation

(2.18)
$$u_y(x) + \int_{\mathbf{R}^m} K_0(x,z) V_1(z) u_y(z) dz = 0.$$

By applying $-\triangle + V_0(x)$ to (2.18), we see $-\triangle u_y(x) + V(x)u_y(x) = 0$. It follows that $u(x) \equiv 0$, since $u_y \in L^2_{-1-\epsilon}(\mathbf{R}^m)$ (or $u_y \in L^2(\mathbf{R}^m)$ if $m \geq 5$), and since we are assuming that zero is not resonance nor eigenvalue of $H = H_0 + V$. Thus $1 + Z_y$ is an isomorphism of \mathcal{X}_{ρ} .

Set $K_{0y}(x) = K_0(x+y,y)$. By the remark after the definition (2.15) of \mathcal{X}_{ρ} , K_{0y} is an \mathcal{X}_{ρ} valued continuous function. Hence, $K_y = (1+Z_y)^{-1}K_{0y}$ is well defined and is also an \mathcal{X}_{ρ} valued continuous function. Set $K(x,y) = K_y(x-y)$. K(x,y) is jointly continuous for $x \neq y$; $|K(x,y)| \leq C_y \langle x - y \rangle^{\rho} |x-y|^{2-m}$ with C_y bounded for bounded y; and it satisfies the integral equation

(2.19)
$$K(x,y) = K_0(x,y) - \int_{\mathbf{R}^m} K_0(x,z) V_1(z) K(z,y) dz.$$

Note that (2.19) and (2.17) imply that K(x, y) in fact satisfies the estimate $|K(x, y)| \leq C_y |x - y|^{2-m}$, where C_y is again bounded for bounded y.

We show that K(x, y) is the integral kernel of R(0) and it satisfies the estimate mentioned in the theorem. Denote by K the integral operator with the integral kernel K(x, y). Then, for $u \in C_0^{\infty}(\mathbf{R})$, Ku(x) is continuous, $|Ku(x)| \leq C \langle x \rangle^{2-m}$ and, in virtue of (2.19), $Ku = K_0 u - K_0 V_1 K u$. Subtract $R(0)u = K_0 u - K_0 V_1 R(0)u$ from this equation side by side and write v =R(0)u - Ku. Then $v \in L^2_{-1-\epsilon}$, $\epsilon > 0$, and it satisfies $v + K_0 V_1 v = 0$. Applying $H_0 + V_0$ to both sides of this equation implies $-\Delta v(x) + V(x)v(x) = 0$ and we conclude v = 0 because zero is not a resonance or an eigenvalue of H. Hence Ku = R(0)u for any $u \in C_0^{\infty}$ and R(0) = K. Since $R(0)^* = R(0)$, we have K(x,y) = K(y,x) and $|K(x,y)| \leq C_x |x-y|^{2-m}$ with C_x bounded for bounded x. Going back to (2.19), we conclude $|K(x,y)| \leq C|x-y|^{2-m}$. This completes the proof of Theorem 2.5. \Box

Since K(x, y) satisfies $-\triangle_x K(x, y) + V(x)K(x, y) = \delta(x - y)$, we expect from the elliptic regularity that K(x, y) is smooth where V is. We prove the following result.

LEMMA 2.9. Suppose V is as in Theorem 2.5 and, in addition, $D^{\alpha}V(x)$ satisfies (2.7) for $|\alpha| \leq \ell$. Let K(x, y) be the integral kernel of R(0). Then, for $y \neq 0$, K(x, x - y) is C^{ℓ} with respect to $x \in \mathbf{R}^m$ and $|D_x^{\alpha}K(x, x - y)| \leq C_{\alpha}|y|^{2-m}$, $|\alpha| \leq \ell$.

PROOF. Let τ_h be the translation by h and $V_h(x) = V(x+h)$. Then K(x+h, y+h) is the integral kernel of $\tau_h R(0) \tau_h^{-1} = (-\triangle + V_h)^{-1} \equiv R_h(0)$ and the resolvent equation $R_h(0) - R(0) = -R_h(0)(V_h - V)R(0)$ implies that

$$K(x+h, y+h) - K(x, y) = -\int_{\mathbf{R}^m} K(x+h, z+h)(V(z+h) - V(z))K(z, y)dz.$$

Hence Theorem 2.5, Lemma 2.6 and the assumption on DV together imply

$$(\partial/\partial h_j)K(x+h,y+h)|_{h=0} = -\int_{\mathbf{R}^m} K(x,z)(\partial V/\partial z_j)(z)K(z,y)dz.$$

Repeating this argument, we obtain

$$D_h^{\alpha}K(x+h,y+h)|_{h=0} = \sum_{\ell=1}^{|\alpha|} \sum_{\alpha_1+\dots+\alpha_\ell=\alpha} C_{\alpha_1,\dots,\alpha_\ell} G_{\alpha_1,\dots,\alpha_\ell}(x,y),$$

where $G_{\alpha_1,\ldots,\alpha_\ell}(x,y)$ is the integral kernel of $R(0)V^{(\alpha_1)}R(0)\cdots V^{(\alpha_\ell)}R(0)$. Applying Theorem 2.5 and Lemma 2.6 and using the assumptions on $D^{\alpha}V$ for estimating $G_{\alpha_1,\ldots,\alpha_\ell}(x,y)$, we obtain the lemma immediately. \Box

We need the following lemma.

LEMMA 2.10. Let $1 \le p, q, r \le \infty$ satisfy $r^{-1} \ge p^{-1} + q^{-1} - 1$. Then: (1) If $\rho, \sigma < m$ and $\rho + \sigma > m$. Then $\|f * g\|_{\ell_{\rho+\sigma-m}^{\infty}(L^r)} \le C \|f\|_{\ell_{\rho}^{\infty}(L^p)}$.

$$\begin{aligned} \|g\|_{\ell^{\infty}_{\sigma}(L^{q})} & . \\ (2) \quad If \ \rho \ or \ \sigma > m, \ then \ \|f * g\|_{\ell^{\infty}_{\min(\rho,\sigma)}(L^{r})} \le C \|f\|_{\ell^{\infty}_{\rho}(L^{p})} \cdot \|g\|_{\ell^{\infty}_{\sigma}(L^{q})}. \end{aligned}$$

PROOF. Take $\phi \in C_0^{\infty}(|x| < 1/2)$ such that $\int \phi(x)dx = 1$ and set $f_y(x) = \phi(x-y)f(x)$ and etc. Clearly f_y is supported by y + B(O, 1/2), $f(x) = \int f_y(x)dy$ and we may write

$$(f * g)(x) = \int (f_y * g_z)(x) dy dz.$$

Note that $f_y * g_z$ is supported by y + z + B(O, 1). It follows by Young's inequality that, if Q^* is the cube of side 4 with center at the origin,

$$\begin{split} \|f*g\|_{L^{r}(Q_{n})} &\leq C \int_{y+z-n\in Q^{*}} \|f_{y}\|_{L^{p}(\mathbf{R}^{m})} \|g_{z}\|_{L^{q}(\mathbf{R}^{m})} dy dz \\ &\leq C \|f\|_{\ell^{\infty}_{\rho}(L^{p})} \|g\|_{\ell^{\infty}_{\sigma}(L^{q})} \int_{y+z-n\in Q^{*}} \langle y \rangle^{-\rho} \langle z \rangle^{-\sigma} dy dz. \end{split}$$

Estimating the last integral in a standard fashion, we obtain the lemma. \Box

The following lemma implies the estimate (1.12) in the introduction.

LEMMA 2.11. Let V satisfy (1.1) for $|\alpha| \leq [(m-2)/2]$ and $\delta > (m+3)/2$. Then:

$$(2.20) \int_{\mathbf{R}^m} \left\{ \int \langle x \rangle^{2\sigma} |D^{\alpha}V(x)D_x^{\beta}K(x,x-y)D^{\gamma}V(x-y)|^2 dx \right\}^{1/2} dy < \infty,$$

for $|\alpha + \beta + \gamma| \le [(m-2)/2]$ and $\sigma < \delta - 2.$

PROOF. In virtue of Lemma 2.9, the left hand side of (2.20) is bounded by a constant times

(2.21)
$$\int_{\mathbf{R}^m} \left\{ \int \langle x \rangle^{2\sigma} |D^{\alpha}V(x)D^{\gamma}V(x-y)|^2 dx \right\}^{1/2} \frac{dy}{|y|^{m-2}}$$

We estimate (2.21) by applying Lemma 2.10. We denote the function $\{\cdots\}^{1/2}$ in (2.21) by $W_{\alpha\gamma}(y)$. If m = 3, we have only the case $\alpha = \beta = \gamma = 0$. By using Lemma 2.10, (2), we have

$$W_{00}(y) = \left\{ \int \langle x \rangle^{2\sigma} |V(x)V(x-y)|^2 dx \right\}^{1/2} \in \ell^{\infty}_{\delta-\sigma}(L^2).$$

Hence, if $\sigma < \delta - 2$, we have $(2.21) \leq \int_{\mathbf{R}^m} (|W_{\alpha\gamma}(y)|/|y|) dy < \infty$.

When m = 4 or = 5, we only prove (2.20) for the case $|\alpha| = 1$ and $\beta = \gamma = 0$. We may assume $p_0(>m/2)$ is close to m/2. We have $|V|^2 \in \ell_{2\delta}^{\infty}(L^{q_0/2}), 1/q_0 = 1/p_0 - 1/m$, by Sobolev's lemma. Thus Lemma 2.10 implies $W_{\alpha\gamma} \in \ell_{\delta-\sigma}^{\infty}(L^r), 1/r = 2/p_0 - 1/m - 1/2 < 2/m$, and $\int_{\mathbf{R}^m}(|W_{\alpha\gamma}(y)|/|y|^{m-2})dy < \infty$, if $\sigma < \delta - 2$. The proof for $m \ge 6$ is similar (in fact easier) and we omit the details. \Box

2.3 L^p boundedness of W_1

We close this section by recalling the argument in [21] that shows that W_1 defined by (1.2):

$$W_1 u(x) \equiv -\frac{1}{2\pi i} \lim_{\varepsilon \downarrow 0} \int_{-\infty}^{\infty} R_0(\lambda - i\varepsilon) V R_0(\lambda + i\varepsilon) u(x) d\lambda$$

is bounded in L^p . We begin with the following lemma (Lemma 2.3 of [21]), which may be proved by computing the inverse Fourier transform of essentially one dimensional function $\xi \to (2\eta\xi - \eta^2 + i\varepsilon)^{-1}$.

LEMMA 2.12. Let
$$\eta \in \mathbf{R}^m \setminus \{0\}$$
 and $\hat{\eta} = \eta/|\eta|$. Then

(2.22)
$$\lim_{\varepsilon \downarrow 0} \frac{1}{(2\pi)^{m/2}} \int_{\mathbf{R}^m} \frac{e^{ix\xi} \widehat{f}(\xi)}{2\eta\xi - \eta^2 + i\varepsilon} d\xi = \frac{1}{2i|\eta|} \int_0^\infty e^{-it|\eta|/2} f(x + t\widehat{\eta}) dt.$$

The following proposition proves that W_1 is bounded in L^p under a rather mild condition on V(x). Σ is the unit sphere of \mathbf{R}^m and $d\omega$ is its surface element.

PROPOSITION 2.13. Set for $t \in \mathbf{R}$ and $\omega \in \Sigma$

(2.23)
$$\widehat{K}_V(t,\omega) = \frac{i}{2(2\pi)^{m/2}} \int_0^\infty \widehat{V}(r\omega) r^{m-2} e^{itr/2} dr$$

We write $x_{\omega} = x - 2(x_{\omega})\omega$ for the reflection of x along the ω -axis. Then:

1. The operator W_1 can be expressed as follows:

(2.24)
$$W_1 u(x) = \int_{\Sigma} d\omega \int_{2x\omega}^{\infty} \widehat{K}_V(t,\omega) u(t\omega + x_{\omega}) dt$$

2. For any $1 \le p \le \infty$, we have

(2.25)
$$\|W_1 u\|_{L^p(\mathbf{R}^m)} \le 2 \|\widehat{K}_V\|_{L^1([0,\infty)\times\Sigma)} \|u\|_{L^p(\mathbf{R}^m)}.$$

3. Let $\sigma > 1/2$ and $\rho > m/2 + \sigma$. Then, there exist constants C_1, C_2 such that

$$(2.26) \ \|\widehat{K}_V\|_{L^1([0,\infty)\times\Sigma)} \le C_1 \|\langle x \rangle^{\sigma} V\|_{H^{(m-3)/2}} \le C_2 \sum_{|\alpha| \le \ell_0} \|D^{\alpha} V\|_{\ell^{\infty}_{\rho}(L^{p_0})},$$

where p_0, ℓ_0 are as in Theorem 1.2.

PROOF. We compute the Fourier transform of $W_1 u$. Performing the λ -integration first via the residue theorem, we see that it is equal to

$$(2.27) \quad \frac{-1}{(2\pi i)} \frac{1}{(2\pi)^{m/2}} \lim_{\varepsilon \downarrow 0} \int_{-\infty}^{\infty} \left\{ \int_{\mathbf{R}^m} \frac{\widehat{V}(\eta)\widehat{u}(\xi - \eta)d\eta}{(\xi^2 - \lambda + i\varepsilon)((\xi - \eta)^2 - \lambda - i\varepsilon)} \right\} d\lambda$$
$$= \lim_{\varepsilon \downarrow 0} \frac{-1}{(2\pi)^{m/2}} \int_{\mathbf{R}^m} \frac{\widehat{V}(\eta)\widehat{u}(\xi - \eta)}{2\xi\eta - \eta^2 + i\varepsilon} d\eta.$$

We then invert the Fourier transform. Applying (2.22), we deduce

(2.28)
$$W_1 u(x) = \frac{-1}{(2\pi)^{m/2}} \\ \times \int_{\mathbf{R}^m} \frac{\widehat{V}(\eta)}{2i|\eta|} \left\{ \int_0^\infty e^{-it|\eta|/2 + i\eta(x+t\widehat{\eta})} u(x+t\widehat{\eta}) dt \right\} d\eta \,.$$

Introducing the polar coordinates $\eta = r\omega$, r > 0, $\omega \in \Sigma$, and changing the order of integration, we obtain

$$W_1u(x) = \int_{\Sigma} d\omega \int_0^\infty dt \left\{ \frac{i}{2(2\pi)^m} \int_0^\infty \widehat{V}(r\omega) e^{i(t+2x\omega)r/2} r^{m-2} dr \right\} u(x+t\omega) \, .$$

The identity (2.24) follows from this by the change of variable $t \to t - 2(x\omega)$. Observing that $x \to x_{\omega}$ is measure preserving, we apply Minkowski's inequality to (2.24) and obtain (2.25).

By Parseval-Plancherel formula we have

$$\int_0^\infty |\widehat{K}_V(t,\omega)|^2 dt = \frac{1}{2(2\pi)^{m-1}} \int_0^\infty |\widehat{V}(r\omega)|^2 r^{2m-4} dr.$$

Kenji YAJIMA

Integrating both sides with respect to ω over Σ gives

$$\|\widehat{K}_V\|_{L^2([0,\infty)\times\Sigma)}^2 = \frac{1}{2(2\pi)^{m-1}} \int_{\mathbf{R}^m} |\xi|^{m-3} |\widehat{V}(\xi)|^2 d\xi \le C \|V\|_{H^{(m-3)/2}}^2.$$

Similarly we have

$$\begin{aligned} \|t\widehat{K}_{V}\|_{L^{2}([0,\infty)\times\Sigma)}^{2} &\leq C \int_{\mathbf{R}^{m}} |\xi|^{m-3} (|\nabla_{\xi}\widehat{V}(\xi)|^{2} + |\xi|^{-2} |\widehat{V}(\xi)|^{2}) d\xi \\ &\leq C \|\langle x \rangle V\|_{H^{(m-3)/2}}^{2}. \end{aligned}$$

Interpolating these two estimates by the complex interpolation method, we deduce that for any $\sigma > 1/2$,

$$\|\widehat{K}_V\|_{L^1([0,\infty)\times\Sigma)} \le C_\sigma \|\langle t\rangle^\sigma \widehat{K}_V\|_{L^2([0,\infty)\times\Sigma)} \le C_\sigma \|\langle x\rangle^\sigma V\|_{H^{(m-3)/2}}.$$

The second inequality of (2.26) is obvious since $p_0 \ge 2$. \Box

3. Estimate at low energy

In what follows we assume that V satisfies the condition of Theorem 1.2 with $\ell = 0$. In this section, we prove that the low energy part $W_{\pm}\phi_1(H_0)^2 = \phi_1(H)W_{\pm}\phi_1(H_0)$ of W_{\pm} is bounded in L^p , where $\phi_1 \in C_0^{\infty}(\mathbb{R}^1)$ is such that $\phi_1(\lambda) = 1$ for $|\lambda| \leq 1$ and $\phi_1(\lambda) = 0$ for $|\lambda| \geq 2$. We prove this for the case $m \geq 4$ is even only. Nevertheless, we state some results for the case $m \geq 3$ is odd as well when we think them of independent interest.

Since V is clearly very short range and $H = H_0 + V$ admits no positive eigenvalues ([2]), all statements in the previous section hold. Moreover, writing V(x) = A(x)B(x) as before, we have the following properties which are all well known in scattering theory (cf. [1], [7], [14]):

1. $AR_0(\lambda \pm i0)B \equiv Q_0^{\pm}(\lambda) \in B(L^2)$ is uniformly bounded on $[0, \infty)$ and $1 + Q_0^{\pm}(\lambda)$ has a bounded inverse in $B(L^2)$ for all $\lambda \in [0, \infty)$. We have the resolvent equation (2.12):

(3.29)
$$R^{\pm}(\lambda) = R_0^{\pm}(\lambda) - R_0^{\pm}(\lambda)B(1 + Q_0^{\pm}(\lambda))^{-1}AR_0^{\pm}(\lambda).$$

- 2. $AR^{\pm}(\lambda)B$ are uniformly bounded in $B(L^2)$ and locally Hölder continuous on $[0,\infty)$.
- 3. A and B are H_0 as well as H-smooth in the sense of Kato:

(3.30)
$$\sup_{\epsilon>0} \int_{-\infty}^{\infty} \|AR_0(\lambda \pm i\epsilon)u\|^2 d\lambda \le C \|u\|^2;$$
$$\sup_{\epsilon>0} \int_{0}^{\infty} \|AR(\lambda \pm i\epsilon)u\|^2 d\lambda \le C \|u\|^2.$$

4. The wave operators W_{\pm} exist and have the stationary expression (1.2) \sim (1.3).

In virtue of Proposition 2.13 the L^p boundedness of $\phi_1(H)W_{\pm}\phi_1(H_0)$ is equivalent to that of $W_{2,low} = \phi_1(H)W_2\phi_1(H_0)$. We decompose $W_{2,low} = W_{2,low}^{(1)} + W_{2,low}^{(2)}$ by splitting the resolvent as $R^-(\lambda) = \tilde{R}^-(\lambda) + R(0)$ in the formula (1.3):

(3.31)
$$W_{2,low}^{(1)} u = \phi_1(H)$$

 $\times \left\{ \frac{1}{2\pi i} \int_0^\infty R_0^-(\lambda) V R(0) V(R_0^+(\lambda) - R_0^-(\lambda)) d\lambda \right\} \phi_1(H_0) u$

(3.32)
$$W_{2,low}^{(2)}u = \phi_1(H) \\ \times \left\{ \frac{1}{2\pi i} \int_0^\infty R_0^-(\lambda) V \tilde{R}^-(\lambda) V(R_0^+(\lambda) - R_0^-(\lambda)) d\lambda \right\} \phi_1(H_0) u.$$

We prove that $W_{2,low}^{(1)}$ and $W_{2,low}^{(2)}$ are both bounded in L^p separately.

We rewrite (3.31) as follows. By using that $R_0^+(\lambda) = R_0^-(\lambda)$ for $\lambda \leq 0$, we extend the region of integration to the whole line and write

$$(W_{2,low}^{(1)}u,v) = \frac{1}{2\pi i} \int_0^\infty (AR(0)B \cdot A(R_0^+(\lambda) - R_0^-(\lambda))\phi_1(H_0)u, BR_0^+(\lambda)\phi_1(H)v)d\lambda.$$

Here, in virtue of (3.30), $AR_0^-(\lambda)\phi_1(H_0)u$ and $BR_0^+(\lambda)\phi_1(H)v$ are boundary values of L^2 -valued Hardy functions in the lower and upper half planes respectively. Hence they are orthogonal to each other and we obtain

(3.33)
$$(W_{2,low}^{(1)}u,v) = \frac{1}{2\pi i} \int_0^\infty \langle VR(0)VR_0^+(\lambda)\phi_1(H_0)u, R_0^+(\lambda)\phi_1(H)v\rangle d\lambda.$$

Recall that $\phi_1(H_0), \phi_1(H)$ are bounded in L^p as shown in section 2. Denote the integral kernel of R(0) by K(x, y), the multiplication with the function $M_y(x) = V(x)K(x, x - y)V(x - y)$ by M_y , and the translation by $y \in \mathbf{R}^m$ by τ_y . Then we write VR(0)V in the form

(3.34)
$$VR(0)Vu(x) = \int_{\mathbf{R}^m} V(x)K(x, x - y)V(x - y)u(x - y)dy$$
$$= \int_{\mathbf{R}^m} M_y \tau_y u(x)dy,$$

and inserting (3.34) into (3.33), we obtain

(3.35)
$$(W_{2,low}^{(1)}u,v)$$
$$=\frac{1}{2\pi i}\int_{-\infty}^{\infty}\int_{\mathbf{R}^m} \langle M_y R_0^+(\lambda)\phi_1(H_0)\tau_y u, R_0^+(\lambda)\phi_1(H)v\rangle dy d\lambda.$$

Here the integral is absolutely convergent with respect to $dyd\lambda$. Indeed, for $\sigma > 1/2$ we have $\langle x \rangle^{\sigma} M_y(x) \in H^{(m-3)/2}(\mathbf{R}_x^m)$ for some $\sigma > 1/2$ in virtue of Lemma 2.11 and $\|M_y\|_{L^{m/2}(\mathbf{R}_x^m)} \leq C \|\langle x \rangle^{\sigma} M_y(x)\|_{H^{(m-3)/2}(\mathbf{R}_x^m)}$ by Sobolev's lemma. Hence $|M_y|^{1/2}$ is H_0 -smooth for every $y \in \mathbf{R}^m$ ([7]):

$$\int_{\mathbf{R}} \||M_y|^{1/2} R_0^{\pm}(\lambda) u\|^2 d\lambda \le C \|\langle x \rangle^{\sigma} M_y(x)\|_{H^{(m-3)/2}(\mathbf{R}_x^m)} \|u\|_{L^2}^2$$

and, thanks to (2.20) we have

$$\int_{-\infty}^{\infty} \int_{\mathbf{R}^{m}} |\langle M_{y} R_{0}^{+}(\lambda) \phi_{1}(H_{0}) \tau_{y} u, R_{0}^{+}(\lambda) \phi_{1}(H) v \rangle | d\lambda dy \leq C \|\phi_{1}(H_{0}) u\|_{L^{2}} \|\phi_{1}(H) v\|_{L^{2}} \int_{\mathbf{R}^{m}} \|\langle x \rangle^{\sigma} M_{y}\|_{H^{(m-3)/2}} dy < \infty.$$

It follows by changing the order of integration in (3.35) that

$$(3.36) \quad (W_{2,low}^{(1)}u,v) = \int_{\mathbf{R}^m} \left\{ \frac{1}{2\pi i} \int_{-\infty}^{\infty} \langle R_0^-(\lambda) M_y R_0^+(\lambda) \phi(H_0) \tau_y u, \phi_1(H) v \rangle d\lambda \right\} dy$$

and the application of Proposition 2.13 and (2.20) to (3.36) yields, with $\sigma>1/2$ and 1/p+1/q=1 that

$$|(W_{2,low}^{(1)}u,v)| \le C \int_{\mathbf{R}^m} \|\langle x \rangle^{\sigma} M_y\|_{H^{(m-3)/2}} dy \cdot \|u\|_{L^p} \|v\|_{L^q} \le C_1 \|u\|_{L^p} \|v\|_{L^q}$$

Thus, we have proved the following lemma.

LEMMA 3.14. $W_{2,low}^{(1)}$ is bounded in L^p for any $1 \le p \le \infty$.

Before starting the proof of the L^p boundedness of $W_{2,low}^{(2)}$, we record some results about the differentiability of $R^{\pm}(\lambda)$ that are necessary in what follows. They are simple consequences of the resolvent equation (3.29), Lemma 2.1 and the decay property of the potential $D^{\alpha}V \in \ell_{\delta}^{\infty}(L^{p_0})$, and we omit the proof.

LEMMA 3.15. Let $0 \leq j \leq (m+2)/2$ and $\epsilon > 0$. Then $R^{\pm}(\lambda)$ is j times differentiable as a $B(L^2_{j+1/2+\epsilon}, L^2_{-j-1/2-\epsilon})$ valued function of $\lambda \in (0, \infty)$.

LEMMA 3.16. Let $2 \leq \rho \leq (m+2)/2$ and $s > \rho + 1/2$. Then, for 0 < k < 1,

$$(3.37) \quad \|(d/dk)^{j}\tilde{R}^{\pm}(k^{2})\|_{B(L^{2}_{s},L^{2}_{-s})} \leq \begin{cases} C_{j}k^{2-j}\langle \log k \rangle, & \text{if } m \geq 4; \\ C_{j}k^{1-j}, & \text{if } m = 3, \end{cases}$$

for $0 \leq j \leq \rho$.

We show that the integral kernel $W_{2,low}^{(2)}(x,y)$ of $W_{2,low}^{(2)}$ satisfies the criterion (1.6). Using the identity $(R_0^+(\lambda) - R_0^-(\lambda))\phi_1(H_0) = (R_0^+(\lambda) - R_0^-(\lambda))\phi_1(\lambda)$ and changing the variable $\lambda = k^2$, we write

(3.38)
$$W_{2,low}^{(2)} = \frac{1}{\pi i} \int_0^\infty \phi_1(H) R_0^-(k^2) V \tilde{R}^-(k^2) V(R_0^+(k^2) - R_0^-(k^2)) \times \phi_1(H_0) \tilde{\phi}_1(k^2) k dk ,$$

where $\tilde{\phi}_1 \in C_0^{\infty}(\mathbf{R})$ is such that $\tilde{\phi}_1(\lambda)\phi_1(\lambda) = \phi_1(\lambda)$, Hence, if we denote the integral kernels of $R_0^{\pm}(k^2)\phi_1(H_0)$ and $R_0^{\pm}(k^2)\phi_1(H)$ respectively by $G_{\pm}^{(*)}(x,y,k)$ and $G_{\pm}^{(**)}(x,y,k)$, and if we set $G_{\pm,k,y}^{(*)}(x) = G_{\pm}^{(*)}(x,y,k)$ and $G_{\pm,k,y}^{(**)}(x) = G_{\pm}^{(**)}(x,y,k)$, then $W_{2,low}^{(2)}(x,y)$ is given by $W_{2,low}^{(2)}(x,y) = W_{2,low}^{(2),+}(x,y) - W_{2,low}^{(2),-}(x,y)$, where

(3.39)
$$W_{2,low}^{(2),\pm}(x,y) = \frac{1}{\pi i} \int_0^\infty \tilde{\phi}(k^2) \langle \tilde{R}^-(k^2) V G_{\pm,k,y}^{(*)}, V G_{\pm,k,x}^{(**)} \rangle k dk,$$

Recall that the integral kernel of $R_0^{\pm}(k^2)$ is given by $G_{\pm}(x-y,k)$ (see (2.2)) and that we are assuming *m* is even. Expanding $(z \pm (it/2))^{\nu}$ in the

Hankel formula (2.3):

(3.40)
$$\pm i \frac{z^{\nu} H_{\nu}^{(j)}(z)}{4(2\pi)^{\nu}} = \sum_{s=0}^{\nu} C_{\nu s}^{\pm} e^{\pm i z} z^{s} H_{\nu s}^{\pm}(z), H_{\nu s}^{\pm}(z) = \int_{0}^{\infty} e^{-t} t^{2\nu - s - 1/2} \left(z \pm \frac{i t}{2} \right)^{-1/2} dt$$

and introducing $\varphi(x, y) = |x - y| - |x|$, we decompose

(3.41)
$$G_{\pm,x,k}(y) = e^{\pm ik|x|} \sum_{s=0}^{\nu} k^s C_{\nu s}^{\pm} \frac{e^{\pm ik\varphi(x,y)} H_{\nu s}^{\pm}(k|x-y|)}{|x-y|^{m-2-s}}$$
$$\equiv e^{\pm ik|x|} \sum_{s=0}^{\nu} k^s G_{\pm,x,k,s}(y) ,$$

where $C_{\nu s}^{\pm}$ are constants and the definition of $G_{\pm,x,k,s}(y)$ should be obvious. We have obvious inequality $|\varphi(x,y)| \leq |y|$. We decompose $G_{\pm}^{(*)}(x,y,k)$ and $G_{\pm}^{(**)}(x,y,k)$ accordingly: Write $\Phi_0(x,y)$ and $\Phi(x,y)$ for the kernels of $\phi(H_0)$ and $\phi(H)$ respectively, and define

(3.42)
$$G_{\pm,x,k,s}^{(*)}(y) = \int_{\mathbf{R}^m} e^{\pm ik(|z|-|x|)} G_{\pm,z,k,s}(y) \Phi_0(z,x) dz;$$
$$G_{\pm,x,k,s}^{(**)}(y) = \int_{\mathbf{R}^m} e^{\pm ik(|z|-|x|)} G_{\pm,z,k,s}(y) \Phi(z,x) dz.$$

We have

(3.43)
$$G_{\pm,x,k}^{(*)}(y) = e^{\pm ik|x|} \sum_{s=0}^{\nu} k^s G_{\pm,x,k,s}^{(*)}(y), G_{\pm,x,k}^{(**)}(y) = e^{\pm ik|x|} \sum_{s=0}^{\nu} k^s G_{\pm,x,k,s}^{(**)}(y),$$

and inserting (3.43) into (3.39) yields

$$(3.44) \quad W_{2,low}^{(2),\pm}(x,y) = \sum_{s,s'=0}^{\nu} \frac{1}{\pi i} \int_0^\infty e^{-ik(|x|\mp|y|)} \\ \times \tilde{\phi}_1(k^2) \langle \tilde{R}^-(k^2) V G_{\pm,y,k,s}^{(*)}, V G_{+,x,k,s'}^{(**)} \rangle k^{s+s'+1} dk \,.$$

We write each summand in the RHS of (3.44)

(3.45)
$$T_{ss'}^{\pm}(x,y) = \int_0^\infty e^{-ik(|x|\mp|y|)} \tilde{\phi}_1(k^2) L_{ss'}^{\pm}(x,y,k) k^{s+s'+1} dk,$$

(3.46)
$$L^{\pm}_{ss'}(x,y,k) = (1/\pi i) \langle \widetilde{R}^{-}(k^2) V G^{(*)}_{\pm,y,k,s}, V G^{(**)}_{\pm,x,k,s'} \rangle.$$

LEMMA 3.17. Let $\alpha + \beta = 0, 1, ..., (m+2)/2$ and s = 0, ..., (m-2)/2. Then, for some $\epsilon > 0$,

$$(3.47) \qquad \|VD_k^{\beta}G_{\pm,x,k,s}^{(*)}\|_{L^2_{\alpha+1+\epsilon}} \\ \leq \begin{cases} C\langle x \rangle^{-m+s+3/2}k^{-1/2-\beta}, & \text{if } m \text{ is even}; \\ C\langle x \rangle^{-m+2+s}, & \text{if } m \text{ is odd}, \end{cases}$$

for $0 < k \leq 2$. The estimate (3.47) remains true if $G_{\pm,x,k,s}^{(*)}$ is replaced by $G_{\pm,x,k,s}^{(**)}$.

PROOF. We prove only the case m is even. We have $|k|x|(k|x| \pm (it/2))^{-1}| \le 1$ and

$$\begin{aligned} |D_k^{\beta} H_{\nu s}^{\pm}(k|x|)| &\leq C|x|^{\beta} \left| \int_0^{\infty} e^{-t} t^{2\nu - s - 1/2} (k|x| \pm (it/2))^{-1/2 - \beta} dt \right| \\ &\leq C|x|^{\beta} (k|x|)^{-1/2 - \beta} = Ck^{-1/2 - \beta} |x|^{-1/2} \end{aligned}$$

It follows that $|D_k^{\beta}G_{\pm,x,k,s}(y)| \leq Ck^{-1/2-\beta}|x-y|^{3/2-m+s}\langle y\rangle^{\beta}$. On the other hand we know from Lemma 2.4 that $|\Phi_0(z,x)| \leq C_N \langle z-x \rangle^{-N}$ for any N. Using these, we deduce from (3.42) that

$$|D_k^{\beta} G_{\pm,x,k,s}^{(*)}(y)| \le Ck^{-1/2-\beta} \langle x-y \rangle^{3/2-m+s} \langle y \rangle^{\beta}.$$

Since $||V(y)\langle y\rangle^{\beta}\langle y\rangle^{\alpha+1+\epsilon}||_{L^2(Q_n)} \leq C\langle n\rangle^{\alpha+\beta+1+\epsilon-\delta}$ and $\delta - (\alpha+\beta+1+\epsilon) > m-1$ for sufficiently small $\epsilon > 0$, the estimate (3.47) for $G_{\pm,x,k,s}^{(*)}$ follows. The proof for $G_{\pm,x,k,s}^{(**)}$ is similar. \Box

Applying Lemma 2.1 and Lemma 3.17 with $\beta = 0$, we obtain that

$$|L_{ss'}^{\pm}(x,y,k)| \le Ck^{-1} \langle x \rangle^{-m+s'+3/2} \langle y \rangle^{-m+s+3/2}$$

and by integration

(3.48)
$$|T_{ss'}^{\pm}(x,y)| \le C \langle x \rangle^{-m+s'+3/2} \langle y \rangle^{-m+s+3/2}.$$

Kenji Yajima

For improving the decay estimate of (3.48), we apply integrations by parts with respect to the variable $k \ \mu_{ss'} = \max\{s, s'\} + 2$ times in (3.45). A computation with Leibniz' formula shows that

$$(3.49) \begin{array}{l} D_k^{\mu_{ss'}}(\tilde{\phi}(k^2)k^{s+s'+1}L_{ss'}^{\pm}(x,y,k)) \\ = \sum_{\alpha+\beta+\gamma=\mu_{ss'}} \\ \times C_{\alpha\beta\gamma} \langle D_k^{\alpha}(\tilde{\phi}(k^2)k^{s+s'+1}\widetilde{R}^-(k^2))VD_k^{\beta}G_{\pm,y,k,s}^{(*)}, VD_k^{\gamma}G_{+,x,k,s'}^{(**)} \rangle \end{array}$$

and applying Lemma 3.17 and Lemma 3.16, we see that each summand in (3.49) is bounded in modulus by a constant times

(3.50)
$$\begin{array}{l} k^{s+s'+3-\alpha} \langle \log k \rangle k^{-1/2-\beta} \langle y \rangle^{-m+s+3/2} k^{-1/2-\gamma} \langle x \rangle^{-m+s'+3/2} \\ \leq C \langle \log k \rangle \langle x \rangle^{-m+s'+3/2} \langle y \rangle^{-m+s+3/2}, \quad 0 \leq k \leq 2 \,. \end{array}$$

It follows that no boundary terms appear in the following integration by parts:

$$\begin{split} T^{\pm}_{ss'}(x,y) &= \int_0^\infty \frac{(-D_k)^{\mu_{ss'}}(e^{-ik(|x|\mp|y|)})}{(|x|\mp|y|)^{\mu_{ss'}}}\tilde{\phi}(k^2)L^{\pm}_{ss'}(x,y,k)k^{s+s'+1}dk\\ &= \frac{1}{(|x|\mp|y|)^{\mu_{ss'}}}\\ &\times \int_0^\infty e^{-ik(|x|\mp|y|)}D^{\mu_{ss'}}_k(\tilde{\phi}(k^2)L^{\pm}_{ss'}(x,y,k)k^{s+s'+1})dk \end{split}$$

and, in virtue of $(3.49) \sim (3.50)$,

$$|T_{ss'}^{\pm}(x,y)| \le C_{s,s'} \langle x \rangle^{-m+s'+3/2} \langle y \rangle^{-m+s+3/2} ||x| \mp |y||^{-\mu_{ss'}}$$

Combining this with (3.48) and summing up for $0 \le s, s' \le \nu = (m-2)/2$, we obtain

(3.51)
$$|W_{2,low}^{(2),\pm}(x,y)| \le \sum_{s,s'=0}^{\nu} C_{s,s'} \frac{\langle x \rangle^{-m+s'+3/2} \langle y \rangle^{-m+s+3/2}}{\langle |x| \mp |y| \rangle^{\mu_{ss'}}} \,.$$

Now we can complete the proof of the following

LEMMA 3.18. The functions $W_{2,low}^{(2),\pm}(x,y)$ satisfy the estimates (1.6) and the operator $W_{2,low}^{(2)}$ is bounded in L^p for any $1 \le p \le \infty$.

PROOF. We integrate (3.51) with respect to the variable x by using the polar coordinates: The (s, s')-summand in the RHS produces a constant times

(3.52)
$$\int_{\mathbf{R}^m} \frac{\langle x \rangle^{-m+s'+3/2} \langle y \rangle^{-m+s+3/2}}{\langle |x| \mp |y| \rangle^{\mu_{ss'}}} dx$$
$$\leq C \int_0^\infty \frac{\langle r \rangle^{s'+1/2} dr}{\langle r-|y| \rangle^{\mu_{ss'}} \langle y \rangle^{m-s-3/2}}$$
$$\leq C \int_{-\infty}^\infty \frac{\langle r \rangle^{s'+1/2} + \langle y \rangle^{s'+1/2}}{\langle r \rangle^{\mu_{ss'}} \langle y \rangle^{m-s-3/2}} dr.$$

Here $s' + 1/2 \le m - s - 3/2$, since $s + s' \le m - 2$, and the $\sup_{y \in \mathbb{R}^m}$ of the RHS is finite. Hence,

$$\sup_{y \in \mathbf{R}^m} \int_{\mathbf{R}^m} |W_{2,low}^{\pm}(x,y)| dx < \infty \,.$$

We may likewise prove the other relation of (1.6) and the lemma follows. \Box

4. Estimate at high energy

In this section we prove that the high energy part $\phi_2(H)W_2\phi_2(H_0)u$ of W_2 is also bounded in L^p . Recall that W_2 is given by (1.3):

$$W_{2}u = \frac{1}{2\pi i} \int_{0}^{\infty} R_{0}^{-}(\lambda) V R^{-}(\lambda) V \{R_{0}^{+}(\lambda) - R_{0}^{-}(\lambda)\} u d\lambda$$

and that $\phi_2 \in C^{\infty}(\mathbf{R})$ is such that $\phi_2(\lambda) = 1$ for $\lambda \geq 2$ and $\phi_2(\lambda) = 0$ for $\lambda \leq 1$. As the argument in this section is very much similar to that of the previous section as well as of section 4 of [21], we shall be rather sketchy here.

Expand $R^{-}(\lambda)$ via the repeated use of the resolvent equation (3.29):

$$R^{-}(\lambda) = \sum_{n=0}^{2N-1} (-1)^{n} R_{0}^{-}(\lambda) (VR_{0}^{-}(\lambda))^{n} + (R_{0}^{-}(\lambda)V)^{N} R^{-}(\lambda) (VR_{0}^{-}(\lambda))^{N},$$

and decompose $W_2 = \sum_{n=2}^{2N+2} (-1)^n W^{(n)}$ accordingly, where $W^{(n)}$ is given by

$$W^{(n)}u = \frac{1}{2\pi i} \int_0^\infty R_0^-(\lambda) (VR_0^-(\lambda))^{n-1} V\{R_0^+(\lambda) - R_0^-(\lambda)\} u d\lambda$$
$$n = 2, \dots, 2N + 1;$$
$$W^{(2N+2)}u = \frac{1}{2\pi i} \int_0^\infty R_0^-(\lambda) VF_N(\lambda) V\{R_0^+(\lambda) - R_0^-(\lambda)\} u d\lambda.$$

Kenji Yajima

Here we wrote $F_N(\lambda) = (R_0^-(\lambda)V)^N R^-(\lambda)(VR_0^-(\lambda))^N$. It is shown in section 2 of [21] by repeated application of the argument similar to the one used in the proof of Proposition 2.13 that $W^{(n)}u$, $n = 2, \ldots, 2N+1$, has the following expression: Set for $s_1, \ldots, s_n \in \mathbf{R}^1$ and $\omega_1, \ldots, \omega_n \in \Sigma$, Σ being the unit sphere of \mathbf{R}^m ,

$$K_n(s_1,\cdots,s_n,\omega_1,\cdots,\omega_n) = C^n(s_1\cdots s_n)^{m-2} \prod_{j=1}^n \widehat{V}(s_j\omega_j - s_{j-1}\omega_{j-1}),$$

where C is an absolute constant, whose precise value is not important here, and $s_j\omega_j = 0$ if j = 0; and denote its "Fourier transform" with respect to the radial variables (s_1, \dots, s_n) by

$$\widehat{K}_n(t_1,\ldots,t_n,\omega_1,\ldots,\omega_n) = \int_{[0,\infty)^n} e^{i\sum_{j=1}^n t_j s_j/2} K_n(s_1,\ldots,s_n,\omega_1,\ldots,\omega_n) ds_1 \cdots ds_n.$$

Then $W^{(n)}u$, n = 2, ..., 2N + 1, can be written in the form

$$W^{(n)}u(x) = \int_{[0,\infty)^{n-1} \times I \times \Sigma^n} \\ \times \widehat{K}_n(t_1,\dots,t_{n-1},\tau,\omega_1,\dots,\omega_n)u(x_{\omega_n}+\rho)dt_1\cdots dt_{n-1}d\tau d\omega_1\cdots d\omega_n$$

where $I = (2x \cdot \omega_n, \infty)$ is the range of the integration by the variable τ , $x_{\omega_n} = x - 2(\omega_n \cdot x)\omega_n$, is the reflection of x along ω_n , and $\rho = t_1\omega_1 + \cdots + t_{n-1}\omega_{n-1} + \tau\omega_n$. Since $x \to x_{\omega_n}$ is measure preserving and ρ is independent of x, Minkowski's inequality implies as in section 2 that

(4.53)
$$||W^{(n)}u||_{L^p} \le 2||\widehat{K}_n||_{L^1([0,\infty)^n \times \Sigma^n)}||f||_{L^p}, \quad 1 \le p \le \infty.$$

We showed in Lemma 2.5 of [21] that for any $\sigma > 1$

$$\|\widetilde{K}_n\|_{L^1([0,\infty)^n \times \Sigma^n)} \le C^n \|\mathcal{F}(\langle x \rangle^\sigma V)\|_{L^{m_*}}^n.$$

Set $\rho = (m-2)/2$ if $m \ge 4$, $\rho = 0$ if m = 3 and t = 2(m-1)/(m-3). If $m \ge 4$, we have $t\rho > m$ and, by Hölder's inequality,

$$\|\mathcal{F}(\langle x\rangle^{\sigma}V)\|_{L^{m_*}} \le \|\langle \xi\rangle^{-\rho}\|_{L^t} \|\langle \xi\rangle^{\rho} \mathcal{F}(\langle x\rangle^{\sigma}V)\|_{L^2} \le C \|\langle x\rangle^{\sigma}V\|_{H^{\rho}}$$

for any σ and this holds obviously if m = 3. On the other hand it is clearly possible to find $1 < \sigma < \delta$ such that

$$\|\langle x \rangle^{\sigma} V\|_{H^{\rho}} \le C_1 \sum_{|\alpha| \le \ell_0} \|D^{\alpha} V\|_{\ell^{\infty}_{\delta}(L^{p_0})}.$$

This proves that $W^{(n)}$ hence $\phi_2(H)W^{(n)}\phi_2(H_0)$ are bounded in L^p if $n = 2, \ldots, 2N + 1$.

For completing the proof of Theorem 1.2, it remains only to prove that the operator $\phi_2(H)W^{(2N+2)}\phi_2(H_0)$ is bounded in L^p . We write it in the following form:

$$\phi_2(H)\frac{1}{2\pi i} \left(\int_0^\infty R_0^-(\lambda) V F_N(\lambda) V\{R_0^+(\lambda) - R_0^-(\lambda)\} \tilde{\phi}_2(\lambda) d\lambda\right) \phi_2(H_0).$$

Here $\tilde{\phi}_2 \in C^{\infty}(\mathbf{R})$ is such that $\tilde{\phi}_2(\lambda)\phi_2(\lambda) = \phi_2(\lambda)$ and $\tilde{\phi}_2(\lambda) = 0$ for $\lambda \leq 1/2$. We need only prove that the operator inside the parenthesis

$$T_{\pm} = \int_0^\infty R_0^-(k^2) V F_N(k^2) V R_0^{\pm}(k^2) \tilde{\phi}_2(k^2) k dk$$

is bounded in L^p . The integral kernel $T_{\pm}(x, y)$ of T_{\pm} can be computed as in the previous section and are given by

(4.54)
$$T_{\pm}(x,y) = \int_{0}^{\infty} (F_{N}(k^{2})VG_{\pm,y,k}, VG_{+,x,k})\tilde{\phi}_{2}(k^{2})kdk$$
$$= \int_{0}^{\infty} e^{-ik(|x|\mp|y|)} (F_{N}(k^{2})V\tilde{G}_{\pm,y,k}, V\tilde{G}_{+,x,k})\tilde{\phi}_{2}(k^{2})kdk,$$

where we wrote as in (3.41):

(4.55)
$$G_{\pm,x,k}(y) = e^{\pm ik|x|} \sum_{s=0}^{\nu} k^s G_{\pm,x,k,s}(y) \equiv e^{\pm ik|x|} \tilde{G}_{\pm,x,k}(y).$$

Here, as can be easily see from (2.2) and (2.3), we have for $k \ge 1/4$:

(4.56)
$$|D_k^{\rho} \tilde{G}_{\pm,x,k}(y)| \le C_{\rho} \langle y \rangle^{\rho} |x-y|^{2-m} (1+k|x-y|)^{(m-3)/2}.$$

Using Lemma 2.1 and Lemma 2.2 for the mapping property and the decay of the resolvent in the k variable, we obtain as in section 4 of [21] that, for sufficiently large N,

$$|\tilde{\phi}_2(k^2)(F_N(k^2)VG_{\pm,y,k}, VG_{+,x,k})| \le C\langle k \rangle^{-3} \langle x \rangle^{-(m-1)/2} \langle y \rangle^{-(m-1)/2}.$$

Кепјі ҮАЈІМА

Integrating with respect to the variable k gives

(4.57)
$$|T_{\pm}(x,y)| \le C \langle x \rangle^{-(m-1)/2} \langle y \rangle^{-(m-1)/2}.$$

which is, however, is not sufficient for $T_{\pm}(x, y)$ to satisfy the criterion (1.6). For proving that $T_{\pm}(x, y)$ enjoys better decay property, we perform integrations by parts $\mu = (m+2)/2$ times in (4.54) as in the previous section:

$$(4.58) \quad T_{\pm}(x,y) = \int_{0}^{\infty} (|y| \mp |x|)^{-\mu} (D_{k}^{\mu} e^{-ik(|x|\pm|y|)}) \cdot (F_{N}(k^{2}) V \tilde{G}_{\pm,y,k}, V \tilde{G}_{+,x,k}) \tilde{\phi}_{2}(k^{2}) k dk = \sum_{\alpha+\beta+\gamma+\delta=\mu} \int_{0}^{\infty} \frac{e^{-ik(|x|-|y|)}}{(|x|\mp |y|)^{\mu}} \times (D_{k}^{\alpha} F_{N}(k^{2}) V D_{k}^{\beta} \tilde{G}_{\pm,y,k}, V D_{k}^{\gamma} \tilde{G}_{+,x,k}) D_{k}^{\delta} (\tilde{\phi}_{2}(k^{2}) k) dk.$$

Note that we do not have to worry about singularities at k = 0 because $\tilde{\phi}_2(k^2) = 0$ for $0 \le k \le 1/4$. By using again Lemma 2.1 and Lemma 2.2, we see that

(4.59)
$$|(D_k^{\alpha} F_N(k^2) V D_k^{\beta} \tilde{G}_{\pm,y,k}, V D_k^{\gamma} \tilde{G}_{+,x,k})|$$

$$\leq C \langle k \rangle^{-3} \langle x \rangle^{-(m-1)/2} \langle y \rangle^{-(m-1)/2}.$$

Thus applying (4.59) to (4.58), and combining the result with (4.57), we obtain

$$|T_{\pm}(x,y)| \le C \langle x \rangle^{-(m-1)/2} \langle y \rangle^{-(m-1)/2} \langle |x| \mp |y| \rangle^{-(m+2)/2}$$

Thus the estimation as in the final paragraph of section 3 implies that $T_{\pm}(x, y)$ satisfies (1.6). Thus $\phi_2(H)W^{(2N+2)}\phi_2(H_0)$ is also bounded in L^p . This completes the proof of Theorem 1.2.

References

- Agmon, S., Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa, Ser. IV 2 (1975), 151–218.
- [2] Cycon, H., Froese, R. G., Kirsch, W. and B. Simon., Schrödinger operators with applications to quantum mechanics and global geometry, Springer Verlag, Berlin (1987).

- [3] Enss, V., Asymptotic completeness for quantum mechanical potential scattering I, Short range potentials, Commun. Math. Phys. **61** (1978), 285–291.
- [4] Jensen, A., Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in $L_2(\mathbb{R}^m), m \geq 5$, Duke Math. J. **47** (1980), 57–80.
- [5] Jensen, A. and S. Nakamura, Mapping properties of functions of Schrödinger operators between Sobolev spaces and Besov spaces, Advanced Studies in Pure Math. 23, Spectral and Scattering Theory and Applications (1994), 187–210.
- [6] Kato, T., Wave operators and similarity for some non-selfadjoint operators, Math. Ann. 162 (1966), 258–279.
- [7] Kato, T. and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Reviews in Math. Phys. 1 (1989), 481–496.
- [8] Kenig, A. E., Ruiz, A. and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J. 55 (1987), 329–347.
- [9] Kuroda, S. T., An introduction to scattering theory, Lecture Notes Series 51 Aarhus University (1978), Aarhus, Denmark.
- [10] Kuroda, S. T., Scattering theory for differential operators, I and II, J. Math. Soc. Japan 25 (1972), 75–104 and 222–234.
- [11] Melin, A., Intertwining methods in multi-dimensional scattering theory, preprint, Lund University (1987).
- [12] Murata, M., Asymptotic expansions in time for solutions of Schrödinger -type equations, J. Funct. Anal. 49 (1982), 10–56.
- [13] Reed, M. and B. Simon, Methods of Modern Mathematical Physics II, Fourier Analysis, Selfadjointness, Academic Press, New York-San Francisco-London (1975).
- [14] Reed, M. and B. Simon, Methods of Modern Mathematical Physics III, Scattering Theory, Academic Press, New York-San Francisco-London (1979).
- [15] Shenk, N. and D. Thoe, Outgoing solutions of $(-\triangle + q k^2)u = f$ in an exterior domain, J. Math. Anal. Appl. **31** (1970), 81–116.
- [16] Simader, C. G., An elementary proof of Harnack's inequality for Schrödinger operators and related topics, Math. Z. 203 (1990), 129–152.
- [17] Simon, B., Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447– 526.
- [18] Simon, B., Functional integration and quantum physics, Academic press, New York-San Francisco-London (1979).
- [19] Sogge, C. D., Oscillatory integrals and spherical harmonics, Duke Math. Jour. 53 (1986), 43–65.
- [20] Watson, G. N., A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge (1922).
- Yajima, K., The W^{k,p}-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan 47 (1995), 551–581.

Kenji YAJIMA

[22] Yajima, K., The $W^{k,p}$ -continuity of wave operators for Schrödinger operators II, Positive potentials in Even dimensions $m \geq 4$, Lecture Notes in Pure and Appl. Math. **161**, Spectral and Scattering Theory, ed. M. Ikawa, Marcel Dekker, New York (1994), 287–300.

(Received September 19, 1994)

Graduate School of Mathematical Sciences University of Tokyo Komaba, Meguroku Tokyo 153, Japan