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An Abel-Tauber theorem for Fourier sine transforms

By Akihiko Inoue

Abstract. We prove an Abel-Tauber theorem for Fourier sine
transforms. It can be considered as the analogue of the Abel-Tauber
theorem of Pitman in the boundary case. We apply it to Fourier sine
series as well as to the tail behavior of a probability distribution.

1. Introduction and results

The aim of this paper is to prove an Abel-Tauber theorem for Fourier

sine transforms. It characterizes, for example, the asymptotic behavior

f(t) ∼ 1/t2 as t→ ∞ in terms of the Fourier sine transform of f , where f is

a locally integrable, eventually non-increasing function on [0,∞) such that

limt→∞ f(t) = 0. A similar result for Fourier sine series will be obtained as

a corollary.

To state our results, we recall and introduce some notation. We denote

by R0 the whole class of slowly varying functions at infinity; that is, R0 is

the class of positive measurable l, defined on some neighborhood of infinity,

satisfying

∀λ > 0, lim
x→∞

l(λx)/l(x) = 1.

For l ∈ R0, the class Πl is the class of measurable g satisfying

∀λ ≥ 1, lim
x→∞

{g(λx) − g(x)}/l(x) = c log λ

for some constant c called the l-index of g. It is useful to name the class of

functions of which we define the Fourier sine transforms. The function f :

[0,∞) → R belongs to DL1
loc[0,∞) if it is locally integrable and eventually
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non-increasing on [0,∞), limt→∞ f(t) = 0. For f ∈ DL1
loc[0,∞), we define

its Fourier sine transform Fs by

(1.1) Fs(ξ) =

∫ ∞−

0
f(t) sin tξdt (0 < ξ <∞),

where we write
∫∞−
0 to denote an improper integral obtained from

∫M
0 by

lettingM ↑ ∞. Since the improper integral on the right converges uniformly

on each (a,∞) with a > 0, Fs is a continuous function on (0,∞). See the

proof of Theorem 6 of Titchmarsh [6].

Here is the main theorem of this paper:

Theorem 1.1. Let l ∈ R0 and f ∈ DL1
loc[0,∞). Let Fs be the Fourier

sine transform of f . Then

(1.2) f(t) ∼ t−2l(t) (t→ ∞)

if and only if

(1.3) xFs(1/x) ∈ Πl in x with l-index 1.

The analogue for Fourier sine series is:

Theorem 1.2. Let l ∈ R0. Suppose that the real sequence {bn} is

eventually non-increasing, and tends to 0 as n→ ∞. We set

(1.4) gs(ξ) =
∞∑
n=1

bn sinnξ (0 < ξ < 2π).

Then

(1.5) bn ∼ n−2l(n) (n→ ∞)

if and only if

(1.6) xgs(1/x) ∈ Πl in x with l-index 1.
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Now we recall the Abel-Tauber theorem of Pitman [4] which is closely

related to Theorem 1.1. Let l ∈ R0 and 0 < α < 2. Let f ∈ DL1
loc[0,∞),

and let Fs be the Fourier sine transform of f . Then, by Pitman [4],

(1.7) f(t) ∼ t−αl(t) (t→ ∞)

if and only if

(1.8) Fs(ξ) ∼ ξα−1l(1/ξ)
π

2Γ(α) sin(πα/2)
(ξ → 0+).

From this and Theorem 1.1, we see that the behavior (1.2) is a critical case;

we need Π-variation to characterize (1.2) in terms of the Fourier sine trans-

form of f . For the related Abel-Tauber theorems for integral transforms,

we refer to Chapter 4 of Bingham, Goldie and Teugels [1].

In the proof of Theorem 1.1, we will find that it is enough to prove the

theorem for f ∈ DL1
loc[0,∞) finite and non-increasing on [0,∞). For such

f , we have the inversion formula which represents f by the Fourier sine

transform of f (see Theorem 7 of Titchmarsh [6]). However it is difficult

to use to prove the Tauberian implication (1.3) ⇒ (1.2). The difficulty is

in that the problem we have to deal with involves both Π-variation and

improper integrals. The key to the proof is to reduce the problem to the

analogous result of Inoue [2], [3] for Fourier cosine transforms.

The proofs of Theorems 1.1 and 1.2 will be given in section 2. In section

3, we apply Theorem 1.1 to the tail behavior of a probability distribution.

2. Proofs of Theorems 1.1 and 1.2

For f ∈ DL1
loc[0,∞), we define its Fourier cosine transform Fc by

(2.1) Fc(ξ) =

∫ ∞−

0
f(t) cos tξdt (0 < ξ <∞).

We have the following Abel-Tauber theorem for Fourier cosine transforms:

Theorem 2.1 (Pitman [4] and Inoue [2], [3]). Let l ∈ R0 and f ∈
DL1

loc[0,∞). Let Fc be the Fourier cosine transform of f . Then

(2.2) f(t) ∼ t−1l(t) (t→ ∞)
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if and only if

(2.3) Fc(1/·) ∈ Πl with l-index 1.

The Abelian implication (2.2) ⇒ (2.3) is essentially Theorem 7 (iii) of

Pitman [4], while the Tauberian assertion (2.3) ⇒ (2.2) is due to Inoue [2],

[3].

Using Theorem 2.1, we shall prove Theorem 1.1.

Proof of Theorem 1.1. Choose M so large that f is positive, finite

and non-increasing on [M,∞). We set

g(t) =

{
f(M)

f(t)

(0 ≤ t < M),

(M ≤ t <∞).

Let Gs be the Fourier sine transform of g. We set

(2.4) a(x) = x−1 sinx (0 < x <∞).

Then by the mean-value theorem,

(2.5) |a(x) − a(y)| ≤ const.|x− y| (0 < x, y < 1),

so for any λ > 1,

|λxFs(1/(λx)) − xFs(1/x) − λxGs(1/(λx)) + xGs(1/x)|/l(x)

=
1

l(x)

∣∣∣∣
∫ M

0
t {f(t) − f(M)} {a(t/(λx)) − a(t/x)} dt

∣∣∣∣
≤ const.

(1 − λ−1)

xl(x)

∫ M

0
t2|f(t) − f(M)|dt→ 0 (x→ ∞),

whence (1.3) holds if and only if xGs(1/x) ∈ Πl in x with l-index 1. There-

fore we may assume that f is positive, finite and non-increasing on [0,∞).

First we assume (1.2). Then f is integrable over [0,∞), and so, by

integration by parts,

(2.6) Fs(ξ)/ξ =

∫ ∞−

0
h(t) cos tξdt (0 < ξ <∞)



An Abel-Tauber theorem 307

with

(2.7) h(t) =

∫ ∞

t
f(s)ds (0 ≤ t <∞).

Since (1.2) is equivalent to h(t) ∼ t−1l(t) as t→ ∞ (see page 39 of [1]), we

immediately obtain (1.3) by the Abelian implication of Theorem 2.1.

Next, we prove that (1.3) implies (1.2). By the second mean-value the-

orem for integrals,

Fs(ξ) = lim
U→∞

∫ U

0
f(t) sin tξdt = lim

U→∞
f(0+)

∫ ζ

0
sin tξdt

for some ζ ∈ (0, U), and so ξFs(ξ) is bounded on (0,∞). In particular, for

any x > 0, Fs(ξ)(1 − cosxξ)/ξ is integrable over (0,∞). Then by applying

Theorem 38 of Titchmarsh [6] to the pair of I[0,x] and f , we obtain

∫ x

0
f(t)dt =

2

π

∫ ∞

0
Fs(ξ)

1 − cosxξ

ξ
dξ (0 < x <∞).

By Theorem 3.7.4 of Bingham, Goldie and Teugels [1], (1.3) implies

|xFs(1/x)| ∈ R0 in x, so Fs(ξ)/ξ is integrable on (0, 1) whence on (0,∞).

Thus for any x > 0,

∫ x

0
f(t)dt ≤ 4

π

∫ ∞

0

|Fs(ξ)|
ξ

dξ <∞,

whence f is integrable over (0,∞). Again we arrive at (2.6) with (2.7),

and similarly we obtain (1.2) from (1.3) by the Tauberian implication of

Theorem 2.1. �

Following the method of Soni and Soni [5], we shall prove Theorem 1.2

as a corollary of Theorem 1.1.

Proof of Theorem 1.2. We set

f(t) =

{
0

bn

(0 ≤ t < 1/2),

(n− 1/2 ≤ t < n+ 1/2, n = 1, 2, · · · ).
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Then f is in DL1
loc[0,∞), and (1.5) is equivalent to

(2.8) f(t) ∼ t−2l(t) (t→ ∞).

Let Fs be the Fourier sine transform of f . Then by a simple calculation,

Fs(ξ) = a(ξ/2)gs(ξ) (0 < ξ < 2π),

where a is defined by (2.4). So we have for any λ > 1 and x > 0,

{λxFs(1/(λx)) − xFs(1/x)}/l(x)
=a(1/(2λx)){λxgs(1/(λx)) − xgs(1/x)}/l(x)

+ xgs(1/x){a(1/(2λx)) − a(1/(2x))}/l(x).

(2.9)

By Theorem 3.7.4 of Bingham, Goldie and Teugels [1], (1.6) implies

|xgs(1/x)| ∈ R0 in x, so by (2.5) the second term on the right of (2.9)

tends to 0 as x → ∞. Therefore (1.6) implies xFs(1/x) ∈ Πl in x with l-

index 1, which, by the Tauberian implication of Theorem 1.1, implies (2.8)

whence (1.5).

Conversely, we set c(x) = 1/a(x) for x > 0. Then we also have

|c(x) − c(y)| ≤ const.|x− y| (0 < x, y < 1).

Arguing similarly, we obtain (1.6) from (1.5), which completes the proof. �

3. Application to the tail behavior

In this section, we apply Theorem 1.1 to the tail behavior of a probability

distribution. For the related results, we refer to Pitman [4] as well as pp.

336-337 of Bingham, Goldie and Teugels [1], and Inoue [3].

LetX be a real random variable defined on a probability space (Ω,F , P ).

The tail-sum of X is the function T defined by

T (x) = P (X ≤ −x) + P (X > x) (0 ≤ x <∞).

Let U be the real part of the characteristic function of X:

U(ξ) = E[cos ξX] (ξ ∈ R).
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Then we have

{1 − U(ξ)}/ξ =

∫ ∞−

0
T (x) sin ξxdx (0 < ξ <∞).

Since T is finite and non-increasing on [0,∞), limx→∞ T (x) = 0, by Theo-

rem 1.1 we immediately obtain

Theorem 3.1. Let l ∈ R0. Then T (x) ∼ x−2l(x) as x → ∞ if and

only if x2{1 − U(1/x)} ∈ Πl in x with l-index 1.
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