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An Abel-Tauber theorem for Fourier sine transforms

By Akihiko INOUE

Abstract. We prove an Abel-Tauber theorem for Fourier sine
transforms. It can be considered as the analogue of the Abel-Tauber
theorem of Pitman in the boundary case. We apply it to Fourier sine
series as well as to the tail behavior of a probability distribution.

1. Introduction and results

The aim of this paper is to prove an Abel-Tauber theorem for Fourier
sine transforms. It characterizes, for example, the asymptotic behavior
f(t) ~1/t? as t — oo in terms of the Fourier sine transform of f, where f is
a locally integrable, eventually non-increasing function on [0, 00) such that
lim;_.o f(t) = 0. A similar result for Fourier sine series will be obtained as
a corollary.

To state our results, we recall and introduce some notation. We denote
by Ry the whole class of slowly varying functions at infinity; that is, R is
the class of positive measurable [, defined on some neighborhood of infinity,
satisfying

VA >0, xli_)ngol()\:c)/l(:v) =1.

For I € Ry, the class II; is the class of measurable g satisfying
VA > 1, lim {g(Az) — g(z)}/l(z) = clog A

for some constant ¢ called the [-index of ¢g. It is useful to name the class of
functions of which we define the Fourier sine transforms. The function f :
[0,00) — R belongs to DL} [0, co) if it is locally integrable and eventually

loc
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non-increasing on [0, 00), lim;_.~ f(t) = 0. For f € DL}OC[O, o0), we define
its Fourier sine transform Fy by

(1.1) Fy (&) = /Ooo— f(t)sintédt (0 <€ < 0),

where we write fooof to denote an improper integral obtained from fOM by
letting M T co. Since the improper integral on the right converges uniformly
on each (a,00) with a > 0, Fs is a continuous function on (0, 00). See the
proof of Theorem 6 of Titchmarsh [6].

Here is the main theorem of this paper:

THEOREM 1.1. Letl € Ry and f € DL}, [0,00). Let Fy be the Fourier
sine transform of f. Then

(1.2) f&)~t721(t)  (t — o0)
if and only if

(1.3) xFs(1/x) € I1; in x with l-index 1.

The analogue for Fourier sine series is:

THEOREM 1.2. Letl € Ry. Suppose that the real sequence {b,} is
eventually non-increasing, and tends to 0 as n — co. We set

(1.4) 9s(§) = bpsinng (0 <& <2m).
n=1

Then

(1.5) by ~ n"21(n) (n — o0)

if and only if

(1.6) xgs(1/x) € II; in x with l-index 1.
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Now we recall the Abel-Tauber theorem of Pitman [4] which is closely
related to Theorem 1.1. Let [ € Ry and 0 < o < 2. Let f € DL} [0, 00),

loc

and let Fy be the Fourier sine transform of f. Then, by Pitman [4],
(1.7) f(t) ~t7U(t) (t — o0)

if and only if

(o) sin(mar/2)

(18) O~ eT01/0 5 (€ 04).
From this and Theorem 1.1, we see that the behavior (1.2) is a critical case;
we need II-variation to characterize (1.2) in terms of the Fourier sine trans-
form of f. For the related Abel-Tauber theorems for integral transforms,
we refer to Chapter 4 of Bingham, Goldie and Teugels [1].

In the proof of Theorem 1.1, we will find that it is enough to prove the
theorem for f € DL}, [0,00) finite and non-increasing on [0,00). For such
f, we have the inversion formula which represents f by the Fourier sine
transform of f (see Theorem 7 of Titchmarsh [6]). However it is difficult
to use to prove the Tauberian implication (1.3) = (1.2). The difficulty is
in that the problem we have to deal with involves both Il-variation and
improper integrals. The key to the proof is to reduce the problem to the
analogous result of Inoue [2], [3] for Fourier cosine transforms.

The proofs of Theorems 1.1 and 1.2 will be given in section 2. In section
3, we apply Theorem 1.1 to the tail behavior of a probability distribution.

2. Proofs of Theorems 1.1 and 1.2

For f € DL}, [0,00), we define its Fourier cosine transform F. by

loc

(2.1) F.(§) = / f(t) costédt (0 <€ < ).
0
We have the following Abel-Tauber theorem for Fourier cosine transforms:

THEOREM 2.1 (Pitman [4] and Inoue [2], [3]). Letl € Ry and f €
DL} [0,00). Let F, be the Fourier cosine transform of f. Then

loc

(2.2) () ~t7(t) (t — 00)
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if and only if

(2.3) F.(1/-) € II; with l-index 1.

The Abelian implication (2.2) = (2.3) is essentially Theorem 7 (iii) of
Pitman [4], while the Tauberian assertion (2.3) = (2.2) is due to Inoue [2],
(3]

Using Theorem 2.1, we shall prove Theorem 1.1.

ProOOF OoF THEOREM 1.1. Choose M so large that f is positive, finite
and non-increasing on [M, o0). We set

Cfran 0<t<m),
90 =9 4 (M <t < 00).

Let G be the Fourier sine transform of g. We set
(2.4) a(r) =z tsinz (0 <z < o0).
Then by the mean-value theorem,
(2.5) la(x) — a(y)| < const.|x — y 0<z,y<l),
so for any A > 1,
\/\xF (1/(A\z)) — xFs(1/z) — AxGs(1/(Ax)) + 2Gs(1/x)|/1(x)

‘/ t{f(t) = f(M)}{a(t/(Az)) — a(t/z)} dt
<const¢/ 2| f(t) — f(M)|dt — 0 (x — o0)
zl(z) 0 ’
whence (1.3) holds if and only if xG4(1/z) € II; in « with [-index 1. There-
fore we may assume that f is positive, finite and non-increasing on [0, o).

First we assume (1.2). Then f is integrable over [0,00), and so, by
integration by parts,

(2.6) Fs(&)/¢ = /000 h(t) cos t&dt (0 <€ <o)
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with
o0
(2.7) h(t) = / f(s)ds (0 <t<o0).
t

Since (1.2) is equivalent to h(t) ~ t1i(t) as t — oo (see page 39 of [1]), we
immediately obtain (1.3) by the Abelian implication of Theorem 2.1.

Next, we prove that (1.3) implies (1.2). By the second mean-value the-
orem for integrals,

¢
Fy (&) = Uhm / f(t)sintédt = l1m f(O—i—)/ sin t&dt
for some ¢ € (0,U), and so £F5(€) is bounded on (0,00). In particular, for
any x > 0, F5(£)(1 — cosx) /€ is integrable over (0,00). Then by applying
Theorem 38 of Titchmarsh [6] to the pair of I ;) and f, we obtain

/xf(t)dtzz/ooFs(g)LMdg (0 < z < o0).
0 T Jo 3

By Theorem 3.7.4 of Bingham, Goldie and Teugels [1], (1.3) implies
|xFs(1/x)| € Rp in x, so Fg(£)/€ is integrable on (0,1) whence on (0, 00).
Thus for any x > 0,

/f t)dt < = / |F£()d£<oo,

whence f is integrable over (0,00). Again we arrive at (2.6) with (2.7),
and similarly we obtain (1.2) from (1.3) by the Tauberian implication of
Theorem 2.1. [J

Following the method of Soni and Soni [5], we shall prove Theorem 1.2
as a corollary of Theorem 1.1.

PROOF OF THEOREM 1.2. We set

0 0<t<1/2),
{bn n—1/2<t<n+1/2, n=12---).
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Then f is in DL}, [0,00), and (1.5) is equivalent to
(2.8) ft) ~t721(t)  (t— o0).
Let Fs be the Fourier sine transform of f. Then by a simple calculation,

Fs(§) = a(§/2)gs(€§) (0 <& <2m),

where a is defined by (2.4). So we have for any A > 1 and = > 0,

(2.9)
{AeFs(1/(Ax)) — 2 Fs(1/2)}/U(x)
=a(1/(2Az){Azgs(1/(Ax)) — zgs(1/x)}/1(x)
+ 2gs(1/x){a(1/(2A2)) — a(1/(22))}/l(x).

By Theorem 3.7.4 of Bingham, Goldie and Teugels [1], (1.6) implies
|zgs(1/z)| € Rp in x, so by (2.5) the second term on the right of (2.9)
tends to 0 as * — oo. Therefore (1.6) implies zFs(1/x) € II; in x with I-
index 1, which, by the Tauberian implication of Theorem 1.1, implies (2.8)

whence (1.5).
Conversely, we set ¢(z) = 1/a(x) for x > 0. Then we also have

le(x) — ¢(y)| < const.|z — y] 0<z,y<1).
Arguing similarly, we obtain (1.6) from (1.5), which completes the proof. O
3. Application to the tail behavior

In this section, we apply Theorem 1.1 to the tail behavior of a probability
distribution. For the related results, we refer to Pitman [4] as well as pp.
336-337 of Bingham, Goldie and Teugels [1], and Inoue [3].

Let X be areal random variable defined on a probability space (2, F, P).
The tail-sum of X is the function T' defined by

T(zx)=P(X < —x)+ P(X >x) (0 <z <)
Let U be the real part of the characteristic function of X:

U(¢) = Elcos€X] (£ €R).
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Then we have
(1—U(€)} /¢ = /O T(x)sinézdz (0 < £ < o).

Since T is finite and non-increasing on [0, 00), lim; .o T'(x) = 0, by Theo-
rem 1.1 we immediately obtain

THEOREM 3.1. Letl € Ry. Then T(z) ~ 7 %l(z) as * — oo if and
only if z2{1 —U(1/z)} € II; in x with l-index 1.
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