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The Andreotti Grauert vanishing theorem

for dihedrons of Cn

By Giuseppe Zampieri

Abstract. Let X be a complex manifold, OX the sheaf of analytic
functions on X, W an open set of X with C2-boundary M = ∂W (W
locally on one side of M), zo a point of M , po the exterior conormal
to W at zo . If the number of negative eigenvalues for the Levi form
of M in a neighborhood of po is ≥ s− (resp. ≡ s−), then vanishing of
local cohomology groups of OX over W in degree < s− and �= 0 (resp.
�= 0, s−) is stated in [1], [2], [14] (resp. [10]). Let now W be an open
asymptotically convex dihedron with C2 (transversal) faces M1,M2 and
with “generic” edge M3. If the numbers of negative eigenvalues for the
Levi forms of M1,M2, and for the “microlocal” Levi form of M3 are
≥ s− along the exterior conormal cone to W at zo , then vanishing of
cohomology < s− and �= 0 is proved here in the line of [1]. Under the
additional assumption that M3 is real analytic and that T ∗

M3
X contains

no germ of complex curve, the same result as by [10] is also stated. The
content of this paper was exposed at the University Paris XIII, June 21
1991.

1. Notations

Let X be a complex manifold, M a C2- submanifold, π : T ∗X → X

(resp. π : T ∗
MX → M , resp. τ : TM → M) the cotangent bundle to X

(resp. the conormal bundle to M , resp. the tangent bundle to M). Let

orX (resp. orM/X) be the orientation (resp. the relative orientation) sheaf.

Let zo ∈M and p ∈ Ṫ ∗
MX (= T ∗

MX \ {0}) with π(p) = zo. We shall use the

notations

e(p) =TpT
∗X
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TC
zoM =TzoM ∩

√
−1TzoM

λM (p) =TpT
∗
MX

λo(p) =Tpπ
−1π(p)

γM (p) =dimC(λM (p) ∩
√
−1λM (p) ∩ λo(p))

ν(p) =the complex line spanned by the

radial vector field.

We shall drop sometimes zo and p in the above notations.

Let α = αR +
√
−1αI be the canonical 1-form on T ∗X and σ = σR +√

−1σI (=dα) the canonical 2-form. Let XR (resp. (T ∗X)R) denote the

real underlying manifold to X (resp. T ∗X). We shall identify T ∗(XR) 
(T ∗X)R by endowing T ∗(XR) with the 1-form αR.

For an isotropic plane µ ⊂ e and for a subspace λ of e, we shall set

λµ = ((λ ∩ µ⊥) + µ)/µ. For λ (resp. l ) R- (resp. C-) Lagrangian, we

shall set µ = λ ∩
√
−1λ and define Ll/λ(u, v)

def.
= σµ(u, v̄) ∀u, v ∈ lµ where

σµ is the form induced by σ on eµ, and v̄ is the conjugate to v, modulo

µ, in the sum (λ +
√
−1λ)/µ. Let φ be a C2-function on XR at zo with

φ
∣∣
M
≡ 0 and (zo; dφ(zo)) = p. We define the Levi form Lφ(zo) in a local

system of coordinates z ∈ Cn  X, as the Hermitian form with matrix(
∂zi∂z̄jφ(zo)

)
1≤i,j≤n

. According to [15], one may see that

(1.1) Lφ(zo)
∣∣
TC
zoM
∼ Lλo/λM

where “∼” means equivalence in signature and rank. (Cf. also [5] as for

the case of higher codimension.) We shall also write LM (p) instead of

Lφ(zo)|TC
zo
M . We shall define s+,−,0

M (p) to be the numbers of eigenvalues of

Lφ(zo)
∣∣
TC
zo
M

which are respectively > 0, < 0, = 0; by (1.1) they do not

depend on the choice of φ.

We shall denote by Db(X) the derived category of the category of com-

plexes of sheaves with bounded cohomology, and by Db(X; p) the localized

category with respect to the null-system {F ∈ Db(X); p /∈ SS(F)}. (Here

SS(F) is the microsupport in the sense of [10] and [11], a closed conic subset

of T ∗X.) We recall that for a complex F which verifies SS(F) ⊂ T ∗
MX in

a neighborhood of p, p ∈ T ∗
MX, one may find a complex M · of Z-modules

such that F is microlocally isomorphic to the constant complex M ·
M at p
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(i.e. isomorphic in Db(X; p)). This criterion, stated in [10, §6], for M being

a C2-submanifold, easily extends to the case C1 (see [6]).

We shall denote by OX the sheaf of holomorphic functions on X and by

ZW (W ⊂ X locally closed) the sheaf which is 0 on X \W and the constant

sheaf with stalk Z on W . We shall deal with the complex µW (OX)
def.
=

µhom(ZW ,OX) of microfunctions along W (in particular with the complex

µM (OX)), where µhom(·, ·) is the bifunctor of [10].

Finally we shall denote by N(W ) (resp. N(W )o a) the normal cone to

W (resp. the polar antipodal cone to N(W )); this is an open cone of TX

(resp. a closed cone of T ∗X).

2. Statement of the Vanishing Theorems

Let X be a complex manifold, W an open set of X with C2-boundary

M = ∂W (W locally on one side of M), zo a point of M , po the exterior

conormal to W at zo.

Theorem A. (i) ([1]) In the above situation we have

(2.1) lim
−→
B

Hj(W ∩B,OX) = 0 0 < ∀j < s−M (po),

for B describing a system of neighborhoods of zo.

(ii) ( [10]) If moreover s−M (p) ≡ const ∀p ∈ T ∗
MX near po, then (2.1)

holds ∀j �= 0, s−M (po).

Refinements of (2.1) are given by several authors ([14], [2], [10]); in

particular vanishing of (2.1) for j > s−M + soM is also stated. As for Th. A

(ii) the result was already known before [10] under the stronger assumption

of constant rank for LM (p) (cf. e.g. [14]).

The purpose of the present note is to generalize Theorem A to the case of

a dihedron. Let M1,M2 be C2-hypersurfaces of XR through zo, M
+
i , i = 1, 2

open half-spaces with boundary Mi, and let W be the dihedron defined by

W = M+
1 ∩M+

2 . We put M3 = M1∩M2, and assume that M3 is a manifold

which verify the “genericity” condition:

(2.2) T ∗
M3

X zo ∩
√
−1T ∗

M3
X zo = {0}.



236 Giuseppe Zampieri

which is equivalent to γM3(p) = 0 for p ∈ π−1(zo). We denote pi, i =

1, 2 the exterior conormal to Mi, and denote s− the minimum between

s−M1
(p1), s

−
M2

(p2) and s−M3
(p)∀p ∈ Nzo(W )o a.

Theorem 2.1. Let M1, M2 intersect transversally, and let the inter-

section M3 be generic. Then

(2.4) lim
−→
B

Hj(W ∩B,OX) = 0 0 < ∀j < s−

(and

(2.5) lim
−→
B

Γ(B,OX)
∼→ lim

−→
B

Γ(W ∩B,OX) if s− ≥ 1).

In [13, Prop. 11 p. 148] vanishing of (2.4) for j < s−−1, j �= 0 is proved

(in a different frame); in particular the case j = s− − 1 seems not to be

treated.

Theorem 2.2. Let M1, M2 intersect transversally, let (2.2) be satis-

fied, and suppose moreover M3 real analytic with T ∗
M3

X containing no germ

of complex curve. Assume that for a constant s− and for an open set Bo:

(2.6) s−Mi
(p) ≡ s− ∀p ∈ T ∗

Mi
X ∩N(W )oa ∩ π−1(Bo), and ∀i = 1, 2, 3.

Then (2.4) holds ∀j �= 0, s− (and (2.5) is still fulfilled when s− ≥ 1).

(By (2.2), if M3 contains no germ of complex curve, the same is also

true for T ∗
M3

X.)

3. Proofs

Proof of Theorem 2.1

We shall use the notations:

Λi = T ∗
Mi

X ∩N(W )o a, Ni = π(Λi),
o
Λi = Λi \ (Λj ∪ Λk),

o
N i = Ni \ (Nj ∪Nk), j, k �= i.
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(a) We first deal with a neighborhood of the conormal p1 to M1; since

p1 ∈ (Λ1 ∩ Λ3) \ Λ2, we shall forget Λ2 for a while.

Lemma 3.1. We may find a (complex) contact transformation χ be-

tween neighborhoods of p1 and q1
def.
= χ(p1) which interchanges:

(3.1)




T ∗
M3

X → T ∗
M̃3

X, cod M̃3 = 1, s−
M̃3

(q1) = 0

T ∗
M1

X → T ∗
M̃1

X, cod M̃1 = 1.

Proof. We shall deal in the linear space e′ = eν (due to dimR(λMi ∩
ν) = 1). According to [17], to solve (3.1) is equivalent as to find a C-

Lagrangian plane l′o ⊂ e′such that (with λ′
i

def.
= λνMi

):

l′o ∩ λ′
3 = {0},(3.2)

Ll′o/λ
′
3
≥ 0,(3.3)

l′o ∩ λ′
1 = {0}.(3.4)

Now the complex planes l′o which verify (3.4) are an open dense set in the

Lagrangian Grassmannian of e′ (obvious). The ones which verify (3.2),

(3.3) are an open non-empty set. In fact this is clearly non-empty (cf. e.g.

the proof of [10, Prop. 11.3.1]); moreover the rank of Ll′o/λ
′
3

is constant

(= n − 1 − dim(λ′
3 ∩
√
−1λ′

3)) for l′o varying in the open set defined by

l′o ∩ λ′
3 = {0} and hence the signature is constant in each component of the

above set. Thus the problem of finding l′o as in (3.2)–(3.4) can be solved. �

(This was already remarked in [7].)

Remark 3.2. In the same way as before one may construct a con-

tact transformation satisfying the requirements (3.1) but with s−
M̃1

(q1) = 0

instead of s−
M̃3

(q1) = 0.

We shall put in what follows:

Λ̃i = χ(Λi),
o

Λ̃i = χ(
o

Λ̃i), Ñi = π(Λ̃i),
o

Ñ i = π(
o

Λ̃i).
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(b) We recall from [5] that

s−M3
(p1) ≤ s−M1

(p1) ≤ s−M3
(p1) + 1.

We also choose a quantization ΦK of χ by a kernel K according to [10, ch.

11].

Lemma 3.3. Let s−M1
(p1) = s−M3

(p1). Then, if χ is a contact transfor-

mation which satisfies (3.1), we have:

(3.5)




s−
M̃1

(q1) = 0,

Λ̃1 ∪ Λ̃3 = T ∗
Y X for a C1-hypersurface Y,

ΦK(Z o
N1

)  ZY [s−M1
(p1)] in Db(X; q1).

Proof. We remark that T ∗
M̃1

X ∩ T ∗
M̃3

X is clean of codimension 1,

whence M̃1, M̃3 intersect at the order 2 along a submanifold R̃ of codi-

mension 2. In particular TM̃1

∣∣
R̃

= TM̃3

∣∣
R̃

and hence either Ñ1 ∪ Ñ3 or

Ñ1∪ (M̃3 \ Ñ3) is a C1-hypersurface Y . To make the right choice we exploit

ΦK and remark that

SS(ΦK(Z o
N1

)) ⊂ Λ̃1 ∪ Λ̃3 ⊂ π−1(Ñ1 ∪ Ñ3),

SS(ΦK(ZN1)) ⊂ Λ̃1 ∪ (T ∗
M̃3

X \ Λ̃3) ⊂ π−1(Ñ1 ∪ (M̃3 \ Ñ3)).

Hence one of the above complexes has its microsupport contained in T ∗
Y X;

and this complex must then be constant due to [10] and [6]. But we have

ΦK(Z o
N1

) =




ZM̃1
[s−M1

(p1)− s−
M̃1

(q1)] in
o

Λ̃1,

ZM̃3
[s−M3

(p1)] in
o

Λ̃3,

ΦK(ZN1) =




ZM̃1
[s−M1

(p1)− s−
M̃1

(q1)] in
o

Λ̃1,

ZM̃3
[s−M3

(p1) + 1] in T ∗
M̃3

X \ Λ̃3.

(3.6)
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Recall that s−M3
(p1) = s−M1

(p1); hence constancy may hold only for ΦK(Z o
N1

)

(which implies Ñ1 ∪ Ñ3 = Y ∈ C1) and under the additional condition

s−
M̃1

(p1) = 0.

We also observe that ΦK(Z o
N1

) turns out to be a constant sheaf along

Y and by (3.6) this is simple with shift 1
2 + s−M1

(p1) along
o

Λ̃1 and
o

Λ̃3. This

completes the proof of (3.5). �

Denote by ΣM̃i
, i = 1, 2 the closed half–spaces with boundary M̃i and

inward conormal q1.

Lemma 3.4. Let s−M1
(p1) = s−M3

(p1) + 1. Then by the contact transfor-

mation of Remark 3.2, we have

(3.5’)




s−
M̃3

(q1) = 0, ΣM̃1
⊃ ΣM̃3

,

π(Λ̃1 ∪ Λ̃3) = ∂(ΣM̃1
\ ΣM̃3

)+,

ΦK(Z o
N1

)  Z(ΣM̃1
\ΣM̃3

)+ ,

where (·)+ is a component of ·.

Proof. The proof is the same as in Lemma 3.3. �

We should prove Lemma 3.4 (and similarly Lemma 3.3) also by another

argument. We recall that M̃1, M̃3 intersect at the order 2; thus either

ΣM̃1
⊃ ΣM̃3

or ΣM̃1
⊂ ΣM̃3

. But

HomDb(X;p1)(ZM1 ,ZM3)
ΦK HomDb(X;q1)(ZΣM̃1

,ZΣM̃3
[−s−

M̃3
(q1)])

∼= H
−s−

M̃3
(q1)

RΓΣM̃1
(ZΣM̃3

)z′0 , (z′0 = π(q1)).

This gives the first of (3.5’). The proof of the remaining statements is then

easy.

(c) We have

(3.7) ZW
∼← Z o

N1

[−1]⊗ orM1/X in Db(X; p1).
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In fact one uses the distinguished triangle

ZW̄\N1
→ ZW̄ → ZN1

+1→,

applies the functor ·∗ def.
= RHom(·,ZX), and gets

Z o
N1

[−1]⊗ orM1/X → ZW → Z∗
W̄\N1

+1→ .

But

SS(ZW̄\N1
)∗zo = SS(ZW̄\N1

)azo
= the convex cone of the plane T ∗

M3
X zo

bounded by R+p2, R−p1.

Thus p1 /∈ SS(ZW̄\N1
)∗zo and (3.7) follows. We remark that along with (3.7)

we have

ZW
∼← ZM3 [−2]⊗ orM3/X in Db(X;

o
Λ3)(3.8)

ZW
∼← ZM1 [−1]⊗ orM1/X in Db(X;

o
Λ1).(3.9)

(d) We first assume s−M1
(p1) = s−M3

(p1), put s−1
def.
= s−M1

(p1), and denote

by W̃ the open subset of X with boundary Y and exterior conormal q1 (cf.

Lemma 3.2). By (3.5), (3.7) and by the analogous for W̃ , we get

ΦK(ZW )  ΦK(Z o
N1

[−1]⊗ orM1/X)

 ZY [s−1 − 1]⊗ orY/X  ZW̃ [s−1 ]

(3.10)

Let µW̃ (·) = µhom(ZW̃ , ·) be the functor defined in [K-S 1,ch. 5], and recall

the triangle

(3.11)
(
OX

∣∣
W̃

)
z′o
→ RΓW̃ (OX)z′o → µW̃ (OX)qo

+1→ (z′o = π(q1)).
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Since OX z′o ↪→ H0
W̃

(OX) z′o is injective by analytic continuation, then:

HjµW̃ (OX)q1 = 0∀j < 0. By (3.10), by the fact that ΦK(OX) = OX ,

and by [10, Th. 7.4.1], one concludes

(3.12) HjµW (OX)p1 = 0 ∀j < s−1 .

Let now s−M3
(p1) = s−M1

(p1) + 1; in this case we have

ΦK(ZW )  Z(ΣM̃1
\ΣM̃3

)+ [s−1 − 1].

We also remark that

H1
ΣM̃3

(OX)z′0 ↪→ H1
ΣM̃1

(OX)z′0

is injective. Then (3.12) is still fulfilled in this case

(e) One may repeat the same argument as in (a)–(d) and get (3.12) with

p1, s
−
1 replaced by p2, s

−
2 . One may also use (3.10) and get in similar (and

simpler) way:

(3.13) HjµW (OX)p = 0 ∀p ∈
o
Λ3, ∀j < s−M3

(p)

Finally by the triangle

(3.14) (OX)W̄ → RΓW (OX)→ Rπ̇∗µW (OX)
+1→,

we get HjRΓW (OX)zo = 0 if j �= 0, and j < s−1 , s−2 , inf
p∈

o
Λ3

s−M3
(p).

From (3.14), one also gets OXzo  H0
W (OX)zo when the infimum of the

above s−’s is ≥ 1.
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Proof of Theorem 2.2

(a) We first focus our attention in a neighborhood of p1. Observing

that s−M1
(p1) = s−M3

(p1) in the present case, then by the proof of Theorem

2.1 we get ΦK(ZW ) = ZW̃ [s−], (s− = s−1 ) at q1 for W̃ open with C1-

boundary. According to [10, Th. 11.2.8] s−
M̃1

(q) − s−M1
(p) ≡ const; but

s−Mi
(p) ≡ const, s−

M̃i
(q1) = 0 whence s−

M̃i
(q) ≡ 0. We also observe that in

the present situation ΣM̃3
⊃ ΣM̃1

.

Lemma 3.5. W̃ is pseudoconvex in a neighborhood of z′o(
def.
= π(q1)).

Proof. We identify X  Cn and recall from [9, ch. 2, 4] that W̃ is

pseudoconvex at z′o if and only if −log δ, is plurisubharmonic (with δ(z) =

dist(z,X\W̃ ). We remark that ∀z ∈ W̃ there exists an unique z∗ ∈ ∂W̃ such

that δ(z) = |z − z∗| (due to W̃ ⊃ X \ΣM̃3
). We then let S = {z ∈ W̃ ; z∗ ∈

M̃1∩M̃3} (which is a C2–hypersurface), and denote by W̃h, h = 1, 2 the two

components of W̃ \ S. We also define δh to be the distance to M̃h; clearly

∀z ∈ W̃ \S we have δ = δ1 or δ3 at z whence δ ∈ C2(W̃ \S)∩C1(W̃ ). It is

also easy to see (by adapting the proof by [9, Th. 2.6.12]) that −logδ
∣∣
W̃\S

is plurisubharmonic if and only if s−
M̃h

(q′) ≡ 0∀q′ ∈ Ñh ×M̃h
T ∗
M̃h

X. Thus

∀w ∈ Cn and ∀g ∈ C∞
c (W̃ ), g ≥ 0:

∫
W̃

∑
(−logδ)wiw̄j∂i∂̄jgdλ =

∑
h=1,2

∫
W̃h

∑
∂i∂̄j(−logδ)wiw̄jgdλ ≥ 0

(which holds, by Stokes formula, because δ ∈ C2(W̃ \ S) ∩ C1(W̃ ) with

bounded second derivatives). The lemma immediately follows. �

By the above lemma we have HjRΓW̃ (OX)z′ = 0∀j �= 0, (z′ = π(q))

due to [9, Corollary 7.4.2]. By the triangle (3.11) and by (3.10), we then

conclude

(3.15) HjµW (OX)p1 = 0 ∀j �= s−.

(b) The same as (3.15) also holds for p2 and ∀p ∈
o
Λ3. We need now:
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Lemma 3.6. We have

(3.16) HjRπ̇∗µW (OX) zo = 0 ∀j �= s−.

Proof. We set F = Hs−µW (OX), Z = Ṅzo(W )o a = R+p1 ∪R+p2 ∪
intNzo(W )o a and denote Bi, i = 1, 2 conic neighborhoods of pi in Z. Recall

that M3 is real analytic and that T ∗
M3

X contains no germ of complex curve.

Then [16] applies and gives that F
∣∣ o
Λ3

= Hs−+2µM3(OX)
∣∣ o
Λ3

is conically

flabby. In particular

(3.17) Hj(
o
Λ3,F) = 0∀j �= 0; Γ(

o
Λ3,F) � Γ(

o
Λ3 ∩Bi,F), i = 1, 2

(where“�” stands for surjectivity). By an elementary application of the

Mayer-Vietoris long exact sequence (and by taking the Bi’s small enough)

one gets

Hj(B1 ∪B2 ∪
o
Λ3,F) = 0 ∀j �= 0,

which implies immediately (3.16). �

By the triangle (3.14) and by Lemma 3.6 we get at once the conclusion

of the proof of Theorem 2.2.

4. Remarks and Examples

Remark 4.1. Let M1, M2 be C2-hypersurfaces, M+
1 , M+

2 open half-

spaces with boundary M1, M2, and set M3 = M1 ∩M2. We do not assume

that M1, M2 are transversal but still suppose that M3 is a manifold and

that there is an inclusion e.g. M+
2 ⊃M+

1 . We denote by W a domain whose

boundary is the union of one component of M1 \M3 and one of M2 \M3

and which has proper conormal cone. We also assume that ∂W ∈ C1

(or equivalently that T ∗
M1

X ∩ T ∗
M2

X = M3 ×M1 T ∗
Mi

X, i = 1, 2). Then

we get (2.4) 0 < ∀j < s− (resp. ∀j �= 0, s− if s−Mi
(p) ≡ s−∀p ∈ Λi

def.
: =

T ∗
Mi

X∩N(W )o a, i = 1, 2); we also get (2.5) if s− ≥ 1. In fact we first remark

that s−M1
(p1) ≤ s−M2

(p1) due to M+
2 ⊃M+

1 . Assume first s−M1
(p1) = s−M2

(p1).
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We then perform a contact transformation χ similar as in §3 but satisfying

in the present case:

χ(T ∗
M1

X) = T ∗
M̃1

X, codim M̃1 = 1, s−
M̃1

(q1) = 0;

χ(T ∗
M2

X) = T ∗
M̃2

X, codim M̃2 = 1.

By quantization we get accordingly (with s−i = s−Mi
(p1) and s̃−i = s−

M̃i
(q1)):

ΦK(Z∂W ) =




ZM̃1
[s−1 ] in

o

Λ̃1

ZM̃2
[s−2 − s̃−2 ] in

o

Λ̃2

ΦK(ZM+
2 \M+

1
) =




ZM̃1
[s−1 ] in

o

Λ̃1

ZM̃2
[s−2 − s̃−2 − 1] in T ∗

M̃2
X \

o

Λ̃2.

Thus constancy may hold only for the first sheaf and provided that s̃−2 = 0.

The proof then goes in the same line as in §3. The case s−2 = s−1 + 1 is

similar.

Remark 4.2. It seems that we may extend Theorem 2.2 to polyhe-

drons. Let M+
i , i = 1, ...,m be half-spaces with C2 transversal bound-

aries and let W = ∩
i
M+

i . Let β = (β1, . . . , βm), βi ∈ {0, 1}, define Mβ =⋂
{i:βi=1}

Mi and assume that Mβ, |β| = m is generic at zo, zo ∈ Mβ (i.e.

γMβ
(p) = 0, p ∈ π−1(zo)). We remark that if γMβ

(p) = 0 holds for |β| = m,

then it also holds ∀|β| ≤ m. If we then suppose that

s−Mβ
(p) ≡ s− ∀p ∈ Ṫ ∗

Mβ
X ∩N(W )o a ∩ π−1(Bo), ∀β,

we get (2.4) ∀j �= 0, s− (and (2.5) when s− ≥ 1). We shall prove it in

our forthcoming papers. It seems that the above conclusions also hold

for polyhedrons with non-transversal faces (but with C1-boundary) in the

frame of Remark 4.1.

Example 4.3. (Dihedron with transversal faces.) Let X = Cn with

coordinates z = (z1, z2, z
′), z = x +

√
−1y, let M1 = {z ∈ X; y1 = y2 +
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|y′|2},M2 = {y1 = −y2 − |y′|2},M3 = {y1 = 0, y2 = −|y′|2},W = {y2 >

−|y′|2,−(y2 + |y′|2) < y1 < y2 + |y′|2}. In this case s−Mi
(p) ≡ n − 2∀p ∈

T ∗
Mi

X ∩N(W )o a, i = 1, 2, 3. It follows (2.4) ∀j �= 0, n− 2 (and (2.5) when

n > 2).

Example 4.4. (Dihedron with C1-boundary.) Let W = {z ∈ X; y1 >

−|y′|2 + c1y
2
2 for y2 ≥ 0; y1 > −|y′|2 + c2y

2
2 for y2 ≤ 0} (c1 and c2 ≥ 0, c1 �=

c2). We still have (2.4) ∀j �= 0, n− 2 (and (2.5) for n > 2).
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