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On exterior Galois representations

associated with open elliptic curves

By Hiroaki Nakamura

Abstract. We give an explicit formula for the two variable power
series meta-abelianizing the exterior Galois representations in the fun-
damental groups of punctured elliptic curves. Some applications to
Grothendieck’s anabelian conjecture are presented.

§0. Introduction and main statements

Let C be a smooth curve over a number field k, and l a rational prime

number. Then we have a canonical exterior Galois representation

ϕC : Gk → Outπ1(C̄)(l),

where Gk = Gal(k̄/k) is the absolute Galois group of k, π1(C̄)(l) is the max-

imal pro-l quotient of the profinite fundamental group π1(C̄) of C̄ = C⊗ k̄,
and ‘Out’ denotes the continuous outer automorphism group. If C is a

smooth curve of genus g with n (k-rational) points punctured, then the

image of the Galois representation ϕC is known to lie in the so-called pro-l

mapping class group Γg,n ⊂ Outπ1(C̄)(l) which is defined as the subgroup

of all the braid-like outer automorphisms of π1(C̄)(l) (cf.[NT]). In [NT],

we showed that one of the basic themes of the theory of exterior Galois

representations is to construct nontrivial Galois images in explicit locations

of the weight graduation of the ‘Torelli subgroup’ of Γg,n. The purpose of

this paper is to give a second step of the investigation in the case where

C is an open elliptic curve, especially in the case (g, n) = (1, 1). In [T],
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H.Tsunogai studied a letter of S.Bloch [Bl], and considered a natural homo-

morphism of the Torelli subgroup of Γ1,1 into the commutative power series

ring Zl[[T1, T2]]. Let E be an elliptic curve over k with origin O ∈ E(k), and

let k(1) denote the overfield of k generated by the coordinates of l-power

division points of E. Then, by composing ϕE\{O} with the above homo-

morphism, we obtain a natural Galois representation into the power series

ring:

α : Gk(1) → Zl[[T1, T2]] (σ �→ ασ).

Our main result is to give an explicit formula for the power series ασ as

follows.

Theorem A (4.12). In the ring Ql[[U1, U2]] with Ui = log(1+Ti) (i =

1, 2), we have

ασ(T1, T2) =
∑
m≥2
even

1

1− lm

∑
i+j=m
i,j≥0

κij(σ)
U i1U

j
2

i!j!
(σ ∈ Gk(1)).

Here κij : Gk(1) → Zl is an explicit character with Kummer properties

along a coherent sequence of special values of products of fundamental theta

functions.

See (3.11.4-5) for precise characterization of κij . The above formula is

an elliptic analogue of Ihara’s power series Fσ (the universal power series for

Jacobi sums [Ih], [IKY]). It would suggest interesting problems to expect

that our ασ may have possible arithmetic or motivic aspects analogous to

those of Fσ as in [De],[Ih],[IK] etc. The characters κij (i+ j = m) give the

coordinates of a certain natural element of H1(k, SymmTlE(1))⊗Ql. The

author does not assure himself yet how it can be related with the elliptic

polylogarithms studied by Beilinson-Levin [BL].

A partial nonvanishing result for κij (3.12) insures the existence of non-

trivial Galois images in the Torelli subgroup of Γ1,1 sufficiently enough to

give new results on the following analogue of the Tate conjecture in genus

one case.

Let OutGk
π1(C̄)(l) denote the centralizer of the Galois image ϕC(Gk) in

Outπ1(C̄)(l). Then, by the standard functoriality of π1, we obtain a natural
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homomorphism Φ
(l)
C of the k-automorphism group of C into OutGk

π1(C̄)(l):

Φ
(l)
C : AutkC → OutGk

π1(C̄)(l).

Suppose that C is of hyperbolic type, i.e., the associated Riemann surface

of C is uniformized by the complex upper half plane. Then AutkC is a

finite group faithfully acting on the 1-dimensional homology group of C,

and hence the map Φ
(l)
C turns out to be injective (cf. also (1.8) below). In

this situation, our fundamental question is whether OutGk
π1(C̄)(l) can be a

finite group (Conjecture C of [N4]), or more strongly, whether Φ
(l)
C can be a

bijective mapping. These types of problems are suggested in Grothendieck

[G] as “anabelian” Tate conjectures.

As an application of Theorem A and special properties of the power

series ασ, we obtain the following

Corollary B (5.2). Let E be an elliptic curve over a number field

k with EndkE ∼= Z, S a nonempty finite subset of k-rational points of E,

and l a rational prime number. Then OutGk
π1(Ē \ S)(l) is a finite group

isomorphic to a subgroup of {±1}×Sn. Here n is the cardinality of S, and

Sn denotes the symmetric group of degree n.

In fact, after some preliminary samples of C answering these questions

positively ([N3],[N4] §2), we showed finiteness of OutGk
π1(C̄)(l) for suffi-

ciently general open curves C in a collaboration with H.Tsunogai ([NT]).

Our results also show that the bijectivity of Φ
(l)
C can hold true for some

optimistic curves C of any given genus. Our application of the power series

ασ for proving Corollary B is motivated by the previous work [N3] on the

fundamental group of P1 − {0, 1,∞} in which the role of ασ in the present

paper was played by Ihara’s power series Fσ
In [N1-2], the author considered Grothendieck’s another problem of

whether the isomorphism class of a smooth hyperbolic curve C can be char-

acterized by its profinite fundamental group π1(C) as an extension group

of Gk. As an application of the above results, we obtain

Corollary C (5.5). Let Ei be an elliptic curve over a number field

k, and Si a finite subset of k-rational points of Ei containing the origin
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(i = 1, 2). Suppose that EndkE1
∼= Z and that either of the following

conditions (a) or (b) is satisfied:

(a) S1 contains a non-torsion point of E1;

(b) S1 consists of l-power division points of E1 for a prime l.

Then two open curves E1 \ S1 and E2 \ S2 are isomorphic over k if and

only if their profinite fundamental groups are isomorphic as Gk-augmented

profinite groups.

The organization of the present paper is as follows. In §1, we prepare

some basic notations, and give a brief review of the graded coordinate

systems on pro-l mapping class groups. In §2, certain l-adic characters

νab : Gk(1) → Zl are constructed from a tower of theta functions. This

construction was motivated by Bloch’s suggestive use of Siegel functions

[Bl] and Deligne’s construction in the cyclotomic case ([De] §16). In §3,

we define fundamental measures µ(r)(σ) (σ ∈ Gk(1), r ≥ 0) by summing

up those νab in an l-adic way, and study their basic properties. In §4, we

introduce the power series ασ, and obtain Theorem A by comparing it with

µ(0)(σ) studied in §3. In §5, proofs of Corollaries B, C will be given. In

§6, we discuss the Magnus representation associated with an elliptic curve

minus one point and its relation to our ασ.

This paper was submitted to the University of Tokyo in the spring of

1993 as part of the author’s doctoral dissertation. The author would like to

express his sincere gratitudes to the referees of the dissertation. In a more

recent paper [N6], the author obtained an alternative proof of Corollary B

which can be generalized to any affine curves of higher genera. The new

proof depends on a construction of different kinds of Galois images inherited

from Soule’s characters of genus 0 case. It turned out that the genus 1 case

treated in the present paper together with the genus 0 case treated in a

series of works by Ihara (e.g. [Ih3]) form the especially important two cases

among the cases of all genera.

§1. Preliminaries

We use the notation N (resp. Z) to denote the set of nonnegative integers

(resp. the ring of rational integers). For a, b ∈ Z, set [a, b] = {x ∈ Z | a ≤
x ≤ b} and [a, b) = {x ∈ Z | a ≤ x < b}. We denote by Q (resp. R,C)

the field of rational numbers (resp. real numbers, complex numbers), and
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by Zl the ring of l-adic integers for a prime l. In this paper, k denotes a

number field of finite degree over Q embedded in C with algebraic closure

k̄ ⊂ C, and l denotes a rational prime number.

(1.1) Let E be an elliptic curve over k with origin O ∈ E(k), and S a

nonempty finite subset of k-rational points of E. We assume O ∈ S. Let us

denote by ES the complement affine curve E \ S over k. When S = {O},
we also write E0 = ES . There is a homotopy exact sequence of profinite

fundamental groups

(1.2) 1 −−−→ π1(ĒS) −−−→ π1(ES)
pES/k−−−→ Gk −−−→ 1,

where ĒS = ES ⊗ k̄, Gk = Gal(k̄/k). We fix an algebraically closed field Ω

over C with infinite transcendental degree, and when we speak of π1 without

reference to base points, the reader should understand that the base points

are taken to be suitable ones valued in Ω.

(1.3) We denote by π1(ĒS)(l) the maximal pro-l quotient of π1(ĒS),

and define a quotient group π
(l)
1 (ES) of π1(ES) to fit in the following exact

sequence naturally.

(1.4) 1 −−−→ π1(ĒS)(l) −−−→ π
(l)
1 (ES)

pES/k−−−→ Gk −−−→ 1.

From this we obtain the exterior Galois representation

(1.5) ϕES
: Gk → Outπ1(ĒS)(l).

Here for each σ ∈ Gk, ϕES
(σ) is the class of automorphisms of π1(ĒS)(l)

induced from the conjugations by elements of p
−1
ES/k

(σ).

(1.6) By Grothendieck’s theorem, it is possible to identify π1(ĒS) with

the profinite completion of the topological fundamental group of ES(C).

From this we may consider π1(ĒS)(l) to be presented as

π1(ĒS)(l) ∼= Π1,n = 〈x1, x2, z1, . . . , zn | [x1, x2]z1 . . . zn = 1〉pro−l,

such that each zj gives a generator of an inertia group over a point of S

(n : the cardinality of S, [x1, x2] = x1x2x
−1
1 x−1

2 ).
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(1.7) In [NT] §2,3, following works of Asada, Kaneko [AK],[K], we stud-

ied some basic formation of pro-l mapping class groups. We shall recall

some notations and results in loc.cit. in our context of genus one for the

convenience of readers. An automorphism of Π1,n which stabilizes the union

of conjugacy classes of the cyclic groups 〈zj〉 (1 ≤ j ≤ n) is called (full)

braid-like automorphism of Π1,n. The group of all braid-like automorphisms

of Π1,n (denoted Γ̃1,[n]) contains the inner automorphism group IntΠ1,n of

Π1,n. The (full) pro-l mapping class group Γ1,[n] is the quotient group

Γ̃1,[n]/IntΠ1,n If a braid-like automorphism of Π1,n preserves each conju-

gacy class of 〈zj〉 (1 ≤ j ≤ n) respectively, then it is called pure. (〈∗〉
means the smallest closed subgroup containing ∗.) We denote the group of

pure braid-like automorphisms of Π1,n by Γ̃1,n, and set Γ1,n = Γ̃1,n/IntΠ1,n.

The group theoretic weight filtration Π1,n = Π1,n(1) ⊃ Π1,n(2) ⊃ . . .

(due to Oda-Kaneko) is defined by the rule: Π1,n(2) = [Π1,n,Π1,n] ·
〈z1, . . . , zn〉, Π1,n(m) = 〈[Π1,n(i),Π1,n(j)] | i+ j = m, i ≥ 0, j ≥ 0〉 (m ≥ 3).

By using this, we define the (induced) weight filtration Γ̃1,[n] ⊃ Γ̃1,n(1) ⊃
Γ̃1,n(2) ⊃ . . . by

Γ̃1,n(m) =

{
f ∈ Γ̃1,n

si(f) ∈ Π1,n(m+ 1)(i = 1, 2)

f(zj)
m∼ zj(j = 1, · · · , n)

}
(m ≥ 1),

where si(f) = f(xi)x
−1
i (i = 1, 2), and

m∼ denotes conjugacy by an element

in Π1,n(m).

By taking natural projection images, we introduce a filtration {Γ1,n(m)}
in Γ1,[n]. It turns out that

⋂
m Γ1,n(m) = {1} (cf.[A]). Each graded quotient

module grmΓ1,n (m ≥ 1) is a free Zl-module of finite rank, and the con-

jugate action of Γ1,[n] on it factors through Γ1,[n]/Γ1,n(1) ∼= GL2(Zl) × Sn.

We know how to compute explicitly the GL2(Zl) × Sn-actions on grmΓ1,n

(m ≥ 1) through certain ‘coordinates’ introduced in [NT] (see also [NT2]).

Coordinate systems of this kind are also constructed in the case of higher

genera ([AK],[K],[NT],[NT2]), and are called the graded coordinate systems

on the pro-l mapping class groups.

(1.8) Let us denote byOutGk
π1(ĒS)(l) the centralizer of the Galois image

ϕES
(Gk) in Outπ1(ĒS)(l). We call OutGk

π1(ĒS)(l) the Galois centralizer of

the curve ES . The hyperbolicity of the curve ES ensures that the canonical
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mapping

Φ
(l)
ES

: AutkES → OutGk
π1(ĒS)(l)

gives an injective homomorphism. See also [G], [N5] for discussions about

the injectivity properties of these kinds of homomorphisms in a more general

setting.

(1.9) It is well-known that the Galois image ϕES
(Gk) is contained in the

pro-l mapping class group Γ1,n. (If S were not pointwise k-rational and

just defined over k, then the image would lie in Γ1,[n].) On the other hand,

we also know that OutGk
π1(ĒS)(l) is contained in Γ1,[n]. This is due to the

fact that the conjugacy union of inertia subgroups in π1 is characterized in

terms of the cyclotomic character (see [N4] 2.1).

(1.10) A principle established in [NT] for estimating a Galois centralizer

Z was as follows. Firstly, by a weight argument, we can embed Z into the

top graduation Γ/Γ(1) of the pro-l mapping class group Γ (in our case, into

GL2 × Sn.) Faltings’ theorem then imposes a first condition that Z must

be contained in the invertibles of the Zl-tensored endomorphism ring of the

Jacobian. Secondly, any Galois image in the Torelli part Γ(1) has to be fixed

by the conjugate action of Z. If such ‘Torelli-images’ are constructed in

explicit locations of graduations grmΓ, then its effect on Z can be evaluated

by the graded coordinate system described in (1.7). In some optimistic cases

of curves, these conditions would suffice to imply finiteness of Z.

§2. Tower of theta functions

We fix a rational prime l.

(2.1) We first recall some facts about special theta functions. Let L =

Zω1 ⊕ Zω2 be a lattice in the complex plane C with τ = ω1/ω2 belonging

to the upper half plane, and let

σ(z,L) = z
∏
ω∈L′

(1− z

ω
) exp(

z

ω
+

1

2
(
z

ω
)2)

be the Weierstrass σ-function of L in the complex variable z (L′ = L\{0}).
The fundamental theta function θ(z,L) is defined by

θ(z,L) = ∆(L)e−6η(z,L)zσ(z,L)12
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where

∆(L) = (
2πi

ω2
)12qτ

∞∏
n=1

(1− qnτ )24 (qτ = exp(2πiω1/ω2)),

η(z,L) = s2(L)z + πz̄/ML

(s2(L) = lim
s→0
s>0

∑
ω∈L′

1

ω2|ω|2s , ML = (ω1ω̄2 − ω̄1ω2)/2i).

It is an even non-holomorphic function on C. The following specialized

formulae will be used frequently in this paper.

(2.2) Proposition. For n ≥ 0, we have

θ(ω0, l
n
L) = ζ · θ(ω0 + ω, lnL) (ω0 ∈ L, ω ∈ lnL, ζ ln = 1),(1)

θ(ω0, l
n
L) = ζ

∏
ω∈lnL/ln+1L

θ(ω0 + ω, ln+1
L),(2)

(ω0 ∈ L \ lnL, ζ ln+1
= 1)

l12(n−m) = ζ
∏

ω∈lmL/lnL

ω 
∈lnL

θ(ω, lnL) (0 ≤ m < n, ζ l
n−m

= 1).(3)

θ(lmω0, l
n
L) = θ(ω0, l

n−m
L) (ω0 ∈ L, 0 ≤ m ≤ n).(4)

Proof. (1) follows from [KL] (K2) p.28. (2),(3) are just special forms

of the distribution relations due to Ramachandra-Robert ([KL] p.43). (4)

follows from [KL] (K0) p.27. �

(2.3) Definition. For m ≥ 1, we define a meromorphic function

θm(z) on C by

θm(z) =
θ(z, lmL)l

2

θ(z, lm−1L)
=

∆(lmL)

∆(lm−1L)

∏
ω∈lm−1L/lmL

ω 
∈lmL

∆(lmL)

(℘(z, lmL)− ℘(ω, lmL))6
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where ℘(z,L) is the Weierstrass ℘-function:

℘(z,L) =
1

z2
+

∑
ω∈L′

(
1

(z− ω)2
− 1

ω2
).

It is an elliptic function with period lattice lmL. This function has zeros of

order l2 − 1 in lmL and simple poles in lm−1L \ lmL.

(2.4) Given an elliptic curve E over k, we choose a period lattice L =

Zω1⊕Zω2 with C/L ∼= E(C) as in (2.1) whose ℘-function ℘(z,L) gives the

‘x-coordinate’ of a Weierstrass model for E/k. Let Em → E be the finite

etale covering of E over k correspoinding to the projection C/lmL → C/L
(m ≥ 0), and let Em0 ⊂ Em be the pull back of E0 = E \ {O}. We

choose and fix a point b∗ = −εω1 − εω2 ∈ C for a sufficiently small real

number ε > 0, and let b∗m ∈ Em0 (C) be the image of b∗. As a generator

system of the fundamental group π1(E0(C), b∗0), we define loops xi (i =

1, 2) to be the image of the segment from b∗ to b∗ + ωi (i = 1, 2). Then

z = [x1, x2]
−1 is homotopic to a simple loop around O inside the square of

vertices b∗, b∗ + ω1, b
∗ + ω2, b

∗ + ω1 + ω2.

(2.4.1) For each (a, b) ∈ N2, introduce the notation xab to denote xa1x
b
2

when a ≥ b and xb1x
b
2x
a−b
1 when a < b, and set zab = xabzx

−1
ab . We also

define a bijection N→ N2 (j �→ (a(j), b(j))) as follows. Let s be the unique

integer with s2 ≤ j < (s+ 1)2 and put t = j − s2. If t ≤ s (resp. t > s), we

set (a(j), b(j)) = (t, s) (resp. = (s, 2s− t)).

(2.4.2) Let zj denote za(j),b(j) for j ∈ N. Then it follows that for each

m ≥ 0, π1(Ē
m
0 ) has a generator system xl

m

1 , xl
m

2 , zj (0 ≤ j ≤ l2m − 1) with

a relation

[xl
m

1 , xl
m

2 ]z0z1 . . . zl2m−1 = 1.

(2.5) Let us fix a generic geometric point η : Spec(Ω) → Ē, and let

M ⊂ Ω be the maximal extension of the function field k(E) of E unramified

outside the origin. Then π1(E0, η) is identified with Gal(M/k(E)). Now

we have another geometric point b∗m : SpecΩ→ Ēm corresponding to b∗m ∈
E(C) of (2.4). Choose a chemin γ from b∗0 to η. Then a lift ηm : Spec(Ω)→



206 Hiroaki Nakamura

Ēm of η is determined naturally by b∗m and γ. In this situation, we have

the following commutative diagram:

π1(E0, b
∗
0)

∼−−−→ π1(E0, η) = Gal(M/k(E))�
�

π1(E
m
0 , b∗m)

∼−−−→ π1(E
m
0 , ηm) = Gal(M/k(Em))

(2.6) For each m ≥ 1, θm(z) gives a function contained in k(Em) (2.3).

The Kummer extension k̄(Em)(θ
1/lN

m ) is the fixed field of an open subgroup

Hm,N of π1(Ē
m
0 ). Let ϑm : π1(Ē

m
0 )→ Zl be a homomorphism defined by

ϑm(xl
m

1 ) = −l(l − 1)/2

ϑm(xl
m

2 ) = l(l − 1)/2

ϑm(zab) =




l2 − 1, (a, b) ∈ lmN2

−1, (a, b) ∈ lm−1N2 \ lmN2,

0, otherwise.

It is easy to see that Hm,N is the kernel of ϑm mod lN . If we set Hm = Hm,0,

Hm,∞ = ∩NHm,N , then the quotient group Hm/Hm,∞ is isomorphic to Zl
generated by the image of z.

(2.7) Let k(1) denote the subfield of k̄ generated by the coordinates of

the l-power division points of E/k. Denote by Km,N the function field

k(1)(Em0 )(θ
1/lN

m ) and by H̃m,N the Galois group of M over Km,N (0 ≤ N ≤
∞). These are well-defined as k(1) contains µl∞ , the set of l-power roots of

unity. In the terminology of [N1] §2, the triple (Hm,N , H̃m,N , k(1)) forms a

“model” in (π
(l)
1 (E0), pE0/k).

(2.8) Definition. For each σ ∈ Gk(1), m ≥ 2, (a, b) ∈ N2, we define

an l-adic integer νmab(σ) ∈ Zl as follows.

(2.8.1) If (a, b) ≡ (0, 0) mod lm−1, then νmab(σ) = 0.

(2.8.2) Suppose (a, b) �≡ (0, 0) mod lm−1. Choose a lift σm ∈ p
−1
E0/k

(σ) ∩
H̃m,∞. Then ν = νmab(σ) is defined as an l-adic integer such that

σmzabσ
−1
m is conjugate to z−νzabzν in Hm,∞.
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The l-adic integer ν as in (2.8.2) is determined uniquely because in this

case zab ∈ Hm,∞ and the conjugacy classes of 〈zab〉 in Hm,∞ correspond

bijectively to the places of k̄Km,∞ lying over an unramifed place of k̄Km.

Notice that if (a, b) ≡ (a′, b′) mod lm, then νmab(σ) = νma′b′(σ).

(2.9) If (a, b) ∈ Z2\ lmZ2, then the value θ(aτ+b, lm(Zτ+Z)) considered

as a function of τ in the upper half plane of C gives a modular l-unit

of level 2l2m whose q-expansion has coefficients in Q(µl∞) ([KL] Theorem

1.1 (p.29) and Theorem 2.2 (p.37)). Therefore we see that the special

values θ(aω1 + bω2, l
mL) and θm(aω1 + bω2) are contained in the field k(1)

(cf. [Sh] 6.2). Let (ζN ) be the standard generator of Tl(Gm) such that

ζN = exp(2πi/lN ).

(2.10) Lemma. If (a, b) ∈ N2 \ lm−1N2, then

(σ − 1)θm(aω1 + bω2)
1/lN = ζ

(1−l2)νmab(σ)
N

for each σ ∈ Gk(1). Here the action of (σ − 1) is understood to be multi-

plicative.

Proof. Let ν = νab(σ) and let P ∈ Em0 (k̄) be the point lying below

aω1 + bω2. Denote the normalization of Em0 in the function field Km,N

by Um,N . If Q ∈ Um,N (k̄) lies over P , then σQ = σ∗Q is also above P

(σ∗ = id ×k(1) Spec(σ−1)). So a covering transformation of Um,N over Em0
carries Q into σQ. If [z] denotes the transformation corresponding to the

image of z in Gal(Km,N/Km) then I[z]Q = z−1IQz where I∗ denotes the

conjugacy union of the inertia groups over ∗. Thus IσQ = σmIQσ
−1
m =

z−νIQzν = I[z]νQ, hence σQ = [z]νQ. If ψm : Um,N → Gm is the pull-back

of θm over k(1), then σ∗(ψmQ) = ψm(σ∗Q) = ψm([z]νQ) = ζ
−ν(l2−1)
N (ψmQ).

Since ψm(Q)l
N

= θm(P ), this means that (σ − 1)(θm(P )1/l
N

) = ζ
−ν(l2−1)
N

on Gm. �

§3. Equivariant measures

(3.1) Let l be a prime and m ≥ 1 an integer. We identify [0, lm)2

with (Z/lmZ)2 by (a, b) �→ (a, b) mod lm. An element of the group ring
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Zl[(Z/lmZ)2] is considered as a Zl-valued measure of the discrete space

[0, lm)2. For (a, b) ∈ [0, lm)2, we denote by eab the element of Zl[(Z/lmZ)2]

corresponding to the Dirac measure supported at (a, b) mod lm. The group

GL2(Z/lmZ) acts on (Z/lmZ)2 ∼= [0, lm)2 in the standard way on the left.

By composing this action with the canonical map GL2(Zl)→ GL2(Z/lmZ),

we get an induced action of GL2(Zl) on Zl[(Z/lmZ)2] as follows:

(3.2) g · (
∑

(a,b)∈[0,lm)2

c(ab)
·eab) =

∑
(a,b)

cg−1(ab)
·eab (g ∈ GL2(Zl), c(ab)

∈ Zl).

For simplicity, we shall often write 0 for (0, 0) ∈ [0, lm)2.

(3.3) Let E/k be an elliptic curve over k, and TlE the l-adic Tate module.

Choose (ω1, ω2) as in (2.4) which is also regarded as a basis of TlE, and

identify Z2
l with TlE by

(
a
b

)
�→ aω1 + bω2. Then the Galois action on TlE

determines a homomorphism

ρ : Gk → GL2(Zl)

such that σ(aω1 + bω2) = (ω1, ω2)ρ(σ)
(
a
b

)
. The complete group ring A =

Zl[[Z2
l ]] can be considered as the space of Zl-valued measures on Z2

l denoted

Meas(Z2
l ). The left action of GL2(Zl) can be given by the rule

(3.4)

∫
gU

gλ =

∫
U
λ (g ∈ GL2(Zl), λ ∈ A = Meas(Z2

l )).

The l-adic cyclotomic character χ of Gk is given by det(ρ), and we will

consider A as a Galois module by

σµ = ρ(σ)χ(σ)µ (σ ∈ Gk, µ ∈ A).

The measure space A considered as a Galois module in this way will be

denoted by A(1) = Zl[[Z2
l ]](1).

(3.5) For σ ∈ Gk(1), we define µm(σ) ∈ Zl[(Z/lmZ)2] by

µm(σ) =
∑

(a,b)∈[0,lm)2

(a,b) 
=(0,0)

µm(a, b;σ)eab,
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where

µm(a, b;σ) = −(1− l2)
∞∑
i=0

νm+1+i
ab (σ)l2i.

Since θm+1+i(z) = θ(z, lm+1+iL)l
2
/θ(z, lm+iL) by definition (2.3), it follows

from Lemma (2.10) that

(3.5.1) (σ − 1)θ(aω1 + bω2, l
m

L)1/l
N

= ζ
µm(a,b;σ)
N

for (a, b) �≡ 0 mod lm. We decompose µm(σ) as

µm(σ) =
m−1∑
r=0

µ(r)
m (σ),

where

µ(r)
m (σ) =

∑
(a,b)≡0 mod lr

(a,b) 
≡0 mod lr+1

µm(a, b;σ)eab.

By the distribution relation (2.2)(2), we see that {µ(r)
m (σ) | m > r}m forms

a compatible system with respect to the projection maps Zl[(Z/lm+1Z)2]→
Zl[(Z/lmZ)2] (m > r). Therefore we can give the following definition

(3.5.2) Definition. µ(r)(σ) = lim←−m>r µ
(r)
m (σ).

Obviously, we have µ(r)(σ1σ2) = µ(r)(σ1) + µ(r)(σ2) for σ1, σ2 ∈ Gk(1).

(3.6) Let Xi ∈ A be the image of ωi and put Ti = Xi−1 (i = 1, 2). Then

A = Meas(Z2
l ) is identified with the commutative formal power series ring

Zl[[T1, T2]]. When we emphasize that an element λ ∈ A is regarded as a

formal power series in variables T1, T2, we write λ = λ(T1, T2). Conversely,

if a formal power series F (T1, T2) is considered as a measure on Z2
l , we will

write it as dF (T1, T2) or just dF .

(3.7) Proposition.

µ(r)(T1, T2) = µ(0)((1 + T1)
lr − 1, (1 + T2)

lr − 1).
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Proof. It follows from (2),(4) of (2.2) and (3.5.1) that

µm(lra, lrb;σ) = µm−r(a, b;σ) =
∑

(c,d)∈[0,lm)2

(c,d)≡0 mod lm−r

µm(a+ c, b+ d;σ)

for m > r and (a, b) ∈ [0, lm)2 with (a, b) �≡ 0 mod lm−r. The formula is a

formal consequence of these equalities. �

(3.8) Proposition. Let ε : A → Zl be the augmentation homomor-

phism, and let σ ∈ Gk(1). Then, for any r ≥ 0,

(σ − 1)l12/lN = ζ
ε(µ(r)(σ))
N .

Proof. By (3.7), we may assume r = 0. Then the formula follows

from (2.2) (3) and (3.5.1). Notice that k(1) contains all the l-power roots

of unity. �

(3.9) Equivariance Lemma. The measure valued homomorphism

µ(0) : Gk(1) → A(1) satisfies

µ(0)(τστ−1) = τ(µ(0)(σ))

for σ ∈ Gk(1), τ ∈ Gk.

Proof. By (3.5.1) and Definition (2.3), we have

N ′∏
i=0

(τστ−1 − 1)(θm+1+i(aω1 + bω2)
l2i)1/l

N
= ζ

−µm(a,b;τστ−1)
N .

for (a, b) ∈ [0, lm)2 \ {(0, 0)}, m ≥ 1, i ≥ 0 and for any N ′ ≥ N . Since

θm+1+i are defined over k, the i-th factor of the left hand side is given by

τ((σ − 1)(θm+1+i(τ
−1(aω1 + bω2))

l2i)1/l
N

)

= τ((σ − 1)(θm+1+i((ω1, ω2)ρ(τ
−1)

(
a

b

)
)l

2i
)1/l

N
),
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where (a, b) is regarded as an element of [0, lm+1+i)2 \ {(0, 0)}. If it is

represented as a power of ζN , then by (2.10), the exponent is

χ(τ)(1− l2)νm+1+i

ρ(τ−1)(ab)
(σ) l2i.

From this and the definition of µm(a, b;σ) (3.5), the assertion follows. �

(3.10) Lemma (cf.Yager[Y]). Let Di be the differential operator (1 +

Ti)
∂
∂Ti

on the measure space Meas(Z2
l ) = Zl[[T1, T2]] (i = 1, 2). For λ ∈

Meas(Z2
l ), i, j ≥ 0, we have

Di
1D

j
2λ(0, 0) =

∫
Z2
l

d(Di
1D

j
2λ(T1, T2)) =

∫
Z2
l

Xi
1X

j
2dλ.

Here Xi
1X

j
2 in the right hand side is understood as a measurable function

Z2
l → Zl.

(3.11) Let us embed Zl[[T1, T2]] to Ql[[T1, T2]] and introduce new vari-

ables Ui = log(1 + Ti) (i = 1, 2) in the latter ring. The action of GL2(Zl)
on Zl[[T1, T2]] is naturally extended to that on Ql[[T1, T2]] and is described

as follows.

(3.11.1)

(
a b

c d

)
U1 = aU1 + cU2,

(
a b

c d

)
U2 = bU1 + dU2.

Therefore it is possible to consider the space of homogeneous polynomials

of degree m in Ql[[U1, U2]] as SymmVlE = SymmTlE⊗Ql by sending U i1U
j
2

to ωi1ω
j
2 as a representation space of GL2.

Now we shall expand our equivariant measure µ(0)(σ) ∈ A(1) (σ ∈ Gk(1))

in the variables U1, U2 as

(3.11.2) µ(0)(σ) =
∑
i,j≥0

κij(σ)
U i1U

j
2

i!j!
.

By (3.10), we can compute the coefficient κij(σ) modulo lN as follows.

κij(σ) = Di
1D

j
2µ

(0)(σ)(0, 0)
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≡
∑

0≤a,b<lN
aibj

∫
(a,b)+lNZ2

l

dµ(0)(σ)(3.11.3)

=
∑

0≤a,b<lN
l�(a,b)

aibjµN (a, b;σ),

where l � (a, b) means that l � a or l � b. Therefore, by (3.5.1), the character

κij : Gk(1) → Zl can be characterized by the Kummer properties:

(3.11.4) (σ − 1)(εijN )1/l
N

= ζ
κij(σ)
N (N ≥ 1)

where

(3.11.5) εijN =
∏

0≤a,b<lN
l�(a,b)

θ(aω1 + bω2, l
N

L)a
ibj .

Since θ(ω, lNL) = θ(−ω, lNL), it follows easily that κij = 0 when i + j is

odd.

Using Ihara’s technique which appeared in [IS] p.62, we can show the

following partial nonvanishing result.

(3.12) Lemma. For each elliptic curve E/k, there is an integer N ≥ 1

such that for every 4-tuple (i, j, u, v) of positive multiples of (l−1)lN−1, the

character

κi0 + κ0j − κuv : Gk(1) → Zl

has an open image.

Proof. Let θ
(N)
ab denote θ(aω1 + bω2, l

NL) for simplicity. If a 4-tuple

(i, j, u, v) is as above, then since (l − 1)lN−1 ≥ N ,

εi0N ≡
∏

0≤a,b<lN
l�a

θ
(N)
ab , ε0j

N ≡
∏

0≤a,b<lN
l�b

θ
(N)
ab , εuvN

≡
∏

0≤a,b<lN
l�a,b

θ
(N)
ab mod k(1)×l

N
.
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On the other hand, by (2.2)(3), we have

l12 = ζ
∏

0≤a,b<lN
l�(a,b)

θ
(N)
ab (ζ l

N
= 1).

Hence εi0Nε
0j
N (εuvN )−1 ≡ l12 mod k(1)×l

N
. Thus, for the proof of the lemma,

it suffices to show that one can take a sufficiently large N such that l12/lN �∈
k(1). This is possible if we notice that the Kummer extensions k(µl∞ , l

12/lN )

will give nontrivial meta-abelian extensions over k for large N . In fact, if E

has complex multipication, then since k(1)/k is virtually abelian, l12/lN �∈
k(1) for large N . So let E have no complex multiplication. Then by Serre’s

result [Se], Gal(k(1)/k(µl∞)) is an l-adic analytic group with Lie algebra

sl2. Again we can take large N with k(µl∞ , l
12/lN ) �⊂ k(1). �

§4. The power series ασ

(4.1) Let (E,O) be an elliptic curve over a field k, and consider the

exterior Galois representation

ϕ = ϕE0 : Gk → Γ1,1 ⊂ Outπ1(Ē0)(l)

as in §1. By the weight filtration in Γ1,1, we obtain a field tower k ⊂ k(1) ⊂
k(2) ⊂ . . . such that Gk(m) = ϕ−1(Γ1,1(m)) (m ≥ 1). From this definition,

there occurs an injecitive homomorphism

grm(ϕ) : Gal(k(m+ 1)/k(m))→ grmΓ1,1 (m ≥ 1).

As a result, Gal(k(m + 1)/k(m)) (m ≥ 1) turns out to be a torsion-free

Zl-module of finite rank. Moreover, by conjugation, it has a structure of an

l-adic representation space of Gal(k(1)/k) of weight (−m). For simplicity,

in this section, we write π1 = π1(Ē0)(l), which is also identified with Π1,1

as in §2 (2.4).

(4.2) Proposition. If m is odd, then k(m) = k(m+ 1).

Proof. Suppose that σ ∈ Gk(m). We note that ϕ(σ) commutes with

the image of (−1) ∈ AutkE in Γ1,1. Since ρ(−1) acts on grmΓ1,1 by multi-

plication by (−1)m, the assertion follows. �
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(4.3) If σ ∈ Gk(3), then ϕ(σ) can be uniquely lifted to an element of

Γ∗
1,1 = {f ∈ Γ̃1,1 | f(z) = zα (α ∈ Zl)}

in such a way that ϕ(σ) ∈ Γ∗
1,1(3). (For m ≥ 1, Γ∗

1,1(m) = Γ∗
1,1∩Γ̃1,1(m)). In

fact, the ambiguity of such a lift comes from inner automorphisms by powers

of z. Therefore the lift must be uniquely determined, for zα ∈ Π1,1(3) iff

α = 0 (cf. [NT] §2).

(4.4) By (4.3), we know that grmΓ1,1
∼= grmΓ∗

1,1 for m ≥ 3. Actually, we

can compute gr1Γ1,1 = gr2Γ1,1 = gr1Γ∗
1,1 = 0, gr2Γ∗

1,1
∼= Zl by (1.14), (2.3)

of [NT]. Therefore k(1) = k(2) = k(3). As k(3) = k(4) by (4.2), we obtain

a canonical mapping

ϕ∗ : Gk(1) → Γ∗
1,1(4) ⊂ Γ∗

1,1.

(4.5) As is shown in Ihara’s famous work [Ih], the quotient group π′
1/π

′′
1

regarded by conjugation as an A = Zl[[π1/π
′
1]]-module is free of rank one

with a generator z̄ = z mod π′′
1 . For F ∈ A, w̄ ∈ π′

1/π
′′
1 , we shall rep-

resent this module operation by F · w̄. Let Xi be the image of xi in

π1/π
′
1, which coincides with ωi via the canonical identification π1/π

′
1
∼=

TlE ∼= H1(E(C),Z) ⊗ Zl, and let x̄i = xi mod π′′
1 . If Ti = Xi − 1

(i = 1, 2), then A can be regarded as the ring of formal power series in

(commutative) variables T1, T2. The following formulae are basic in which

F,G ∈ A, α, β, γ ∈ Zl, w̄ ∈ π′
1/π

′′
1 .

(FG) · w̄ = F · (G · w̄)(4.5.1)

(F · w̄)(G · w̄) = (F +G) · w̄(4.5.2)

((1 + T1)
α(1 + T2)

β − 1) · w̄ = [x̄α1 x̄
β
2 , w̄](4.5.3)

(γF ) · w̄ = F · w̄γ = (F · w̄)γ(4.5.4)

(4.6) Let us introduce the group Ψ∗ studied by Bloch [Bl], Tsunogai [T].

It is defined by

Ψ∗ = {f ∈ Aut(π1/π
′′
1) | f(z̄) = z̄α, ∃α ∈ Z×

l }.
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The natural action of Ψ∗ on π1/π
′
1
∼= ZlX1 ⊕ ZlX2 gives a surjective ho-

momorphism ρ : Ψ∗ → GL2(Zl). We denote the kernel of this ρ by Ψ∗(1).

Since π1/π
′′
1 is generated by x̄i (i = 1, 2) as a pro-l group, f ∈ Ψ∗ is deter-

mined by the pair of Si(f) = f(x̄i)x̄
−1
i (i = 1, 2). Notice that f ∈ Ψ∗(1) iff

Si(f) ∈ π′
1/π

′′
1 (i = 1, 2).

(4.7) Proposition (Bloch[Bl], in this form, see Tsunogai[T]). Let

f ∈ Ψ∗(1) and write Si(f) = Gi · z̄ (i = 1, 2; Gi ∈ A). Then we have

(*) T2G1 − T1G2 = 0.

Conversely, if a pair (G1, G2) ∈ A2 satisfies (∗), then we can find a unique

f ∈ Ψ∗(1) such that Si(f) = Gi · z̄ (i = 1, 2).

Proof. By using formulae in (4.5), we compute f(z̄) =

S2[x̄2,S1]S1z̄S−1
2 [S2, x̄1]S−1

1 = [x̄2,S1][S2, x̄1]z̄ = (T2G1 − T1G2 + 1) · z̄.
The first assertion follows from this and the condition f(z̄) = z̄. For the

second, take for f the reduction modulo π′′
1 of the automorphism of the free

pro-l group π1 sending xi to a lift of (Gi · z̄)x̄i (i = 1, 2). �

(4.8) Since A is a unique factorization domain, the pairs (G1, G2) ∈ A2

satisfying (∗) correspond bijectively to the elements H ∈ A by

β : Ψ∗(1)
∼→ A(1), f �→ H

where TiH = Gi (i = 1, 2) ([Bl],[T]). Since Si(f) = (Tiβ(f))·z̄ = (−Tiβ(f))·
z̄−1 = [−β(f) · z̄, x̄i], every f ∈ Ψ∗(1) is an inner automorphism of π1/π

′′
1

by {−β(f) · z̄}. By virtue of the Tate-twist appeared in the target of β, the

map β turns out to be a GL2-equivariant isomorphism, i.e.,

β(fgf−1) = (det ρf )ρf (β(g)) (f ∈ Ψ∗, g ∈ Ψ∗(1), ρf = ρ(f)).

See Tsunogai [T] for a more detailed account of these properties.

(4.9) Let ε : A → Zl be the augmentation map, and I = ker(ε) the

augmentation ideal. Introduce a decreasing filtration Ψ∗(1) ⊃ Ψ∗(2) ⊃ . . .

by Ψ∗(m) = β−1(Im−2) (m ≥ 2). It follows that f ∈ Ψ∗(m) ⇔ β(f) ∈
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Im−2 ⇔ Gi ∈ Im−1 (i = 1, 2) ⇔ Si(f) ∈ π1(m + 1)π′′
1/π

′′
1 (i = 1, 2). To get

the last equivalence, use the isomorphisms Im
∼→π1(m + 2)π′′

1/π
′′
1 (m ≥ 0)

([Ih](19)p.67) by F �→ F · z̄. Remark that gr1Ψ∗ = 0 and that grmΨ∗ ∼=
(Im−2/Im−1)(1) ∼= Symm−2TlE(1) for m ≥ 2.

Let grm(π1/π
′′
1) = π1(m)π′′

1/π1(m+ 1)π′′
1 (∼= Im−2/Im−3). Then there is

an exact sequence

(4.9.1)

0 −−−→ grmΨ∗ c′m−−−→ grm+1(π1/π
′′
1)⊕2 f ′m−−−→ grm+2(π1/π

′′
1) −−−→ 0

in which

c′m(f) = (S1(f),S2(f)) mod π1(m+ 2)π′′
1 ,

f ′m(S1,S2) = [x̄2,S1] + [S2, x̄1] mod π1(m+ 3)π′′
1 .

(We use to mean taking images in suitable graded quotient modules.)

We shall recall the formation of (modified) coordinate modules from

[NT] §2. Let si(f) = f(xi)x
−1
i for f ∈ Γ∗

1,1 (i = 1, 2). Then f ∈ Γ∗
1,1(m) if

and only if si(f) ∈ π1(m+1). The m-th stage coordinate module Cm(2, 1)∗

is just (grm+1π1)
⊕2, and there is an exact sequence ([NT] §2 (2.5))

(4.9.2)

0 −−−→ grmΓ∗
1,1

cm−−−→ (grm+1π1)
⊕2 fm−−−→ grm+2(π1) −−−→ 0

which lifts the exact sequence (4.9.1) as follows :

cm(f) = (s1(f), s2(f)) mod π1(m+ 2),

fm(s1, s2) = [x2, s1] + [s2, x1] mod π1(m+ 3).

Now we consider the natural map γ : Γ∗
1,1 → Ψ∗ obtained by reduc-

tion modulo π′′
1 . It is easy to see that it preserves filtrations and induces

canonical homomorphisms

grmγ : grmΓ∗
1,1 → grmΨ∗ (m ≥ 1).

This is GL2-equivariant, and is compatible with obvious homomorphisms

γm : grmπ1 → grm(π1/π
′′
1) (m ≥ 1)
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in view of (4.9.1-2). Namely we have the following GL2-equivariant com-

mutative diagram connecting two exact sequences (4.9.1) and (4.9.2):

(4.9.3)
0 0�

�
ker(γm+1)

⊕2 gm−−−→ ker(γm+2)�
�

0 −−−→ grmΓ∗
1,1

cm−−−→ (grm+1π1)
⊕2 fm−−−→ grm+2(π1) −−−→ 0�grmγ

�γ⊕2
m+1

�γm+2

0 −−−→ grmΨ∗ c′m−−−→ grm+1(π1/π
′′
1)⊕2 f ′m−−−→ grm+2(π1/π

′′
1) −−−→ 0�

�
0 0

(4.10) Lemma. For even m ≥ 4, the map grmγ is surjective if l is

odd. When l = 2, it has an open image of exponent 2.

Proof. This can be proved in a quite similar way to [Ih] p.91. We

only give a sketch of the line. By the snake lemma applied to (4.9.3), it

suffices to show that the induced mapping ρm : grmΨ∗ → coker(gm) is zero.

It follows from definitions that ρm sends f mod Ψ∗(m + 1) to [z, β(f) · z]
mod π1(m + 3) where β(f) · z ∈ π1(m) is a lift of β(f) · z̄ ∈ π1(m)π′′

1/π
′′
1 .

Thus, as shown by Ihara (and Kaneko) in [Ih], the proof is reduced to the

following congruence formula modulo the image of gm:

[[x1, x2], [w1[w2 . . . [w2n[x1, x2]...]] ≡ −[[x1, x2], [w2n[w2n−1 . . . [w1[x1, x2]...]],

where wi = x1 or x2 (i = 1, . . . , 2n) and 2n = m− 2. �

Let us return to the geometric situation (4.4). By composing the maps

β, γ and ϕ∗, we obtain a Galois representation

α : Gk(1)
ϕ∗
−−−→ Γ∗

1,1(1)
γ(1)−−−→ Ψ∗(1)

β−−−→ A(1).
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For every σ ∈ Gk(1), we know ϕ∗(σ) ∈ Γ∗
1,1(4), hence ασ = α(σ) ∈ I2. The

main theorem of this section is to relate ασ to µ(0)(σ) studied in §3.

(4.11) Theorem. Let µ′
σ = µ(0)(σ) − ε(µ(0)(σ)) for σ ∈ Gk(1). Then

we have

ασ(T1, T2) =
∞∑
i=0

µ′
σ((1 + T1)

li − 1, (1 + T2)
li − 1).

Proof. Let σ ∈ Gk(1). Then there is a unique lift σ̃ ∈ p
−1
E0

(σ) such

that Intσ̃|π1 ∈ Γ∗
1,1(4) (see (4.4).) Since Hm/Hm,∞ is a free pro-l cyclic

group generated by the image of z, there is a unique ξm = ξm(σ) ∈ Zl such

that zξm σ̃ ∈ p
−1
E0

(σ) ∩ H̃m,∞. Therefore we may set σm = zξm σ̃ in (2.8.2).

Then, for each (a, b) ∈ N2 \ lm−1N2, we have

σmzabσ
−1
m = zξm σ̃zabσ̃

−1z−ξm

= zξm σ̃xabσ̃
−1zσ̃x−1

ab σ̃
−1z−ξm

= zξmw{(xa1xb2 − 1)α(σ) · z}zab{(xa1xb2 − 1)α(σ) · z}−1w−1z−ξm

for some w ∈ π′′
1 . [For F ∈ A, we shall write F ·z to denote a representative

of F · z̄ ∈ π′
1/π

′′
1 in π′

1.] By the definition of ν = νmab(σ) (2.8.2), if (a, b) �≡ 0

mod lm−1, σmzabσ
−1
m is of the form hz−νzabzνh−1 for some h ∈ Hm,∞. Since

the centralizer of zab in π1 is 〈zab〉 and since Hm,∞ ! zab, Hm,∞ ⊃ π′′
1 , we

see that ν = νmab(σ) satisfies

(4.11.1) z−ν ≡ zξm{(xa1xb2 − 1)α(σ) · z} mod Hm,∞

for (a, b) �≡ 0 mod lm−1, m ≥ 2. Suppose that

ασ(T1, T2) ≡
∑

(a,b)∈[0,lm)2

αm(a, b;σ)(1 + T1)
a(1 + T2)

b

modulo the ideal ((1+T1)
lm − 1, (1+T2)

lm − 1). Then, by (4.11.1) we have

for (a, b) �≡ 0 mod lm−1 (m ≥ 2),

−(l2 − 1)νmab(σ) = ϑm(zξm{(xa1xb2 − 1)α(σ) · z})
= ϑm({ξm + (xa1x

b
2 − 1)α(σ)} · z)
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= ξm(l2 − 1)

+ {l2αm(−a,−b;σ)−
∑

(c,d)∈[0,lm)2

(c,d)≡(a,b) mod lm−1

αm(−c,−d;σ)}

− {l2αm(0, 0;σ)−
∑

(c,d)∈[0,lm)2

(c,d)≡0 mod lm−1

αm(−c,−d;σ)}

= ξm(σ)(l2 − 1) + {l2αm(−a,−b;σ)− αm−1(−a,−b;σ)}
− {l2αm(0, 0;σ)− αm−1(0, 0;σ)}.

Here ϑm : π1(Ē
m
0 )→ Zl is the homomorphism determining Hm,∞ (2.6). It

follows then that

µm(a, b, σ) = −(1− l2)
∞∑
i=0

νm+1+i
ab (σ)l2i

= αm(−a,−b;σ)− αm(0, 0;σ)− (l2 − 1)
∞∑
i=0

ξm+1+i(σ)l2i.

for m ≥ 1, (a, b) ∈ [0, lm)2 \ {0}. Put Xm(σ) = (l2 − 1)
∑∞

i=0 ξm+1+i(σ)l2i

and Ym(σ) = −αm(0, 0;σ) − Xm(σ). Then noticing that µm is an “even”

measure, we have

(4.11.2) µm(a, b;σ) = αm(a, b;σ) + Ym(σ)

for (a, b) ∈ [0, lm)2 \ {0}.
Let αm(σ) denote the image of α(σ) in Zl[(Z/lmZ)2]. Then,

αm(σ) =
∑

(a,b)∈[0,lm)2

αm(a, b;σ)eab.

We shall decompose it into the sum
∑m−1

r=0 α
(r)
m (σ) + αm(0, 0;σ)e00, where

α(r)
m (σ) =

∑
(a,b)≡0 mod lr

(a,b) 
≡0 mod lr+1

αm(a, b;σ)eab.
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Since {µ(0)
m − α

(0)
m }m has coherence with respect to the projections

Zl[(Z/lm+1Z)2] → Zl[(Z/lmZ)2], it follows from (4.11.2) that l2Ym+1(σ) =

Ym(σ) (m ≥ 1). From this we get l∞ | Ym(σ), hence Ym(σ) = 0. Thus

(4.11.3) αm(a, b;σ) =

{
µm(a, b;σ), if (a, b) ∈ [0, lm)2 \ {0},
−Xm(σ), if (a, b) = (0, 0).

For any m ≥ 2 and r with 0 ≤ r ≤ m− 1,

ε(α(r)
m (σ)) = ε(µ(r)(σ)) = ε(µ(m−1)(σ)) = ε(α(m−1)

m (σ))

= ε(αm−1(0, 0;σ)− αm(0, 0, σ)) = −(Xm−1(σ)−Xm(σ)).

(Use (3.7) for the second equality, and the coherence of α for the fourth

equality.) Taking into account ε(αm(σ)) = 0, we get −m(Xm−1(σ) −
Xm(σ))−Xm(σ) = 0. Hence

(4.11.4) Xm(σ) = mX1(σ).

Moreover, it follows that

(4.11.5) X1(σ) = ε(µ(0)(σ)),

for the left hand side is equal to −α1(0, 0;σ) = ε(α
(0)
1 (σ)) = ε(µ

(0)
1 (σ)).

On the other hand,

µ′
σ(T1, T2) ≡ −ε(µ(0)(σ)) +

∑
(a,b)∈[0,lm)2

l�(a,b)

µm(a, b;σ)(1 + T1)
a(1 + T2)

b

mod ((1 + T1)
lm − 1, (1 + T2)

lm − 1).

Therefore, by (3.7),

∞∑
i=0

µ′
σ((1 + T1)

li − 1, (1 + T2)
li − 1)

≡ −mε(µ(0)(σ)) +
∑

(a,b)∈[0,lm)2\{0}
µm(a, b;σ)(1 + T1)

a(1 + T2)
b
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mod ((1 + T1)
lm − 1, (1 + T2)

lm − 1). Comparing this with (4.11.3-5), we

complete the proof of Theorem (4.11). �

(4.12) Corollary. In Ql[[U1, U2]], ασ can be represented as

ασ(T1, T2) =
∑
m≥2
even

1

1− lm

∑
i+j=m
i,j≥0

κij(σ)
U i1U

j
2

i!j!
.

Proof. This formula follows from Theorem (4.11) together with

(3.11.2). �

(4.13) Corollary. ασ ∈ Im if and only if µ′
σ ∈ Im (m ≥ 1).

(4.14) Let kij be the fixed field of the kernel of κij : Gk(1) → Zl and km
the composite field of the kij (i + j = m − 2, i, j ≥ 2). We also define the

field tower

k(1) = k[2] = k[3] = k[4] ⊂ k[5] = k[6] ⊂ . . .

by Gk[m] = α−1(Im−2). Then by (4.12) we see that k[m + 1] (m ≥ 4) is

generated by the ki (4 ≤ i ≤ m) over k(1).

(4.14.1) Claim. k(m) ∩ km/k(1) is a finite extension, hence k[m] ∩
km/k(1) is also a finite extension (m ≥ 4).

Proof. If not, there exists j ≤ m such that

Gal(k(j)/k(j − 1))→ Gal(k(j) ∩ km/k(j − 1) ∩ km)

has an image with free Zl-rank ≥ 1. Tensoring with Ql, we get a non-

trivial homomorphism of Gal(k(1)/k)-modules of different weights. This is

impossible. �

Thus, noticing that k[m+ 1] = k[m] · km, we obtain

Gal(k(m+ 1)/k(m))⊗Ql � Gal(k[m+ 1]/k[m])⊗Ql(4.14.2)
∼→Gal(km/k(1))⊗Ql,
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in which arrows are equivariant with conjugate actions of Gal(k(1)/k).

(4.15) Corollary. For any elliptic curve E over a number field k,

there is an integer N such that for every m ≡ 2 mod (l − 1)lN−1 with

m > 2 + (l − 1)lN−1,

grmϕ : Gal(k(m+ 1)/k(m)) ↪→ grmΓ1,1

gives a nontrivial homomorphism.

Proof. By (4.14), we have only to see that some κij (i + j = m− 2)

has an open image in Zl. For this, it suffices to apply Lemma (3.12) by

setting i = j = m− 2, u = (l − 1)lN−1 and v = m− 2− u. �

(4.16) Suppose that E has no complex multiplication. Then by Serre’s

theorem ([Se]), Gal(k(1)/k) is an open subgroup of GL2(Ql). If κij is

nontrivial for some (i, j) with i + j = m − 2 > 0, then (4.14.2) shows

that Gal(k(m + 1)/k(m)) ⊗ Ql regarded as a submodule of grmΓ1,1 ⊗ Ql

contains the (m− 2)-th symmetric tensor representation of GL2 twisted by

the determinant character. We mention that this irreducible component

has the highest weight in grmΓ1,1 ⊗ Ql and appears with multiplicity one

(see [NT2]).

§5. Application : Galois rigidity

(5.1) Theorem. Let l be a prime, and let E be an elliptic curve over

a number field k with EndkE ∼= Z. Then the centralizer OutGk
π1(Ē0)(l) of

the Galois image of

ϕ : Gk → Outπ1(Ē0)(l)

is isomorphic to Autk(E,O) ∼= {±1}.

Proof. Let Z = OutGk
π1(Ē0)(l). By weight characterization of in-

ertia subgroups in π1 ([N4] 2.1), we may assume Z ⊂ Γ1,1. We first show

that Z ∩ Γ1,1(1) = {1}. In fact, if f ∈ Z ∩ Γ1,1(1) is not trivial, there is

an m ≥ 1 such that f ∈ Γ1,1(m) \ Γ1,1(m + 1). Let ρ : Γ1,1 → GL2(Zl)
be the canonical projection, and cm : Γ1,1(m) → Cm(2, 1)/grmΠ1,1 the

(reduced) coordinate homomorphism ([NT](1.13)). Then for each σ ∈
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Gk, cm(f) = cm(ϕ(σ)fϕ(σ)−1) = ρ(ϕ(σ)) · cm(f). Since ρ ◦ ϕ(Gk) acts

on Cm(2, 1)/grmΠ1,1 by weight-m Frobenius eigenvalues, the above forces

cm(f) = 0, hence f ∈ Γ1,1(m + 1), a contradiction. Therefore we see

Z ∼= ρ(Z) ⊂ GL2(Zl). By Faltings’ theorem [F] and our assumption, the

centralizer of the Galois image in End(TlE) is isomorphic to Zl. Therefore

ρ(Z) consists of scalar multiples. Let f ∈ Z with ρ(f) = af ∈ Z×
l . By

Corollary (4.15), there are integers m1,m2 ≥ 2 with G.C.D.(m1,m2) = 2

and elements σi ∈ Gk(1) (i = 1, 2) with ϕ(σi) ∈ Γ1,1(mi) \ Γ1,1(mi + 1).

Then cmi(ϕ(σi)) = cmi(fϕ(σi)f
−1) = ρ(f) · cmi(ϕ(σi)) = ami

f cmi(ϕ(σi))

(i = 1, 2). Hence am1
f = am2

f = 1, i.e., af = ±1. �

(5.2) Corollary. Let l be a prime, E an elliptic curve over a number

field k with EndkE ∼= Z, and S a subset of k-rational points of E with

cardinality n > 0. Then OutGk
π1(ĒS)(l) is a finite group isomorphic to a

subgroup of {±1} × Sn.

Proof. By a similar weight argument as in the proof of (5.1), Z is

embeded into GL2×Sn. Since the kernel of Z into the second factor can be

injectively mapped by the ‘forgetful map’ Γ1,n → Γ1,1, the proof is reduced

to the above theorem (see also [NT2]). �

(5.3) Remark. The finiteness of OutGk
π1(Ē0)(l) was firstly shown

by H.Tsunogai [T] for special real elliptic curves and l = 2. After that

A.Tamagawa showed a sharp criterion for an open curve to have finite Galois

centralizers, by which the finiteness of OutGk
π1(ĒS)(l) also follows under

the condition EndkE ∼= Z. These results depend on a criterion given in

[NT] Theorem (3.3). We also remark that when S ⊂ E(k) is involved with

more than one torsion packet of E, the above estimate of OutGk
π1(ĒS)(l)

can be considerably improved. See [NT] Theorem(4.16).

Next, we shall consider the characterization problem of curves by profi-

nite fundamental groups (see [N1-2] for the case of genus 0). We begin by

the following lemma which is an easy application of Faltings’ famous result.

Two algebraic varieties X,Y over k are said to be π1-equivalent over k, if

there is an isomorphism α : π1(X)
∼→π1(Y ) with pX/k = pY/k ◦ α.

(5.4) Lemma. Let A,B be abelian varieties over a number field k, and
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suppose that Endk(A) ∼= Z. If A and B are π1-equivalent over k, then they

are k-isomorphic.

Proof. Since TlA ∼= TlB as Gk-modules, by Faltings’ theorem [F],

A and B are k-isogeneous. We may assume that there is a sequence of

k-isogenies

A = A1
φ1−−−→ A2

φ2−−−→ . . .
φn−1−−−→ An = B

in which deg(φi) are prime powers and, for i �= j, deg(φi) and deg(φj) are

prime to each other. It suffices to show that Ai and Ai+1 are k-isomorphic

for i ∈ [1, n − 1]. Let l be a prime dividing deg(φi). By assumption, we

have an isomorphism of Gk-modules h : TlA
∼→TlB, hence also ψ : TlAi ∼=

TlA
h→ TlB ∼= TlAi+1. Then, by Faltings’ theorem [F] again, ψ−1 ◦ Tl(φi) ∈

EndGk
TlAi ∼= Zl · id. From this we see that coker(Tlφi) is of the form

(Z/lmZ)2g for some m ≥ 0. Since A(k̄)l−torsion = TlA⊗Ql/Zl, we have

coker(Tlφi) ∼= Tor(coker(Tlφi),Ql/Zl) ∼= ker(φi).

Thus ker(φi) ∼= (Z/lmZ)2g, and hence Ai and Ai+1 are k-isomorphic. �

(5.5) Theorem. Let Ei be an elliptic curve over a number field k, and

Si a finite subset of k-rational points of Ei containing the origin (i = 1, 2).

Suppose that EndkE1
∼= Z and that either of the following conditions (a)

or (b) is satisfied:

(a) S1 contains a non-torsion point of E1;

(b) S1 consists of l-power division points of E1 for a prime l.

Then U1 := E1 − S1 and U2 := E2 − S2 are isomorphic over k if and only

if they are π1-equivalent over Gk.

Proof. We have only to prove the ‘if’ part of the above theorem. Let

α : π1(U1) → π1(U2) be an isomorphism giving the π1-equivalence over k.

By [N2] Corollary (3.5), we have a bijection α∗ : S1
∼→S2 with α(I(x)) =

I(α∗(x)) for x ∈ S1. Here I(x) denotes the union of the conjugacy classes

of inertia subgroups of π1 over x. By this together with Lemma (5.4), we

may assume E = E′ and α∗(O) = O. Let S1 = {O = P0, P1, . . . , Pn−1} and

define Qi = α∗(Pi) (0 ≤ i ≤ n− 1). Since α maps I(Pi) onto I(Qi), taking
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quotients we get a Gk-compatible automorphim α0 : π1(E0) → π1(E0)

induced from α, which also gives a Gk-compatible automorphism α
(l)
0 :

π
(l)
1 (E0)→ π

(l)
1 (E0) for each prime l. Let αl be the restriction of α

(l)
0 to the

geometric pro-l fundamental group π1(l) of E0. Then by Theorem (5.1),

ρl(αl) = ±1, where ρl : Outπ1(l)→ GL(TlE).

For each i ∈ [0, n − 1], choose an inertia subgroup Ii ⊂ I(Pi), and

let Di be the normalizer of Ii in π1(U1). Then, α(Ii) ⊂ I(Qi). Define

si : Gk → π1(E0) to be the section of pE0/k : π1(E0) → Gk whose image

coincides with the image of Di by π1(U1) → π1(E0). Then α ◦ si gives a

section whose image is that comes from α(Di) by π1(U2) → π1(E0). Then

we obtain continuous 1-cochains di, ei : Gk →
∏
l TlE (0 ≤ i ≤ n− 1) by

di(σ) ≡ si(σ)−1s0(σ) (σ ∈ Gk),
ei(σ) ≡ α(si(σ)−1s0(σ)) (σ ∈ Gk),

modulo the commutator subgroup of π1(Ē0). By Kummer theory (and the

Mordell-Weil theorem), we have an injective homorphism j of the profinite

completion of E(k) to the continuous cohomology group H1
cont(Gk,

∏
l TlE).

By construction, it follows that j(Pi) = [di], j(Qi) = [ei] (cf. [NT] §4).

Therefore if we denote by h1
α the induced automorphism of

H1
cont(Gk,

∏
l TlE) from

∏
l αl, then h1

α(j(Pi)) = j(Qi).

We first consider the case where (b) is satisfied. By assumption, every

prime-to-l factor of j maps S1 onto 0, hence also S2. Thus in this case,

S1 and S2 are injectively mapped to H1
cont(Gk, TlE) by the l-factor of j.

Therefore Pi = Qi (1 ≤ i ≤ n− 1) or Pi = −Qi (1 ≤ i ≤ n− 1) follows, and

our assertion is proved.

It remains to consider the case where (a) is satisfied. Assume that P1

is a non-torsion point. Since E(k) modulo its prime-to-l-torsion subgroup

injectively mapped to H1
cont(Gk, TlE), we have P1 = ±Q1 + R for some

torsion element R ∈ E(k) of order prime to l. Then letting l run over all

other primes, we get P1 = ±Q1. After replacing Qi by −Qi and α by its

composite with π1(U2)
∼→π1(E \ (−S2)) if necessary, we may assume P1 =

Q1(= P ). Then α induces a Gk-compatible automorphism of π1(E\{O,P})
preserving I(O), I(P ) respectively. By [NT] Theorem (4.21), we see that

αl = 1 for all l, hence h1
α = 1. Therefore, by the above argument, we get

Pi = Qi for all i ≥ 2. �
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(5.6) Remark. It is possible to show that elliptic curves (E,O) over

a number field k are characterized by π1(E \ {O}) over Gk even for the

curves with complex multiplication. We hope to discuss CM-case more

satisfactorily elsewhere.

§6. Magnus representations

(6.1) Let (E,O) be an elliptic curve over k and π1 = π1(Ē0)(l) the

maximal pro-l quotient of the geometric fundamental group of E0 = E\{O}.
We choose a free generator system {x1, x2} of π1 as in (2.4) so that z =

[x2, x1] generates an inertia subgroup of π1 over the origin O ∈ E.

(6.2) We identify the complete group ring Λ = Zl[[π1]] with the noncom-

mutative power series ring Zl[[u1, u2]]nc by setting ui = xi − 1 (i = 1, 2).

Then π1 is regarded as a subgroup of Λ×. The left action of Autπ1 on

π1 is naturally extended to that on Λ. The standard anti-automorphism

g �→ g−1 of π1 is also extended to that of Λ denoted λ �→ λ◦. We have then

(λµ)◦ = µ◦λ◦ (λ, µ ∈ Λ).

(6.3) Let ε : Λ → Zl be the augmentation homomorphism and I =

Ker(ε) the augmentation ideal of Λ. The m-th power Im is the two-sided

ideal of Λ consisting of the power series having no term of degree less than

m. On the other hand, let Im denote the kernel of the canonical map

Λ → Zl[[π1/π1(m)]] (m ≥ 1). We notice that Im � Im (m ≥ 2) and that

Ti = ui mod I2 (i = 1, 2).

(6.4) The free differential calculus due to R.H.Fox can be applied also in

our pro-l context as shown by Ihara [Ih2]. Let (y1, y2) be a free generator

system of π1. For each λ ∈ Λ, we define free derivatives ∂λ
∂yi

(i = 1, 2) with

respect to (y1, y2) by the formula

λ = ε(λ) +
∂λ

∂y1
(y1 − 1) +

∂λ

∂y2
(y2 − 1).

Then the mapping ∂
∂yi

: Λ→ Λ gives a continuous Zl-linear homomorphism.

The following basic properties of pro-l free differential calculus can be found

in [Ih2].

∂λµ

∂yi
=

∂λ

∂yi
ε(µ) + λ

∂µ

∂yi
.(6.4.1)
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∂λα

∂yi
=

λα − 1

λ− 1

∂λ

∂yi
(λ ∈ π1).(6.4.2)

∂λ

∂y′i
=

2∑
r=1

∂λ

∂yr

∂yr
∂y′i

,(6.4.3)

where (y′1, y
′
2) is another free generator system of π1, and ∂/∂y′i (i = 1, 2)

are carried out with respect to this basis.

(6.4.4)
∂f(λ)

∂f(yi)
= f(

∂λ

∂yi
) (f ∈ Autπ1),

where ∂/∂f(yi) (i = 1, 2) are carried out with respect to the basis

(f(y1), f(y2)).

(6.5) For each f ∈ Autπ1, we define two by two matrices Af ,Rf ∈M2(Λ)

by

Rf :=

( ∂s1(f)
∂x1

∂s1(f)
∂x2

∂s2(f)
∂x1

∂s2(f)
∂x2

)
, Af :=

(
s1(f) 0

0 s2(f)

)
+ Rf .

If we let Autπ1 act on M2(Λ) componentwise, then by using (6.4) we see

that

Afg = f(Ag)Af (f, g ∈ Autπ1).

In particular, for every f ∈ Autπ1, Af lies in GL2(Λ) and the mapping

A : Autπ1 → GL2(Λ) (f �→ Af ) gives an anti-1-cocycle. When we compose

the Galois represetation ϕ∗ : Gk(1) → Γ∗
1,1 ⊂ Autπ1 with the above A or

R, we shall write Aσ = Aϕ∗(σ), Rσ = Rϕ∗(σ) (σ ∈ Gk(1)) for brevity. (As

pointed out by Morita [M], the mapping tA◦ : Autπ1 → GL2(Λ) gives an

ordinary 1-cocycle, where t denotes the transposition of matrices.)

(6.6) Theorem. For any f ∈ Γ∗
1,1(1), we have

Af ≡ 12 + β ◦ γ(f)

(
T1T2 −T 2

1

T 2
2 −T1T2

)
mod I2.
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Proof. Basic formation of relation modules (see [Br](5.2.2), [Ih2] The-

orem 2.2) shows that there exists an exact sequence of A = Zl[[π1/π
′
1]]-

modules

0 −−−→ π′
1/π

′′
1

∂−−−→ A⊕2 d−−−→ A ε−−−→ Zl −−−→ 0

where

∂(n mod π′′
1) = (

∂n

∂x1
,
∂n

∂x2
) mod I2 (n ∈ π′

1),

d((a1, a2)) = a1u1 + a2u2 (ai ∈ A, i = 1, 2).

By calculations, we obtain ∂(z̄) = (T2,−T1), hence for f̄ = γ(f),

∂(S1(f̄)) = (G1(f̄)T2,−G1(f̄)T1) = β ◦ γ(f)(T1T2,−T 2
1 ),

∂(S2(f̄)) = (G2(f̄)T2,−G2(f̄)T1) = β ◦ γ(f)(T 2
2 ,−T1T2).

From this the formula follows. �

(6.7) Corollary.

Aσ ≡ 12 + ασ(T1, T2)

(
T1T2 −T 2

1

T 2
2 −T1T2

)
mod I2. (σ ∈ Gk(1)).

Proof. This is a direct consequence of Theorem (6.6) and the defini-

tion of ασ preceding Theorem (4.11). �

Thus the anti-1-cocycle Aσ gives a natural noncommutative lifting of

the power series ασ. It is possible to analyze images of the exterior Galois

representation

ϕE0 : Gk → Γ1,1 ⊂ Outπ1

by using Aσ together with derivation calculus developed in [NT] §5. All

these devices originated from Ihara’s many papers on the case of genus

zero ([Ih],[Ih2] etc.) See also [Ih3] for a survey of his related works. The

effective use of free differential calculus in this direction is also emphasized
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by S.Morita [M] in a topological context. We hope to pursue this theme

more in a future article.

We shall close this paper by showing a lemma which suggests a compat-

ibility of our anti-1-cocycle Aσ with respect to the weight filtration.

(6.8) Proposition. The following three conditions are equivalent for

f ∈ Γ∗
1,1, m ≥ 1.

(1) f ∈ Γ∗
1,1(m).

(2) Af ≡ 12 mod Im.

(3) Rf ≡ 0 mod Im.

Proof. (1)⇔(3) and (3)⇒(2) follow easily, so it suffices to show

(2)⇒(1). Assume (2) holds. Then

∂s1(f)

∂x2
≡ ∂s2(f)

∂x1
≡ 0 mod Im,

∂si(f)

∂xi
ui ≡ (1− si(f))ui mod Im+1 (i = 1, 2).

Since ε(si(f)) = 1, by the definition of free derivatives, we obtain

si(f)− 1 ≡ (1− si(f))ui mod Im+1 (i = 1, 2).

From this follows that si(f)− 1 ∈ Im+1, hence si(f) ∈ π1(m+ 1). �
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