A general functional characterization of the microlocal singularities

By F. BASTIN and P. LAUBIN

1. Introduction

As a generalization of a result of [7], we proved in [1] a functional characterization of the analytic wave front set of an hyperfunction. The main result of [1] is the following.

Denote by $\mathcal{A}(\mathbb{R}^n)$ the set of analytic functions on \mathbb{R}^n . Let $u \in \mathcal{A}'(\mathbb{R}^n \times \mathbb{R}^p)$ be an analytic functional and consider

$$Sg(x) = \int u(x,y)g(y) \, dy$$

for g analytic in a neighbourhood of the projection of $\operatorname{supp}(u)$ on \mathbb{R}^p . The result states that if $(x_0, \xi_0) \notin WF_a(Sg)$ for every $g \in \mathcal{A}(\mathbb{R}^p)$, then $((x_0, y), (\xi_0, 0)) \notin WF_a(u)$ for every $y \in \mathbb{R}^p$. It characterizes special points of $WF_a(u)$ using the operator S. In this paper, we prove a similar result concerning any point of $WF_a(u)$.

Denote by $\mathcal{B}(\mathbb{R}^n)$ the set of all hyperfunctions on \mathbb{R}^n . It is known, [4], [9], that if $f, g \in \mathcal{B}(\mathbb{R}^n)$ and if $(x,\xi) \in WF_a(f)$ implies $(x,-\xi) \notin WF_a(g)$, then the product fg is well defined in $\mathcal{B}(\mathbb{R}^n)$. If in addition $\operatorname{supp}(f) \cap \operatorname{supp}(g)$ is compact, the product fg belongs to $\mathcal{A}'(\mathbb{R}^n)$, hence the pairing

$$\langle f,g \rangle = \int f(x)g(x) \, dx$$

is also well defined.

Let $u \in \mathcal{A}'(\mathbb{R}^n \times \mathbb{R}^p)$ and define as above

$${}^{t}Sf(y) = \int u(x,y)f(x) \, dx \quad , \quad f \in \mathcal{A}(\mathbb{R}^{n}).$$

1991 Mathematics Subject Classification. 32A45, 35A27, 46F15.

Let $(y_0, \eta_0) \in \mathbb{R}^p \times \mathbb{R}^p \setminus \{0\}$ and assume that $(x, y_0, 0, -\eta_0) \notin WF_a(u)$ for every $x \in \mathbb{R}^n$. It follows from the composition properties of the analytic wave front set that $(y_0, -\eta_0) \notin WF_a({}^tSf)$ for any $f \in \mathcal{A}(\mathbb{R}^n)$, [4], [9]. Hence, using the formula

$$(Sg)(f) = \left\langle g, {}^{t}Sf \right\rangle,$$

the operator S can be extended to any $g \in \mathcal{B}(\mathbb{R}^p)$ such that $WF_a(g) \subset \{(y_0, t\eta_0) : t > 0\}.$

In the same way, the operator S can also be extended to all $g \in \mathcal{B}(\mathbb{R}^p)$ such that $(x, y, 0, -\eta) \notin WF_a(u)$ for all $x \in \mathbb{R}^n$ and $(y, \eta) \in WF_a(g)$. Theorem 3 gives an explicit formula for this extension.

In this paper we prove the following result.

THEOREM 1. Let $u \in \mathcal{A}'(\mathbb{R}^n \times \mathbb{R}^p)$ and $y_0 \in \mathbb{R}^p$, $\eta_0 \in \mathbb{R}^p$ such that

 $(x, y_0, 0, -\eta_0) \notin WF_a u$

for every $x \in \mathbb{R}^n$. If $x_0 \in \mathbb{R}^n$, $\xi_0 \in \mathbb{R}^n$ and $(x_0, \xi_0) \notin WF_a(Sg)$ for every $g \in \mathcal{B}(\mathbb{R}^p)$ satisfying

$$WF_ag \subset \{(y_0, t\eta_0) : t > 0\}$$

then $(x_0, y_0, \xi_0, -\eta_0) \notin WF_a u$.

If $\eta_0 = 0$, this is the result of [1]. If the hypotheses are satisfied for ξ_0 and η_0 , they are also satisfied for $t\xi_0$ and $s\eta_0$ for every $s, t \ge 0$. Hence, we also have $(x_0, y_0, t\xi_0, -s\eta_0) \notin WF_a u$ for every $s, t \ge 0$.

Conversely, if this last condition is satisfied, the composition properties of the analytic wave front set show that $(x_0, \xi_0) \notin WF_a(Sg)$ for every $g \in \mathcal{B}(\mathbb{R}^p)$ satisfying $WF_ag \subset \{(y_0, t\eta_0) : t > 0\}$.

In the proof of theorem 1, we use the closed graph theorem from a Fréchet space into a strictly webbed space as in [1].

2. Extension of the operator

Let $u \in \mathcal{A}'(\mathbb{R}^n \times \mathbb{R}^p)$. If g is analytic in a neighbourhood of the projection of $\operatorname{supp}(u)$ on \mathbb{R}^p then

$$Sg(x) = \int u(x,y)g(y) \, dy$$

is the element of $\mathcal{A}'(\mathbb{R}^n)$ defined by $(Sg)(f) = u(f \otimes g)$ for every $f \in \mathcal{A}(\mathbb{R}^n)$.

Using the FBI transform, we give here an explicit formula for the extension of S to all $g \in \mathcal{B}(\mathbb{R}^p)$ such that $(x, y, 0, -\eta) \notin WF_a(u)$ for all $x \in \mathbb{R}^n$ and $(y, \eta) \in WF_a(g)$. It will be needed in the proof of theorem 1.

Let us first recall some definitions. If $u \in \mathcal{A}'(\mathbb{R}^n)$, the FBI transform of u is the family of holomorphic functions

$$Tu(z,\lambda) = u_{(x)}(e^{i\lambda\varphi(z,x)}), \quad z \in \mathbb{C}^n, \ \lambda > 0,$$

where φ is the quadratic polynomial $\varphi(z, x) = \frac{i}{2}(z - x)^2$. Using the continuity of u as a linear functional, it is easily seen that if $\operatorname{supp}(u) \subset \{x \in \mathbb{R}^n : |x| < a\}$, then for every $\varepsilon > 0$ there is $C_{\varepsilon} > 0$ such that

$$|Tu(z,\lambda)| \le C_{\varepsilon} e^{\frac{\lambda}{2} \left((|\Im z| + \varepsilon)^2 - (|\Re z| - a)_+^2 \right)}$$

if $z \in \mathbb{C}^n$ and $\lambda > 0$. See [5] or [10] for more details.

The analytic wave front set of an hyperfunction u in an open subset Ω of \mathbb{R}^n is the subset $WF_a(u)$ of $T^*\Omega \setminus \{0\}$ defined by the condition $(x_0, \xi_0) \notin WF_a(u)$ if and only if there are $C, \varepsilon, r > 0$ and $v \in \mathcal{A}'(\mathbb{R}^n)$ that is equal to u near x_0 such that

$$|Tv(z,\lambda)| \le Ce^{\frac{\lambda}{2}(|\Im z|^2 - \varepsilon)}$$

if $|z - (x_0 - i\xi_0)| < r$ and $\lambda > 0$.

LEMMA 2. Let $u \in \mathcal{A}'(\mathbb{R}^n)$, $\rho > 0$ and $f \in \mathcal{O}(\{z \in \mathbb{C}^n : |\Im z| < \rho\})$. Assume that there are constants $C_k > 0$ such that $|f(z)| \leq C_k(1+|z|)^{-k}$. Then

$$u(f) = \frac{2^{-n-1}}{\pi^{3n/2}} \int_{\mathbb{R}^n} |\xi|^{n/2} e^{-|\xi|} d\xi$$

$$\cdot \int_{\mathbb{R}^n} Tu(x - i\frac{\xi}{|\xi|}, |\xi|) (1 + i\frac{\xi \cdot D_x}{|\xi|^2}) Tf(x + i\frac{\xi}{|\xi|}, |\xi|) dx.$$

The same formula holds with the differential operator $1 - i\xi D_x/|\xi|^2$ acting on Tu and no derivatives on Tf.

PROOF. Using the definition of the FBI transform, we get

$$\int_{\mathbb{R}^n} Tu(x-i\frac{\xi}{|\xi|},|\xi|)(1+i\frac{\xi.D_x}{|\xi|^2})Tf(x+i\frac{\xi}{|\xi|},|\xi|)\,dx$$

$$= u_{(y)} \left(\int_{\mathbb{R}^{n}} f(w) \, dw \right)$$

$$\cdot \int_{\mathbb{R}^{n}} e^{-\frac{|\xi|}{2}(x-i\frac{\xi}{|\xi|}-y)^{2} - \frac{|\xi|}{2}(x+i\frac{\xi}{|\xi|}-w)^{2}} \left(2 - \frac{i(x-w).\xi}{|\xi|}\right) \, dx$$

$$= 2\pi^{n/2} |\xi|^{-n/2} e^{|\xi|} u_{(y)}$$

$$\cdot \left(\int_{\mathbb{R}^{n}} f(w) e^{-i(y-w).\xi - \frac{|\xi|}{4}|y-w|^{2}} \left(1 - \frac{i(y-w).\xi}{4|\xi|}\right) \, dw \right).$$

For s > 0 small, the integration path $w \mapsto w + is\xi/|\xi|$ shows that the inner integral is exponentially decreasing with respect to ξ . Hence, using the complex shift $\xi \to \xi - i|\xi|(y-w)/4$, we get

$$\begin{aligned} \frac{2^{-n-1}}{\pi^{3n/2}} \int_{\mathbb{R}^n} |\xi|^{n/2} e^{-|\xi|} \, d\xi \int_{\mathbb{R}^n} Tu(x - i\frac{\xi}{|\xi|}, |\xi|) (1 + i\frac{\xi \cdot D_x}{|\xi|^2}) \, Tf(x + i\frac{\xi}{|\xi|}, |\xi|) \, dx \\ &= (2\pi)^{-n} u_{(y)} (\int_{\mathbb{R}^n} d\xi \int_{\mathbb{R}^n} f(w) e^{-i(y-w) \cdot (\xi - \frac{i|\xi|}{4}(y-w))} (1 - \frac{i(y-w) \cdot \xi}{4|\xi|}) \, dw) \\ &= (2\pi)^{-n} u_{(y)} ((\mathcal{F}^-(\mathcal{F}^+f)(y)) = u(f) \end{aligned}$$

where \mathcal{F}^{\pm} is the Fourier transform. \Box

We can now give the general definition of the operator S.

THEOREM 3. Let $u \in \mathcal{A}'(\mathbb{R}^n \times \mathbb{R}^p)$, $g \in \mathcal{B}(\mathbb{R}^p)$ and let $K \times M$ be a compact set containing the support of u. Assume that $(x, y, 0, -\eta) \notin WF_a(u)$ for all $x \in \mathbb{R}^n$, $(y, \eta) \in WF_a(g)$ and consider (Sg)(f) given by

$$\frac{2^{-p-1}}{\pi^{3p/2}} \int_{\mathbb{R}^p} |\eta|^{p/2} e^{-|\eta|} d\eta \\ \cdot \int_{\mathbb{R}^p} Tg_0(y - i\frac{\eta}{|\eta|}, |\eta|) \left(1 + i\frac{\eta \cdot D_y}{|\eta|^2}\right) T({}^tSf)(y + i\frac{\eta}{|\eta|}, |\eta|) dy$$

for every $g_0 \in \mathcal{A}'(\mathbb{R}^p)$ that is equal to g in a neighbourhood of M and every f that is analytic near K.

Then the map $f \mapsto (Sg)(f)$ is independent of g_0 and is an analytic functional supported by K. Moreover, if g is analytic near M then $(Sg)(f) = u(f \otimes g)$.

158

PROOF. We first prove that the integral converges and defines an analytic functional supported by K. For every $\rho > 0$, let $K_{\rho} = \{z \in \mathbb{C}^n : d(z, K) < \rho\}$.

Choose a compact set V such that $g_0 = g$ near V and $\operatorname{supp}(u)$ is in the interior of $\mathbb{R}^n \times V$. For every $\varepsilon > 0$ there is $C_{\varepsilon} > 0$ such that

$$|Tg_0(y - i\frac{\eta}{|\eta|}, |\eta|)| \le C_{\varepsilon} e^{\frac{|\eta|}{2}(1+\varepsilon)}.$$

On the other hand, by the choice of V there are constants $\delta, C_{\rho} > 0$ such that

$$|(1+i\frac{\eta D_y}{|\eta|^2})T(^tSf)(y+i\frac{\eta}{|\eta|},|\eta|)| \le C_\rho ||f||_{K_\rho}(1+|y|)e^{\frac{|\eta|}{2}(1-\delta(1+|y|)^2)}$$

for every $y \notin V$ and $\rho > 0$. Since

$$\int_{\mathbb{R}^p} |\eta|^{p/2} \, d\eta \int_{\mathbb{R}^p} e^{-\delta(1+|y|^2)|\eta|} (1+|y|) \, dy < \infty,$$

for every $\delta > 0$, the integral extended to $\mathbb{R}^p \setminus V \times \mathbb{R}^p$ defines an analytic functional supported by K.

It remains to estimate the integral in a conic neighbourhood of every point $(y_0, \eta_0) \in V \times \mathbb{R}^p \setminus \{0\}$.

Assume that $(y_0, \eta_0) \in WF_a(g)$. Then $(x, y_0, 0, -\eta_0) \notin WF_a(u)$ for every x and from the composition properties of the analytic wave front set, we have $(y_0, -\eta_0) \notin WF_a({}^tSf)$. As in [1], we can strengthen this property. For every $m \in \mathbb{N}_0$, let

$$E_m = \{ v \in \mathcal{A}'(M) : q_m(v) < \infty \}$$

with

$$q_m(v) = \sup_{|w-w_0| \le 1/m, \lambda > 0} e^{-\frac{\lambda}{2}|\mathcal{I}w|^2 + \frac{\lambda}{m}} |Tv(w, \lambda)|$$

and $w_0 = y_0 + i\eta_0$. Endowed with the Fréchet semi-norms of $\mathcal{A}'(M)$ and with q_m , the linear space E_m is a Fréchet space. It follows that the subspace $E = \bigcup_m E_m$ of $\mathcal{A}'(M)$ has a strict web in which the sets with one index are the E_m . For every $\rho > 0$, tS maps $\mathcal{O}(K_\rho)$ in E and has a sequentially closed graph. Two applications of the localization theorem (see [2] or theorem 6 of [1]), show that there are constants $C, \delta > 0$ and $\rho' \in]0, \rho[$ such that

$$|T(^{t}Sf)(w,\lambda)| \le C ||f||_{K_{\rho'}} e^{\frac{\lambda}{2}(|\mathcal{I}w|^{2} - \delta)}$$

for every $f \in \mathcal{O}(K_{\rho}), \lambda > 0$ and $|w - w_0| < \delta$. Using the Cauchy's inequalities, we get

$$|(1+i\frac{\eta \cdot D_y}{|\eta|^2})T({}^tSf)(y+i\frac{\eta}{|\eta|},|\eta|)| \le \frac{C'}{|\eta|} ||f||_{K_{\rho'}} e^{\frac{|\eta|}{2}(1-\delta/2)}$$

in a conic neighbourhood of (y_0, η_0) . Since

$$|Tg_0(y-i\frac{\eta}{|\eta|},|\eta|)| \le C_{\varepsilon} e^{\frac{|\eta|}{2}(1+\varepsilon)}$$

we conclude in a neighbourhood of (y_0, η_0) .

In the same way, if $(y_0, \eta_0) \notin WF_a(g)$ then Tg_0 is exponentially decreasing in a conic neighbourhood of this point and the other factor can be estimated by continuity.

Let us show that the definition of Sg is independent of g_0 . We have to show that the right hand side is equal to 0 if $\operatorname{supp}(g_0) \cap M = \emptyset$. If $\varepsilon > 0$, consider

$$g_{\varepsilon}(x) = (2\pi\varepsilon)^{-p/2} g_{0(y)}(e^{-\frac{1}{2\varepsilon}|x-y|^2}).$$

By lemma 2, we get

$$u(f \otimes g_{\varepsilon}) = ({}^{t}Sf)(g_{\varepsilon})$$

= $\frac{2^{-p-1}}{\pi^{3p/2}} \int_{\mathbb{R}^{p}} |\eta|^{p/2} e^{-|\eta|} d\eta$
 $\cdot \int_{\mathbb{R}^{p}} Tg_{\varepsilon}(y - i\frac{\eta}{|\eta|}, |\eta|) (1 + i\frac{\eta \cdot D_{y}}{|\eta|^{2}}) T({}^{t}Sf)(y + i\frac{\eta}{|\eta|}, |\eta|) dx.$

This expression converges to 0 with ε since $f \otimes g_{\varepsilon}$ uniformly converges to 0 in a complex neighbourhood of $\operatorname{supp}(u)$. Let us show that the integral converges to the right hand side in the definition. Choose a compact neighbourhood W of M such that $\operatorname{supp}(g_0) \cap W = \emptyset$. Since

$$Tg_{\varepsilon}(z,\lambda) = (1+\varepsilon\lambda)^{-p/2}Tg_0(z,\frac{\lambda}{1+\varepsilon\lambda}),$$

we have the estimation

$$|Tg_{\varepsilon}(y-i\frac{\eta}{|\eta|},|\eta|)| \le C_{\delta}e^{\frac{|\eta|}{2}(1+\delta)}.$$

160

There are constants $C, \rho > 0$ such that

$$|(1+i\frac{\eta \cdot D_y}{|\eta|^2}) T(^t Sf)(y+i\frac{\eta}{|\eta|},|\eta|)| \le C(1+|y|)e^{\frac{|\eta|}{2}(1-\rho(1+|y|^2))}.$$

if $y \notin W$. So we can conclude in this case. In the same way, for the integral on W, we use the estimates

$$|Tg_{\varepsilon}(y-i\frac{\eta}{|\eta|},|\eta|)| \le Ce^{\frac{|\eta|}{2(1+\varepsilon|\eta|)}(1-\rho)} \le Ce^{\frac{|\eta|}{2}(1-\rho)}$$

and

$$|(1+i\frac{\eta D_y}{|\eta|^2}) T(^t Sf)(y+i\frac{\eta}{|\eta|},|\eta|)| \le C_{\delta}(1+|y|)e^{\frac{|\eta|}{2}(1+\delta)}.$$

Finally, assume that g is analytic in a neighbourhood of M and apply lemma 2 to $({}^{t}Sf)(g_{\varepsilon})$ with

$$g_{\varepsilon}(x) = (2\pi\varepsilon)^{-p/2} \int_{\omega} g(y) e^{-\frac{1}{2\varepsilon}|x-y|^2} \, dy$$

where ω is a relatively compact open set such that $M \subset \omega$ and g is analytic near $\overline{\omega}$. The function that is equal to 1 in ω and 0 outside is denoted by χ_{ω} . Using a complex deformation to evaluate the integral over ω , we obtain the estimate

$$\begin{aligned} |Tg_{\varepsilon}(y - i\frac{\eta}{|\eta|}, |\eta|)| &= (1 + \epsilon |\eta|)^{-p/2} |\int_{\omega} g(x) e^{-\frac{|\eta|}{2(1 + \varepsilon |\eta|)}(y - i\frac{\eta}{|\eta|} - x)^2} dx| \\ &\leq C e^{\frac{|\eta|}{2(1 + \varepsilon |\eta|)}(1 - \delta)} \leq C e^{\frac{|\eta|}{2}(1 - \delta)} \end{aligned}$$

for some $\delta > 0$ and y near M. Hence, as before we can say that $u(f \otimes g_{\varepsilon})$ converges to $S(g\chi_{\omega})(f) = (Sg)(f)$ when ε goes to 0. Moreover from lemma 9.1.2 of [4], it follows that g_{ε} uniformly converges to g in a complex neighbourhood of M. This proves that theorem 3 extends the previous definition of S. \Box

3. Proof of theorem 1

We may assume that $\xi_0 \neq 0$, $\eta_0 \neq 0$ and $(x_0, y_0) \in \text{supp}(u)$. Let B(r) be an open ball such that $\text{supp}(u) \subset \mathbb{R}^n \times B(r)$ and V = B(R) with R > r. Let $C_m, m \in \mathbb{N}_0$, be a fundamental sequence of compact sets of

$$C = \{ w \in \mathbb{C}^p : |\Re w| \le r, \ |\Im w| \ge 1 \} \setminus \{ y_0 - it\eta_0 : t > 0 \}$$

and $w_0 = y_0 + i\eta_0$. There is a sequence $\delta_m > 0$ such that

$$\lambda \mu |\Re w - \Re w'|^2 + |\lambda \Im w + \mu \Im w'|^2 \ge \delta_m (\lambda + \mu)^2$$

if $w' \in C_m$, $\lambda, \mu > 0$ and $|w - w_0| \leq \delta_m$. Choose a decreasing sequence r_m such that $0 < r_m < \delta_m$ and consider

$$F = \{g \in \mathcal{A}'(\overline{V}) : q_m(g) < \infty \text{ for every } m \ge 1\}$$

with

$$q_m(g) = \sup_{w \in C_m, \mu > 0} |Tg(w, \mu)| e^{-\frac{\mu}{2}(|\Im w|^2 - r_m)}.$$

As the balls $\{g \in \mathcal{A}'(\overline{V}) : q_m(g) \leq r\}$ are closed in $\mathcal{A}'(\overline{V})$ for every r and m, the space F endowed with the semi-norms induced by $\mathcal{A}'(\overline{V})$ and the seminorms q_m is a Fréchet space. Moreover, if $g \in F$ then $WF_a(g) \cap (B(r) \times \mathbb{R}^p) \subset$ $\{(y_0, t\eta_0) : t > 0\}.$

Let K be the projection of $\operatorname{supp}(u)$ on \mathbb{R}^n and $E_m = \{f \in \mathcal{A}'(K) : p_m(f) < +\infty\}$ with

$$p_m(f) = \sup_{|z-z_0| < 1/m, \lambda > 0} e^{-\frac{\lambda}{2}|\Im z|^2} |Tf(z,\lambda)|$$

and $z_0 = x_0 - i\xi_0$. For every $m \in \mathbb{N}_0$, E_m is a Fréchet space for the seminorms induced by $\mathcal{A}'(K)$ and p_m . Hence, it has a strict web for which the sets with one index are closed balls of p_m . Let $E = \bigcup_{m=1}^{\infty} E_m$ with the topology induced by $\mathcal{A}'(K)$. This space has a strict web for which the sets with one index are the spaces E_m .

The operator S maps F into E. Indeed, since the sheaf of microfunctions is flabby hence supple, any $g \in F$ can be written $g = g_0 + g_1$ with $g_0, g_1 \in \mathcal{B}(\mathbb{R}^p)$ and

$$WF_a(g_0) \subset \{(y_0, t\eta_0) : t > 0\}, \quad WF_ag_1 \subset \overline{V} \setminus B(r) \times \mathbb{R}^p.$$

By hypothesis, we have $Sg_0 \in E$. On the other hand, by the main result of [1], the point $((x_0, y), (\xi_0, 0))$ does not belong to $WF_a(u)$ for every $y \in \mathbb{R}^p$. Since g_1 is analytic near the projection of $\operatorname{supp}(u)$, it follows that $(x_0, \xi_0) \notin WF_a(Sg_1)$.

Using the explicit expression of Sg given in the previous paragraph, it is easily seen that $S: F \to E$ is linear and has a sequentially closed graph.

With two applications of the localization theorem of [2], we get $C, \varepsilon > 0$, $m \in \mathbb{N}_0$ and a neighbourhood W of \overline{V} in \mathbb{C}^p such that

$$|T(Sg)(z,\lambda)| \le Ce^{\frac{\lambda}{2}|\Im z|^2} (q_m(g) + \sup_{h \in \mathcal{O}(\mathbb{C}^p), \|h\|_W \le 1} |g(h)|)$$

if $|z - z_0| < \varepsilon$, $\lambda > 0$ and $g \in F$.

With

$$f_{\lambda,z}(x) = e^{-\lambda(z-x)^2/2}$$
, $g_{\lambda,w}(y) = e^{-\lambda(w-y)^2/2}$

we have

$$Tu(z, w, \lambda) = T(Sg_{\lambda, w})(z, \lambda).$$

It follows that

$$|Tu(z,w,\lambda)| \le Ce^{\frac{\lambda}{2}|\Im z|^2} (q_m(g_{\lambda,w}\chi_V) + \sup_{\|h\|_W \le 1} |\int_V g_{\lambda,w}(y)h(y)\,dy|)$$

if $|z-z_0| < \varepsilon$.

We have to show that the right hand side is exponentially decreasing with respect to the weight $\frac{\lambda}{2}(|\Im z|^2 + |\Im w|^2)$ near (z_0, w_0) .

We first evaluate $q_m(g_{\lambda,w}\chi_V)$. We have

$$T(g_{\lambda,w}\chi_V)(w',\mu) = \left(\frac{2\pi}{\lambda+\mu}\right)^{n/2} e^{-\frac{\lambda\mu}{2(\lambda+\mu)}(w-w')^2} -\int_{\mathbb{R}^p\setminus V} e^{-\frac{\mu}{2}(w'-y)^2 - \frac{\lambda}{2}(w-y)^2} \, dy.$$

In the estimation of $Tu(z, w, \lambda)$, the first term of the previous equality gives the exponential of

$$\begin{aligned} \frac{\lambda}{2} |\Im z|^2 &- \frac{\mu}{2} (|\Im w'|^2 - r_m) - \frac{\lambda \mu}{2(\lambda + \mu)} |\Re w - \Re w'|^2 + \frac{\lambda \mu}{2(\lambda + \mu)} |\Im w - \Im w'|^2 \\ &= \frac{\lambda}{2} (|\Im z|^2 + |\Im w|^2) - \frac{\lambda \mu}{2(\lambda + \mu)} |\Re w - \Re w'|^2 - \frac{|\lambda \Im w + \mu \Im w'|^2}{2(\lambda + \mu)} + \frac{r_m \mu}{2} \\ &\leq \frac{\lambda}{2} (|\Im z|^2 + |\Im w|^2) - \frac{\delta_m}{2} (\lambda + \mu) + \frac{r_m \mu}{2} \end{aligned}$$

if $|w - w_0| < \delta_m$, $w' \in C_m$ and $\mu > 1$. This term is exponentially decreasing with respect to λ . Consider now the integral over $\mathbb{R}^p \setminus V$. Since $|\Re w|, |\Re w'| \le r$ and |y| > R, the exponent can be estimated by

$$\frac{\lambda}{2}|\Im w|^2 + \frac{\mu}{2}|\Im w'|^2 - \frac{\lambda + \mu}{2}(R - r)^2.$$

If $r_m < (R-r)^2$, this shows that this term is also exponentially decreasing.

Finally, using a complex shift $y \to y + it \Im w \chi(y)$ where $\chi \in C_0^{\infty}(V)$ is equal to 1 in a neighbourhood of $\Re w_0$ and t > 0 is small, we get the estimate

$$\sup_{\|h\|_W \le 1} \left| \int_V g_{\lambda,w}(y)h(y) \, dy \right| \le C' e^{\frac{\lambda}{2}(|\Im w|^2 - \varepsilon')}.$$

This proves the theorem. \Box

References

- [1] Bastin, F. and P. Laubin, On the functional characterization of the analytic wave front set of an hyperfunction, Math. Nachr. **166** (1994), 263–271.
- [2] De Wilde, M., Closed graph theorems and webbed spaces, Research Notes in Math. 19 Pitman, (1978).
- [3] Garnir, H. G., De Wilde, M. et J. Schmets, Analyse fonctionnelle III, Espaces fonctionnels usuels, Math. Reihe 45, Birkhäuser Verlag, 1973.
- [4] Hörmander, L., The analysis of linear partial differential operators I, Grundlehren 256, Springer Verlag, 1983.
- [5] Hörmander, L., Part of *Microlocal analysis and applications*, edited by Cattabriga, L. and Rodino, L., Lecture Notes in Math. 1495, 1989.
- [6] Jarchow, H., Locally convex spaces, B.G. Teubner Stuttgart, 1981.
- [7] Kaneko, A., A topological characterization of hyperfunctions with real analytic parameters, Sci. Papers College Arts, Univ. Tokyo 38(1) (1988), 1–6.
- [8] Köthe, G., Topological vector spaces II, Grundlehren 237, Springer Verlag, 1979.
- [9] Sato, M., Kawaï, T. and M. Kashiwara, Hyperfunctions and pseudodifferential equations, Lecture Notes in Math. 287 (1973), 263–529.
- [10] Sjöstrand, J., Singularités analytiques microlocales, Astérisque 95 (1982), 1–166.

(Received May 6, 1994) (Revised September 12, 1994)

> Université de Liège Institut de Mathématique Avenue des Tilleuls, 15 4000 Liège BELGIUM

164