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Asymptotic completeness for long-range

many-particle systems with Stark effect

By Tadayoshi Adachi and Hideo Tamura

Abstract. We prove the existence and the asymptotic complete-
ness of the Graf-type modified wave operators for many-particle Stark
Hamiltonians with long-range potentials.

1. Introduction

The problem of the asymptotic completeness for many–particle quantum

systems has made a major progress for these several years. This problem

was first solved by Sigal–Soffer [16] for a large class of short–range pair

potentials. After that work, alternative proofs have been given by several

authors [6, 11, 18, 23]. On the other hand, for the long–range case, Enss [4]

first proved the completeness for three–particle systems with pair potentials

decaying like O(|x|−ν) at infinity for some ν >
√

3−1. This result has been

extended by Dereziński [3] to N–particle systems and also the case of poten-

tials decaying more slowly has been dealt with by [5, 21] for three–particle

systems. We here study the problem of the asymptotic completeness for

many–particle Stark Hamiltonians with long–range potentials. Recently

the first author (T. Adachi) has proved the completeness of the modified

wave operators for three–particle systems under the conditions that a uni-

form electric field is sufficiently strong and that any two–particle subsystem

has a non–zero reduced charge ([1]). The second condition implies that no

two–particle subsystems have bound states, so that scattering states have

only a single channel. We extend this result to N–particle systems without

assuming the two additional conditions above.
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We consider a system of N particles moving in a given constant electric

field E ∈ R3, E �= 0. Let mj , ej and rj ∈ R3, 1 ≤ j ≤ N , denote the

mass, charge and position vector of the j–th particle, respectively. The

N particles under consideration are supposed to interact with one another

through the pair potentials Vjk(rj − rk), 1 ≤ j < k ≤ N . Then the total

Hamiltonian for such a system is described by

H̃ =
∑

1≤j≤N

{
− 1

2mj
∆rj − ejE · rj

}
+ V,

where ξ · η =
∑3
j=1 ξjηj for ξ, η ∈ R3 and the interaction V is given as the

sum of the pair potentials

V =
∑

1≤j<k≤N
Vjk(rj − rk).

As usual, we consider the Hamiltonian H̃ in the center–of–mass frame. We

introduce the metric 〈r, r̃〉 =
∑N
j=1mjrj · r̃j for r = (r1, . . . , rN ) and r̃ =

(r̃1, . . . , r̃N ) ∈ R3×N . We use the notations r2 = 〈r, r〉 and |r| = 〈r, r〉1/2.
Let X and X⊥ be the configuration spaces equipped with the metric 〈·, ·〉,
which are defined by

X = {r ∈ R3×N :
∑

1≤j≤N
mjrj = 0},

X⊥ = {r ∈ R3×N : rj = rk for 1 ≤ j < k ≤ N}.

These two subspaces are mutually orthogonal. We denote by π : R3×N →
X and π⊥ : R3×N → X⊥ the orthogonal projections onto X and X⊥,

respectively. For r ∈ R3×N , we write x = πr and x⊥ = π⊥r, respectively.

Let E ∈ X and E⊥ ∈ X⊥ be defined by

E = π

(
e1
m1
E , . . . , eN

mN
E
)
, E⊥ = π⊥

(
e1
m1
E , . . . , eN

mN
E
)
,

respectively. Then the total energy Hamiltonian H̃ is decomposed into

H̃ = H ⊗ Id+ Id⊗ T⊥, where Id is the identity operator, H is defined by

H = −∆/2− 〈E, x〉+ V on L2(X),
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T⊥ denotes the free Hamiltonian T⊥ = −∆⊥/2−〈E⊥, x⊥〉 acting on L2(X⊥),

and ∆ (resp. ∆⊥) is the Laplace–Beltrami operator on X (resp. X⊥). We

assume that |E| �= 0. This is equivalent to saying that ej/mj �= ek/mk for

at least one pair (j, k). Then H is called an N–particle Stark Hamiltonian

in the center–of–mass frame.

The problem of the asymptotic completeness is to determine completely

the asymptotic states as time t→ ±∞ of the solutions ψ(t) = exp(−itH)ψ

to the Schrödinger equation for all initial states ψ ∈ L2(X). The asymptotic

behavior of the solutions depends on the values of ej/mj . If ej/mj �= ek/mk
for any j �= k, then each pair cluster has a non–zero reduced charge. Hence

the N particles are expected to be scattered along the direction of E without

forming bound states and also the solution ψ(t) has a single channel as the

asymptotic state. On the other hand, if, for example, ej/mj = ek/mk
for some pair (j, k), then the pair cluster (j, k) has a zero reduced charge

and these particles may escape to infinity, forming a bound state at some

energy. Therefore the solution ψ(t) has scattering channels associated with

such bound states as the asymptotic state. Thus the asymptotic behavior of

the solutions is different according to the values of ej/mj . We shall discuss

the matter more precisely. To do this, we require several basic notations in

many–particle scattering theory.

A non–empty subset of the set {1, . . . , N} is called a cluster. Let Cj ,

1 ≤ j ≤ m, be clusters. If ∪1≤j≤mCj = {1, . . . , N} and Cj ∩ Ck = ∅ for

1 ≤ j < k ≤ m, a = {C1, . . . , Cm} is called a cluster decomposition. We

denote by #(a) the number of clusters in a. We denote by Ã the set of

cluster decompositions and set A = {a ∈ Ã : #(a) ≥ 2}. We let a, b ∈ Ã.

If b is obtained as a refinement of a, that is, if each cluster in b is a subset

of a cluster in a, we say b ⊂ a, and its negation is denoted by b �⊂ a. We

note that a ⊂ a is regarded as a refinement of a itself. If, in particular, b is

a strict refinement of a, that is, if b ⊂ a and b �= a, this relation is denoted

by b � a. We denote by α = (j, k) the (N − 1)–cluster decomposition

{(j, k), (1), . . . , (ĵ), . . . , (k̂), . . . , (N)}.
Next we define the two subspaces Xa and Xa of X as

Xa = {r ∈ X :
∑
j∈C

mjrj = 0 for each cluster C in a},

Xa = {r ∈ X : rj = rk for each pair α = (j, k) ⊂ a}.
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We note that Xα is the configuration space for the relative position of j–th

and k–th particles. Hence we can write Vα(x
α) = Vjk(rj−rk). These spaces

are mutually orthogonal and span the total space X = Xa ⊕ Xa, so that

L2(X) is decomposed as the tensor product L2(X) = L2(Xa)⊗L2(Xa). We

also denote by πa : X → Xa and πa : X → Xa the orthogonal projections

onto Xa and Xa, respectively, and write xa = πa x and xa = πa x for a

generic point x ∈ X. The intercluster interaction Ia is defined by

Ia(x) =
∑
α �⊂a

Vα(x
α),

and the cluster Hamiltonian

Ha = H − Ia = −∆/2− 〈E, x〉+ V a, V a(xa) =
∑
α⊂a

Vα(x
α),

governs the motion of the system broken into non–interacting clusters of

particles. Let Ea = πaE and Ea = πaE. Then the operator Ha acting on

L2(X) is decomposed into

Ha = Ha ⊗ Id+ Id⊗ Ta on L2(Xa)⊗ L2(Xa),

where Ha is the subsystem Hamiltonian defined by

Ha = −∆a/2− 〈Ea, xa〉+ V a on L2(Xa),

Ta is the free Hamiltonian defined by

Ta = −∆a/2− 〈Ea, xa〉 on L2(Xa),

and ∆a (resp. ∆a) is the Laplace–Beltrami operator on Xa (resp. Xa). By

choosing the coordinates system of X, which is denoted by x = (xa, xa),

appropriately, we can write ∆a = (∇a)2 and ∆a = (∇a)2, where ∇a =

∂xa = ∂/∂xa and ∇a = ∂xa = ∂/∂xa are the gradients on Xa and Xa,

respectively. We note that we denote by xa (resp. xa) a vector in Xa (resp.

Xa) as well as the coordinates system of Xa (resp. Xa).

We now state the precise assumption on the pair potentials. Let c be a

maximal element of the set {a ∈ A : Ea = 0} with respect to the relation
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⊂. As is easily seen, such a cluster decomposition uniquely exists and has

the following property : E ∈ Xc and E �∈ Xb for any b � c. If, in particular,

ej/mj �= ek/mk for any j �= k, then c becomes the N–cluster decomposition.

The potential Vα with α �⊂ c (resp. α ⊂ c) describes the pair interaction

between two particles with ej/mj �= ek/mk (resp. ej/mj = ek/mk). We

make different assumptions on Vα according as α �⊂ c or α ⊂ c. We assume

that :

(V ) Vα(x
α) ∈ C∞(Xα) is a real–valued function and has the decay property

∂βxαVα(x
α) = O(|xα|−ρ−|β|), |xα| → ∞,

with ρ > 0 for α �⊂ c and with ρ >
√

3− 1 for α ⊂ c.

Under this assumption, all the Hamiltonians defined above are essentially

self–adjoint on C∞
0 . We denote their closures by the same notations.

Throughout the whole exposition, the notations c and ρ are used with the

meanings described above. Without loss of generality, we may assume that

0 < ρ ≤ 1/2 for α �⊂ c and
√

3 − 1 < ρ ≤ 1 for α ⊂ c. If Vα satisfies this

decay assumption, then Vα is called a long–range potential.

To formulate the obtained result precisely, we define the modified wave

operators. The definition requires several new notations. We assume that

a ⊂ c. Then the subsystem operator Ha does not have a uniform electric

field (Ea = 0). Hence it may have bound states in L2(Xa). We denote

by P a : L2(Xa) → L2(Xa) the eigenprojection associated with Ha. We

also write pa for the coordinates dual to xa and denote by Da = −i∇a
the corresponding velocity operator. Let Ica be the intercluster interaction

obtained from Hc:

Ica(x) = Ica(x
c) =

∑
α⊂c, α �⊂a

Vα(x
α).

We consider the time–dependent Hamiltonian

(1.1) HaG(t) = Ha + Ica(tDa) + Ic(t
2E/2) on L2(X).

The three operators on the right side commute with one another. This can

be easily seen, if we take account of the fact that Ica(tpa) = Ica(tπ
cpa). Thus

the propagator UaG(t) generated by HaG(t), that is, {UaG(t)}t∈R is a family
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of unitary operators such that for ψ ∈ D(HaG(0)), ψt = UaG(t)ψ is a strong

solution of idψt/dt = HaG(t)ψt, ψ0 = ψ, is represented by

UaG(t) = exp(−itHa) exp

(
−i
∫ t

0
{Ica(sDa) + Ic(s

2E/2)} ds
)
.

With these notations, the modified wave operators in question are now

defined by

(1.2) W±
aG = s− lim

t→±∞
exp(itH)UaG(t)(P a ⊗ Id), a ⊂ c.

We can easily prove that if these wave operators exist, their ranges are all

closed and mutually orthogonal

RangeW±
aG ⊥ RangeW±

bG, a �= b.

If Vα(x
α) decays like Vα(x

α) = O(|xα|−ν), ν > 1/2, for α �⊂ c and like

Vα(x
α) = O(|xα|−ν), ν > 1, for α ⊂ c, Vα is called a short–range potential.

For the class of short–range pair potentials, the ordinary wave operators

W±
a = s− lim

t→±∞
exp(itH) exp(−itHa)(P a ⊗ Id)

exist without the modifiers Ica(tDa) and Ic(t
2E/2). The asymptotic com-

pleteness has been also proved by [12] for three–particle systems and by

[19] for N–particle systems. However it is known ([9, 14]) that such wave

operators do not generally exist for the class of long–range potentials which

we consider here.

The main result of this paper is the following theorem.

Theorem 1.1. Assume that (V ) is fulfilled. Let c be as above. Then

the N–particle Stark Hamiltonian H has no bound states, and the wave

operators W±
aG, a ⊂ c, exist and are asymptotically complete

L2(X) =
∑
a⊂c
⊕RangeW±

aG.
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If, in particular, c is the N–cluster decomposition, then the solution ψ(t) =

exp(−itH)ψ has a single scattering channel as the asymptotic state for any

initial state ψ ∈ L2(X) and behaves like

ψ(t) = exp

(
−i
∫ t

0
V (s2E/2) ds

)
exp(−itH0)ψ

± + o(1), t→ ±∞,

for some ψ± ∈ L2(X), where o(1) denotes terms converging to 0 strongly

and H0 = −∆/2− 〈E, x〉 is the free Hamiltonian.

We conclude the section by making a brief review on the results related

to the main theorem above.

Remark 1.2. The long–range scattering problem for two–particle

Stark Hamiltonians has been studied by several authors [7, 10, 22]. The

above type of modified wave operators was first introduced by Graf [7], and,

also for three–particle case, was used in [1]. They assumed that the pair

potentials Vα(x
α) satisfy the decay properties ∂βxαVα(x

α) = O(|xα|−ρ−µ|β|)
for some ρ, µ > 0 with ρ+ µ > 1. We can also modify the assumption for

the pair potentials Vα(x
α) with α �⊂ c analogously in our case.

On the other hand, the works [10, 22] have dealt with another class of

long–range potentials: ∂βxαVα(x
α) = O(|xα|−ν−|β|/2) for some ν > 0. In this

case, the modified wave operators may be defined with Ic(t
2E/2) replaced

by Ic(t
2E/2 + tDc), if we take account of classical Stark trajectories. The

completeness of such wave operators is much more difficult to prove and

the argument here does not directly extend to this problem.

Remark 1.3. As previously stated, the completeness of long–range

many–particle systems without uniform electric fields has been proved by

[3]. The proof of the main theorem uses this result applied to the subsystem

Hamiltonian Hc without uniform electric fields (Ec = 0). To this end, the

decay assumption with ρ >
√

3− 1 is required for Vα, α ⊂ c.

Remark 1.4. The non–existence of bound states has been already

proved by [20] under the assumption that |Vα(xα)|+|∇Vα(xα)| = O(|xα|−ν),
ν > 1/2. See also Sigal [15] for a certain class of singular potentials. The

argument developed in [20] extends to the class of potentials satisfying (V )
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without any essential changes. We omit the proof of the non–existence of

bound states.

Acknowledgements. T. Adachi thanks Professor Kenji Yajima for a lot

of support and encouragement.

2. Conjugate operators

Throughout the discussion below, we always assume (V ) to be ful-

filled. The proof of the main theorem is based on the conjugate operator

method initiated by Mourre [13]. We fix an energy λ ∈ R arbitrarily. Let

f ∈ C∞
0 (R) be a non–negative smooth function with support in a small

interval around λ. Then a self–adjoint operator A is said to be a conju-

gate operator of H, if both f(H)i[H,A]f(H) and f(H)i[i[H,A], A]f(H) are

bounded operators on L2(X) and if

(2.1) f(H)i[H,A]f(H) ≥ σ f(H)2, σ > 0,

where [ , ] denotes the commutator relation and the inequality is under-

stood in the form sense over L2(X). Such a conjugate operator has been

constructed in [20]. For later references, we here make a brief review on its

construction.

We start by introducing some new notations. Let SX be the unit ball in

X. We define S0(X) by

S0(X) = {q ∈ C∞(X) : q(x) is homogeneous of degree zero outside SX}.

We introduce a smooth non-negative partition of unity {ja(x)}a∈A over X

such that :

(j.1) ja(x) ∈ S0(X) and
∑
a∈A ja(x)

2 = 1 over X.

(j.2) ja(x)Vα(x
α) = O(|x|−ρ), |x| → ∞, for any α �⊂ a.

With these notations, the conjugate operator A in question is constructed

in the form

A =
∑
a∈A

jaBaja +M γ, M � 1,

where γ is defined by

(2.2) γ = −(i/2) (〈x/〈x〉,∇〉+ 〈∇, x/〈x〉〉), 〈x〉 = (1 + |x|2)1/2,
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and∇ is the gradient onX. Below we summarize the properties of operators

Ba.

(1) Let Λ and Λ0 be the sets of cluster decompositions defined by

(2.3) Λ = {a ∈ A : Ea �= 0}, Λ0 = {a ∈ A : Ea = 0}.

The operator Ba with a ∈ Λ is defined as

(2.4) Ba = −i〈ω̂a,∇〉, ω̂a = Ea/|Ea| ∈ SX ∩Xa.

By (j.2), H is approximated by the cluster Hamiltonian Ha = Ha + Ta
on the support of ja. In fact, we can easily show that ja(f(H) − f(Ha)) :

L2(X) → L2(X) is a compact operator. Since Ha and Ba commute with

each other, we have

(2.5) f(Ha)i[Ha, Ba]f(Ha) = |Ea| f(Ha)
2, |Ea| > 0.

(2) The operator Ba with a ∈ Λ0 is also constructed to satisfy

(2.6) f(Ha)i[Ha, Ba]f(Ha) ≥ σaf(Ha)
2, σa > 0.

The construction is done by induction on a ∈ Λ0. We first consider the

case #(a) = N − 1, assuming that such a cluster decomposition belongs to

Λ0. In this case, the cluster Hamiltonian Ha takes the form Ha = Ha+Ta,

where Ta = −∆a/2 does not have a uniform electric field (Ea = 0) and

Ha = −∆a/2− 〈Ea, xa〉+ Vα, α = a,

with Ea = E �= 0. We define Ba as Ba = −i〈ω̂a,∇〉 with ω̂a = Ea/|Ea| ∈
SX ∩Xa and calculate

f(Ha)i[Ha, Ba]f(Ha) = |Ea| f(Ha)2 +Kaα,

where Kaα = f(Ha)i[Vα, Ba]f(Ha) : L2(Xa)→ L2(Xa) is a compact opera-

tor by the assumption (V ). Since Ha has no bound states, we can take the

support of f so small that

(2.7) f(Ha)i[Ha, Ba]f(Ha) ≥ σa f(Ha)2, σa > 0,
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in the form sense over L2(Xa). If Ha takes energy in a small interval around

λ− θ, θ ≥ 0, we can prove that the form inequality

f(Ha + θ)i[Ha, Ba]f(Ha + θ) ≥ σa f(Ha + θ)2

is still valid with σa > 0 independent of θ. Since Ba acts on L2(Xa)

and commutes with Ta = −∆a/2 ≥ 0, we obtain (2.6) for a ∈ Λ0 with

#(a) = N − 1 by making use of the direct integral representation.

(3) Before constructing Ba, a ∈ Λ0, inductively, we shall explain the

role of the operator γ. This operator is introduced to control error terms

which arise from the commutators between H and the partition {ja}a∈A.

All the operators Ba are constructed as first order differential operators

with smooth bounded coefficients. Hence these error terms take the form

〈x〉−1/2∇c2∇〈x〉−1/2 + c1〈x〉−2∇+ c0〈x〉−3,

where cj , 0 ≤ j ≤ 2, are bounded smooth functions. As is easily seen,

f(H)(c1〈x〉−2∇+ c0〈x〉−3)f(H) is a compact operator on L2(X). But

f(H)〈x〉−1/2∇c2∇〈x〉−1/2f(H) : L2(X)→ L2(X)

is not necessarily compact for the Stark Hamiltonian H. We can show by

a simple calculation that

f(H)i[H, γ]f(H) ≥ f(H)〈x〉−1/2(−∆/2)〈x〉−1/2f(H) +K

for some compact operator K. Thus such error terms are controlled by

choosing M � 1 large enough.

(4) We now construct Ba, a ∈ Λ0, inductively. These operators are

constructed as first order differential operators acting on Xa as well as on

X. We introduce a partition of unity {jab (xa)}b�a over Xa, which has the

same properties as (j.1) and (j.2) with natural modifications. If b ∈ Λ0,

then we may assume by induction that Bb has been constructed so as to

fulfill the form inequality (2.7) for Hb. We note that this Bb can be regarded

as an operator acting on Xa. For b ∈ Λ, we define Bb by (2.4). Since

Eb = E − Eb = Ea − Eb ∈ Xa



Long-range many-particle systems 87

for a ∈ Λ0, Bb can be regarded as an operator acting on Xa. The operator

Ba in question is now defined as

Ba =
∑
b�a

jabBbj
a
b +Ma γa, Ma � 1,

where γa = −(i/2) (〈xa/〈xa〉,∇〉 + 〈∇, xa/〈xa〉〉) plays the same role as γ.

The subsystem operator Ha has non–zero uniform electric field Ea = E �= 0

and hence it has no bound states. If we take account of this fact, then we

can prove that Ba defined above satisfies (2.6). The basic form inequality

(2.1) follows from (2.5) and (2.6).

Remark 2.1. In the work [20], the conjugate operator has been con-

structed under the same assumption as in Remark 1.4. However the argu-

ment there extends to the class of pair potentials satisfying (V ) without

any essential changes.

3. Commutator calculus

We always denote by A the conjugate operator constructed in the pre-

vious section and by Q the multiplication operator with 〈x〉1/2. The com-

mutator calculus for the operators H, A and Q is used as a basic tool

in studying the propagation properties of exp(−itH). We here summarize

some basic results on these commutators, which are often used without

further references throughout the future discussion.

We start by making a brief review on the almost analytic extension

method due to Helffer–Sjöstrand [8], which is useful in analyzing operators

given by functions of self–adjoint operators. For two operators B1 and B2,

we define

ad0
B1

(B2) = B2, adnB1
(B2) = [adn−1

B1
(B2), B1], n ≥ 1.

For m ∈ R, let Fm be the set of functions f ∈ C∞(R) such that

|f (k)(s)| ≤ Ck〈s〉m−k, k ≥ 0.

If f ∈ Fm with m ∈ R, then there exists F ∈ C∞(C) such that F (s) = f(s)

for s ∈ R, suppF (ζ) ⊂ {ζ ∈ C : |Im ζ| ≤ d(1+ |Re ζ|)} for some d > 0 and

|∂ζF (ζ)| ≤ CM 〈ζ〉m−1−M |Im ζ|M , M ≥ 0.
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Such a function F (ζ) is called an almost analytic extension of f . Let B be

a self–adjoint operator. If f ∈ F−m with m > 0, then f(B) is represented

by

(3.1) f(B) =
i

2π

∫
C
∂ζF (ζ)(B − ζ)−1 dζ ∧ dζ.

For f ∈ Fm with m ∈ R, we have the following formulas of the asymptotic

expansion of the commutator:

[B1, f(B)] =
M−1∑
n=1

(−1)n−1

n!
adnB(B1)f

(n)(B) +RM ,(3.2)

RM =
1

2πi

∫
C
∂ζF (ζ)(B − ζ)−1adMB (B1)(B − ζ)−M dζ ∧ dζ.(3.3)

RM is bounded if there exists k such that m+k < M and adMB (B1)(B+i)−k

is bounded. For the proof, see [5].

Lemma 3.1. Let fj ∈ C∞
0 (R), 1 ≤ j ≤ 2, and let g ∈ F0. Assume that

B is a self–adjoint operator such that adjB(H)(H + i)−1, 1 ≤ j ≤ 2, are

bounded from L2(X) into itself. Then one has :

(1) [f1(H), g(B/t)] = [f1(H), B/t]g′(B/t) +O(t−2).

(2) [[f1(H), B], f2(B/t)] = O(t−1).

Here O(t−ν) denote bounded operators with their norm estimated by C t−ν

as t→∞.

Proof. The lemma is more or less known (see, for example, Lemma

3.2 of [17]).

(1) Set Bt = B/t, t ≥ 1. By assumption, we have

ad2
B((H − ζ)−1) = O(〈ζ〉|Im ζ|−2) +O(〈ζ〉2|Im ζ|−3).

Hence it follows from (3.1) that ad2
Bt

(f1(H)) = O(t−2). Let G ∈ C∞(C) be

an almost analytic extension of g. Then, by the formulas (3.2) and (3.3),

the commutator [f1(H), g(Bt)] under consideration is written as

[f1(H), Bt]g
′(Bt)+

1

2πi

∫
C
∂ζG(ζ)(Bt− ζ)−1ad2

Bt
(f1(H))(Bt− ζ)−2 dζ ∧ dζ.
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This proves (1).

(2) This can be proved in the same way as above. By assumption, we

have

[[f1(H), B], (Bt − ζ)−1] = O(t−1)O(|Im ζ|−2).

Hence we can obtain (2) again by the almost analytic extension method. �

The lemma above is used with B = A or Q. It is easy to see that these

operators fulfill the assumption in the lemma. In fact, this is verified as

follows. Let ω = E/|E| be the direction of E. We denote the coordinate

z ∈ R by z = 〈x, ω〉, so that H is written as H = −∆/2− |E| z + V . Note

that 〈z〉 ≤ 〈xa〉 for a ∈ Λ0, Λ0 being defined by (2.3). By construction, A

takes the form

A = −i (〈a(x),∇〉+ 〈∇, a(x)〉),
where the coefficient a(x) is a smooth function which values in X and obeys

the estimates |∂βxa(x)| ≤ Cβ〈z〉−|β|. Hence A admits a unique self–adjoint

realization on its natural domain in L2(X) and we denote its self–adjoint

realization by the same notation A. As is easily seen,

〈z〉−1/2∇(H + i)−1, 〈z〉−1∇∇(H + i)−1 : L2(X)→ L2(X)

are bounded. Hence it follows from the assumption (V ) that A satisfies the

assumption in Lemma 3.1. This is verified also for Q in a similar way.

The next lemma can be also proved in almost the same way as Lemma

3.1. As for (3), we should note that ad2
Q(H) is bounded. We skip the proof.

Lemma 3.2. Let fj ∈ C∞
0 (R), 1 ≤ j ≤ 2. Then one has :

(1) [(H + i)−1, f1(A/t)] = O(t−1), [(H + i)−1, f1(Q/t)] = O(t−1).

(2) [Q, f1(A/t)] = O(t−1), [f2(Q/t), f1(A/t)] = O(t−2).

(3) (H + i)[f1(H), f2(Q/t)] = O(t−1).

We end the section by introducing the following convention for smooth

cut–off functions F with 0 ≤ F ≤ 1, which is often used throughout the

discussion below. For δ > 0 small enough, we define :

F (s < d) = 1 for s ≤ d− δ, = 0 for s ≥ d+ δ,

F (s > d) = 1 for s ≥ d+ δ, = 0 for s ≤ d− δ,
F (s = d) = 1 for |s− d| ≤ δ, = 0 for |s− d| ≥ 2 δ

and F (d1 < s < d2) = F (s > d1)F (s < d2).
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4. Propagation properties

We prove the main theorem for the + case only. The important step

toward the proof is to show that the solution exp(−itH)ψ concentrates

asymptotically on classical Stark trajectories as t→∞. We define

Γ(θ; d, δ) = {x ∈ X : |x| > d, |x/|x| − θ| < δ}

for θ ∈ SX , SX being again the unit sphere in X.

Theorem 4.1. Fix 0 < ε � 1 arbitrarily. Let ω = E/|E| ∈ SX
be again the direction of E and let q0 ∈ S0(X) be a non–negative cut–

off function such that q0 is supported in Γ(ω; |E|/4, 2ε) and q0 = 1 on

Γ(ω; |E|/3, ε). Then

s− lim
t→∞
{1− F (Q/t = (|E|/2)1/2)q0} exp(−itH) = 0.

The theorem above implies that the N particles escape to infinity along

the direction of uniform electric field E as t → ∞, which are accelerated

in the configuration space X with the acceleration that is about E. This

propagation property, which has played an important role in [1], has been

proved under the assumption that E is sufficiently strong and any pair

cluster has a non–zero reduced charge. We here prove this without such an

additional assumption. The main body of the present work is occupied by

the proof of Theorem 4.1.

We begin by fixing some new notations used in the proof of Theorem 4.1.

Throughout the discussion below, we always denote by f ∈ C∞
0 (R) a non–

negative function supported in a small interval around λ ∈ R, λ being fixed

arbitrarily. We use the notations ‖ ‖ and ( , ) for the L2 norm and scalar

product in L2(X), respectively. We also denote by B(t), t ≥ 0, operators

having the following properties : (1) f(H)B(t)f(H) : L2(X) → L2(X) is

bounded ; (2)∫ ∞

1
|(B(t)f(H) exp(−itH)ψ, f(H) exp(−itH)ψ)| dt ≤ C ‖ψ‖2,

ψ ∈ L2(X).
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Proposition 4.1. There exists M � 1 such that∫ ∞

1

dt

t
‖F (Q/t < M−1)f(H) exp(−itH)ψ‖2 ≤ C ‖ψ‖2

for ψ ∈ L2(X), where the choice of M depends on λ.

This proposition is obtained as an immediate consequence of the two

lemmas below.

Lemma 4.1. There exists d > 0 such that∫ ∞

1

dt

t
‖F (|A|/t < d)f(H) exp(−itH)ψ‖2 ≤ C ‖ψ‖2.

Lemma 4.2. Let d > 0 be as above. Then one can take M � 1 so large

that

F (|A|/t > d)F (Q/t < M−1)(H + i)−1 = O(t−1).

Proof of Lemma 4.1. The proof is done in exactly the same way as

in the proof of Lemma 4.1 of [17]. Let G ∈ F0 be defined by

G(s) =

∫ s

−∞
F (|u| < d)2 du,

so that G′(s) = F (|s| < d)2 ∈ C∞
0 (R). To prove the lemma, we use

Φ1(t) = G(A/t)

as a propagation observable. The Heisenberg derivative of this observable

is calculated as

(4.1) DΦ1(t) = i[H,Φ1(t)] + Φ′
1(t).

If we take g ∈ C∞
0 (R) such that g = 1 on the support of f , then

f(H)i[H,Φ1(t)]f(H) = f(H)i[g(H)H,Φ1(t)]f(H).
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By repeated use of Lemma 3.1, we have

f(H)i[H,Φ1(t)]f(H) = Ff(H)i[H,A/t]f(H)F +B(t)

with F = F (|A|/t < d). Hence it follows from (2.1) that

f(H)i[H,Φ1(t)]f(H) ≥ σ t−1Ff(H)2F +B(t)

for some σ > 0. On the other hand, the second term on the right side of

(4.1) is evaluated as

f(H)Φ′
1(t)f(H) ≥ −2 dt−1f(H)F 2f(H).

Thus we obtain

f(H)DΦ1(t)f(H) ≥ (σ − 2d)t−1f(H)F 2f(H) +B(t)

by Lemma 3.1 again. This proves the lemma. �

Proof of Lemma 4.2. We set Fd = F (|A|/t > d) and Fκ = F (Q/t <

κ). Then u = (H − i)−1FdFκw solves the equation

(H − i)u = FdFκw, w ∈ L2(X).

Recall that the conjugate operator A is a first order differential operator

with smooth bounded coefficients. Hence it follows that A2 ≤ C(−∆+1) for

some C > 0 and, by the boundedness of V and the fact that u is the solution

of the above equation, we also have ‖Au‖ ≤ C(‖Qu‖ + ‖w‖) with another

C > 0. Since |A|Fd ≥ (dt/2)Fd and QFκ ≤ 2κtFκ, we make repeated use of

Lemma 3.2 to obtain that

‖Au‖ ≥ (dt/2)‖(H − i)−1FdFκw‖ − C ‖w‖,
‖Qu‖ ≤ 2κt‖(H − i)−1FdFκw‖+ C ‖w‖

for some C > 0 independent of t � 1. Hence we can take κ > 0 so small

that FdFκ(H + i)−1 = O(t−1). This completes the proof. �

Proposition 4.2. There exists M � 1 dependent on λ such that :
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(1) For ψ ∈ L2(X),

∫ ∞

1

dt

t
‖F (Q/t = M)f(H) exp(−itH)ψ‖2 ≤ C ‖ψ‖2.

(2) For ψ ∈ S(X), S(X) being the Schwartz space over X,

∫ ∞

1

dt

t
‖F (Q/t > M)f(H) exp(−itH)ψ‖2 <∞.

Proof. This proposition can be also proved in the same way as in

the proof of Theorem 4.3 of [17] (also see [1]). We take the propagation

observables

Φ2(t) = −F (Q/t > M) and Φ3(t) = −(Q/t−M)F (Q/t > M)

to prove (1) and (2), respectively. The detailed proof is omitted. �

Proposition 4.3. Let Λ be defined by (2.3). Assume that q ∈ S0(X)

vanishes in a small conical neighborhood of ω̂a = Ea/|Ea| for all a ∈ Λ.

Then there exists M � 1 large enough such that

∫ ∞

1

dt

t
‖F (M−1 < Q/t < M)qf(H) exp(−itH)ψ‖2 ≤ C ‖ψ‖2.

To prove the proposition above, we prepare two lemmas. We prove the

first lemma only. The second lemma is obtained as an immediate conse-

quence of the first one. We should note that the operator D⊥ in the first

lemma was first introduced by Yafaev [23], who has derived the radiation

conditions–estimates for many–particle short–range systems without elec-

tric fields, and the second author (H. Tamura [19]) used it in order to get the

same property as in Proposition 4.3 for many–particle short–range systems

with constant electric fields.
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Lemma 4.3. Denote by Qσ the multiplication operator with 〈x〉σ/2. Let

D⊥ be defined by D⊥ = −i∇−Q−1γQ−1 x, where γ is given by (2.2). Then

one has∫ ∞

1

dt

t
‖F (M−1 < Q/t < M)Q−1D⊥f(H) exp(−itH)ψ‖2 ≤ C ‖ψ‖2.

Lemma 4.4. If q ∈ S0(X), then one has∫ ∞

1

dt

t
‖F (M−1 < Q/t < M)Q[q,∆]f(H) exp(−itH)ψ‖2 ≤ C ‖ψ‖2.

Proof of Lemma 4.3. We write FM = FM (t) for F (M−1 < Q/t <

M) and take

Φ4(t) = FMΦFM , Φ = Q−1/2γQ−1/2,

as a propagation observable. By Lemma 3.2 (3), we see that f(H)Φ4(t)f(H)

is uniformly bounded in t ≥ 1. We calculate the Heisenberg derivative of

Φ4(t). Propositions 4.1 and 4.2 enable us to take F̃M ∈ C∞
0 (R) such that

F̃M = 1 on the support of F ′(M−1 < s < M) and∫ ∞

1

dt

t
‖F̃M (Q/t)f(H) exp(−itH)ψ‖2 ≤ C ‖ψ‖2.

We write F̃M,t = F̃M (Q/t). Since the support of ∇FM or ∂tFM lies in the

support of F̃M,t which is the forbidden region of the propagator exp(−itH),

it follows from Lemma 3.2 (3) that f1(H){DΦ4(t)−FM i[H,Φ]FM}f1(H) =

t−1F̃M,tC(t)F̃M,t+O(t−2) for some f1 ∈ C∞
0 (R) such that f1f = f and for

some C(t) which is uniformly bounded in t ≥ 1. Hence the Heisenberg

derivative DΦ4(t) takes the form

DΦ4(t) = FM i[H,Φ]FM +B(t).

We now assert that

(4.2) FM i[H,Φ]FM = (3/2)FMQ−3/2(−∆− γ2)Q−3/2FM +B(t).
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If this is verified, then the lemma immediately follows, because a simple

computation yields

FMQ−3/2(−∆− γ2)Q−3/2FM = FMQ−3/2〈D⊥, D⊥〉Q−3/2FM +B(t).

We calculate the commutator on the left side of (4.2) as

(4.3) i[H,Φ] = i[−∆/2,Φ] + i[−|E| z,Φ] + i[V,Φ],

where z ∈ R again denotes z = 〈x, ω〉. By the assumption (V ), it follows

that FM i[V,Φ] FM = O(t−3). The second operator on the right side takes

the form

i[−|E|z,Φ] = Q−3/2|E|zQ−3/2 = Q−3/2(−∆/2−H + V )Q−3/2

and hence

FM i[−|E|z,Φ]FM = FMQ−3/2(−∆/2)Q−3/2FM +B(t).

Finally we look at the first operator on the right side of (4.3). Since

(4.4) i[−∆/2, Q−1/2] = −(1/4)Q−5/2γ +O(〈x〉−9/4),

it follows that

FM i[−∆/2, Q−1/2]γQ−1/2FM = −(1/4)FMQ−3/2γ
2Q−3/2FM +B(t)

and also we have

FMQ−1/2i[−∆/2, γ]Q−1/2FM = FMQ−3/2(−∆− γ2)Q−3/2FM +B(t)

by a direct calculation. Thus we combine the two relations above to obtain

that

FM i[−∆/2,Φ]FM = FMQ−3/2(−∆− 3γ2/2)Q−3/2FM +B(t).

This yields (4.2) and the proof is complete. �
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Proof of Proposition 4.3. The proof is long and is divided into

several steps. Throughout the proof, we use the notation Qσ and FM with

the same meanings as above. We also use the notation

con supp q = {θ ∈ SX : q(x) = q(|x|θ) �= 0, |x| > 1}

for q ∈ S0(X). Let q be as in the proposition. By assumption, there exists

d0 > 0 such that

(4.5) 1− |〈ω̂a, θ〉| ≥ d0, θ ∈ con supp q,

for all a ∈ Λ.

(1) We define the subset Sa, a ∈ A, of SX by

Sa = {θ = (θ1, . . . , θN ) ∈ SX : θj = θk for α ⊂ a, θj �= θk for α �⊂ a}.

By definition, {Sa}a∈A becomes a family of disjoint subsets and SX =

∪a∈ASa. The first step toward the proof is to construct a smooth non–

negative partition of unity {ka}a∈A over X with the following properties :

(k.1) ka ∈ S0(X) and
∑
a∈A ka(x)

2 = 1 over X.

(k.2) con supp ka ∩ con supp kb �= ∅ =⇒ a ⊂ b or b ⊂ a.

(k.3) Sa ∩ con supp kb �= ∅ =⇒ a ⊂ b and hence Sa ⊂ ∪a⊂bcon supp kb.
(k.4) con supp ka ⊂ {θ ∈ SX : |θa| < δ} for δ > 0 small enough.

Here θa = πaθ is the projection onto Xa of θ and the choice of δ > 0

depends on the value of d0 in (4.5). Such a partition of unity can be easily

constructed by use of a simple geometrical properties of {Sa} ([18]). By

construction, it follows from (k.2) and (k.3) that

(4.6) ka(x)Vα(x
α) = O(|x|−ρ), |x| → ∞,

for α �⊂ a and also we have by (k.1) that

(4.7) q(x)2 =
∑
a

qa(x)
2, qa = kaq ∈ S0(X).

(2) We recall the properties of the operators Ba, a ∈ A, constructed in

section 2. These are first order differential operators with smooth bounded
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coefficients. In particular, Ba, a ∈ Λ, is defined by Ba = −i 〈ω̂a,∇〉, so that

i[Ha, Ba] = |Ea| > 0. The operator Ba, a ∈ Λ0, also has the property

(4.8) f(Ha)i [Ha, Ba]f(Ha) ≥ σa f(Ha)
2, σa > 0.

With these operators, we now define the observable Φ5(t) by

Φ5(t) =
∑
a

Ya(t) =
∑
a

FMΦaFM , Φa = Q−1/2qaBaqaQ−1/2.

We see that f(H)Φ5(t)f(H) is uniformly bounded in t ≥ 1. We assert that

the Heisenberg derivative of Ya(t) is evaluated as

(4.9) f(H)DYa(t)f(H) ≥ da f(H)FMQ−1/2q
2
aQ−1/2FMf(H) +B(t)

for some da > 0. If this is proved, then the proposition follows from (4.7)

at once.

(3) We first consider the case a ∈ Λ. By Propositions 4.1 and 4.2, we

have

DYa(t) = FM i[H,Φa]FM +B(t).

The commutator on the right side is calculated as

i[H,Φa] = Q−1/2qai[H,Ba]qaQ−1/2 +G1a +G2a,

where

G1a = i[−∆/2, Q−1/2]qaBaqaQ−1/2 + {adjoint},
G2a = Q−1/2i[−∆/2, qa]BaqaQ−1/2 + {adjoint}.

Since γBa +Baγ ≤ −2 ∆ + d for some d > 0, it follows from (4.4) that

FMG1aFM ≥ FMQ−3/2qa(∆/2)qaQ−3/2FM +B(t).

We put G = Qi[−∆/2, qa]Q−1/2. Then we have by Lemma 4.4∫ ∞

1
‖GFMf(H) exp(−itH)ψ‖2 dt ≤ C‖ψ‖2.
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Since B2
a ≤ −∆ + d for some d > 0 and since

G2a ≥ −εQ−1/2qaB
2
aqaQ−1/2 − ε−1G∗G

for any ε > 0, we have

FMG2aFM ≥ ε FMQ−3/2qa(∆/2)qaQ−3/2FM +B(t)

for any ε > 0 small enough. Thus, if we make use of the relation ∆/2 =

−|E|z −H + V , then we obtain

DYa(t) ≥ FMQ−1/2qa(i[H,Ba]− (1 + ε)|E|z/〈x〉)qaQ−1/2FM +B(t).

(4) We continue to consider the case a ∈ Λ. We write

i[H,Ba] = |Ea|+
∑
α �⊂a

i[Vα, Ba].

By (4.6), the second operator on the right side obeys

FMQ−1/2qa[Vα, Ba]qaQ−1/2FM = O(t−3−2ρ).

Hence (4.9) is obtained for a ∈ Λ, if it can be shown that

|Ea| − (1 + ε)〈E, x/〈x〉〉 > 0

strictly for |x| � 1 with x ∈ supp qa. Let d0 > 0 be as in (4.5). Since

〈E, x/〈x〉〉 = 〈Ea, xa/〈x〉〉+ 〈Ea, xa/〈x〉〉,

we can take δ in (k.4) so small that

|〈E, x/〈x〉〉| ≤ |Ea|(|〈ω̂a, θ〉|+ d0/2) ≤ |Ea|(1− d0/2)

for |x| � 1 with θ = x/|x| ∈ con supp ka. If ε is further chosen small

enough, then we can make the quantity in question strictly positive and

hence (4.9) is obtained for a ∈ Λ.
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(5) The proof is completed in this step. We prove (4.9) also for a ∈ Λ0.

The operator Ba, a ∈ Λ0, satisfies γBa +Baγ ≤ d(−∆ + 1) for some d > 0.

Hence we make use of the same argument as in step (3) to obtain that

DYa(t) ≥ FMQ−1/2qa(i[Ha, Ba]− d 〈E, x/〈x〉〉)qaQ−1/2FM +B(t)

with another d > 0. The Hamiltonian H can be approximated by Ha on

the support of qa. Indeed, we can show that

FMqaf(H)− f(Ha)FMqa = O(t−min(1,2ρ)).

Hence it follows from (4.8) that

f(H)DYa(t)f(H)

≥ f(H)FMQ−1/2qa{σa − d 〈E, x/〈x〉〉}qaQ−1/2FMf(H) +B(t)

for some σa > 0. Since Ea = 0 for a ∈ Λ0, we can show, repeating the same

argument as in step (4), that the quantity in brackets can be made strictly

positive for |x| � 1 with x ∈ supp qa. This proves (4.9) for a ∈ Λ0 and the

proof is complete. �

Lemma 4.5. Let q ∈ S0(X) be as in Proposition 4.3 and let Φ(t) denote

one of the following three operators

F (Q/t < M−1), F (Q/t > M), F (M−1 < Q/t < M)q

with M � 1. Then one has

s− lim
t→∞

Φ(t)f(H) exp(−itH) = 0.

Proof. We calculate the Heisenberg derivative of Φ(t). Then the sup-

port of ∇Φ or ∂tΦ lies in the forbidden region of the propagator exp(−itH)

in the sense of Propositions 4.1 ∼ 4.3. Hence these propositions imply the

existence of the strong limit

(4.10) s− lim
t→∞

exp(itH)Φ(t)f(H) exp(−itH).
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In fact, taking f1 ∈ C∞
0 (R) such that f1f = f and noting that Q[q, f1(H)]

is bounded, we have [Φ(t), f1(H)] = O(t−1) by Lemma 3.1. Hence, to prove

(4.10), it suffices to show the existence of the strong limit s− limt→∞ W̃ (t),

where

W̃ (t) = exp(itH)f1(H)Φ(t)f(H) exp(−itH).

By Propositions 4.1 ∼ 4.3, we have

|(ϕ, W̃ (s1)ψ)− (ϕ, W̃ (s2)ψ)| = o(1)‖ϕ‖, s1, s2 →∞,

for ϕ, ψ ∈ L2(X). This implies that {W̃ (t)ψ}t≥1 is a Cauchy sequence and

hence the existence of (4.10) is proved. By Propositions 4.1 ∼ 4.3 again, we

see that for ψ ∈ S(X), there exists a subsequence {tn}n∈N with tn → ∞
such that

(4.11) lim
n→∞

Φ(tn)f(H) exp(−itnH)ψ = 0,

where the choice of subsequence {tn}n∈N depends on ψ. By (4.10) and

(4.11), we have for ψ ∈ S(X),

lim
t→∞

Φ(t)f(H) exp(−itH)ψ = 0.

Thus the lemma follows by density argument. �

In general, Ea and Eb can equal each other, even if a �= b. We now

set Ẽ = {Ea : a ∈ Λ} and let Ẽ ∈ Ẽ . We define a(Ẽ) to be the maximal

element of the set {b ∈ Λ : Ẽb = 0} with respect to the relation ⊂, and set

Σ = {a(Ẽ) : Ẽ ∈ Ẽ}. We should note c ∈ Σ.

We now introduce a non–negative cut–off function qa ∈ S0(X) with

conical support in a small neighborhood of ω̂a for a ∈ Σ. The function

qa(x) has the following property : qa is supported in Γ(ω̂a; |E|/4, 2ε) and

qa = 1 on Γ(ω̂a; |E|/3, ε). We should note qa(x)Ia(x) = O(|x|−ρ) for a ∈ Σ.

We also define

(4.12) ϕa(t, x) = F (M−1 < 〈x〉1/2/t < M)qa(x), a ∈ Σ,

with M � 1. Then we have the following proposition as a consequence of

Lemma 4.5:
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Proposition 4.4. Let ϕa be as above. Then one has

s− lim
t→∞

(
1−

∑
a∈Σ

ϕa

)
f(H) exp(−itH) = 0.

To prove Theorem 4.1, it suffices by Proposition 4.4 to show that

(4.13) s− lim
t→∞
{1− F (Q/t = (|E|/2)1/2)q0}ϕaf(H) exp(−itH) = 0,

a ∈ Σ.

It should be noted that (|E|/2)1/2 is independent of λ, while the choice of

M � 1 depends on λ. The following two sections are devoted to the proof

of (4.13).

5. Time–dependent Hamiltonians

The result obtained above reduces the proof of Theorem 4.1 to the prop-

agation analysis in a conical neighborhood of ω̂a, a ∈ Σ. To this analysis, it

is convenient to introduce an auxiliary time–dependent Hamiltonian which

approximates the full Hamiltonian H. Our choice of it is inspired by the

argument in [1]. In this section, we study the relation between exp(−itH)

and the propagator generated by such a time–dependent Hamiltonian.

Let a ∈ Σ and ϕ̃a be another cut–off function such that ϕ̃a takes a form

similar to (4.12) and ϕ̃a = 1 on the support of ϕa. We define

Wa(t, x) = Wa(t, x
a, xa) = ϕ̃a(t, x)Ia(x).

By the assumption (V ), Wa obeys the estimate

(5.1) |∂mt ∂βxWa(t, x)| ≤ Cmβ〈t〉−m(〈t〉2 + 〈x〉)−ρ−|β|.

We now consider the time–dependent Hamiltonian

Ha0(t) = Ha +Wa0(t),
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where Wa0(t) is defined by

Wa0(t) =

{
Wa(t, x

a, t2Ea/2), Ea �= 0

Wa(t, 0, t
2E/2) = Ia(t

2E/2), Ea = 0.

We should note that a = c if Ea = 0. Let Ua0(t) be the propagator generated

by Ha0(t), that is, {Ua0(t)}t≥1 is a family of unitary operators such that for

ψ ∈ D(Ha0(1)), ψt = Ua0(t)ψ is a strong solution of idψt/dt = Ha0(t)ψt,

ψ1 = ψ. By definition, Ha0(t) is decomposed into

Ha0(t) = Ha(t)⊗ Id+ Id⊗ Ta on L2(Xa)⊗ L2(Xa),

where Ha(t) = Ha + Wa0(t) acts on L2(Xa). Hence Ua0(t) is represented

as

Ua0(t) = Ua(t)⊗ exp(−i(t− 1)Ta),

where Ua(t) denotes the propagator generated by Ha(t). The aim here is

to prove the following

Proposition 5.1. Let the notations be as above. Then there exists the

strong limit

s− lim
t→∞

Ua0(t)
∗ϕaf(H) exp(−itH).

To prove this proposition, we follow the argument in [1], and further

introduce an auxiliary Hamiltonian

Ha(t) = Ha +Wa(t), Wa(t) = Wa(t, x),

and denote by Ua(t) the propagator generated by Ha(t). For this propaga-

tor, the Heisenberg derivative of f(Ha)Φ(t)f(Ha) is calculated as

f(Ha){i[Ha,Φ(t)] + Φ′(t)}f(Ha) + i[Wa(t), f(Ha)Φ(t)f(Ha)].

Since [Wa(t), (Ha − ζ)−1] = O(t−1−2ρ)O(〈ζ〉|Im ζ|−2) by (5.1), we have

[Wa(t), f(Ha)] = O(t−1−2ρ). By (5.1) again and the above fact, it follows

that

(5.2) i[Wa(t), f(Ha)Φj(t)f(Ha)] = O(t−ν) for some ν > 1,
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for all the propagation observables Φj(t), 1 ≤ j ≤ 5, which are used in

the proofs of Propositions 4.1 ∼ 4.3. Thus the contributions from these

commutators can be dealt with as integrable terms and hence Ua(t) is proved

to preserve the same propagation properties as in these propositions :

Lemma 5.1. Let the notations be as above. Then one has for ψ ∈
L2(X), ∫ ∞

1

dt

t
‖F (Q/t < M−1)f(Ha)Ua(t)ψ‖2 ≤ C ‖ψ‖2,∫ ∞

1

dt

t
‖F (Q/t = M)f(Ha)Ua(t)ψ‖2 ≤ C ‖ψ‖2,∫ ∞

1

dt

t
‖F (M−1 < Q/t < M)qf(Ha)Ua(t)ψ‖2 ≤ C ‖ψ‖2,

where q ∈ S0(X) as in Proposition 4.3. Moreover, for ψ ∈ S(X)

∫ ∞

1

dt

t
‖F (Q/t > M)f(Ha)Ua(t)ψ‖2 < ∞.

Lemma 5.2. There exists the strong limit

s− lim
t→∞

U∗
a (t)ϕaf(H) exp(−itH).

Proof. Taking f1 ∈ C∞
0 (R) such that f1f = f and noting

ϕa(Wa(t, x) − Ia(x)) = 0 and f1(Ha)ϕa − ϕaf1(H) = O(t−min(1,2ρ)), in

virtue of Lemma 5.1, the existence of the limit can be proved as the exis-

tence of (4.10). �

Proof of Proposition 5.1. By Lemma 5.2, we have only to show

the existence of the strong limit

(5.3) s− lim
t→∞

Ua0(t)
∗Ua(t).
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It follows from (5.1) that

|Wa(t, x)−Wa0(t)| ≤
{
O(t−2−2ρ)|xa − t2Ea/2|, Ea �= 0

O(t−2−2ρ)(|xa − t2Ea/2|+ |xa|), Ea = 0.

Hence (5.3) is obtained as an immediate consequence of the lemma below. �

Lemma 5.3. Assume that ψ ∈ S(X). Then one has :

(1) ‖(xa − t2Ea/2)Ua(t)ψ‖ = O(t).

(2) If, in particular, Ea = 0, then ‖xa Ua(t)ψ‖ = O(t).

Proof. (1) Recall that Da = −i∇a denotes the velocity operator cor-

responding to pa. For the propagator Ua(t), the Heisenberg derivative of

Da − tEa satisfies

i[Ha(t), Da − tEa] +
d

dt
(Da − tEa) = i[Wa(t), Da] = O(t−2ρ−2),

so that we have

(5.4) ‖(Da − tEa)Ua(t)ψ‖ = O(1).

Similarly the Heisenberg derivative of xa − t2Ea/2 is calculated as

i[Ha(t), xa − t2Ea/2]− tEa = Da − tEa

and hence (1) follows from (5.4) at once.

(2) We first note that the Heisenberg derivative of xa is Da = −i∇a,
where ∇a is the gradient on Xa. By assumption, Ha does not have a

uniform electric field and hence we see that for f ∈ F−1/2, Daf(Ha) is

bounded. In order to prove (2), it suffices to show that for g ∈ F1/2,

(5.5) ‖g(Ha)Ua(t)ψ‖ = O(1).

Let G ∈ C∞(C) be an almost analytic extension of g. Since the Heisenberg

derivative of g(Ha) is i[Wa(t), g(H
a)], by the formulas (3.2) and (3.3), we

have

i[Wa(t), g(H
a)]
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=i[Wa(t), H
a]g′(Ha)

+
1

2πi

∫
C
∂ζG(ζ)(Ha − ζ)−1ad2

Ha(Wa(t))(H
a − ζ)−2 dζ ∧ dζ.

Since g′ ∈ F−1/2, we see that the first term is O(t−2ρ−2). Since

(Ha − ζ)−1ad2
Ha(Wa(t))(H

a − ζ)−2

=O(t−2ρ−2)O(|Im ζ|−3) +O(t−2ρ−4)O(〈ζ〉|Im ζ|−3)

+O(t−2ρ−6)O(〈ζ〉|Im ζ|−3),

we also have the second term is O(t−2ρ−2), and hence

(5.6) i[Wa(t), g(H
a)] = O(t−2ρ−2).

(5.6) proves (5.5) and the proof is complete. �

We have the following as a consequence of Proposition 5.1:

Proposition 5.2. Let the notations be as above. Then there exists

ψa ∈ L2(X) such that

ϕa exp(−itH)f(H)ψ = Ua0(t)ψa + o(1), t→∞.

The following can be proved as Lemma 5.3:

Lemma 5.4. For ψ ∈ S(X),

(1) ‖(xa − t2Ea/2)Ua0(t)ψ‖ = O(t).

(2) If, in particular, Ea = 0, then ‖xa Ua0(t)ψ‖ = O(t).

Lemma 5.5. Let q0 ∈ S0(X) be as in Theorem 4.1. If Ea = 0, then

s− lim
t→∞
{1− F (Q/t = (|E|/2)1/2)q0}Ua0(t) = 0.
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Proof. We follow the argument in [1]. We put φt(x) = F (Q/t =

(|E|/2)1/2)q0(x) and note φt(t
2E/2) = φt(t

2Ea/2) = 1 for t � 1. Since

|1−φt(x)| = |φt(t2Ea/2)−φt(x)| ≤ O(t−2)(|xa− t2Ea/2|+ |xa|), by Lemma

5.4, we have for ψ ∈ S(X)

lim
t→∞
{1− φt(x)}Ua0(t)ψ = 0.

By density argument, the lemma follows. �

The lemma above, together with Proposition 5.2, implies (4.13) when

Ea = 0, that is in the case a = c. Thus it remains to prove (4.13) also in

the case Ea �= 0 in order to complete the proof of Theorem 4.1. To do this,

we further continue the analysis on the propagation properties of Ua(t) in

the space L2(Xa).

6. Propagation properties of subsystem operators

The proof of Theorem 4.1 is completed in this section. Throughout

the section, we fix a ∈ Σ \ {c}, so that Ea �= 0. We also work in the

space L2(Xa) and use the notation Qa for the multiplication operator with

〈xa〉1/2.

Lemma 6.1. Let h ∈ C∞
0 (R) be such that h = 1 on the interval [−1, 1].

Then one has

(1− h(Ha/R))Ua(t) = o(1), R→∞,

uniformly in t ≥ 1 in the strong topology.

Proof. Recall that Ua(t) is the propagator generated by Ha(t) =

Ha +Wa0(t), Wa0(t) = Wa0(t, x
a). To prove the lemma, it suffices to show

that the Heisenberg derivative of 1− h(Ha/R) is

−i[Wa0(t), h(Ha/R)] = o(1)O(〈t〉−1−2ρ), R→∞,

uniformly in t. This is verified by the almost analytic extension method.

Let u ∈ L2(Xa) be the solution to the equation (Ha − ζ)u = w, Im ζ �= 0,

with w ∈ L2(Xa). Then u satisfies

‖〈xa〉−1/2∇u‖2 ≤ C(〈ζ〉‖u‖2 + ‖w‖ ‖u‖)
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for C > 0 independent of ζ. Hence it follows that

〈xa〉−1/2∇(Ha − ζ)−1 = O(〈ζ〉1/2|Im ζ|−1) +O(|Im ζ|−1/2)

and also we have

〈xa〉−1/2∇(Ha/R− ζ)−1 = O(R1/2)O(〈ζ〉1/2|Im ζ|−1 + |Im ζ|−1/2).

This, together with (5.1), shows that

[Wa0(t), (H
a/R− ζ)−1]

= O(R−1/2)O(〈ζ〉1/2|Im ζ|−2 + |Im ζ|−3/2)O(〈t〉−1−2ρ).

Thus the desired result is obtained from (3.1) and the proof is complete. �

By Lemma 6.1 and Proposition 5.2, we obtain the following: For any

ε > 0 small enough, there exists gε ∈ C∞
0 (R) such that

(6.1) ϕaf(H) exp(−itH)ψ = gε(H
a)Ua0(t)ψa +O(ε) + o(1), t→∞,

where the norm of remainder term O(ε) is estimated by Cε uniformly in

t ≥ 1. Let b ∈ A be such that b ⊂ a. Then we can write

Xa = Xb ⊕Xab , Xab = Xb ∩Xa,

so that Ea has the orthogonal decomposition Ea = Eb+Eab with Eab ∈ Xab .
Similarly we write xa = xb + xab for xa ∈ Xa. Let Λa = {b ∈ A : b �

a, Eab �= 0}. We set Ẽa = {Eab : b ∈ Λa} and let Ẽ ∈ Ẽa. We define b(Ẽ) to

be the maximal element of the set {b′ ∈ Λa : Ẽb
′
= 0} with respect to ⊂,

and set Σa = {b(Ẽ) : Ẽ ∈ Ẽa}. The Hamiltonian Ha still has a non–zero

uniform electric field Ea �= 0. Hence we can construct a conjugate operator

Aa of Ha which satisfies

(6.2) f(Ha)i[Ha, Aa]f(Ha) ≥ σaf(Ha)2, σa > 0.

Making use of this form inequality, we can show the following propagation

properties of Ua(t) as Propositions 4.1 ∼ 4.3:
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Lemma 6.2. Let the notations be as above. Then one has for ψ ∈
L2(Xa),∫ ∞

1

dt

t
‖F (Qa/t < M−1)f(Ha)Ua(t)ψ‖2 ≤ C ‖ψ‖2,∫ ∞

1

dt

t
‖F (Qa/t = M)f(Ha)Ua(t)ψ‖2 ≤ C ‖ψ‖2,∫ ∞

1

dt

t
‖F (M−1 < Qa/t < M)qaf(Ha)Ua(t)ψ‖2 ≤ C ‖ψ‖2,

where qa ∈ S0(X
a) vanishes in a small conical neighborhood of ω̂ab =

Eab /|Eab | for all b ∈ Λa. Moreover, for ψ ∈ S(Xa)

∫ ∞

1

dt

t
‖F (Qa/t > M)f(Ha)Ua(t)ψ‖2 < ∞.

In virtue of Lemma 6.2, we can prove the following as Lemma 4.5:

Lemma 6.3. Let Φa(t) denote one of the following three operators

F (Qa/t < M−1), F (Qa/t > M), F (M−1 < Qa/t < M)qa,

where qa ∈ S0(X
a) is as in Lemma 6.2. Then one has

s− lim
t→∞

Φa(t)f(Ha)Ua(t) = 0.

Let b ∈ Σa and qab ∈ S0(X
a) be a non–negative cut–off function sup-

ported in a small conical neighborhood of ω̂ab = Eab /|Eab |. The function

qab (x
a) has a property similar to qa ∈ S0(X) in (4.12). We define

ϕab (t, x
a) = F (M−1 < 〈xa〉1/2/t < M)qab (x

a), b ∈ Σa.

Then, in virtue of Lemma 6.3, we can prove the following as Proposition

4.4:
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Proposition 6.1. Let ϕab be as above. Then one has

s− lim
t→∞

(
1−

∑
b∈Σa

ϕab

)
f(Ha)Ua0(t) = 0.

To prove (4.13) in the case Ea �= 0, it suffices by (6.1) and Proposition

6.1 to show that

(6.3) s− lim
t→∞
{1− F (Q/t = (|E|/2)1/2)q0}ϕabf(Ha)Ua0(t) = 0, b ∈ Σa.

We repeat the same argument as in the previous section to prove (6.3).

Let Iab = Iab (x
a) be the intercluster potential of Ha. Then the cluster

Hamiltonian Hab obtained from Ha takes the form

Hab = Ha − Iab = Hb ⊗ Id+ Id⊗ T ab on L2(Xb)⊗ L2(Xab ),

where T ab = Tb−Ta acts on L2(Xab ). We introduce a time–dependent Hamil-

tonian which approximate the generator Ha(t) of the propagator Ua(t). Let

ϕ̃ab (t, x
a) be another cut–off function which takes a form similar to ϕab and

satisfies ϕ̃ab = 1 on the support of ϕab . We define

W a
b (t, xa) = W a

b (t, xb, xab ) = ϕ̃a(t, x
a)(Wa0(t, x

a) + Iab (x
a)).

Since Eab �= 0, we may assume that if Eb �= 0, Wa0(t, x
b, xab ) = 0 at xab =

t2Eab /2. If, in particular, Eb = 0, then Eab = Ea. Taking account of these

facts, we set

W a
b0(t) =

{
W a
b (t, xb, t2Eab /2) = ϕ̃a(t, x

b, t2Eab /2)Iab (x
b, t2Eab /2), Eb �= 0

W a
b (t, 0, t2Ea/2) = Iab (t

2Ea/2), Eb = 0.

Then the time–dependent Hamiltonian in question is defined by

Hab0(t) = Hab +W a
b0(t).

This Hamiltonian has the decomposition

Hab0(t) = Hba(t)⊗ Id+ Id⊗ T ab on L2(Xb)⊗ L2(Xab ),
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where Hba(t) = Hb + W a
b0(t) acts on L2(Xb). If we denote by U ba(t) the

propagator generated by Hba(t), then the propagator Uab0(t) generated by

Hab0(t) is represented by

Uab0(t) = U ba(t)⊗ exp(−i(t− 1)T ab ).

We can prove the following by the same argument as in the proof of

Proposition 5.1:

Proposition 6.2. There exists the strong limit

s− lim
t→∞

Uab0(t)
∗ϕabf(Ha)Ua(t).

Recall that Ua0(t) = Ua(t)⊗ exp(−i(t− 1)Ta) and Tb = Ta + T ab . Hence

we have the relation

Uab0(t)⊗ exp(−i(t− 1)Ta) = U ba(t)⊗ exp(−i(t− 1)Tb).

If Eb = 0, then Hb has no electric fields, and the following can be proved

as Lemma 5.5:

Lemma 6.4. Let the notations be as above. Then one has

s− lim
t→∞
{1− F (Q/t = (|E|/2)1/2)q0}Uab0(t)⊗ exp(−i(t− 1)Ta) = 0.

Hence (6.3) follows from this and Proposition 6.2. On the other hand,

if Eb �= 0, then Hba(t) still has a non–zero uniform electric field. To prove

(6.3) for such b ∈ Σa, we work in the space L2(Xb) and repeat the same ar-

gument as applied to Ua(t) to analyze the propagation properties of U ba(t).

In any case, (6.3) is verified by repeated use of similar arguments and the

proof of Theorem 4.1 is now complete.
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7. Asymptotic completeness

The present section is devoted to proving the main theorem. The proof

uses the asymptotic completeness of long–range many–particle systems

without uniform electric fields. As stated in section 1, this result has been

already established by [3].

Proof of Theorem 1.1. Let c be as in the theorem. Then ω =

E/|E| = Ec/|Ec| and alsoHc does not have a uniform electric field (Ec = 0).

Let q0 ∈ S0(X) be as in Theorem 4.1. Recall that q0(x) has a support in a

small conical neighborhood of ω. We define :

ϕc(t, x) = F (〈x〉1/2/t = (|E|/2)1/2)q0(x),

Wc0(t) = Ic(t
2E/2).

To prove the theorem, we consider an auxiliary time–dependent Hamilton-

ian

Hc0(t) = Hc +Wc0(t).

Denote by Uc0(t) = Θ(t) exp(−itHc) the propagator generated by the above

operator, where

Θ(t) = exp

(
−i
∫ t

0
Ic(s

2E/2) ds

)
.

Then it follows from Theorem 4.1 that there exists the strong limit

(7.1) s− lim
t→∞

Uc0(t)
∗ exp(−itH).

In fact, by Theorem 4.1, we have only to prove the existence of the strong

limit

s− lim
t→∞

Uc0(t)
∗ϕc exp(−itH).

Let f ∈ C∞
0 (R) and take M � 1 as in Propositions 4.1∼4.3, which depends

on f . Let q1 ∈ S0(X) be such that q1q0 = q0 and q1 has a support in a

small conical neighborhood of ω, and q2 ∈ S0(X) be such that q2q1 = q1
and q2 has a support in a small conical neighborhood of ω. We define

ϕ̃c(t, x) = F (M−1 < 〈x〉1/2/t < M)q1(x),
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Hc(t) = Hc +Wc(t, x),

Wc(t, x) = Wc(t, x
c, xc) = F (〈x〉1/2/t > (2M)−1)q2(x)Ic(x),

and denote by Uc(t) the propagator generated by Hc(t). We note that

Wc(t, t
2E/2) = Wc0(t) for t ≥ 1. We also note that Wc(t, x) satisfies (5.1),

since c is the maximal element of the set {a ∈ A : Ea = 0}. Then we have

only to prove the existence of the strong limits

s− lim
t→∞

Uc(t)
∗ϕ̃cf(H) exp(−itH), s− lim

t→∞
Uc0(t)

∗Uc(t),

because ϕ̃cϕc = ϕc. The existence of these limits is proved in exactly

the same way as Proposition 5.1 and Lemma 5.2. We can also show the

existence of the strong limit

(7.2) s− lim
t→∞

exp(itH)Uc0(t).

This is also proved in almost the same way as Proposition 5.1 (see [1]). In

fact, both the propagators Uc0(t) and Uc(t) have the same properties as in

Lemmas 5.3 and 5.4. Hence, in particular, Theorem 4.1 remains true for

Uc(t):

Proposition 7.1. Let the notations be as above. Then

s− lim
t→∞
{1− F (Q/t = (|E|/2)1/2)q0}Uc(t) = 0.

Thus we can prove the existence of (7.2) as that of (7.1).

It follows from the existence of (7.1) that for any ψ ∈ L2(X),

(7.3) exp(−itH)ψ = Θ(t){exp(−itHc)⊗ exp(−itTc)}ψc + o(1), t→∞,

with some ψc ∈ L2(X). Thus the proof of the theorem is reduced to ana-

lyzing the asymptotic behavior as t→∞ of exp(−itHc).
We now use the asymptotic completeness for the subsystem Hamiltonian

Hc without uniform electric field (see [3]). For a ⊂ c, we define

Hca0(t) = Hca + Ica(tDa) = Ha + T ca + Ica(tDa) on L2(Xc)
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and denote the propagator U ca0(t) generated by Hca0(t) as

U ca0(t) = exp(−itHca) exp

(
−i
∫ t

0
Ica(sDa) ds

)
,

where Hca = Hc − Ica is the cluster Hamiltonian obtained from Hc and

T ca = Ta − Tc = −∆ca/2 acts on L2(Xca). Then we have that : (1) There

exists the strong limit

(7.4) Ωca = s− lim
t→∞

exp(itHc)U ca0(t)(P
a ⊗ Id) : L2(Xc)→ L2(Xc)

for the eigenprojection P a associated with Ha. (2) The wave operators Ωca
defined above are asymptotically complete

(7.5) L2(Xc) =
∑
a⊂c
⊕RangeΩca.

Let HaG(t), a ⊂ c, be defined by (1.1). Then HaG(t) is decomposed into

HaG(t) = Hca0(t) + Tc +Wc0(t).

The three operators on the right side commute with one another. The

propagator UaG(t) generated by HaG(t) is also represented by

UaG(t) = Θ(t)(U ca0(t)⊗ exp(−itTc)).

In virtue of the existence of (7.2), the existence of W+
aG defined by (1.2) can

be proved by showing the existence of the strong limit

s− lim
t→∞

Uc0(t)
∗UaG(t)(P a⊗ Id) = s− lim

t→∞
{exp(itHc)U ca0(t)(P

a⊗ Id)}⊗ Id,

which follows from the existence of (7.4). On the other hand, by (7.3)

and (7.5), we have with ψc =
∑
j:finite ψ

c
j ⊗ ψjc + O(ε), ψcj ∈ L2(Xc) and

ψjc ∈ L2(Xc),

exp(−itH)ψ = Θ(t)
∑
j:finite

exp(−itHc)ψcj ⊗ exp(−itTc)ψjc +O(ε)
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= Θ(t)
∑
j:finite

∑
a⊂c

exp(−itHc)(Ωcaψ̃caj)⊗ exp(−itTc)ψjc +O(ε)

= Θ(t)
∑
j:finite

∑
a⊂c

U ca0(t)ψ̃
c
aj ⊗ exp(−itTc)ψjc +O(ε) + o(1)

for some ψ̃caj ∈ L2(Xc), which implies

‖ψ −
∑
j:finite

∑
a⊂c

W+
aG(ψ̃caj ⊗ ψjc)‖ ≤ O(ε).

Since ε > 0 is arbitrary and
∑
a⊂c⊕RangeW+

aG is closed, we have

ψ ∈
∑
a⊂c
⊕RangeW+

aG,

which implies the asymptotic completeness of the wave operators W+
aG. The

proof of Theorem 1.1 is now completed. �
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