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Contractions and flips for varieties with

group action of small complexity

By Michel Brion and Friedrich Knop

Abstract. We consider projective, normal algebraic varieties X
equipped with the action of a reductive algebraic group G. We assume
that a Borel subgroup of G has an orbit of codimension at most one in
X (i.e. the complexity of the G-variety X is at most one) and that X is
unirational. Then we prove that the cone of effective one-cycles NE(X)
is finitely generated, and that each face of NE(X) can be contracted.
Moreover, flips exist when X is Q-factorial, and any sequence of di-
rected flips terminates. Finally, we prove that any homogeneous space
of complexity at most one admits an equivariant completion whose an-
ticanonical divisor is ample.

Introduction

Consider a projective, normal algebraic variety X over an algebraically

closed field. In the study of morphisms ϕ : X → X ′ where X ′ is another

projective, normal variety, a fundamental role is played by the “cone of

effective one-cycles” NE(X). Namely, the curves contracted by ϕ define a

face F of NE(X); moreover, ϕ can be recovered from F , provided that ϕ

has connected fibers (then ϕ is the contraction of F ). But it may happen

that some faces of NE(X) do not arise from morphisms; and the geometry

of NE(X) can be quite complicated, see e.g. [2] §4.

In the present paper, we prove that everything is fine for a class of vari-

eties with group actions. More precisely, we consider a connected reductive

group G acting on a projective, normal variety X. We assume that X is

unirational, and that the complexity of the action is at most one, i.e. that
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a Borel subgroup of G has an orbit of codimension at most one in X. Then

we prove that the convex cone NE(X) is finitely generated, and that each

of its faces can be contracted (1.3). Moreover, if X is Q-factorial, then we

can always flip bad contractions (1.4) and every sequence of directed flips

is finite (2.5). It follows that for any closed subgroup H of G such that the

complexity of G/H is at most one, there exists an equivariant completion

X of G/H such that the opposite of the canonical divisor is ample (2.5). It

is tempting to conjecture that the assumption on the complexity of G/H

is not necessary.

Our results generalize work of the first author (see [1]) which concern

spherical varieties, i.e. varieties of complexity zero. We also mention re-

lated work of L. Moser-Jauslin and T. Nakano on threefolds where the

group SL(2) acts with a dense orbit (see [7] and [8]); these examples have

complexity one.

Our proofs are based on two finiteness results. The first one asserts that

the algebra of regular functions Γ(X,OX) is finitely generated, whenever X

is a normal, unirational G-variety of complexity at most one; see [5]. For

the second one, we consider a normal G-variety X of complexity at most

one, and we prove that X has only finitely many equivariant completions

X, if we prescribe the valuations associated to all prime divisors in X\X;

see 2.1-2.4.

Notation and terminology. We consider algebraic varieties and

groups which are defined over a fixed algebraically closed field k. The

field of rational functions on a variety X is denoted by k(X). We denote by

G a connected reductive group; we choose a Borel subgroup B of G, and a

maximal torus T of G. A G-variety X is a variety endowed with an action

of G; then the complexity of X is the minimal codimension of a B-orbit in

X; see [10]. The complexity of X is equal to the transcendence degree of

k(X)B over k, where k(X)B denotes the subfield of B-invariants in k(X).

Consider two varieties X and S, and a proper morphism f : X → S. For

any line bundle L over X, and for any (reduced and irreducible) complete

curve C in X, we denote by (L · C) the degree of the restriction of L to C.

Denote by Z1(X/S) the free abelian group generated by all closed curves C

in X such that f(C) is a point; denote by Pic(X/S) the quotient of Pic(X)

by f∗Pic(S). Then the assignement (L, C) → (L · C) defines a bilinear
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form

Pic(X/S)× Z1(X/S)→ Z.

Dividing by the kernels and tensoring by Q, we obtain a non-degenerate

pairing

N1(X/S)×N1(X/S)→ Q

where N1(X/S) (resp. N1(X/S)) is the space of relative line bundles (resp.

one-cycles), with rational coefficients, modulo numerical equivalence. We

denote by NE(X/S) the convex cone of N1(X/S) which is generated by

the classes of closed curves C in X, such that f(C) is a point.

Let L be a line bundle over X. Then L is called f -nef if (L · C) ≥ 0

for any curve C in X such that f(C) is a point. Equivalently, the linear

form on N1(X/S) defined by L is non-negative on NE(X/S). On the other

hand, L is called f -semi-ample if there exists an integer n > 0 such that

the natural homomorphism f∗f∗(L⊗n) → L⊗n is surjective. Observe that

any f -semi-ample line bundle is f -nef. The converse is not true in general,

but it holds whenever X is unirational and has complexity at most one; see

1.2.

1. Existence of contractions and of flips

1.1. For later purpose, we need the following characterization of semi-

ample divisors among nef divisors, which may be of independant interest.

Proposition. Consider a projective morphism f : X → S between

normal varieties, and a f-nef line bundle L over X. Then the following

conditions are equivalent:

(i) L is f-semi-ample.

(ii) For any f-ample line bundle M over X, the sheaf of algebras

A(L,M) :=
⊕

l,m≥0

f∗(L⊗l ⊗M⊗m)

is finitely generated over OS.

(iii) There exists a f-ample line bundle M over X, such that A(L,M)

is finitely generated over OS.
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Proof. (i)⇒ (ii) Denote by Ľ (resp. M̌) the total space of the dual

bundle of L (resp. M). Consider the vector bundle Ľ ⊕ M̌ over X, and

the associated projective bundle π : P → X. Set g = f ◦ π. We have the

tautological line bundle OP(1) over P, such that π∗OP(1) = L⊕M. So for

any integer n ≥ 0, we have:

g∗OP(n) =
⊕

0≤l≤n

f∗(L⊗l ⊗M⊗(n−l))

and therefore:

A(L,M) =
∞⊕

n=0

g∗OP(n).

By a version of a theorem of Zariski [12], the OS-algebra A(L,M) is finitely

generated if the line bundle OP(1) is g-semi-ample. But this follows from

the f -semi-ampleness of L, and the f -ampleness of M.

(iii) ⇒ (i) We may assume that S is affine: then we have to show

that L is semi-ample. Choose an arbitrary point x ∈ X. We show that

the restriction map L⊗l → L⊗l|x is surjective for l large. The N2-graded

algebra ⊕

l,m≥0

Γ({x},L⊗l ⊗M⊗m)

can be identified with the polynomial algebra k[u, v] where the degree of u

(resp. v) is (1, 0) (resp. (0,1)). The evaluation at x defines a morphism of

N2-graded algebras

ex : A(L,M)→ k[u, v].

Because the algebra A(L,M) is finitely generated, the set of all degrees

occuring in ex(A(L,M)) is a finitely generated semigroup. Choose non-zero

generators (l1,m1), . . . , (lt,mt) of this semigroup with limi+1 − li+1mi ≥ 0

for 1 ≤ i ≤ t − 1. If m1 �= 0 then ex(A(L,M))l,m = 0 for any (l,m) such

that lm1 − l1m > 0. Choose such a couple (l,m) with m > 0. Then the

line bundle L⊗l ⊗M⊗m is ample (because L is nef and M is ample), but

all sections of all powers of this line bundle vanish at x, a contradiction. So

m1 = 0, and L⊗l1 has global sections which do not vanish at x. �

1.2. Theorem. Let f : X → S be a proper G-morphism between normal

G-varieties. Assume that X is unirational and of complexity at most one.

Then every f-nef line bundle over X is f-semi-ample.
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Proof. By standard reductions based on [9] Theorem 4.9, we may

assume that the morphism f is projective. Let L be a f -nef line bundle

over X. By replacing L with some positive power, we may assume that L
is G-linearized. Choose a G-linearized, f -ample line bundle M over X.

By [4] §2, we can cover S by translates of B-stable affine open subsets.

Choose such a subset S0. We have to show that the algebra

⊕

l,m≥0

Γ(S0, f∗(L⊗l ⊗M⊗m))

is finitely generated. For this, we may assume that S = G · S0. Then

D := S\S0 is a Cartier divisor of S; see [6] Lemma 2.2. There exists a

positive integer N such that the line bundle OS(ND) is G-linearized. Set

N := f∗OS(ND). Then the group Ĝ := G× (Gm)3 acts on the variety

X̂ := SpecOX

⊕

l,m,n,≥0

L⊗l ⊗M⊗m ⊗N⊗n.

Moreover, X̂ is a normal, unirational Ĝ-variety of complexity at most one.

By [5], the algebra Γ(X̂,OX̂) is finitely generated. Therefore, the algebra

⊕

l,m,n≥0

Γ(S, f∗(L⊗l ⊗M⊗m)⊗OS(nND))

is, too. So the same holds for the algebra

⊕

l,m,≥0

Γ(S0, f∗(L⊗l⊗M⊗m)) =
⋃

n≥0

⊕

l,m≥0

Γ(S, f∗(L⊗l⊗M⊗m)⊗OS(nND)).

We conclude by 1.1. �

1.3. Theorem. Let f : X → S be a projective G-morphism between nor-

mal G-varieties. Assume that X is unirational and of complexity at most

one.

(i) The cone NE(X/S) is polyhedral, and each of its extremal rays is

generated by the class of a B-stable, rational curve.

(ii) For any face F of NE(X/S), there exists a unique normal G-variety

XF , projective over S, and a unique G-morphism contF : X → XF with
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connected fibers, such that F = NE(X/XF ). Moreover, F generates the

kernel of (contF )∗ : N1(X/S) → N1(XF /S); and the space N1(XF /S) is

identified with the orthogonal of F in N1(X/S).

(iii) If ϕ : X → X ′ is any morphism to a projective variety over S,

such that F is contained in NE(X/X ′), then ϕ factorizes through contF .

Proof. (i) It follows from [7] Lemma 6.1 that any effective cycle of

X which is contracted by f , is rationally equivalent to a B-stable effective

cycle which is contracted by f . Therefore, it is enough to show that the

B-stable irreducible curves of X which are contracted by f are rational, and

that their images in NE(X/S) generate only finitely many half-lines. Let C

be such a curve. If B acts non-trivially on C, then C is obviously rational.

Moreover, CT consists in exactly 2 points, and the image of the half-line

Q+C in NE(X/S) only depends on the connected components of XT which

meet C(see [1] 1.6). On the other hand, if B acts trivially on C, then there

exists a unique parabolic subgroup P containing B which is opposite to the

isotropy subgroups of all points in a non-empty open subset of C. By [4]

1.2, we can choose a P -stable open affine subset X0 of X meeting C, such

that the quotient π : X0 → X0/P
u exists. Therefore, the restriction of π

to C ∩X0 is injective. We set: L := P/P u and Σ := X0/P
u. Observe that

Σ is an affine, unirational L-variety of complexity at most one; hence its

(Mumford) quotient Σ/L is a point or a rational, irreducible curve. But

π(C ∪ X0) is a curve in ΣL; moreover, the composition ΣL → Σ → Σ/L

is injective. Therefore, the composition π(C ∩ X0) → Σ/L is bijective. It

follows that π(C ∩X0) is rational, and that C is rational, too.

(ii) and (iii) are formal consequences of 1.2 (see [3] 3.2.5, [1] 3.1).

1.4. Let X be a Q-factorial, unirational G-variety of complexity at most

one. Let f : X → S be a projective G-morphism; let R be an extremal ray R

of NE(X/S). By 1.3, the contraction of R exists; denote it by ϕ : X → X ′.
We assume that ϕ is birational, and an isomorphism in codimension one.

Proposition. Under the assumptions above, there exists a unique

Q-factorial G-variety X+, projective over S, and a unique birational G-

morphism ϕ+ : X+ → X ′ such that:

(i) ϕ+ is the contraction of an extremal ray R+ of NE(X+/S).

(ii) ϕ+ is an isomorphism in codimension one.
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(iii) If the spaces N1(X/S) and N1(X+/S) are identified via ϕ+ ◦ϕ−1,

then the half-lines R and R+ are opposite in N1(X/S) =

Hom(N1(X/S),Q).

We call ϕ+ : X → X+ the flip of ϕ.

Proof. By [3] Proposition 5.1.11, the statement is a consequence of

the following assertion, whose proof (analogous to 1.2) is left to the reader:

For any line bundle L on X, the sheaf of algebras ⊕∞
n=0 ϕ∗(L⊗n) is finitely

generated over S. �

2. Termination of flips

2.1. Let X be a homogeneous G-variety. Denote by V the set of all G-

invariant k-valuations of the field k(X) with values in Q. For any equi-

variant normal embedding X of X, denote by D(X) the set of all G-stable

prime divisors in X. We identify a prime divisor D ⊂ X and the associated

(normalized) valuation vD of k(X) = k(X), so D(X) is a finite subset of V.

Theorem. Let X be a homogeneous G-variety of complexity at most

one. Let D be a finite subset of V. Then there exist only finitely many

complete normal embeddings X with D(X) = D.

2.2. Before we enter the proof we need some preparation. Denote by F
the set of all B-stable prime divisors in X. For any G-stable subvariety Y

in X define

VY (X) := {D ∈ D(X) | Y ⊂ D} ;

FY (X) := {D ∈ F | Y ⊂ D} ;

FY (X) := VY (X)×FY (X) .

So the pair FY (X) describes the set of B-stable divisors of X which contain

Y . We recall that the embedding X is uniquely determined by

F(X) := {FY (X) | Y ⊂ X closed orbit}
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(see [4] 3.8). This immediately implies Theorem 2.1 when c(X) = 0, because

F is finite in this case. Therefore, we assume from now on that c(X) = 1,

i.e. that the transcendence degree of k(X)B over k is one.

Let C be the smooth projective curve with k(C) = k(X)B. The points

of C can be identified with the equivalence classes of non-trivial valuations

of k(X)B. Let v0 be the trivial valuation. Then we can break up V and F
into pieces, as follows. For any c ∈ C ∪ {o}, we set (with 0vc := v0):

Vc := {v ∈ V | v|k(C) ∈ Q≥0vc};
Fc := {D ∈ F | vD|k(C) ∈ Q≥0vc}.

Observe that Vc ∩ Vd = V0 for any distinct c, d in C ∪ {0}. Let Oc be the

valuation ring of vc in k(C). Consider the Q-vector space

Qc := Hom(k(X)(B)/O×
c ,Q).

Then Qc is finite-dimensional (see [4] §5). Moreover, Q0 is a hyperplane in

Qc for c �= 0. Restriction to k(X)(B) defines maps

Vc → Qc; ρ : Fc → Qc.

The first one is injective ([4] 3.6) and we will identify Vc and its image in

Qc.

Lemma. Let c ∈ C ∪ {o}.
a) The set Vc is a finitely generated convex cone.

b) If c �= o then Vo is a 1-codimensional face of Vc.
c) The set Fc is finite.

d) There is a non-empty open subset C0 of C such that Fd consists in

exactly one divisor Dd whenever d ∈ C0.

e) There exists a non-empty open subset C1 of C0 such that Vd is con-

tained in the convex cone generated by ρ(Dd) and Vo whenever d ∈ C1.
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Proof. For a) and b) see [4] 6.5. We may choose a non-empty, B-

stable open subset X0 of X, such that the orbit space X0/B exists, with

quotient map π. Moreover, we may identify X0/B with an open subset C0

of C. If D ∈ Fc meets X0 then D is the closure of π−1(c); denote it by

Dc. Otherwise, D is one of the finitely many components of X\X0. This

implies c) and d).

To prove e), we construct a certain embedding of X. Because X is

homogeneous, C is unirational. By Lüroth’s theorem, there exists t ∈ k(C)

such that k(C) = k(t). The choice of t identifies C with P1. Denote by D0

the divisor on X

(t)∞ +
∑

D∈F0

D

Set L := OX(D0), and denote by σ0 the canonical section of L. Then σ1 :=

tσ0 is a section as well. By replacing G with a finite cover we may assume

that L is G-linearized. Let M be the G-submodule of Γ(X,L) generated

by σ0 and σ1. Let X be an equivariant normal, complete embedding such

that L extends to X and that the linear system M has no base point in X.

Set X0 := {x ∈ X | σ0(x) �= 0}. Then t = σ1/σ0 defines a B-invariant

morphism τ : X0 → A1 ⊂ P1 = C. The generic fiber of τ is connected

because k(t) = k(X)B is algebraically closed in k(X). Now let C1 be the

set of all c ∈ C0 ∩A1 such that τ−1(c) is non-empty and irreducible, and

meets X.

We check that the lemma holds for C1. Let c ∈ C1. Then τ−1(c) is

an irreducible divisor, stable by B but not by G. Hence τ−1(c) is equal to

Dc. Now choose v ∈ Vc. Then c ∈ A1 means v(t) ≥ 0 and this implies

v(M/σ0) ≥ 0 by [4] 3.3. Let Z be the center of v in X. Because M is

base point free, σ0 cannot vanish on Z, i.e. Z meets X0. Moreover, v ∈ Vc
implies τ(Z ∩X0) = {c}. Therefore, Dc is the only B-stable prime divisor

which contains Z and which is not mapped dominantly to C by τ . Hence

we get VZ(X) ⊂ V0 and FZ(X) = {Dc} because, by definition of D0, no

D ∈ Fo meets X0.

Assume that v is not in the convex cone generated by ρ(Dc) and Vo.
Then there exists f ∈ k(X)(B) such that v(f) < 0 but vD(f) ≥ 0 for any

B-stable prime divisor D which contains Z. But this contradicts the fact

that Z is the center of v. �
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2.3. Proof of Theorem 2.1. Define a map ζ : V → C∪{o} by ζ(Vo) =

{o} and ζ(Vc\Vo) = {c}. Choose C1 ⊂ C as in Lemma 2.2 and set

C2 := C1\ζ(D), S := C \ (C2 ∪ {o}) and F ′ :=
⋃

c∈S
Fc.

Observe that F ′ is finite. We consider sets of couples (V, F ) such that

V ⊂ V and F ⊂ F . We call such a set D-admissible if it is the union of sets

which appear in the following list:

A) {(V, F )} for some V ⊂ D and F \ F ′ ⊂ F ⊂ F .

B) {(V, F )} for some V ⊂ D and F ⊂ F ′.
C) {(V, F ′ ∪ {Dc}) | c ∈ C2} for some V ⊂ D ∩ Vo and F ′ ⊂ Fo.

The admissible sets of types A and B consist of a single element, while

those of type C are infinite. Observe that there are only finitely many D-

admissible subsets for prescribed D, due to the fact that D,F ′ and Fo are

finite. Now Theorem 2.1 results from the following

Lemma. Let X ⊂ X be a complete normal emabedding with D(X) =

D. Then the set F(X) is D-admissible.

Proof of the lemma. Let Y be a closed G-orbit in X. Let P be the

parabolic subgroup of G containing B which is opposite to some isotropy

subgroup of G in Y . By [4] 1.2, there exists a P -stable open affine subset

X0 of X meeting Y , such that the quotient π : X0 → X0/P
u exists. It

follows that π(X0 ∩ Y ) is a point, which we denote by y. Moreover, y is a

fixed point of P in X0/P
u := Σ.

The equality k(Σ)B = k(X)B = k(C) induces a B-invariant rational

map f : Σ− → C. Denote by Σ′ the normalization of the closure of the

graph of f . Then we have a morphism f ′ : Σ′ → C and a proper, birational

morphism p : Σ′ → Σ such that f ′ = f ◦ p.

If f is not defined at y then f ′ maps p−1(y) onto C. For any c ∈ C

choose a component Σc of p(f ′−1(c)) containing y. Then Xc := π−1(Σc) is

a B-stable divisor of X containing Y . It induces on k(C) a valuation which

is equivalent to vc. If Xc is G-stable, then c ∈ ζ(D). Hence c ∈ C2 implies

Xc ∈ Fc = {Dc}, i.e. FY (X) is of type A.

If f is defined at y, then we set c := f(y). Let D be a B-stable prime

divisor in Σ containing y. Then either f(D) is dense in C, or f(D) = {c}.



Varieties with group action 651

This implies FY (X) ⊂ Fo ∪ Fc. If moreover c /∈ C2 then the set FY (X) is

of type B, and we are done.

Assume from now on that c ∈ C2. Then c /∈ ζ(D) implies that no com-

ponent of (f ◦ π)−1(c) is G-stable. Because Fc = {Dc}, we have VY (X) ⊂
D ∩ Vo and FY (X) = F ∪ {Dc} for some F ⊂ Fo. Therefore, FY (X) is an

element of a D-admissible set of type C. We have to prove that all other

elements of this set are in F(X).

First we claim that f is actually P -invariant. Namely, let d �= c be in the

image of f . Then D := f−1(d) is a B-stable divisor with y /∈ D. Because

P/B is complete, PD is closed in Σ. Moreover, y /∈ PD. For dimension

reasons, this implies PD = D and the claim.

Let C ⊂ Qc be the convex cone spanned by VY (X) and ρ(FY (X)). Set

Co := C ∩ Qo. Then C is generated by ρ(Dc) and Co. Choose a valuation

v ∈ V with center Y . We can write v = aρ(Dc) + vo with a ∈ Q>0 and

vo ∈ Co. Then Lemma 2.2 e) implies that vo ∈ Vo. Let Z ⊂ X be the center

of vo. Then vo ∈ C implies vo(OX,Y ) ≥ 0 and therefore Y ⊂ Z by [4] 3.7.

Set Q := π(Z ∩X0), and W := Q∩ f−1(c); then y ∈W . We claim that

W = {y}. Otherwise, there exists h ∈ k[Σ](B) with h(y) ≥ 0 and h|W �= 0

([4] 2.2 applied to the action of P/Pu on Σ). But this implies vo(h) > 0

which is absurd. Because vo ∈ Vo, the restriction f |Q is dominant. By the

claim, f |Q is quasifinite. Therefore Q ⊂ ΣL. So we have k(Z)(B) = k(Q) =

k(Z)B, which implies that all G-orbits in Z are closed ([4] 8.5). Moreover,

we have VZ(X) = VY (X) and FZ(X) = F = FY (X) \ {Dc}.
The restriction of f◦π to Y0 induces a rational G-invariant map Z− → C

which is regular on the normalization Z̃ of Z (observe that all G-orbits in

Z are closed of codimension one). Because X is complete, the induced map

Z̃ → C is surjective and its fibres are exactly the G-orbits. For d ∈ C2

let Yd be the image in Z of the orbit over d. Now the discussion above

with Y replaced by Yd shows that FYd
(X) is an element of a set of type

C, and hence FYd
(X) = (V, F ∪ {Dd} with V = VZ(X) and F = FZ(X)

independant of d. This ends the proof of Lemma 2.3. �

2.4. There is a generalization to the case where X is any normal G-variety

of complexity one. An equivariant model of X is a normal G-variety X

together with a birational equivariant map X− → X.



652 Michel Brion and Friedrich Knop

Theorem. Let X be a normal G-variety of complexity at most one.

Let D be a subset of V. Then there exist only finitely many complete normal

equivariant models X of X with D(X) = D.

Proof. We may assume that X does not contain a dense G-orbit. We

will only sketch the proof because it goes along the same lines of that of

Theorem 2.1 with the roles of V and F being exchanged. Here F is the set

of B-stable prime divisors of X which are not G-stable. So F depends only

on the birational class of X. Then the definitions of VY (X),DY (X),FY (X)

go through, and X is uniquely determined by the collection of all FY (X).

By assumption we have k(X)G �= k. It follows that k(X)G = k(X)B =

k(C) where C is a uniquely defined smooth, projective curve. The defini-

tions of Vc,Fc and Qc for c ∈ C ∪ {o} are the same as in the homogeneous

case, and parts a) and b) of Lemma 2.2 hold verbatim.

By making X smaller, we may assume that the rational map f : X− →
C is regular, and that the fibers of f are G-orbits. Set C0 := f(X). Then for

every c ∈ C0 the fiber f−1(c) is a prime divisor which induces a normalized

valuation vc ∈ Vc. This also shows that Fc is empty unless c = o in which

case it is finite. Now Lemma 2.2 e) has the following analogue with a similar

proof.

Lemma. There is a non-empty open subset C1 ⊂ C0 such that Vc is

the convex cone spanned by Vo and vc for every c ∈ C1.

Now let X be any complete equivariant model of X with D(X) = D.

Then the rational map f : X− → C is defined on a G-stable open subset

which contains X. Therefore, the sets D and {vc | c ∈ C0} coincide up to

a finite set. For c ∈ C ∪ {0} let Dc := D ∩ ζ−1(c). This set is finite. We

define

C2 := {c ∈ C1 | Dc = {vc}}, S := C \ (C2 ∪ {o}), D′ :=
⋃

c∈S
Dc.

Observe that D′ is finite. We define a D-admissible set as a set of pairs

(V, F ) which is the union of sets appearing in the following list:

A) {(V, F )} for some D \ D′ ⊂ V ⊂ D and F ⊂ F .

B) {(V, F )} for some V ⊂ D′ and F ⊂ F .
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C) {(V ∪ {vc}, F ) | c ∈ C2} for some V ⊂ Do and F ⊂ Fo.

Again, for a given D, there exist only finitely many D-admissible sets.

One proves in the same way as in 2.3 that F(X) is D-admissible. This ends

the proof of Theorem 2.4.

2.5. Consider a Q-factorial, projective variety X. Assume that G acts on

X with an open orbit of complexity at most one. Let ϕ : X → X ′ be the

contraction of an extremal ray R of NE(X). We assume that ϕ is birational,

and an isomorphism in codimension one; we denote by ϕ+ : X+ → X ′ the

flip of ϕ (see 1.4). We call this flip direct (resp. inverse) if KX < 0 (resp.

KX > 0) on R \ {0}.

Theorem. Under the assumptions above, every sequence of direct flips

is finite, and every sequence of inverse flips as well.

Proof. By 2.2, there are only finitely many isomorphism classes of

G-varieties which are obtained from X by a sequence of flips. This implies

our statement, by using [3] Proposition 5.1.11 (3); see [1] 4.7 for details. �

Corollary. Let X be a Q-factorial, projective G-variety of complex-

ity at most one. Assume that the morphism G→ X : g → g ·x is dominant

and separable for some x ∈ X. Then there exists a projective, Q-factorial

G-variety X ′ and a birational, G-equivariant map ϕ : X− → X ′ such that:

i) ϕ factors through inverse flips and divisorial contractions of positive

extremal rays.

ii) −KX′ is semi-ample.

Moreover, there exists a projective, Q-Gorenstein G-variety X ′′ and a bi-

rational G-morphism ϕ′ : X ′ → X ′′ such that −KX′′ is ample.

Proof. Observe that the contraction ϕ of a non-negative extremal

ray of NE(X) is always birational. Namely, let C be an irreducible curve

in X such that ϕ(C) is a point. We show that C dose not meet the open

G-orbit in X. Otherwise, we may choose ζ1, . . . , ζd in Lie(G), and x ∈ C,

such that C is smooth at x, the orbit G · x is open in X, and that the

vectors ζ1 · x, . . . , ζd · x form a basis of the tangent space of X at x. Then

s := ζ1 ∧ · · · ∧ ζd is a global section of −KX , which does not vanish at x.

Therefore, we have: (−KX · C) ≥ 0. But (KX · C) ≥ 0 by assumption. So



654 Michel Brion and Friedrich Knop

(KX · C) = 0 and s has no zero on C. It follows that C is contained in

the open G-orbit. Then the isotropy group Gx is infinite, and its connected

component G0
x is not normal in G (otherwise G · x is affine; but G · x

contains a projective curve). Now we can choose ζ1, . . . , ζd as before, such

that ζ1 ∈ Lie(Gy) for some y ∈ C. Then s vanishes at y, a contradiction.

Now the proof of the corollary is the same as [1] 4.7 Corollaire. �

Remark. The separability assumption cannot be removed in the co-

rollary. Namely, in every characteristic p > 0, we construct an exam-

ple of a projective homogeneous variety X of complexity zero such that

KX and −KX are not semi-ample. Consider the group G := SL(3, k).

The Frobenius endomorphism F of k extends to an endomorphism of G.

We denote by V the G-module k3, by V ∗ the dual G-module, and by

P(V ),P(V ∗) the associated projective spaces. We let G act on V × V ∗ by

g · (v, f) = ((F 2g) · v, g · f). This defines a G-action on P := P(V )×P(V ∗).
Clearly, B has a unique fixed point x in P and its isotropy group Gx is

exactly B. Therefore, G has a unique closed orbit X = G · x in P and the

map G/B → X is bijective. In particular, X is nonsingular, of complexity

zero.

For any non-zero integer n, we claim that nKX has no global sec-

tion. Namely, X is a hypersurface in P  P2 × P2 of bidegree (1, p2)

(the homogeneous equation of X is (F 2f)(v) = 0). Therefore, we have

ωX = (OP2(−2) ⊗ OP2(p2 − 3))|X . Moreover, for any v ∈ V with coordi-

nates in the prime field, the image in P of the set v× (v = 0) ⊂ V ×V ∗ is a

curve Cv ⊂ X, and (KX · Cv) = p2 − 3 > 0. Similarly, for any f ∈ V ∗ with

coordinates in the prime field, we have a curve Cf ⊂ X with (KX ·Cf ) < 0.

This implies our claim.

Analogous considerations hold more generally for quotients of semisim-

ple groups by non-reduced parabolic subgroup-schemes; see [11].
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