Semiclassical analysis of Schrödinger operators with coulomb-like singular potentials

By Fumihiko Nakano

Abstract

In this paper, we study the behavior of eigenvalues and eigenfunctions of Schrödinger operators whose potentials have finitely many negative singularities. We prove that if potentials behave like $O\left(\left|x-p_{i}\right|^{-\rho}\right)(0<\rho<2)$ near singular points $x=p_{i}$, then eigenvalues behave like $O\left(h^{-\frac{2 \rho}{2-\rho}}\right)$ when the Planck constant h approaches to zero. Then we obtain the asymptotic expansion of the eigenvalues and eigenfunctions in h. We also study the splitting of the lowest eigenvalues and show that the asymptotic is estimated by a suitable Riemann metric called Agmon distance.

0. Introduction

We consider Schrödinger operators whose potentials have finitely many negative singularities, and study the behavior of eigenfunctions and eigenvalues when h, the Planck constant, approaches to zero.

The Schrödinger operator we consider is the following:

$$
H(h):=-h^{2} \triangle+V(x) \text { on } L^{2}\left(\mathbf{R}^{d}\right)
$$

where h is the Planck constant.
We always assume the following assumptions (A) throughout this paper.
Assumptions (A).
(1) $V(x)$ has finitely many singular points $p_{1}, p_{2}, \cdots, p_{n} \in \mathbf{R}^{d}$, and $V(x)$ is bounded below in the complement of the union of neighborhoods of singular points, i.e., for any $\varepsilon>0$, there exists a constant

1991 Mathematics Subject Classification. Primary 35Q40; Secondary 35P20.
$M_{\varepsilon}>0$ such that,
if $\left|x-p_{i}\right|>\varepsilon($ for any $i=1, \cdots, n)$, then $V(x) \geq-M_{\varepsilon}$.
(2) $V(x) \in C^{\infty}\left(\mathbf{R}^{d} \backslash\left\{p_{1}, \cdots, p_{n}\right\}\right)$, and $V(x)$ has asymptotic expansions near each p_{i} in the following form:

$$
V(x) \sim-\frac{1}{\left|x-p_{i}\right|^{\rho+1}} \sum_{|\alpha|=1}^{\infty} a_{\alpha}^{(i)}\left(x-p_{i}\right)^{\alpha} \quad \text { as } x \rightarrow p_{i} .
$$

(3) If $d=1$, then $0<\rho<1$. Otherwise, $0<\rho<2$.

Remark. When (3) is satisfied, $V(x)$ is in the Kato class and hence $H(h)$ has a unique Friedrichs extension and is bounded below (cf.[7]).

At first, we study the behavior of $H(h)$ in the limit: $h \downarrow 0$. Let $E_{m}(h)$ be the m -th eigenvalue of $H(h)$, counting multiplicities. Let $h_{0}^{(i)}(h):=$ $-\triangle-\sum_{|\alpha|=1} \frac{a_{\alpha}^{(i)} x^{\alpha}}{|x|^{\rho+1}} \quad(i=1, \cdots, n)$ and let $\left\{e_{m}\right\}_{m=0,1,2, \cdots}$, be the eigenvalues of $\bigoplus_{i=1}^{n} h_{0}^{(i)}$, counting multiplicities.

Theorem 1. Let $N \in \mathbf{N}$. For sufficiently small $h, H(h)$ has at least N eigenvalues and

$$
\lim _{h \downarrow 0} h^{\alpha} E_{m}(h)=e_{m}, \quad 0 \leq m \leq N, \quad \alpha=\frac{2 \rho}{2-\rho}
$$

Secondly, we consider asymptotic expansions of eigenvalues and eigenfunctions in h as h tends to zero. For that purpose, we need additional assumptions on $V(x)$.

Assumptions (B).
(1) $V(x)$ has at most polynomial growth, i.e., there exist $k>0, M>0$, $C>0$, such that if $|x|>M$, then $|V(x)| \leq C(1+|x|)^{k}$.
(2) If $d \leq 3$, then $\rho<\frac{d}{2}$.

Theorem 2. Assume (B).
(1) Let e_{m} be a simple eigenvalue of $\bigoplus_{i=1}^{n} h_{0}^{(i)}$. Then the corresponding eigenvalue $E_{m}(H)$ of $H(h)$ has an asymptotic expansion in the following form:

$$
E_{m}(h) \sim h^{-\alpha}\left(e_{m}+\sum_{j=1}^{\infty} \tilde{\alpha}_{j}\left(h^{\beta}\right)^{j}\right)
$$

i.e.,

$$
E_{m}(h)-h^{-\alpha}\left(e_{m}+\sum_{j=1}^{k} \tilde{\alpha}_{j}\left(h^{\beta}\right)^{j}\right)=O\left(h^{-\alpha+(k+1) \beta}\right)
$$

where $\alpha=\frac{2 \rho}{2-\rho}, \beta=\frac{2}{2-\rho}$.
(2) Let ψ_{m} be the eigenfuction of $H(h)$ corresponding to an eigenvalue $E_{m}(h)$ and φ_{m} be the eigenfuction of $h_{0}^{(i)}(h)$ corresponding to e_{m} (i is taken so that e_{m} is an eigenvalue of $h_{0}^{(i)}$). And let $U^{(i)}$ be an operator defined by

$$
\left(U^{(i)} f\right)(x):=h^{d \beta / 2} f\left(h^{\beta} x+p_{i}\right) \quad \text { for } f \in L^{2}\left(\mathbf{R}^{d}\right)
$$

Then, $U^{(i)} \psi_{m}$ has an asymptotic expansion in the following form in L^{2}-sense:

$$
U^{(i)} \psi_{m} \sim \varphi_{m}+\sum_{j=1}^{\infty}\left(h^{\beta}\right)^{j} \tilde{\varphi}_{m}^{(i)}
$$

When e_{m} is degenerate, the situation is slightly different.
Theorem 3. Assume (B). Let E_{m}, \cdots, E_{m+k-1} be the eigenvalues such that $h^{-\alpha} E_{m}$ appoaches to e, which is an eigenvalue of $\bigoplus_{i=1}^{n} h_{0}^{(i)}$ with multiplicity k. Then each E_{m+p} has an asymptotic expansion in h :

$$
E_{m+p} \sim h^{-\alpha}\left(e+\sum_{j=1}^{\infty} \tilde{\alpha}_{j}^{p}\left(h^{\beta}\right)^{j}\right), \quad p=0, \cdots, k-1
$$

Theorem 4. Under the same conditions as in Thoreom 3, if no two asymptotic expansions of E_{m}, \cdots, E_{m+k-1} are the same, then for each corresponding eigenfunction ψ_{j}, there exists an unique singular point $p_{n(j)}$ of $V(x)$, such that for any $N \in \mathbf{N}$,

$$
\left\|\left(J_{n(j)}-1\right) \psi_{j}\right\|_{2}=O\left(h^{N}\right)
$$

holds and $U^{n(j)} \psi_{j}$ has an asymptotic expansion in L^{2} sense, where $J_{n(j)}$ is a function with compact support that takes value one in the neighborhood of $p_{n(j)}\|\cdot\|_{2}$ is $L^{2}\left(\mathbf{R}^{d}\right)$-norm $)$.

Corollary. If $E_{j}(h)$ is simple for $h>0$, then either of the following two holds, (1) There exists a singular point $p_{n(j)} \in \mathbf{R}^{d}$ such that for any $N \in \mathbf{N}$,

$$
\left\|\left(J_{n(j)}-1\right) \psi_{j}\right\|_{2}=O\left(h^{N}\right), \quad \text { as } h \downarrow 0 .
$$

(2) There exists another eigenvalue $E_{j}^{\prime}(h)$ such that for any $N \in \mathbf{N}$,

$$
\left|E_{j}^{\prime}-E_{j}\right|=O\left(h^{N}\right), \quad \text { as } h \downarrow 0
$$

Physically, the case (2) of this corollary corresponds to the situation that a particle exists near both of at least two singular points. And the quantity $\left|E_{j}^{\prime}-E_{j}\right|$ is related to the tunneling effect between the singularities.

When the number of the singularities is two (i.e., $n=2$), and E_{j} is the lowest eigenvalue of $H(h)$, we can estimate $\left|E_{j}^{\prime}-E_{j}\right|$ sharply.

Definition. For $x, y \in \mathbf{R}^{d}$, the Agmon distance $\rho_{h}(x, y)$ with respect to the energy $\tilde{E}_{o}\left(:=h^{-\alpha} e_{0}\right)$ is defined by

$$
\begin{array}{r}
\rho_{h}(x, y):=\inf _{\gamma}\left\{\int_{0}^{1} \sqrt{\max \left(V(\gamma(s))-\tilde{E}_{0}(h), 0\right)}|\dot{\gamma}(s)| d s \mid\right. \\
\left.\gamma(0)=x, \gamma(1)=y, \gamma \in H^{1}\right\} .
\end{array}
$$

THEOREM 5. Let $n=2$, and let a and $b \in \mathbf{R}^{d}$ be the singular points. Let $J_{a}\left(\right.$ resp. $\left.J_{b}\right)$ be a function that takes value one in the neighborhood of a (resp. b). Let $E_{0}(h)$ be the lowest eigenvalue of $H(h)$. And let ψ_{0} be the eigenfunction corresponding to the eigenvalue $E_{0}(h)$.

Assume that, for any $\varepsilon>0$, there exists $C_{\varepsilon}>0$ such that,

$$
\left\|J_{a} \psi_{0}\right\|_{2}\left\|J_{b} \psi_{0}\right\|_{2} \geq C_{\varepsilon} e^{-\varepsilon / h^{\beta}}
$$

Then, for any $\varepsilon>0$, there exist constants $C_{1, \varepsilon}, C_{2, \varepsilon}$ such that

$$
C_{1, \varepsilon} \exp \left(-\frac{\rho_{h}(a, b)}{h}(1+\varepsilon)\right) \leq\left|E_{1}-E_{0}\right| \leq C_{2, \varepsilon} \exp \left(-\frac{\rho_{h}(a, b)}{h}(1-\varepsilon)\right)
$$

where E_{1} is the second eigenvalue.
The assumption of Theorem $5,\left\|J_{a} \psi_{0}\right\|_{2}\left\|J_{b} \psi_{0}\right\|_{2} \geq C_{\varepsilon} e^{-\varepsilon / h^{\beta}}$ comes from the postulate that particle exists on both a and b. For example, if $V(x)$ has mirror symmetry with respect to one point, this condition is automatically satisfied.

Estimating $\rho_{h}(a, b)$, we obtain,
Theorem 5'. Under the same conditions as in Theorem 5, for any $\varepsilon>0$ there exist constants $C_{1, \varepsilon}, C_{2, \varepsilon}$ such that

$$
\begin{aligned}
C_{1, \varepsilon} \exp \left(-\frac{\sqrt{-e_{0}}|a-b|}{h^{\beta}}(1+\varepsilon)\right) & \leq\left|E_{1}-E_{0}\right| \\
& \leq C_{2, \varepsilon} \exp \left(-\frac{\sqrt{-e_{0}}|a-b|}{h^{\beta}}(1-\varepsilon)\right)
\end{aligned}
$$

As for the known results, similar problems have been studied extensively by many mathematicians in the case that $V(x)$ satisfies
(1) $V(x) \in C^{\infty}, V(x) \geq 0$.
(2) $\underline{\lim }_{|x| \rightarrow \infty} V(x)>0$.
(3) There exist finitely many points p_{1}, \cdots, p_{n} such that $V\left(p_{i}\right)=0$ ($i=$ $1, \cdots, n)$ and each minimum is non-degenerate $([1],[2],[4],[5],[6]$, and in their references).

The aim of this paper is to show that when $V(x)$ has negative singularities, the results similar to above hold. We use mainly Simon's methods ([1],[2]). The main difference between "the singular case" and "the regular case" is the following:
(1) In Theorems $1,2,3,4,5$, the powers of h in each asymptotic formula is different. In the regular case, $\alpha=-1, \beta=1 / 2$ (In the above context, it corresponds to $\rho=-2$).
(2) From the Theorem 5^{\prime}, in the singular case, the behavior of $\left|E_{1}-E_{0}\right|$ is determined by $|a-b|, \rho, \alpha_{0}$ only. Whereas in the regular case, it depends on the global properties of $V(x)$.
We prove Theorem 1 in Section 1, Theorems 2,3,4 in Section 2, and Theorem 5 in Section 4. In the appendix, we show that the similar exponential estimates as in Theorem 5 and Theorem 5' can be obtained for the width of the ground state band of Schrödinger operator with periodic potential.

1. Proof of Theorem 1

1.1. Upper bound

Here, we will show $\varlimsup_{h \downarrow 0} h^{\alpha} E_{m}(h) \leq e_{m}$.
Take a function $j(x) \in C_{0}^{\infty}\left(\mathbf{R}^{d}\right)$ which satisfies,

$$
j(x):= \begin{cases}1, & \text { if }|x|<1 \\ 0, & \text { if }|x|>2\end{cases}
$$

and let

$$
J_{(i)}^{h}:=j\left(h^{-\delta}\left(x-p_{i}\right)\right), \quad i=1, \cdots, n, \quad 0<\delta<\frac{\rho}{2-\rho} .
$$

We can assume $\operatorname{Supp} J_{(i)} \cap \operatorname{Supp} J_{(j)}=\phi$ by taking h sufficiently small if necessary.

Let e_{m} be the m-th eigenvalue of $\bigoplus_{i=1}^{n} h_{0}^{(i)}$, and φ_{m} be the corresponding eigenfuction. Then $U^{i(m)^{-1}} \varphi_{m}$ is an eigenfunction of $H_{0}^{(i(m))}$, where $H_{0}^{(i)}(h):=-h^{2} \triangle-\sum_{|\alpha|=1} \frac{a_{\alpha}^{(i)} x^{\alpha}}{\left|x-p^{i}\right|^{\rho+1}}$ and $i(m)$ is defined so that e_{m} is the eigenvalue of $h_{0}^{(i(m))}$.

We take

$$
\psi_{m}(h ; x):=J_{i(n)}^{h} U^{i(m)^{-1}} \varphi_{m}
$$

as an approximating eigenfunction. Then, from the definition of $J_{(i)}^{h}$ and Assumptions (A), we can see

$$
\begin{equation*}
\left(\psi_{l},\left(H-H_{0}^{(i)}\right) \psi_{m}\right)=O\left(h^{\frac{2(1-\rho)}{2-\rho}}\right) \tag{1.0}
\end{equation*}
$$

where (\cdot, \cdot) is $L^{2}\left(\mathbf{R}^{d}\right)$-product. Next, we study the properties of the approximating eigenfunctions.

Claim 1.

$$
\begin{equation*}
\left(\psi_{l}, \psi_{m}\right)=\delta_{l m}+O\left(\exp \left(-c h^{\delta-\frac{2}{2-\rho}}\right)\right) \tag{1.1}
\end{equation*}
$$

Proof of Claim 1. When $i(l) \neq i(m),(1.1)$ is clear. Therefore we assume $i(l)=i(m)$.

$$
\begin{aligned}
\left|\left(\psi_{l}, \psi_{m}\right)-\delta_{l m}\right| & =\left|\int\left(1-J_{(i)}^{h}{ }^{2}\right) U^{(i)^{-1}} \varphi_{l} U^{(i)^{-1}} \varphi_{m} d x\right| \\
& =\left|\int_{\left|x-p_{i}\right| \geq c h^{\delta}} U^{(i)^{-1}} \varphi_{l} U^{(i)^{-1}} \varphi_{m} d x\right| \\
& =\int_{|x| \geq c h^{\delta}} h^{-\frac{2 d}{2-\rho}} \varphi_{l}\left(h^{-\frac{2}{2-\rho}} x\right) \varphi_{m}\left(h^{-\frac{2}{2-\rho}} x\right) d x \\
& =O\left(\exp \left(-c h^{\delta-\frac{2}{2-\rho}}\right)\right) \cdot \square
\end{aligned}
$$

Claim 2.

$$
\begin{equation*}
\left(\psi_{l}, H \psi_{m}\right)=h^{-\alpha} e_{m} \delta_{l m}+O\left(h^{-2 \theta}\right), \tag{1.2}
\end{equation*}
$$

where $\theta:=\max \left\{\delta, \frac{2(1-\rho)}{2-\rho}\right\}$.

Proof of Claim 2. As in the proof of Claim 1, we can assume $i(l)=$ $i(m)$.

We use the fact that if $H \eta=E \eta$, then

$$
(f \tilde{\eta}, H f \eta)=E(f \eta, f \tilde{\eta})+\left(\eta, h^{2}(\nabla f)^{2} \tilde{\eta}\right)
$$

We substitute $f=J_{(i)}^{h}, H=H_{0}^{(i)}, \eta=U^{(i)^{-1}} \varphi_{m}, \tilde{\eta}=U^{(i)^{-1}} \varphi_{l}$ into this identity. Then,

$$
\left(\psi_{l}, H_{0}^{(i)} \psi_{m}\right)=h^{-\alpha} e_{m}\left(\psi_{l}, \psi_{m}\right)+\left(\psi_{l}, h^{2}\left(\nabla J_{(i)}^{h}\right)^{2} \psi_{m}\right)
$$

Estimating $\nabla J_{(i)}^{h}$, and using (1.0), (1.1), we obtain (1.2).
Now we use the Min-Max principle. At first, let

$$
\mu_{m}(h):=\sup _{\xi_{1}, \cdots, \xi_{m-1}} Q\left(\xi_{1}, \cdots, \xi_{m-1} ; h\right)
$$

$$
\begin{aligned}
& Q\left(\xi_{1}, \cdots, \xi_{m-1} ; h\right) \\
& \quad:=\inf \left\{(\psi, H \psi) \mid \psi \in \mathcal{D}(H),\|\psi\|_{2}=1, \psi \in\left\{\xi_{1}, \cdots, \xi_{m-1}\right\}^{\perp}\right\} .
\end{aligned}
$$

Then $\mu_{m}(h)$ equals to either the m-th eigenvalue of H (counting multiplicities) or $\inf \sigma_{\text {ess }}(H)$.

Fix any $\varepsilon>0$. For each $h \in(0,1]$, we can find $\xi_{1}^{h}, \cdots, \xi_{m-1}^{h}$ such that,

$$
\mu_{m}(h) \leq Q\left(\xi_{1}^{h}, \cdots, \xi_{m-1}^{h} ; h\right)+\varepsilon .
$$

From (1.1), $\left\{\psi_{1}, \cdots, \psi_{m}\right\}$ span a m-dimensional subspace if h is sufficiently small. Hence there exists $\varphi \in\left\{\xi_{1}, \cdots, \xi_{m-1}\right\}^{\perp}$ which is a linear combination of $\left\{\psi_{1}, \cdots, \psi_{m}\right\}$. From (1.2),

$$
Q\left(\xi_{1}, \cdots, \xi_{m-1} ; h\right) \leq(\varphi, H \varphi) \leq h^{-\alpha} e_{m}+O\left(h^{-2 \delta}\right)
$$

Since $\varepsilon>0$ is arbitrary,

$$
\mu_{m}(h) \leq h^{-\alpha} e_{m}+O\left(h^{-2 \delta}\right)
$$

As $V(x)$ is bounded below outside of a compact set, $\inf \sigma_{\text {ess }}(H)>-\infty$. On the other hand, $\lim _{h \downarrow 0} h^{-\alpha} e_{m}=-\infty$. Hence $\mu_{m}(h)=E_{m}(h)$ if h is sufficiently small and thus we obtain the upper bound.

1.2. Lower bound

We prove $\underline{l i m}_{h \downarrow 0} h^{\alpha} E_{m}(h) \geq e_{m}$ here. If we have proved it, we complete the proof of Theorem 1. Fix arbitrary r such that $e_{m} \leq r \leq e_{m+1}$. It suffices to show

$$
H \geq r h^{-\alpha} \mathbf{1}+F
$$

where $\mathbf{1}$ is an identity operator and $\operatorname{rank} F \leq m$.
We define $J_{0}^{h} \in C^{\infty}\left(\mathbf{R}^{d}\right)$ so that $\left(J_{0}^{h}\right)^{2}:=1-\sum_{i=1}^{n}\left(J_{(i)}^{h}\right)^{2}$. Let $P^{(i)}$ be eigenprojections onto the eigenspaces of $H_{0}^{(i)}$ whose corresponding eigenvalues are smaller than $h^{-\alpha} r$ (hence, $\sum \operatorname{rank} P^{(i)}=m$), and let $F^{(i)}:=H_{0}^{(i)} P^{(i)}$.

By IMS-localization formula (see [7]), for any $\varepsilon>0$,

$$
\begin{align*}
H= & J_{0} H J_{0}+(1-\varepsilon) \sum_{i \neq 0} J_{i} H_{0}^{(i)} J_{i} \tag{1.3}\\
& +\sum_{i \neq 0} J_{i}\left(\varepsilon H_{0}^{(i)}+H-H_{0}^{(i)}\right) J_{i}-\sum\left(\nabla J_{i}\right)^{2} .
\end{align*}
$$

From the definition of $F^{(i)}$,

$$
\begin{equation*}
J_{(i)}^{h} H_{0}^{(i)} J_{(i)}^{h} \geq J_{(i)}^{h} F^{(i)} J_{(i)}^{h}+h^{-\alpha} r\left(J_{(i)}^{h}\right)^{2} \tag{1.4}
\end{equation*}
$$

On the other hand, since $\left|x-p_{i}\right| \geq c h^{\delta}$ on $\operatorname{Supp} J_{0}$,

$$
\begin{equation*}
J_{0} H J_{0} \geq\left(J_{0}\right)^{2} O\left(-c h^{-\delta \rho}\right) \geq r h^{-\alpha}\left(J_{0}\right)^{2} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{align*}
\varepsilon H_{0}^{(i)}+H-H_{0}^{(i)} \geq & \frac{\varepsilon}{2}\left(-h^{2} \triangle-\sum_{|\alpha|=1} \frac{2 a_{\alpha}^{(i)} x^{\alpha}}{|x|^{\rho+1}}\right) \tag{1.6}\\
& -\frac{\varepsilon}{2} h^{2} \triangle-\sum_{|\alpha|=2} \frac{a_{\alpha}^{(i)} x^{\alpha}}{|x|^{\rho+1}}-O\left(h^{2-\rho}\right) \\
\geq & -c \varepsilon h^{-\alpha}-c_{\varepsilon} h^{-\alpha^{\prime}}-O\left(h^{2-\rho}\right)
\end{align*}
$$

where $\alpha^{\prime}:=\frac{2(\rho-1)}{3-\rho}$, and c, c_{ε} are independent of h.
Substituting (1.4)~(1.6) into (1.3),

$$
H \geq(1-c \varepsilon) r h^{-\alpha} \mathbf{1}-O\left(h^{-\rho}\right)+F, \quad \gamma:=\max \left(\alpha^{\prime}, 2 \delta\right)
$$

$\left(F=\sum J_{(i)} F^{(i)} J_{(i)}, \operatorname{rank} F \leq m\right)$. Since $\varepsilon>0$ is arbitrary, we have done.

1.3. Additional arguement

We shall show here that if e_{m} is non-degenerate, the "approximating eigenfunction" used in the proof of Theorem 1, approaches to the "real" eigenfunction in L^{2}-sense. We will use this result in Sections 2,4. At first, for each l, we find ε_{l} such that for any m, either $e_{m}=e_{l}$ or $\left|e_{m}-e_{l}\right|>\varepsilon_{l}$ holds.

Proposition 1.1. Let

$$
P_{l}^{h}:=\frac{1}{2 \pi i} \oint_{\left|z-h^{-\alpha}\right|=h^{-\alpha} e_{l}}(z-H(h))^{-1} d z
$$

then, $\left\|\left(1-P_{l}^{h}\right) \psi_{l}^{h}\right\|_{2} \rightarrow 0(h \downarrow 0)$.
Proof. We use the inductive arguement. Assume that the proposition is valid for any l for $l<k$. At first, we prove the following claim.

Claim. For any l such that $e_{l}<e_{k}, P_{l}^{h} \psi_{k}^{h} \rightarrow 0$ in L^{2}.
Proof of Claim. If the degeneracy of e_{l} is $m, P_{l} \psi_{l_{j}}-\psi_{l_{j}} \rightarrow 0$ in $L^{2}(j=1, \cdots, m)\left(\right.$ where $\psi_{l_{j}}(j=1, \cdots, m)$ are eigenfunctions corresponding to e_{l}.). From (1.1), we see $\left\{\psi_{l_{j}}\right\}_{j=1, \cdots, m}$ and moreover, $\left\{P_{l} \psi_{l_{j}}\right\}_{j=1, \cdots, m}$ are linearly independent (for h small). Let $\left\{u_{l_{j}}\right\}_{j=1, \cdots, m}$ be the orthonormal basis of Ran P_{l} (the range of P_{l}). Since $\left\{P_{l} \psi_{l_{j}}\right\}$ is linearly independent and contained in $\operatorname{Span}\left\{u_{l_{j}}\right\}(j=1, \cdots, m)$, we can write each u_{j} by linear combination of $\left\{P_{l} \psi_{l_{j}}\right\}_{j=1, \cdots, m}$ and we write $u_{j}=\sum a_{k}^{j} P_{l} \psi_{l_{k}}$. Then, we have

$$
\begin{aligned}
P_{l} \psi_{k} & =\sum_{j=1}^{m}\left(\psi_{k}, u_{l_{j}}\right) u_{l_{j}} \\
& =\sum_{j=1}^{m}\left(\psi_{k}, \sum_{p=1}^{m} a_{p}^{j} P_{l} \psi_{l_{p}}\right) \sum_{q=1}^{m} a_{q}^{j} P_{l} \psi_{q}
\end{aligned}
$$

From the assumption of the induction,

$$
\left(\psi_{k}, \sum_{p=1}^{m} a_{p}^{j} P_{l} \psi_{l_{p}}\right)-\left(\psi_{k}, \sum_{p=1}^{m} a_{p}^{j} \psi_{l_{p}}\right) \xrightarrow{h \downarrow 0} 0 .
$$

On the other hand, from (1.1), $\left(\psi_{k}, \sum_{p=1}^{m} a_{p}^{j} \psi_{l_{p}}\right) \xrightarrow{h \downarrow 0} 0$. By combining these two facts, we see that $P_{l} \psi_{k} \rightarrow 0(h \downarrow 0)$ in L^{2}.

Let E_{Ω}^{h} be the spectral measure of $h^{\alpha} H$. From the claim above, for any $\varepsilon>0, E_{\left(-\infty, e_{k}-\varepsilon\right)}^{h} \psi_{k}^{h} \rightarrow 0$ as $h \downarrow 0$ in L^{2}. On the other hand, $\left(\psi_{k}, h^{\alpha} H \psi_{k}\right) \rightarrow$ $e_{k}\left(\right.$ from (1.2)). Then it must follow that $\left\|E_{\left(e_{k}-\varepsilon, e_{k}+\varepsilon\right)}^{h} \psi_{k}^{h}\right\|_{2} \rightarrow 1(h \downarrow 0)$.

2. Asymptotic expansions of eigenvalues and eigenfunctions

2.1. Proof of Theorem 2

To simplify the notation, we write i instead of $i(m)$. Let

$$
\begin{gathered}
K_{0}:=h^{\alpha} U^{(i)} H_{0}^{(i)} U^{(i)^{-1}} \quad\left(=h_{0}^{(i)}\right) \\
K:=h^{\alpha} U^{(i)} H U^{(i)-1}=K_{0}+h^{\alpha} V\left(h^{\beta} x+p_{i}\right)+\sum_{|\alpha|=1} \frac{a_{0}^{(i)} x^{\alpha}}{|x|^{\rho+1}} .
\end{gathered}
$$

From the assumption, $K-K_{0}$ has an asymptotic expansion near the origin in the following form as $h \downarrow 0$,

$$
\begin{equation*}
K-K_{0} \sim-\frac{1}{|x|^{\rho+1}} \sum_{|\alpha|=2}^{\infty} a_{\alpha}^{(i)}\left(h^{\beta}\right)^{|\alpha|} x^{\alpha} . \tag{2.1}
\end{equation*}
$$

Let

$$
\tilde{P}(h):=\frac{1}{2 \pi i} \oint_{\left|z-e_{m}\right|=\varepsilon}(z-K)^{-1} d z
$$

where we take ε sufficiently small such that the set $\left\{z\left|\left|z-e_{m}\right|<\varepsilon\right\}\right.$ contains no other $e_{j}(j \neq m)$.

Then, by Theorem $1, \operatorname{rank} \tilde{P}(h)=1$ for h sufficiently small, and by Proposition 1.1, $\tilde{P}(h) \varphi_{m} \rightarrow \varphi_{m}(h \downarrow 0)$. Hence it is enough to obtain the L^{2}-asymptotic expansion of $\tilde{P}(h) \varphi_{m}$. In fact, the relations

$$
\begin{equation*}
h^{\alpha} E_{m}=\frac{\left(K \varphi_{m}, \tilde{P} \varphi_{m}\right)}{\left(\varphi_{m}, \tilde{P} \varphi_{m}\right)} \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
U^{(i)} \psi_{m}=\frac{1}{\left(\varphi_{m}, \tilde{P} \varphi_{m}\right)^{1 / 2}} \tilde{P} \varphi_{m} \tag{2.3}
\end{equation*}
$$

hold and $K \varphi_{m}$ has obviously the L^{2}-asymptotic expansion under Assumptions (B). From the definition of $\tilde{P}(h)$ it suffices to obtain the L^{2}-asymptotic expansion of $(z-K)^{-1} \varphi_{m}$.

One can expand $(K-z)^{-1} \varphi_{m}$ as follows:

$$
(K-z)^{-1} \varphi_{m}=\sum_{k=0}^{l} f_{k}+r_{l}
$$

where

$$
f_{k}=(-1)^{k}\left(K_{0}-z\right)^{-1}\left[V\left(K_{0}-z\right)^{-1}\right]^{k} \varphi_{m}
$$

and

$$
r_{l}=(-1)^{-1}(K-z)^{-1}\left[V\left(K_{0}-z\right)^{-1}\right]^{l+1} \varphi_{m}
$$

We shall estimate the L^{2} norm of f_{k} and r_{l}. Write $V=V_{1}+V_{2}$ where $V_{1}(x)=V \chi_{\mathbf{R}^{d} \backslash \cup_{j=1}^{n} B_{j}^{\varepsilon}}, V_{2}(x)=V \chi_{\cup_{j=1}^{n} B_{j}^{\varepsilon}}\left(\chi_{A}\right.$ is the characteristic function of A and $B_{j}^{\varepsilon}:=\left\{x| | x-p_{j} \mid<\varepsilon\right\}$).

Claim. $\left\|f_{k}\right\|_{2}=O\left(h^{\beta k}\right),\left\|r_{l}\right\|^{2}=O\left(h^{\beta(l+1)}\right)$.
Proof of Claim. We prove by the induction. We assume $\|\left[V\left(K_{0}-\right.\right.$ $\left.1)^{-1}\right]^{k} \varphi_{m} \|_{2}=O\left(h^{\beta k}\right)$. At first we consider the contribution of V_{2}. By the Sobolev embedding theorem,
(1) When $d \leq 3, H^{2}\left(\mathbf{R}^{d}\right) \subseteq L^{\infty}\left(\mathbf{R}^{d}\right)$. From (2) of Assumptions (B), $V_{2} \in L^{2}\left(\mathbf{R}^{d}\right)$. Hence $V_{2}\left(K_{0}-z\right)^{-1} \psi \in L^{2}$ (for any $\psi \in L^{2}$).
(2) When $d=4, \chi_{K}\left(K_{0}-z\right)^{-1} \psi \in L^{r}$ for any $r<\infty$ and for any compact set K. And if $\rho<2$, there exists $\delta>0$ such that $V_{2} \in L^{2+\delta}$. Hence $V_{2}\left(K_{0}-z\right)^{-1} \psi \in L^{2}\left(\mathbf{R}^{d}\right)$ by the Hölder's inequality.
(3) When $d \geq 5, H^{2}\left(\mathbf{R}^{d}\right) \subseteq L^{q}\left(\mathbf{R}^{d}\right)$ (where $\left.\frac{1}{q}:=\frac{1}{2}-\frac{2}{d}\right)$. Hence if $\rho<2$, $V_{2}\left(K_{0}-z\right)^{-1} \psi \in L^{2}\left(\mathbf{R}^{d}\right)$ by the Hölder's inequality.
Combining the above facts, we obtain,
$\left\|V_{2}\left(K_{0}-z\right)^{-1}\left[V\left(K_{0}-z\right)^{-1}\right]^{k} \varphi_{m}\right\|_{2}= \begin{cases}O\left(\varepsilon^{(d-2 \rho) / 2} h^{\beta k}\right), & \text { if } d \leq 3, \\ O\left(\varepsilon^{(4-(2+\delta) \rho) 2 /(2+\delta)} h^{\beta k}\right), & \text { if } d=4, \\ O\left(\varepsilon^{d(1-\rho / 2) 4 / d} h^{\beta k}\right), & \text { if } d \geq 5 .\end{cases}$

If we take a suitable constant $C_{d}>0$ (dependent on the dimension d), and put $\varepsilon=h^{\beta C_{d}(l+1)}$, then we obtain

$$
\begin{equation*}
\left\|V_{2}\left(K_{0}-z\right)^{-1}\left[V\left(K_{0}-z\right)^{-1}\right]^{k} \varphi_{m}\right\|_{2}=O\left(h^{\beta(l+1)}\right) \tag{2.4}
\end{equation*}
$$

If we take ε as above, we can write (from (2.1)) for any $N \in \mathbf{N}$,

$$
V_{1}=Q_{N}(h ; x)+R_{N}(h ; x)+S(h ; x)
$$

where $Q_{N}(h ; x)$ is a polynomial of x and h^{β} of degree at most N, and

$$
\left|R_{N}\right| \leq C h^{-\rho \beta c_{d}(l+1)}\left|h^{\beta} x\right|^{N+1}
$$

$$
\begin{align*}
\left|Q_{N}\right| & \leq C h^{\beta}(1+|x|)^{N} \tag{2.5}\\
|S| & \leq C h^{\beta}|x|^{-(\rho-1)}
\end{align*}
$$

We take N sufficiently large such that

$$
\begin{equation*}
\beta(N+1)-\rho \beta c_{d}(l+1) \geq \beta(l+1) \tag{2.6}
\end{equation*}
$$

Now we need the following lemma for the proof of Claim.
Lemma 2.1. For any $l \in \mathbf{R},(1+|x|)^{l}\left(K_{0}-z\right)^{-1}(1+|x|)^{-l}$ is a bounded operator.

For its proof, we refer to [3].
Put $A:=(1+|x|)$. We can write $V_{1}\left(K_{0}-z\right)^{-1}\left[V\left(K_{0}-z\right)^{-1}\right]^{k} \varphi_{m}=$ $\left(A^{-b} V_{1}\right) A^{b}\left(K_{0}-z\right)^{-1} A^{-b}\left(A^{-b} V\right) A^{2 b}\left(K_{0}-z\right)^{-1} A^{-2 b} \cdots A^{(k+1) b} \psi_{m}$. By lemma 2.1, $A^{p b}\left(K_{0}-z\right)^{-1} A^{-p b}$ is a bounded operator. On the other hand, by (2.5), $\left\|A^{-b}\left(Q_{N}+R_{N}\right)\right\|=O\left(h^{\beta}\right)$ for suitable b. Hence

$$
\left\|V_{1}\left(K_{0}-z\right)^{-1}\left[V\left(K_{0}-z\right)^{-1}\right]^{k} \varphi_{m}\right\|_{2}=O\left(h^{\beta(k+1)}\right)
$$

Combining this with (2.4), we obtain $\left\|f_{k+1}\right\|_{2}=O\left(h^{\beta(k+1)}\right)$.
The estimate for r_{l} is similar. This proves the Claim.
We set $f_{k}^{\prime}:=(-1)^{k}\left(K_{0}-z\right)^{-1}\left[Q_{N}\left(K_{0}-z\right)^{-1}\right]^{k} \varphi_{m}$. Hence, by (2.4),(2.5), and (2.6), in the same way as in the above arguement, we obtain

$$
\left\|f_{k}^{\prime}-f_{k}\right\|_{2}=O\left(h^{\beta(l+1)}\right)
$$

Noting that f_{k}^{\prime} is a polynomial of h^{β}, we obtain the asymptotic expansion of $(K-z)^{-1} \varphi_{m}$.

2.2. Proof of Theorem 3

We begin with stating the following lemma.
Lemma 2.2. Let $C(h)$ be a $k \times k$ Hermitian matrix whose entries have asymptotic expansions of h. Then the eigenvalues of $C(h)$ also have asymptotic expansions of h.

For the proof, we can refer to [1].
Let P_{h} be the projection onto the subspace which is spanned by the eigenfuctions of H corresponding to the eigenvalues E_{m}, \cdots, E_{m+k-1}. Hence, by using the eigenfunctions of $H_{0}^{(i)}$ corresponding to the eigenvalue $h^{-\alpha} e$, it follows that,

$$
\begin{equation*}
\left(\psi_{i}, P_{h} \psi_{j}\right) \rightarrow \delta_{i j} \tag{2.7}
\end{equation*}
$$

as h tends to 0 (by Proposition 1.1).
Thanks to the same arguement as in the proof of theorem 2, one can prove that

$$
\triangle_{i j}:=\left(\psi_{i}, P_{h} \psi_{j}\right), \quad H_{i j}:=\left(\psi_{i}, H P \psi_{j}\right)
$$

have asymptotic expansion of h^{β}. And from (2.7), $\triangle_{i j}=\delta_{i j}+o\left(h^{\beta}\right)$. Hence $C:=\triangle^{-1 / 2} H \triangle^{-1 / 2}$ has asymptotic expansion of h^{β}. Therefore, by Lemma.2.2, E_{m}, \cdots, E_{m+k-1} also have asymptotic expansion of h^{β}.

Theorem 4 and its corollary follow easily from the proof of Theorem 3.

3. Exponential decay of eigenfunctions

In order to prove Theorem 5 and Theorem 5', we obtain the exponential decay of the eigenfunction corresponding to the lowest eigenvalue of H. From now on, we assume the number of the singular points is two $(n=2)$: $a, b \in \mathbf{R}^{d}$.

Proposition 3.1. There exist $R_{0}>0, C>0$, and $D>0$ such that if $|x|>R_{0}$ and h is sufficiently small,

$$
\left|\psi_{0}(h ; x)\right| \leq C e^{-D|x| / h^{\beta}}
$$

Proof. Take $R_{0}>0, \delta>0$ such that, if $|x|>R_{0} / 4$ and h is sufficiently small,

$$
\begin{equation*}
V(x)-\frac{\delta^{2}}{h^{\alpha}}-E_{0}(h) \leq 1 \tag{3.1}
\end{equation*}
$$

(That is possible since $V(x)$ is bounded below far away from the origin and $E_{0}(h)=O\left(h^{-\alpha}\right)$.).

Let φ be a function which satisfies

$$
\begin{aligned}
& \text { (1) } \varphi \in L^{\infty}, \quad 0 \leq \varphi^{\prime}(s) \leq 1 \\
& \text { (2) } \varphi(x)=x, \quad \text { if } \quad|x| \leq R_{1} \\
& \text { (3) } \varphi(x)=0, \quad \text { if } \quad|x| \geq 2 R_{1}
\end{aligned}
$$

for a constant $R_{1}>0$.
We set $\rho(x):=\delta \varphi(|x|) / h^{\rho /(2-\rho)} \quad\left(x \in \mathbf{R}^{d}\right)$. Then it follows that $|\nabla \rho(x)|^{2} \leq \delta^{2} / h^{\alpha}, \rho(x)$ is bounded, and is smooth in the complement of the neighborhood of the origin. Let ψ be an \mathbf{R}-valued fuction such that its support is contained in $\left\{x\left||x| \geq R_{0} / 4\right\}\right.$. From (3.1), for sufficiently small h, we obtain

$$
\begin{align*}
\left(e^{\rho / h} \psi,\left(H-E_{0}\right) e^{-\rho / h} \psi\right) & \geq\left(\psi,\left(V-(\nabla \rho)^{2}-E_{0}\right) \psi\right) \\
& \geq\|\psi\|_{2}^{2} \tag{3.2}
\end{align*}
$$

Therefore, if we define a function η on \mathbf{R}^{d} such that

$$
\begin{aligned}
& \text { (1) } 1-\eta \in C_{0}^{\infty} \\
& \text { (2) } \eta=0, \quad \text { if } \quad|x|<R_{0} / 4, \\
& \text { (3) } \eta=1, \quad \text { if } \quad|x|>R_{0} / 2
\end{aligned}
$$

and if we set $\psi:=e^{\rho / h} \eta \psi_{0}$, it follows that

$$
\begin{equation*}
\left(e^{\rho / h} \psi,\left(H-E_{0}\right) e^{-\rho / h} \psi\right)=h^{2}\left(e^{2 \rho / h} \eta \psi_{0},-2(\nabla \eta)\left(\nabla \psi_{0}\right)-(\triangle \eta) \psi_{0}\right) \tag{3.3}
\end{equation*}
$$

Since the RHS of (3.3) is independent of R_{1}, we can take R_{1} go to infinity and let $\rho=\delta|x| / h^{\rho /(2-\rho)}$. On the other hand, if we note that $\left\|\psi_{0}\right\|_{2}=1$ and $\left\|\nabla \psi_{0}\right\|_{2}=O\left(h^{-1}\right)$, we obtain (from (3.2),(3.3)),

$$
\int_{|x|>R_{0} / 2} e^{2 \delta|x| / h^{\beta}}\left|\psi_{0}\right|^{2} d x \leq C h e^{\delta R_{0} / h^{\beta}}
$$

Hence,

$$
\int_{|x|>R_{0}} e^{\delta|x| / h^{\beta}}\left|\psi_{0}\right|^{2} d x \leq C h
$$

Since ψ_{0} is subharmonic on $\left\{x\left||x|>R_{0}\right\}\right.$, the value of ψ_{0} on x is bounded by the integral of itself over the unit ball around x. Therefore, we obtain the conclusion.

Proposition 3.2. For any $\varepsilon>0, R_{0}>0$, and $\kappa>0$, there exists a constant $C_{\varepsilon, R_{0}, \kappa}>0$ such that if $|x|<R_{0},|x-a|>\kappa,|x-b|>\kappa$ and h is sufficiently small,

$$
\left|\psi_{0}(h ; x)\right| \leq C_{\varepsilon, R_{0}, \kappa} \exp \left(-\frac{\min (\rho(x, a), \rho(x, b))(1-\varepsilon)}{h}\right)
$$

Proof. Let $\tilde{\varphi}(x):=\min (\rho(x, a), \rho(x, b))$. Then,

$$
|\tilde{\varphi}(x)-\tilde{\varphi}(y)| \leq \int_{0}^{1} d \theta \sqrt{V(\theta x+(1-\theta) y)}|x-y|
$$

for $x, y \in\left\{x \mid V(x)-\tilde{E}_{0} \geq 0\right\}$. Hence for any $\varepsilon>0, R>0$, we can find $\delta>0$ and $\varphi(x)$ (by regularization and cutoff), such that if $|x|<R$,

$$
\begin{gathered}
(1-\varepsilon) \tilde{\varphi}(x) \leq \varphi(x) \leq(1+\varepsilon) \tilde{\varphi}(x) \\
|\nabla \varphi(x)| \leq(1-\delta) \sqrt{V(x)-\tilde{E}_{0}}
\end{gathered}
$$

Hence, for any $\kappa>0$, we see that if $|x-a|>\kappa,|x-b|>\kappa$,

$$
\begin{aligned}
V(x)-E_{0}-(\nabla \varphi)^{2} & \geq\left(2 \delta-\delta^{2}\right)\left(V(x)-\tilde{E}_{0}\right)+\tilde{E}_{0}-E_{0} \\
& \geq c_{\delta, \kappa}
\end{aligned}
$$

for h sufficiently small. Here, the second inequality follows from the fact that by Theorem 1, $-\tilde{E}_{0}=O\left(h^{-\alpha}\right)$ and $\tilde{E}_{0}-E_{0}=o\left(h^{-\alpha}\right)$. Therefore, if we take ψ so that its support is contained in $\{x||x-a|>\kappa,|x-b|>\kappa\}$, we have, by following the same arguement as (3.2),

$$
\left(e^{\rho / h} \psi,\left(H-E_{0}\right) e^{-\rho / h} \psi\right) \geq c_{\delta, \kappa}\|\psi\|_{2}^{2}
$$

On the other hand, there exists κ_{0} determined by κ such that, if $|y-a| \leq$ κ_{0} or $|y-b| \leq \kappa_{0}$, then $\varphi(y)<\varepsilon \varphi(x)$. By the method used in the proof of the Proposition 3.1, we can obtain
$\left|\psi_{0}(h ; x)\right| \leq C \exp \left(-\frac{(1-\varepsilon)^{2} \tilde{\varphi}}{h}\right) \quad$ on $\quad|x|<R,|x-a|>\kappa,|x-b|>\kappa$.
Secondly, we consider the lower bound of ψ_{0}. In order that, we need the following lemma.

Lemma 3.3. Let $\overline{e_{0}}$ be the lowest eigenvalue of $-\triangle$ on the $(d-1)$ dimensional unit ball with Dirichlet boundary condition and let η be the corresponding eigenfunction (η is normalized so that $\|\eta\|_{\infty}=1$). And let $d:=\min _{|y| \leq 1 / 2} \eta(y)$. Let D_{0} be a cylinder in \mathbf{R}^{d} such that,

$$
D_{0}:=\left\{x=\left(x_{1}, x_{\perp}\right)\left|\quad 0 \leq x_{1} \leq a(1+\delta),\left|x_{\perp}\right| \leq R\right\}\right.
$$

Let $\Omega(x)$ be such that $\Omega(x) \geq 0$ and $\Omega(x)$ satisfies $\triangle \Omega(x)=W(x) \Omega(x)$ on D_{0} for some $W \geq 0$. Let $\alpha^{2}:=\sup _{x \in D_{0}}\left\{\bar{e}_{0} R^{-2}+W(x)\right\}$. Then the following estimate holds.

$$
\begin{aligned}
& \min \left\{\Omega(x)\left|x_{1}=a,\left|x_{\perp}\right| \leq \frac{R}{2}\right\}\right. \\
& \quad \geq d e^{-\alpha a}\left(1-e^{-2 \delta \alpha a}\right) \min \left\{\Omega(x)\left|x_{1}=0,\left|x_{\perp}\right| \leq R\right\}\right.
\end{aligned}
$$

For its proof we can refer to [2].
Proposition 3.4. Assume that any $\varepsilon>0,\left\|J_{a} \psi_{0}\right\|_{2}\left\|J_{b} \psi_{0}\right\|_{2} \geq$ $C_{\varepsilon} e^{-\varepsilon / h^{\beta}}$ for a constant $C_{\varepsilon}>0$. Then for any $\varepsilon>0$ and any compact set $K\left(\subset \mathbf{R}^{d}\right)$, there exists a constant $C_{\kappa, \varepsilon}>0$ such that if $x \in K$,

$$
\left|\psi_{0}(h ; x)\right| \geq C_{\kappa, \varepsilon} \exp \left(-\frac{\sqrt{-e_{0}} \min (|x-a|,|x-b|)(1+\varepsilon)}{h^{\beta}}\right)
$$

By estimating $\rho_{h}(x, a)$ from below, we immediately obtain the following proposition.

Corollary. Under the same conditions as Proposition 3.4,

$$
\left|\psi_{0}(h ; x)\right| \geq C_{\kappa, \varepsilon} \exp \left(-\frac{\min \left(\rho_{h}(x, a), \rho_{h}(x, b)\right)(1+\varepsilon)}{h}\right)
$$

Proof of Proposition 3.4. There is a constant $C>0$ such that $V(x)-E_{0} \geq 0$ if $|x-a| \geq C h^{\beta}$. Moreover, from the proof of Lemma 4.3 (in Section 4), for any $C_{1}>0$, we can find a constant $C_{2}>0$ such that if $|x-a| \leq C_{1} h^{\beta}$, then $\left|\psi_{0}\right| \geq C_{2}$. Hence, we take a cylinder D so that its bottom starts at the position whose distance to a is $C h^{\beta}$ and its top is at x, and its radius is $R h^{\beta}$. Then, there exists a constant C^{\prime} (determined by C and R) such that on the bottom of $D,\left|\psi_{0}\right| \geq C^{\prime}$. Thus we can apply Lemma 3.3 to D and ψ_{0}. The conclusion is that, for any $\varepsilon>0$, there exists a sufficiently small $\delta>0$ such that for sufficiently small h,

$$
\left|\psi_{0}(h ; x)\right| \geq d e^{-\alpha(x-a-\varepsilon)}\left(1-e^{-2 \delta \alpha a}\right) C^{\prime}
$$

where $\alpha^{2}:=e_{0} R^{-2} h^{-2 \beta}+\sup _{x \in D} h^{-2}\left(V(x)-E_{0}\right)$. By taking h sufficiently small, we can let $e^{-2 \delta \alpha a}<1 / 2$. Moreover, by taking R sufficiently large, we can take $e_{0} R^{-2}<\varepsilon^{2}$. Using the fact that $-E_{0}=O\left(h^{-\alpha}\right)$ and the result of Theorem 1, we conclude

$$
\left|\psi_{0}(h ; x)\right| \geq C \exp \left(-\sqrt{-e_{0}} h^{-\beta}|x-a|(1+\varepsilon)\right)
$$

The uniformity of the constant C for $x \in K$ is obvious.

4. The proof of Theorem 5

4.1. The upper bound

To prove the upper bound, we need the following equality.
Lemma 4.1. Let f be a C^{1} function which is uniformly bounded. Then

$$
\left(f \psi_{0},\left(H-E_{0}\right) f \psi_{0}\right)=h^{2}\left((\nabla f) \psi_{0},(\nabla f) \psi_{0}\right)
$$

For its proof, we can refer to [2].
We set

$$
d_{h}(x):=\frac{\rho_{h}(x, a)-\rho_{h}(x, b)}{\rho_{h}(a, b)} .
$$

Fix any $\delta>0$. By the regularization procedure, we can find a function $d_{\delta}(x)$ which satisfies

$$
d_{\delta}(x) \in C^{\infty}, \quad\left|d_{h}-d_{\delta}\right| \leq \delta \quad(\text { uniformly in } h)
$$

Fix any $\alpha>0$, and take a smooth function $h(x)$ on \mathbf{R} so that

$$
h(x)=\left\{\begin{aligned}
-1, & \text { on }(-\infty,-\alpha) \\
1, & \text { on }(\alpha, \infty)
\end{aligned}\right.
$$

We set $g(x):=h\left(d_{\delta}(x)\right)$. Then $g(x) \in C^{\infty}\left(\mathbf{R}^{d}\right)$, and Supp ∇g is contained in a neighborhood of the geodesic bisector of a, b (i.e., it is contained in $\left.\{x \mid d(x)=0\}=: B_{h}.\right)$. Since $\min _{x \in B_{h}}\left\{\min \left(\rho_{h}(x, a), \rho_{h}(x, b)\right\}=\frac{1}{2} \rho_{h}(a, b)\right.$, we can see that, for any $\varepsilon>0$ and sufficiently small $\alpha, \delta>0$,

$$
\begin{equation*}
\min _{x \in \operatorname{Supp} \nabla g}\left\{\min \left(\rho_{h}(x, a), \rho_{h}(x, b)\right)\right\} \geq \frac{1}{2} \rho_{h}(a, b)(1-\varepsilon) . \tag{4.1}
\end{equation*}
$$

Now, let

$$
<g>_{h}:=\int g \psi_{0}^{2} d x, \quad f(x):=g(x)-<g>_{h}
$$

Then $\left(f \psi_{0}, \psi_{0}\right)=0$. Therefore, by Lemma 4.1, we obtain

$$
\begin{equation*}
E_{1}-E_{0} \leq \frac{h^{2}\left((\nabla f) \psi_{0},(\nabla f) \psi_{0}\right)}{\left(f \psi_{0}, f \psi_{0}\right)} \tag{4.2}
\end{equation*}
$$

We shall estimate the RHS of (4.2).
Claim. For any $\varepsilon>0$,

$$
\begin{equation*}
\left(f \psi_{0}, f \psi_{0}\right) \geq C_{\varepsilon} e^{-\varepsilon / h^{\beta}} \tag{4.3}
\end{equation*}
$$

Proof of Claim. Suppose that there is a constant $C>0$ such that $\left(f \psi_{0}, f \psi_{0}\right) \leq C e^{-c / h^{\beta}}$. Assume that there is a sequence $\left\{h_{n}\right\}, h_{n} \downarrow 0$ such that $<g>_{h_{n}} \geq 0$. Then $|f(x)| \geq 1$ near the neighborhood of b. Hence $\left\|J_{b} \psi_{0}\right\|_{2} \leq C e^{-c / 2 h_{n}^{\beta}}$. On the other hand, if $<g>_{h_{n}} \leq 0$, then $\left\|J_{a} \psi_{0}\right\|_{2} \leq$ $C e^{-c / 2 h^{\beta}}$. But this contradicts the assumption of Theorem 5 .

Claim. If $x \in K$ (a compact set of $\left.\mathbf{R}^{d}\right),\left|\nabla d_{\delta}\right| \leq C_{K}$ for a constant $C_{K}>0$.

Proof of Claim. Let ρ_{δ} be a regularization of $\rho_{h}(x, a)$. We can write,

$$
\begin{equation*}
\nabla d_{\delta}(x)=\frac{\nabla \rho_{\delta}(x, a)-\nabla \rho_{\delta}(x, b)}{\rho_{h}(a, b)} \tag{4.4}
\end{equation*}
$$

Since $x \in K$, we can find $M>0$ such that

$$
\begin{equation*}
\left|\nabla \rho_{\delta}(x, a)-\nabla \rho_{\delta}(x, b)\right| \leq 2 \sqrt{M-\tilde{E}_{0}} \tag{4.5}
\end{equation*}
$$

For a suitable $\varepsilon>0, V(x) \geq m$, on $|x-a|>\varepsilon$ and $|x-b|>\varepsilon$. Therefore,

$$
\begin{equation*}
\rho(a, b) \geq|a-b| \sqrt{m-\tilde{E}_{0}} \tag{4.6}
\end{equation*}
$$

Combining (4.4) $\sim(4.6)$, we obtain the conclusion.
We estimate $E_{1}-E_{0}$ using (4.2), (4.3), the claim above, Proposion 3.1 (to estimate it in the area far from the origin) and Proposition 3.2. We have, for a constant $C>0$,

$$
E_{1}-E_{0} \leq C \exp \left(-\frac{2 \min _{x \in \operatorname{Supp} \nabla g}\{\min (\rho(x, a), \rho(x, b))\}}{h}(1-\varepsilon)\right)
$$

from (4.1), $\leq C \exp \left(-\frac{\rho(a, b)(1-\varepsilon)^{2}}{h}\right)$.
This proves the upper bound in Theorem 5.

4.2. Lower bound

At first, we need the following two lemmas.
LEMMA 4.2. Let $\left\{W_{n}\right\}_{n=1,2, \cdots}$ and W_{∞} be a sequence of C^{∞}-functions and a function such that they and all their derivatives converge to those of a function W_{∞} in $L_{l o c}^{\infty}$, and satisfy

$$
\left(-\triangle+W_{n}\right) \varphi_{n}=E_{n} \varphi_{n}, \quad\left(-\triangle+W_{\infty}\right) \varphi_{\infty}=E_{\infty} \varphi_{\infty}
$$

Assume that $E_{n} \rightarrow E_{\infty}$ and $\varphi_{n} \rightarrow \varphi_{\infty}$ in $L_{l o c}^{2}$. Then, $\varphi_{n} \rightarrow \varphi_{\infty}$ in $L_{l o c}^{\infty}$.
For its proof, we can refer to [2].
Lemma 4.3. Let $\psi_{1}(h ; x)$ be the normalized eigenfunction associated to the eigenvalue E_{1}, and set $g_{h}(x):=\frac{\psi_{1}(x)}{\psi_{0}(x)}$. Then there exists a constant $C>0$ such that for sufficiently small h,

$$
\begin{gathered}
g_{h} \geq C, \quad \text { if } \quad|x-a| \leq h^{\beta} \\
g_{h} \leq-C, \quad \text { if } \quad|x-b| \leq h^{\beta}
\end{gathered}
$$

Proof of Lemma 4.3. Let ξ_{a}, ξ_{b} be the eigenstates associated to the lowest eigenvalues of the Hamiltonians whose potentials are the first term of the asymptotic expansions of V arround a, b respectively. Then ξ_{a}, ξ_{b} are written as follows:

$$
\begin{aligned}
& \xi_{a}(h ; x)=h^{-2 d / \beta} \kappa_{a}\left(h^{-\beta}(x-a)\right), \\
& \xi_{b}(h ; x)=h^{-2 d / \beta} \kappa_{b}\left(h^{-\beta}(x-b)\right),
\end{aligned}
$$

where κ_{a}, κ_{b} are the eigenstates corresponding to the lowest eigenvalues of $h_{0}^{(a)}, h_{0}^{(b)}$ respectively. Let P_{h} be a projection to the subspace spanned by ξ_{a}, ξ_{b}. It is easy to see $\left\|\left(1-P_{h}\right) \psi_{j}\right\|_{2} \rightarrow 0(j=0,1)$ as h tends to zero (due to a similar arguement to that in Proposition 1.1). Therefore, there exist $\alpha(h)>0, \beta(h)>0$, such that

$$
\begin{equation*}
\alpha^{2}+\beta^{2}=1, \quad\left\|\psi_{0}-\alpha \xi_{a}-\beta \xi_{b}\right\|_{2} \rightarrow 0 \quad(h \downarrow 0) \tag{4.7}
\end{equation*}
$$

Since ψ_{1} is orthogonal to ψ_{0},

$$
\begin{equation*}
\left\|\psi_{1}-\beta \xi_{a}+\alpha \xi_{b}\right\|_{2} \rightarrow 0 \quad(h \downarrow 0) \tag{4.8}
\end{equation*}
$$

By the assumption of Theorem $5, \alpha \cdot \beta$ is bounded below(which means $|\alpha \cdot \beta| \geq C$ for some constant $C>0$ that is independent of h). Hence α and β is bounded from above and below. If we set

$$
\begin{aligned}
\varphi_{h} & :=h^{d \beta / 2} \alpha(h)^{-1} \psi_{0}\left(h^{\beta} x+a\right), \\
\tilde{\varphi_{h}} & :=h^{d \beta / 2} \beta(h)^{-1} \psi_{1}\left(h^{\beta} x+a\right),
\end{aligned}
$$

then from (4.7) and (4.8), $\varphi_{h}, \tilde{\varphi_{h}}$ converge to κ_{a} in $L_{l o c}^{2}$ (Here we use the exponential decay properties of κ_{b}). Furthermore, it is easy to see that $K \varphi_{h}=h^{\alpha} E_{0} \varphi_{h}$, and $K \tilde{\varphi_{h}}=h^{\alpha} E_{1} \tilde{\varphi_{h}}$. Thus we can apply Lemma 4.2. Then $\varphi_{h} \rightarrow \kappa_{a}$, and $\tilde{\varphi_{h}} \rightarrow \kappa_{a}$ in $L_{l o c}^{\infty}$ as h tends to zero. Thus we see that $\left|g_{h}-\frac{\beta}{\alpha}\right| \rightarrow 0$ uniformly on $\left\{x\left||x-a| \leq h^{\beta}\right\}\right.$ and similarly $\left|g_{h}+\frac{\alpha}{\beta}\right| \rightarrow 0$ on $\left\{x\left||x-b| \leq h^{\beta}\right\}\right.$.

Now, we are ready to prove the lower bound part of Theorem 5. Estimating $\rho_{h}(a, b)$ from below, we see that it is enough to show that for any $\varepsilon>0$, there exists a constant $C>0$ such that

$$
E_{1}-E_{0} \geq C \exp \left(-\sqrt{-e_{0}} h^{-\beta}|a-b|(1+\varepsilon)\right)
$$

Let γ be a straight segment from a to b. Then, $\max _{x \in \gamma}\{\min \{|x-a|, \mid x-$ $b \mid\}\}=\frac{|a-b|}{2}$. Thus for any $\varepsilon>0$, there exists a positive constant δ such that

$$
\begin{equation*}
\max \{\min \{|x-a|,|x-b|\} \mid \operatorname{dist}(x, \gamma) \leq \delta\} \leq \frac{|a-b|}{2}(1+\varepsilon) \tag{4.9}
\end{equation*}
$$

It follows from Proposition 3.4 that

$$
\begin{equation*}
\left|\psi_{0}\right|^{2} \geq C \exp \left(-\sqrt{-e_{0}} h^{-\beta}|a-b|(1+\varepsilon)\right) \tag{4.10}
\end{equation*}
$$

for $x \in T_{\varepsilon}:=\{x \mid \operatorname{dist}(x, \gamma) \leq \delta\}$. Taking T_{ε} sufficiently small if necessary, we can find smooth coordinates $y=\left(y_{1}, y_{\perp}\right)$ so that

$$
T_{\varepsilon}=\left\{y| | y_{\perp} \mid \leq 1\right\}
$$

$$
\gamma \subset\left\{y \mid y_{\perp}=0\right\}
$$

and $a=(0,0), b=(1,0)$. Since these coordinates are smooth and γ is a straight segment from a to b, we can find $C>0$ such that for suffciently small h,

$$
\begin{aligned}
& \left\{y | y _ { 1 } = 0 , | y _ { \perp } | \leq C h ^ { \beta } \} \subset \left\{x\left||x-a| \leq h^{\beta}\right\}\right.\right. \\
& \left\{y | y _ { 1 } = 1 , | y _ { \perp } | \leq C h ^ { \beta } \} \subset \left\{x\left||x-b| \leq h^{\beta}\right\}\right.\right.
\end{aligned}
$$

Let $T^{(h)}:=\left\{y| | y_{\perp} \mid \leq C h^{\beta}\right\}$. From Lemma 4.1 and the definition of g_{h},

$$
\begin{aligned}
E_{1}-E_{0} & =h^{2} \int\left|\nabla g_{h}\right|^{2}\left|\psi_{0}\right|^{2} d x \\
& \geq h^{2} \int_{T^{(h)}}\left|\nabla g_{h}\right|^{2}\left|\psi_{0}\right|^{2} d x .
\end{aligned}
$$

We substitute (4.10) into this and change the variables from x to y. Since the Jacobian is bounded above and below, $\left|\frac{\partial g_{h}}{\partial x}\right|$ is bounded from below by $C\left|\frac{\partial g_{h}}{\partial y}\right|$. Therefore,

$$
\begin{align*}
& E_{1}-E_{0} \geq C \exp \left(-\sqrt{-e_{0}} h^{-\beta}|a-b|(1+\varepsilon)\right) \tag{4.11}\\
& \int_{\left|y_{\perp}\right| \leq C h^{\beta}} d y_{\perp} \int_{0}^{1} d y_{1}\left|\frac{\partial g_{h}}{\partial y}\right|^{2} .
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\left|g_{h}\left(0, y_{\perp}\right)-g_{h}\left(1, y_{\perp}\right)\right|^{2} & =\left|\int_{0}^{1} d y_{1}\left(\frac{\partial g_{h}}{\partial y_{1}}\right)\left(y_{1}, y_{\perp}\right)\right|^{2} \tag{4.12}\\
& \leq \int_{0}^{1} d y_{1}\left|\frac{\partial g_{h}}{\partial y}\right|^{2}
\end{align*}
$$

The last inequality is due to the Schwarz inequality. By Lemma 4.3, if $\left|y_{\perp}\right| \leq C h^{\beta}$, the LHS of (4.12) is bounded from below by $(2 C)^{2}$. Therefore, we get

$$
E_{1}-E_{0} \geq C h^{\beta(d-1)} \exp \left(-\sqrt{-e_{0}} h^{-\beta}|a-b|(1+\varepsilon)\right)
$$

5. Appendix. The periodic potential

It is known that if the periodic potential have negative singularities, the spectrum of the Schrödinger operator have the band structure. We will see that the width of the lowest band have an asymptotic similar to that of Theorem 5'. The strategy is based on that in [8].

Assumptions of $V(x)$.
(1) There are $a_{1}, a_{2}, \cdots, a_{d} \in \mathbf{R}^{d}$, mutually independent, such that $V\left(x+a_{j}\right)=V(x)(j=1, \cdots, d)$.
(2) $V(x)$ has an asymptotic expansion around $a \in L:=\left\{n_{j} a_{j} ; n_{j}=\right.$ $0, \pm 1, \cdots\}$ in the following form,

$$
V(x) \sim-\frac{1}{|x-a|^{\rho+1}} \sum_{|\alpha|=1}^{\infty} a_{\alpha}(x-a)^{\alpha}
$$

(3) $V(x) \in C^{\infty}\left(\mathbf{R}^{d} \backslash L\right)$
(4) If $d \leq 3, \rho<d / 2$. If $d \geq 4, \rho<2$.

Now we shall decompose $H(h):=-h^{2} \triangle+V(x)$ on $L^{2}\left(\mathbf{R}^{d}\right)$ into the direct integral.

Definition.
(1) We say a mesurable set $C \subset \mathbf{R}^{d}$ is a fundamental cell if and only if, (a) For any $a \in L, C+a$ and C are disjoint. (b) $\mathbf{R}^{d} \backslash \cup_{a \in L}(a+C)$ has measure zero.
(2) A fundamental cell W is a Wigner-Seitz cell if and only if, $W=\{x \mid x$ is the nearest point to the origin among all $a \in L$ with respect to the Euclidian metric $\}$.
(3) We define the dual lattice of L (denoted by L^{*}) if and only if,

$$
k \in L^{*} \Leftrightarrow \frac{1}{2 \pi} k \cdot a \in \mathbf{Z} \quad \text { for any } a \in L
$$

(4) The Brillouin zone B is defined as the Wigner Seitz cell of L^{*}.

We take any fundamental cell C. For each $k \in B$, we define the Hilbert space \mathcal{H}_{k} as follows:

$$
\mathcal{H}_{k}:=\left\{f \in L_{l o c}^{2} \mid f(x+a)=e^{i k \cdot a} f(x), \quad \text { for all } a \in L\right\} .
$$

For $f, g \in \mathcal{H}_{k}$, we define the inner product:

$$
<f, g>:=\int_{C} \overline{f(x)} g(x) d x
$$

For $g \in L^{2}\left(\mathbf{R}^{d}\right)$, we define $f_{k} \in \mathcal{H}_{k}$, using the Fourier transform by

$$
\widehat{f_{k}(l)}=c \sum_{K \in L^{*}} \widehat{g(l)} \delta(l-k-K)
$$

where $c=(2 \pi)^{d / 2}[\text { vol } C]^{-1 / 2}$. This gives an isomorphism between $L^{2}\left(\mathbf{R}^{d}\right)$ and $\int_{B}^{\oplus} \mathcal{H}_{k} d k$. The fiber of H is
$D_{k}:=\left\{f \in \mathcal{H}_{k} \mid\right.$ the Laplacian of f (in the sense of distribution) belongs to $\left.\mathcal{H}_{k}\right\}$.

And for $f \in D_{k}$, we define

$$
(H(h ; k) f)(x):=-h^{2}(\triangle f)(x)+V(x) f(x)
$$

From the Assumptions, $H(h ; k)$ is self-adjoint on D_{k}, and has compact resolvent, and

$$
H(h)=\int_{B}^{\oplus} H(h ; k) d k
$$

Let $\varepsilon_{0}(h ; k) \leq \varepsilon_{1}(h ; k) \leq \cdots$ denote the spectrum of $H(h ; k)$. Hence, $b_{n}(h):=\cup_{k \in B} \varepsilon_{n}(h ; k)$ is the n-th band of H. The similar arguement as Theorem 1 proves (for details, see [8])

Theorem A.1. Let $e_{0} \leq e_{1} \leq \cdots$ be the eigenvalues of $h_{0}:=-\triangle-$ $\frac{1}{|x|^{\rho+1}} \sum_{|\alpha|=1} a_{\alpha} x^{\alpha}$. It follows that

$$
\lim _{h \downarrow 0} h^{\alpha} \varepsilon_{n}(h ; k)=e_{n}, \quad \alpha=\frac{2 \rho}{2-\rho}
$$

and the convergence is uniform with respect to k.
We see from Theorem A.1, that the width of each band behaves $\left|b_{n}(h)\right| \rightarrow 0$ as h tends to zero. We shall estimate $\left|b_{0}(h)\right|$ in more detail.

Theorem A.2. For any $\varepsilon>0$, there exist two positive constants $C_{1, \varepsilon}$ and $C_{2, \varepsilon}$ such that

$$
\begin{aligned}
& C_{1, \varepsilon} \exp \left(-\frac{\sqrt{-e_{0}}}{h^{\beta}} \min _{a \in L}|a|(1+\varepsilon)\right) \\
& \quad \leq\left|b_{0}(h)\right| \leq C_{2, \varepsilon} \exp \left(-\frac{\sqrt{-e_{0}}}{h^{\beta}} \min _{a \in L}|a|(1-\varepsilon)\right)
\end{aligned}
$$

where $\beta=\frac{2}{2-\rho}$.
The method of its proof is basically the same as [8]. To prove Theorem A.2, we need the exponential decay of the eigenfunction ψ_{0} associated to the lowest eigenvalue of $H(h ; 0)$.

Theorem A.3. For any $\varepsilon>0, \kappa>0$, there exist two positive constants $C_{\varepsilon, \kappa}$ and C_{ε} such that

$$
\psi_{0} \leq C_{\varepsilon, \kappa} \exp \left(-\frac{\sqrt{-e_{0}}}{h^{\beta}} \min _{a \in L}|x-a|(1-\varepsilon)\right) \quad \text { on } \min _{a \in L}|x-a|>\kappa
$$

and

$$
\psi_{0} \geq C_{\varepsilon} \exp \left(-\frac{\sqrt{-e_{0}}}{h^{\beta}} \min _{a \in L}|x-a|(1+\varepsilon)\right)
$$

Acknowledgements. The author is deeply thankful to Proffesor S. Nakamura for his fruitful disccusions.

References

[1] Simon, B., Semi-Classical Analysis of Low Lying Eigenvalues I, Non-degenerate Minima:Asymptotic expansions, Ann. Inst. Henri-Poincaré 38 (1983), 295307.
[2] Simon, B., Semi-Classical Analysis of Low Lying Eigenvalues II, Tunneling, Ann. of Math. 120 (1984), 89-118.
[3] Simon, B., Schrödinger Semigroups, Bull. AMS 7 (1982), 447-526.
[4] Helffer, B. and J. Sjöstrand, Multiple Wells in the Semi Classical Limit I, Comm. P. D. E. 9 (1984), 337-408.
[5] Combes, J. M., Duclos, P. and R. Seiler, Kreinś formula and one dimensional multiple well, J. Funct. Anal. 52 (1983), 257-301.
[6] Combes, J. M., Duclos, P. and R. Seiler, Convergent Expansions for Tunneling, Comm. Math. Phys. 92 (1983), 229-245.
[7] Cycon, H. L., Froese, R. G., Kirsch, W. and B. Simon, Schrödinger Operators, T. M. P., Springer Verlag, New York, 1986.
[8] Simon, B., Semi-Classical Analysis of Low Lying Eigenvalues III, Width of Ground State Band, Ann. of Phys. 158 (1984), 415-420.
(Received January 20, 1994)
Department of Mathematical Sciences
University of Tokyo
7-3-1 Hongo
Bunkyoku, Tokyo
113 Japan

