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Semiclassical analysis of Schrödinger operators

with coulomb-like singular potentials

By Fumihiko Nakano

Abstract. In this paper, we study the behavior of eigenvalues and
eigenfunctions of Schrödinger operators whose potentials have finitely
many negative singularities. We prove that if potentials behave like
O(|x − pi|−ρ)(0 < ρ < 2) near singular points x = pi, then eigenvalues

behave like O(h
− 2ρ

2−ρ ) when the Planck constant h approaches to zero.
Then we obtain the asymptotic expansion of the eigenvalues and eigen-
functions in h. We also study the splitting of the lowest eigenvalues and
show that the asymptotic is estimated by a suitable Riemann metric
called Agmon distance.

0. Introduction

We consider Schrödinger operators whose potentials have finitely many

negative singularities, and study the behavior of eigenfunctions and eigen-

values when h, the Planck constant, approaches to zero.

The Schrödinger operator we consider is the following:

H(h) := −h2� + V (x) on L2(Rd),

where h is the Planck constant.

We always assume the following assumptions (A) throughout this paper.

Assumptions (A).

(1) V (x) has finitely many singular points p1, p2, · · · , pn ∈ Rd, and

V (x) is bounded below in the complement of the union of neighbor-

hoods of singular points, i.e., for any ε > 0, there exists a constant
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Mε > 0 such that,

if |x− pi| > ε (for any i = 1, · · · , n), then V (x) ≥ −Mε.

(2) V (x) ∈ C∞(Rd\{p1, · · · , pn}), and V (x) has asymptotic expansions

near each pi in the following form:

V (x) ∼ − 1

|x− pi|ρ+1

∞∑
|α|=1

a(i)
α (x− pi)

α as x → pi.

(3) If d = 1, then 0 < ρ < 1. Otherwise, 0 < ρ < 2.

Remark. When (3) is satisfied, V (x) is in the Kato class and hence

H(h) has a unique Friedrichs extension and is bounded below (cf.[7]).

At first, we study the behavior of H(h) in the limit: h ↓ 0. Let Em(h)

be the m-th eigenvalue of H(h), counting multiplicities. Let h
(i)
0 (h) :=

−�−
∑

|α|=1

a
(i)
α xα

|x|ρ+1
(i = 1, · · · , n) and let {em}m=0,1,2,··· , be the eigenvalues

of
⊕n
i=1 h

(i)
0 , counting multiplicities.

Theorem 1. Let N ∈ N. For sufficiently small h, H(h) has at least

N eigenvalues and

lim
h↓0

hαEm(h) = em, 0 ≤ m ≤ N, α =
2ρ

2 − ρ
.

Secondly, we consider asymptotic expansions of eigenvalues and eigen-

functions in h as h tends to zero. For that purpose, we need additional

assumptions on V (x).

Assumptions (B).

(1) V (x) has at most polynomial growth, i.e., there exist k > 0, M > 0,

C > 0, such that if |x| > M , then |V (x)| ≤ C(1 + |x|)k.
(2) If d ≤ 3, then ρ < d

2 .
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Theorem 2. Assume (B).

(1) Let em be a simple eigenvalue of
⊕n
i=1 h

(i)
0 . Then the correspond-

ing eigenvalue Em(H) of H(h) has an asymptotic expansion in the

following form:

Em(h) ∼ h−α(em +
∞∑
j=1

α̃j(h
β)j),

i.e.,

Em(h) − h−α(em +
k∑
j=1

α̃j(h
β)j) = O(h−α+(k+1)β),

where α = 2ρ
2−ρ , β = 2

2−ρ .
(2) Let ψm be the eigenfuction of H(h) corresponding to an eigenvalue

Em(h) and ϕm be the eigenfuction of h
(i)
0 (h) corresponding to em

(i is taken so that em is an eigenvalue of h
(i)
0 ). And let U (i) be an

operator defined by

(U (i)f)(x) := hdβ/2f(hβx + pi) for f ∈ L2(Rd).

Then, U (i)ψm has an asymptotic expansion in the following form in

L2-sense:

U (i)ψm ∼ ϕm +
∞∑
j=1

(hβ)jϕ̃(i)
m .

When em is degenerate, the situation is slightly different.

Theorem 3. Assume (B). Let Em, · · · , Em+k−1 be the eigenvalues

such that h−αEm appoaches to e, which is an eigenvalue of
⊕n
i=1 h

(i)
0 with

multiplicity k. Then each Em+p has an asymptotic expansion in h:

Em+p ∼ h−α(e +

∞∑
j=1

α̃pj (h
β)j), p = 0, · · · , k − 1.
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Theorem 4. Under the same conditions as in Thoreom 3, if no two

asymptotic expansions of Em, · · · , Em+k−1 are the same, then for each cor-

responding eigenfunction ψj, there exists an unique singular point pn(j) of

V (x), such that for any N ∈ N,

‖(Jn(j) − 1)ψj‖2 = O(hN )

holds and Un(j)ψj has an asymptotic expansion in L2 sense, where Jn(j) is

a function with compact support that takes value one in the neighborhood of

pn(j) (‖ · ‖2 is L2(Rd)-norm).

Corollary. If Ej(h) is simple for h > 0, then either of the following

two holds, (1) There exists a singular point pn(j) ∈ Rd such that for any

N ∈ N,

‖(Jn(j) − 1)ψj‖2 = O(hN ), as h ↓ 0.

(2) There exists another eigenvalue E′
j(h) such that for any N ∈ N,

|E′
j − Ej | = O(hN ), as h ↓ 0.

Physically, the case (2) of this corollary corresponds to the situation that

a particle exists near both of at least two singular points. And the quantity

|E′
j − Ej | is related to the tunneling effect between the singularities.

When the number of the singularities is two (i.e., n = 2), and Ej is the

lowest eigenvalue of H(h), we can estimate |E′
j − Ej | sharply.

Definition. For x, y ∈ Rd, the Agmon distance ρh(x, y) with respect

to the energy Ẽo(:= h−αe0) is defined by

ρh(x, y) := inf
γ

{∫ 1

0

√
max(V (γ(s)) − Ẽ0(h), 0)|γ̇(s)|ds

∣∣∣∣
γ(0) = x, γ(1) = y, γ ∈ H1

}
.
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Theorem 5. Let n = 2, and let a and b ∈ Rd be the singular points.

Let Ja (resp. Jb) be a function that takes value one in the neighborhood of

a (resp. b). Let E0(h) be the lowest eigenvalue of H(h). And let ψ0 be the

eigenfunction corresponding to the eigenvalue E0(h).

Assume that, for any ε > 0, there exists Cε > 0 such that,

‖Jaψ0‖2‖Jbψ0‖2 ≥ Cεe
−ε/hβ .

Then, for any ε > 0, there exist constants C1,ε, C2,ε such that

C1,ε exp

(
−ρh(a, b)

h
(1 + ε)

)
≤ |E1 − E0| ≤ C2,ε exp

(
−ρh(a, b)

h
(1 − ε)

)
,

where E1 is the second eigenvalue.

The assumption of Theorem 5, ‖Jaψ0‖2‖Jbψ0‖2 ≥ Cεe
−ε/hβ comes from

the postulate that particle exists on both a and b. For example, if V (x) has

mirror symmetry with respect to one point, this condition is automatically

satisfied.

Estimating ρh(a, b), we obtain,

Theorem 5’. Under the same conditions as in Theorem 5, for any

ε > 0 there exist constants C1,ε, C2,ε such that

C1,ε exp

(
−
√−e0|a− b|

hβ
(1 + ε)

)
≤ |E1 − E0|

≤ C2,ε exp

(
−
√−e0|a− b|

hβ
(1 − ε)

)
.

As for the known results, similar problems have been studied extensively

by many mathematicians in the case that V (x) satisfies

(1) V (x) ∈ C∞, V (x) ≥ 0.

(2) lim|x|→∞ V (x) > 0.

(3) There exist finitely many points p1, · · · , pn such that V (pi) = 0 (i =

1, · · · , n) and each minimum is non-degenerate ([1],[2],[4],[5],[6], and

in their references).
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The aim of this paper is to show that when V (x) has negative singu-

larities, the results similar to above hold. We use mainly Simon’s methods

([1],[2]). The main difference between “the singular case” and “the regular

case” is the following:

(1) In Theorems 1,2,3,4,5, the powers of h in each asymptotic formula

is different. In the regular case, α = −1, β = 1/2 (In the above

context, it corresponds to ρ = −2).

(2) From the Theorem 5’, in the singular case, the behavior of |E1−E0|
is determined by |a− b|, ρ, α0 only. Whereas in the regular case, it

depends on the global properties of V (x).

We prove Theorem 1 in Section 1, Theorems 2,3,4 in Section 2, and Theorem

5 in Section 4. In the appendix, we show that the similar exponential

estimates as in Theorem 5 and Theorem 5’ can be obtained for the width

of the ground state band of Schrödinger operator with periodic potential.

1. Proof of Theorem 1

1.1. Upper bound

Here, we will show limh↓0 hαEm(h) ≤ em.

Take a function j(x) ∈ C∞
0 (Rd) which satisfies,

j(x) :=

{
1, if |x| < 1,

0, if |x| > 2,

and let

Jh(i) := j(h−δ (x− pi)), i = 1, · · · , n, 0 < δ <
ρ

2 − ρ
.

We can assume SuppJ(i) ∩ SuppJ(j) = φ by taking h sufficiently small if

necessary.

Let em be the m-th eigenvalue of
⊕n
i=1 h

(i)
0 , and ϕm be the correspond-

ing eigenfuction. Then U i(m)−1
ϕm is an eigenfunction of H

(i(m))
0 , where

H
(i)
0 (h) := −h2�−

∑
|α|=1

a
(i)
α xα

|x− pi|ρ+1
and i(m) is defined so that em is the

eigenvalue of h
(i(m))
0 .

We take

ψm(h;x) := Jhi(n)U
i(m)−1

ϕm
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as an approximating eigenfunction. Then, from the definition of Jh(i) and

Assumptions (A), we can see

(1.0)
(
ψl, (H −H

(i)
0 )ψm

)
= O(h

2(1−ρ)
2−ρ ),

where (·, ·) is L2(Rd)-product. Next, we study the properties of the ap-

proximating eigenfunctions.

Claim 1.

(1.1) (ψl, ψm) = δlm + O
(
exp(−chδ−

2
2−ρ )

)
.

Proof of Claim 1. When i(l) �= i(m), (1.1) is clear. Therefore we

assume i(l) = i(m).

|(ψl, ψm) − δlm| =

∣∣∣∣
∫

(1 − Jh(i)
2
)U (i)−1

ϕl U
(i)−1

ϕmdx

∣∣∣∣
=

∣∣∣∣∣
∫
|x−pi|≥chδ

U (i)−1
ϕl U

(i)−1
ϕmdx

∣∣∣∣∣
=

∫
|x|≥chδ

h− 2d
2−ρϕl(h

− 2
2−ρx)ϕm(h− 2

2−ρx)dx

= O
(
exp(−chδ−

2
2−ρ )

)
. �

Claim 2.

(1.2) (ψl, Hψm) = h−αemδlm + O(h−2θ),

where θ := max{δ, 2(1−ρ)
2−ρ }.
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Proof of Claim 2. As in the proof of Claim 1, we can assume i(l) =

i(m).

We use the fact that if Hη = Eη, then

(fη̃,Hfη) = E(fη, f η̃) + (η, h2(∇f)2η̃).

We substitute f = Jh(i), H = H
(i)
0 , η = U (i)−1

ϕm, η̃ = U (i)−1
ϕl into this

identity. Then,

(ψl, H
(i)
0 ψm) = h−αem(ψl, ψm) + (ψl, h

2(∇Jh(i))
2ψm).

Estimating ∇Jh(i), and using (1.0), (1.1), we obtain (1.2). �

Now we use the Min-Max principle. At first, let

µm(h) := sup
ξ1,··· ,ξm−1

Q(ξ1, · · · , ξm−1;h),

Q(ξ1, · · · , ξm−1;h)

:= inf

{
(ψ,Hψ)

∣∣∣∣ ψ ∈ D(H), ‖ψ‖2 = 1, ψ ∈ {ξ1, · · · , ξm−1}⊥
}
.

Then µm(h) equals to either the m-th eigenvalue of H (counting multiplic-

ities) or inf σess(H).

Fix any ε > 0. For each h ∈ (0, 1], we can find ξh1 , · · · , ξhm−1 such that,

µm(h) ≤ Q(ξh1 , · · · , ξhm−1;h) + ε.

From (1.1), {ψ1, · · · , ψm} span a m-dimensional subspace if h is sufficiently

small. Hence there exists ϕ ∈ {ξ1, · · · , ξm−1}⊥ which is a linear combination

of {ψ1, · · · , ψm}. From (1.2),

Q(ξ1, · · · , ξm−1;h) ≤ (ϕ,Hϕ) ≤ h−αem + O(h−2δ).

Since ε > 0 is arbitrary,

µm(h) ≤ h−αem + O(h−2δ).

As V (x) is bounded below outside of a compact set, inf σess(H) > −∞.

On the other hand, limh↓0 h−αem = −∞. Hence µm(h) = Em(h) if h is

sufficiently small and thus we obtain the upper bound. �
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1.2. Lower bound

We prove limh↓0 h
αEm(h) ≥ em here. If we have proved it, we complete

the proof of Theorem 1. Fix arbitrary r such that em ≤ r ≤ em+1. It

suffices to show

H ≥ rh−α1 + F

where 1 is an identity operator and rankF ≤ m.

We define Jh0 ∈ C∞(Rd) so that (Jh0 )
2

:= 1 −
∑n
i=1 (Jh(i))

2
. Let P (i) be

eigenprojections onto the eigenspaces of H
(i)
0 whose corresponding eigenval-

ues are smaller than h−αr (hence,
∑

rankP (i) = m), and let F (i) := H
(i)
0 P (i).

By IMS-localization formula (see [7]), for any ε > 0,

H = J0HJ0 + (1 − ε)
∑
i
=0

JiH
(i)
0 Ji(1.3)

+
∑
i
=0

Ji(εH
(i)
0 + H −H

(i)
0 )Ji −

∑
(∇Ji)

2.

From the definition of F (i),

(1.4) Jh(i)H
(i)
0 Jh(i) ≥ Jh(i)F

(i)Jh(i) + h−αr(Jh(i))
2.

On the other hand, since |x− pi| ≥ chδ on SuppJ0,

(1.5) J0HJ0 ≥ (J0)
2O(−ch−δρ) ≥ rh−α(J0)

2,

and

εH
(i)
0 + H −H

(i)
0 ≥ ε

2
(−h2�−

∑
|α|=1

2a
(i)
α xα

|x|ρ+1
)(1.6)

− ε

2
h2�−

∑
|α|=2

a
(i)
α xα

|x|ρ+1
−O(h2−ρ)

≥ −cεh−α − cεh
−α′ −O(h2−ρ),

where α′ := 2(ρ−1)
3−ρ , and c, cε are independent of h .

Substituting (1.4)∼(1.6) into (1.3),

H ≥ (1 − cε)rh−α1 −O(h−ρ) + F, γ := max(α′, 2δ),

(F =
∑

J(i)F
(i)J(i), rankF ≤ m). Since ε > 0 is arbitrary, we have done.
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1.3. Additional arguement

We shall show here that if em is non-degenerate, the “approximating

eigenfunction” used in the proof of Theorem 1, approaches to the “real”

eigenfunction in L2-sense. We will use this result in Sections 2,4. At first,

for each l, we find εl such that for any m, either em = el or |em − el| > εl
holds.

Proposition 1.1. Let

P hl :=
1

2πi

∮
|z−h−α|=h−αel

(z −H(h))−1dz,

then, ‖(1 − P hl )ψhl ‖2 → 0 (h ↓ 0).

Proof. We use the inductive arguement. Assume that the proposition

is valid for any l for l < k. At first, we prove the following claim.

Claim. For any l such that el < ek, P
h
l ψ

h
k → 0 in L2.

Proof of Claim. If the degeneracy of el is m, Plψlj − ψlj → 0 in

L2 (j = 1, · · · ,m) (where ψlj (j = 1, · · · ,m) are eigenfunctions correspond-

ing to el.). From (1.1), we see {ψlj}j=1,··· ,m and moreover, {Plψlj}j=1,··· ,m
are linearly independent (for h small). Let {ulj}j=1,··· ,m be the orthonor-

mal basis of Ran Pl (the range of Pl). Since {Plψlj} is linearly independent

and contained in Span{ulj}(j = 1, · · · ,m), we can write each uj by linear

combination of {Plψlj}j=1,··· ,m and we write uj =
∑

ajkPlψlk . Then, we

have

Plψk =
m∑
j=1

(ψk, ulj )ulj

=
m∑
j=1

(ψk,
m∑
p=1

ajpPlψlp)
m∑
q=1

ajqPlψq.

From the assumption of the induction,

(ψk,
m∑
p=1

ajpPlψlp) − (ψk,
m∑
p=1

ajpψlp)
h↓0−→ 0.
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On the other hand, from (1.1), (ψk,
m∑
p=1

ajpψlp)
h↓0−→ 0. By combining these

two facts, we see that Plψk → 0(h ↓ 0) in L2. �

Let EhΩ be the spectral measure of hαH. From the claim above, for any

ε > 0, Eh(−∞,ek−ε)ψ
h
k → 0 as h ↓ 0 in L2. On the other hand, (ψk, h

αHψk) →
ek (from (1.2)). Then it must follow that ‖Eh(ek−ε,ek+ε)ψ

h
k‖2 → 1 (h ↓ 0). �

2. Asymptotic expansions of eigenvalues and eigenfunctions

2.1. Proof of Theorem 2

To simplify the notation, we write i instead of i(m). Let

K0 := hαU (i)H
(i)
0 U (i)−1

(= h
(i)
0 ),

K := hαU (i)HU (i)−1
= K0 + hαV (hβx + pi) +

∑
|α|=1

a
(i)
0 xα

|x|ρ+1
.

From the assumption, K−K0 has an asymptotic expansion near the origin

in the following form as h ↓ 0,

(2.1) K −K0 ∼ − 1

|x|ρ+1

∞∑
|α|=2

a(i)
α (hβ)|α|xα.

Let

P̃ (h) :=
1

2πi

∮
|z−em|=ε

(z −K)−1dz,

where we take ε sufficiently small such that the set {z| |z−em| < ε} contains

no other ej(j �= m).

Then, by Theorem 1, rankP̃ (h) = 1 for h sufficiently small, and by

Proposition 1.1, P̃ (h)ϕm → ϕm (h ↓ 0). Hence it is enough to obtain the

L2-asymptotic expansion of P̃ (h)ϕm. In fact, the relations

(2.2) hαEm =
(Kϕm, P̃ϕm)

(ϕm, P̃ϕm)
,
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(2.3) U (i)ψm =
1

(ϕm, P̃ϕm)
1/2

P̃ϕm

hold and Kϕm has obviously the L2-asymptotic expansion under Assump-

tions (B). From the definition of P̃ (h) it suffices to obtain the L2-asymptotic

expansion of (z −K)−1ϕm.

One can expand (K − z)−1ϕm as follows:

(K − z)−1ϕm =
l∑

k=0

fk + rl,

where

fk = (−1)k(K0 − z)−1[V (K0 − z)−1]kϕm,

and

rl = (−1)−1(K − z)−1[V (K0 − z)−1]l+1ϕm.

We shall estimate the L2 norm of fk and rl. Write V = V1 + V2 where

V1(x) = V χRd\∪n
j=1B

ε
j
, V2(x) = V χ∪n

j=1B
ε
j

(χA is the characteristic function

of A and Bεj := {x| |x− pj | < ε}).

Claim. ‖fk‖2 = O(hβk), ‖rl‖2 = O(hβ(l+1)).

Proof of Claim. We prove by the induction. We assume ‖[V (K0 −
1)−1]kϕm‖2 = O(hβk). At first we consider the contribution of V2. By the

Sobolev embedding theorem,

(1) When d ≤ 3, H2(Rd)⊂>L∞(Rd). From (2) of Assumptions (B),

V2 ∈ L2(Rd). Hence V2(K0 − z)−1ψ ∈ L2(for any ψ ∈ L2).

(2) When d = 4, χK(K0 − z)−1ψ ∈ Lr for any r < ∞ and for any

compact set K. And if ρ < 2, there exists δ > 0 such that V2 ∈ L2+δ.

Hence V2(K0 − z)−1ψ ∈ L2(Rd) by the Hölder’s inequality.

(3) When d ≥ 5, H2(Rd)⊂>Lq(Rd) (where 1
q := 1

2 − 2
d). Hence if ρ < 2,

V2(K0 − z)−1ψ ∈ L2(Rd) by the Hölder’s inequality.

Combining the above facts, we obtain,

‖V2(K0−z)−1[V (K0−z)−1]kϕm‖2 =




O(ε(d−2ρ)/2hβk), if d ≤ 3,

O(ε(4−(2+δ)ρ)2/(2+δ)hβk), if d = 4,

O(εd(1−ρ/2)4/dhβk), if d ≥ 5.
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If we take a suitable constant Cd > 0 (dependent on the dimension d), and

put ε = hβCd(l+1), then we obtain

(2.4) ‖V2(K0 − z)−1[V (K0 − z)−1]kϕm‖2 = O(hβ(l+1)).

If we take ε as above, we can write (from (2.1)) for any N ∈ N,

V1 = QN (h;x) + RN (h;x) + S(h;x),

where QN (h;x) is a polynomial of x and hβ of degree at most N , and

|RN | ≤ Ch−ρβcd(l+1)|hβx|N+1,

(2.5) |QN | ≤ Chβ(1 + |x|)N ,

|S| ≤ Chβ|x|−(ρ−1).

We take N sufficiently large such that

(2.6) β(N + 1) − ρβcd(l + 1) ≥ β(l + 1).

Now we need the following lemma for the proof of Claim.

Lemma 2.1. For any l ∈ R, (1+|x|)l(K0−z)−1(1+|x|)−l is a bounded

operator.

For its proof, we refer to [3].

Put A := (1 + |x|). We can write V1(K0 − z)−1[V (K0 − z)−1]kϕm =

(A−bV1)A
b(K0 − z)−1A−b(A−bV )A2b(K0 − z)−1A−2b · · ·A(k+1)bψm. By

lemma 2.1, Apb(K0 − z)−1A−pb is a bounded operator. On the other hand,

by (2.5), ‖A−b(QN + RN )‖ = O(hβ) for suitable b. Hence

‖V1(K0 − z)−1[V (K0 − z)−1]kϕm‖2 = O(hβ(k+1)).

Combining this with (2.4), we obtain ‖fk+1‖2 = O(hβ(k+1)).

The estimate for rl is similar. This proves the Claim. �

We set f ′
k := (−1)k(K0−z)−1[QN (K0−z)−1]kϕm. Hence, by (2.4),(2.5),

and (2.6), in the same way as in the above arguement, we obtain

‖f ′
k − fk‖2 = O(hβ(l+1)).

Noting that f ′
k is a polynomial of hβ, we obtain the asymptotic expansion

of (K − z)−1ϕm. �
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2.2. Proof of Theorem 3

We begin with stating the following lemma.

Lemma 2.2. Let C(h) be a k × k Hermitian matrix whose entries

have asymptotic expansions of h. Then the eigenvalues of C(h) also have

asymptotic expansions of h.

For the proof, we can refer to [1].

Let Ph be the projection onto the subspace which is spanned by the

eigenfuctions of H corresponding to the eigenvalues Em, · · · , Em+k−1.

Hence, by using the eigenfunctions of H
(i)
0 corresponding to the eigenvalue

h−αe, it follows that ,

(2.7) (ψi, Phψj) → δij

as h tends to 0 (by Proposition 1.1).

Thanks to the same arguement as in the proof of theorem 2, one can

prove that

�ij := (ψi, Phψj), Hij := (ψi, HPψj),

have asymptotic expansion of hβ. And from (2.7), �ij = δij + o(hβ).

Hence C := �−1/2H�−1/2 has asymptotic expansion of hβ. Therefore, by

Lemma.2.2, Em, · · · , Em+k−1 also have asymptotic expansion of hβ. �
Theorem 4 and its corollary follow easily from the proof of Theorem 3.

3. Exponential decay of eigenfunctions

In order to prove Theorem 5 and Theorem 5’, we obtain the exponential

decay of the eigenfunction corresponding to the lowest eigenvalue of H.

From now on, we assume the number of the singular points is two (n = 2):

a, b ∈ Rd.

Proposition 3.1. There exist R0 > 0, C > 0, and D > 0 such that

if |x| > R0 and h is sufficiently small,

|ψ0(h;x)| ≤ Ce−D|x|/hβ .
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Proof. Take R0 > 0, δ > 0 such that, if |x| > R0/4 and h is suffi-

ciently small,

(3.1) V (x) − δ2

hα
− E0(h) ≤ 1,

(That is possible since V (x) is bounded below far away from the origin and

E0(h) = O(h−α).).
Let ϕ be a function which satisfies

(1) ϕ ∈ L∞, 0 ≤ ϕ′(s) ≤ 1,

(2) ϕ(x) = x, if |x| ≤ R1,

(3) ϕ(x) = 0, if |x| ≥ 2R1,

for a constant R1 > 0.

We set ρ(x) := δϕ(|x|)/hρ/(2−ρ) (x ∈ Rd). Then it follows that

|∇ρ(x)|2 ≤ δ2/hα, ρ(x) is bounded, and is smooth in the complement of

the neighborhood of the origin. Let ψ be an R-valued fuction such that its

support is contained in {x| |x| ≥ R0/4}. From (3.1), for sufficiently small

h, we obtain(
eρ/hψ, (H − E0)e

−ρ/hψ
)
≥

(
ψ, (V − (∇ρ)2 − E0)ψ

)
≥ ‖ψ‖2

2.(3.2)

Therefore, if we define a function η on Rd such that

(1) 1 − η ∈ C∞
0 ,

(2) η = 0, if |x| < R0/4,

(3) η = 1, if |x| > R0/2,

and if we set ψ := eρ/hηψ0, it follows that

(3.3)
(
eρ/hψ, (H − E0)e

−ρ/hψ
)

= h2
(
e2ρ/hηψ0,−2(∇η)(∇ψ0) − (�η)ψ0

)
.

Since the RHS of (3.3) is independent of R1, we can take R1 go to infinity

and let ρ = δ|x|/hρ/(2−ρ). On the other hand, if we note that ‖ψ0‖2 = 1

and ‖∇ψ0‖2 = O(h−1), we obtain ( from (3.2),(3.3)),∫
|x|>R0/2

e2δ|x|/hβ |ψ0|2dx ≤ CheδR0/hβ .
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Hence, ∫
|x|>R0

eδ|x|/h
β |ψ0|2dx ≤ Ch.

Since ψ0 is subharmonic on {x| |x| > R0}, the value of ψ0 on x is bounded

by the integral of itself over the unit ball around x. Therefore, we obtain

the conclusion. �

Proposition 3.2. For any ε > 0, R0 > 0, and κ > 0, there exists a

constant Cε,R0,κ > 0 such that if |x| < R0, |x− a| > κ, |x− b| > κ and h is

sufficiently small,

|ψ0(h;x)| ≤ Cε,R0,κ exp

(
−min(ρ(x, a), ρ(x, b))(1 − ε)

h

)
.

Proof. Let ϕ̃(x) := min(ρ(x, a), ρ(x, b)). Then,

|ϕ̃(x) − ϕ̃(y)| ≤
∫ 1

0
dθ

√
V (θx + (1 − θ)y) |x− y|,

for x, y ∈ {x| V (x) − Ẽ0 ≥ 0}. Hence for any ε > 0, R > 0, we can find

δ > 0 and ϕ(x) (by regularization and cutoff), such that if |x| < R,

(1 − ε)ϕ̃(x) ≤ ϕ(x) ≤ (1 + ε)ϕ̃(x),

|∇ϕ(x)| ≤ (1 − δ)

√
V (x) − Ẽ0.

Hence, for any κ > 0, we see that if |x− a| > κ, |x− b| > κ,

V (x) − E0 − (∇ϕ)2 ≥ (2δ − δ2)(V (x) − Ẽ0) + Ẽ0 − E0

≥ cδ,κ,

for h sufficiently small. Here, the second inequality follows from the fact

that by Theorem 1, −Ẽ0 = O(h−α) and Ẽ0 − E0 = o(h−α). Therefore, if

we take ψ so that its support is contained in {x| |x − a| > κ, |x − b| > κ},
we have, by following the same arguement as (3.2),(

eρ/hψ, (H − E0)e
−ρ/hψ

)
≥ cδ,κ‖ψ‖2

2.



Semiclassical analysis of Schrödinger operators 605

On the other hand, there exists κ0 determined by κ such that, if |y−a| ≤
κ0 or |y − b| ≤ κ0, then ϕ(y) < εϕ(x). By the method used in the proof of

the Proposition 3.1, we can obtain

|ψ0(h;x)| ≤ C exp

(
−(1 − ε)2ϕ̃

h

)
on |x| < R, |x− a| > κ, |x− b| > κ. �

Secondly, we consider the lower bound of ψ0. In order that, we need the

following lemma.

Lemma 3.3. Let ē0 be the lowest eigenvalue of −� on the (d − 1)-

dimensional unit ball with Dirichlet boundary condition and let η be the

corresponding eigenfunction (η is normalized so that ‖η‖∞ = 1). And let

d := min|y|≤1/2 η(y). Let D0 be a cylinder in Rd such that,

D0 := {x = (x1, x⊥)| 0 ≤ x1 ≤ a(1 + δ), |x⊥| ≤ R}.

Let Ω(x) be such that Ω(x) ≥ 0 and Ω(x) satisfies �Ω(x) = W (x)Ω(x)

on D0 for some W ≥ 0. Let α2 := supx∈D0

{
ē0R

−2 + W (x)
}
. Then the

following estimate holds.

min{Ω(x)| x1 = a, |x⊥| ≤
R

2
}

≥ de−αa(1 − e−2δαa) min{Ω(x)| x1 = 0, |x⊥| ≤ R}.

For its proof we can refer to [2].

Proposition 3.4. Assume that any ε > 0, ‖Jaψ0‖2‖Jbψ0‖2 ≥
Cεe

−ε/hβ for a constant Cε > 0. Then for any ε > 0 and any compact

set K(⊂ Rd), there exists a constant Cκ,ε > 0 such that if x ∈ K,

|ψ0(h;x)| ≥ Cκ,ε exp

(
−
√−e0 min(|x− a|, |x− b|)(1 + ε)

hβ

)
.

By estimating ρh(x, a) from below, we immediately obtain the following

proposition.
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Corollary. Under the same conditions as Proposition 3.4,

|ψ0(h;x)| ≥ Cκ,ε exp

(
−min(ρh(x, a), ρh(x, b))(1 + ε)

h

)
.

Proof of Proposition 3.4. There is a constant C > 0 such that

V (x) − E0 ≥ 0 if |x − a| ≥ Chβ. Moreover, from the proof of Lemma 4.3

(in Section 4), for any C1 > 0, we can find a constant C2 > 0 such that if

|x − a| ≤ C1h
β, then |ψ0| ≥ C2. Hence, we take a cylinder D so that its

bottom starts at the position whose distance to a is Chβ and its top is at

x, and its radius is Rhβ. Then, there exists a constant C ′ (determined by

C and R) such that on the bottom of D, |ψ0| ≥ C ′. Thus we can apply

Lemma 3.3 to D and ψ0. The conclusion is that, for any ε > 0, there exists

a sufficiently small δ > 0 such that for sufficiently small h,

|ψ0(h;x)| ≥ de−α(x−a−ε)
(
1 − e−2δαa

)
C ′,

where α2 := e0R
−2h−2β + supx∈D h−2(V (x)−E0). By taking h sufficiently

small, we can let e−2δαa < 1/2. Moreover, by taking R sufficiently large,

we can take e0R
−2 < ε2. Using the fact that −E0 = O(h−α) and the result

of Theorem 1, we conclude

|ψ0(h;x)| ≥ C exp
(
−
√
−e0h

−β|x− a|(1 + ε)
)
.

The uniformity of the constant C for x ∈ K is obvious. �

4. The proof of Theorem 5

4.1. The upper bound

To prove the upper bound, we need the following equality.

Lemma 4.1. Let f be a C1 function which is uniformly bounded. Then

(
fψ0, (H − E0)fψ0

)
= h2

(
(∇f)ψ0, (∇f)ψ0

)
.
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For its proof, we can refer to [2].

We set

dh(x) :=
ρh(x, a) − ρh(x, b)

ρh(a, b)
.

Fix any δ > 0. By the regularization procedure, we can find a function

dδ(x) which satisfies

dδ(x) ∈ C∞, |dh − dδ| ≤ δ (uniformly in h).

Fix any α > 0, and take a smooth function h(x) on R so that

h(x) =

{ −1, on (−∞,−α),

1, on (α,∞).

We set g(x) := h(dδ(x)). Then g(x) ∈ C∞(Rd), and Supp∇g is contained

in a neighborhood of the geodesic bisector of a, b (i.e., it is contained in

{x| d(x) = 0} =: Bh.). Since minx∈Bh
{min(ρh(x, a), ρh(x, b)} = 1

2ρh(a, b),

we can see that, for any ε > 0 and sufficiently small α, δ > 0,

(4.1) min
x∈Supp∇g

{
min(ρh(x, a), ρh(x, b))

}
≥ 1

2
ρh(a, b)(1 − ε).

Now, let

< g >h:=

∫
gψ2

0dx, f(x) := g(x)− < g >h .

Then (fψ0, ψ0) = 0. Therefore, by Lemma 4.1, we obtain

(4.2) E1 − E0 ≤ h2
(
(∇f)ψ0, (∇f)ψ0)

(fψ0, fψ0

) .

We shall estimate the RHS of (4.2).

Claim. For any ε > 0,

(4.3) (fψ0, fψ0) ≥ Cεe
−ε/hβ .
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Proof of Claim. Suppose that there is a constant C > 0 such that

(fψ0, fψ0) ≤ Ce−c/h
β
. Assume that there is a sequence {hn}, hn ↓ 0 such

that < g >hn≥ 0. Then |f(x)| ≥ 1 near the neighborhood of b. Hence

‖Jbψ0‖2 ≤ Ce−c/2h
β
n . On the other hand, if < g >hn ≤ 0, then ‖Jaψ0‖2 ≤

Ce−c/2h
β
. But this contradicts the assumption of Theorem 5. �

Claim. If x ∈ K (a compact set of Rd), |∇dδ| ≤ CK for a constant

CK > 0.

Proof of Claim. Let ρδ be a regularization of ρh(x, a). We can

write,

(4.4) ∇dδ(x) =
∇ρδ(x, a) −∇ρδ(x, b)

ρh(a, b)
.

Since x ∈ K, we can find M > 0 such that

(4.5) |∇ρδ(x, a) −∇ρδ(x, b)| ≤ 2

√
M − Ẽ0.

For a suitable ε > 0, V (x) ≥ m, on |x− a| > ε and |x− b| > ε. Therefore,

(4.6) ρ(a, b) ≥ |a− b|
√

m− Ẽ0.

Combining (4.4) ∼ (4.6), we obtain the conclusion. �

We estimate E1 − E0 using (4.2), (4.3), the claim above, Proposion 3.1

(to estimate it in the area far from the origin) and Proposition 3.2. We

have, for a constant C > 0,

E1 − E0 ≤ C exp

(
−2 minx∈Supp∇g{min(ρ(x, a), ρ(x, b))}

h
(1 − ε)

)

from (4.1), ≤ C exp

(
−ρ(a, b)(1 − ε)2

h

)
.

This proves the upper bound in Theorem 5.
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4.2. Lower bound

At first, we need the following two lemmas.

Lemma 4.2. Let {Wn}n=1,2,··· and W∞ be a sequence of C∞-functions

and a function such that they and all their derivatives converge to those of

a function W∞ in L∞
loc, and satisfy

(−� + Wn)ϕn = Enϕn, (−� + W∞)ϕ∞ = E∞ϕ∞.

Assume that En → E∞ and ϕn → ϕ∞ in L2
loc. Then, ϕn → ϕ∞ in L∞

loc.

For its proof, we can refer to [2].

Lemma 4.3. Let ψ1(h;x) be the normalized eigenfunction associated

to the eigenvalue E1, and set gh(x) :=
ψ1(x)

ψ0(x)
. Then there exists a constant

C > 0 such that for sufficiently small h,

gh ≥ C, if |x− a| ≤ hβ,

gh ≤ −C, if |x− b| ≤ hβ.

Proof of Lemma 4.3. Let ξa, ξb be the eigenstates associated to the

lowest eigenvalues of the Hamiltonians whose potentials are the first term

of the asymptotic expansions of V arround a, b respectively. Then ξa, ξb are

written as follows:

ξa(h;x) = h−2d/βκa(h
−β(x− a)),

ξb(h;x) = h−2d/βκb(h
−β(x− b)),

where κa, κb are the eigenstates corresponding to the lowest eigenvalues of

h
(a)
0 , h

(b)
0 respectively. Let Ph be a projection to the subspace spanned by

ξa, ξb. It is easy to see ‖(1−Ph)ψj‖2 → 0 (j = 0, 1) as h tends to zero (due

to a similar arguement to that in Proposition 1.1). Therefore, there exist

α(h) > 0, β(h) > 0, such that

(4.7) α2 + β2 = 1, ‖ψ0 − αξa − βξb‖2 → 0 (h ↓ 0).



610 Fumihiko Nakano

Since ψ1 is orthogonal to ψ0,

(4.8) ‖ψ1 − βξa + αξb‖2 → 0 (h ↓ 0).

By the assumption of Theorem 5, α · β is bounded below(which means

|α · β| ≥ C for some constant C > 0 that is independent of h). Hence α

and β is bounded from above and below. If we set

ϕh := hdβ/2α(h)−1ψ0(h
βx + a),

ϕ̃h := hdβ/2β(h)−1ψ1(h
βx + a),

then from (4.7) and (4.8), ϕh, ϕ̃h converge to κa in L2
loc (Here we use the

exponential decay properties of κb). Furthermore, it is easy to see that

Kϕh = hαE0ϕh, and Kϕ̃h = hαE1ϕ̃h. Thus we can apply Lemma 4.2.

Then ϕh → κa, and ϕ̃h → κa in L∞
loc as h tends to zero. Thus we see that

|gh − β
α | → 0 uniformly on {x| |x− a| ≤ hβ} and similarly |gh + α

β | → 0 on

{x| |x− b| ≤ hβ}. �

Now, we are ready to prove the lower bound part of Theorem 5. Esti-

mating ρh(a, b) from below, we see that it is enough to show that for any

ε > 0, there exists a constant C > 0 such that

E1 − E0 ≥ C exp(−
√
−e0h

−β|a− b|(1 + ε)).

Let γ be a straight segment from a to b. Then, maxx∈γ
{
min{|x−a|, |x−

b|}
}

= |a−b|
2 . Thus for any ε > 0, there exists a positive constant δ such

that

(4.9) max
{
min{|x− a|, |x− b|}| dist(x, γ) ≤ δ

}
≤ |a− b|

2
(1 + ε).

It follows from Proposition 3.4 that

(4.10) |ψ0|2 ≥ C exp(−
√
−e0h

−β|a− b|(1 + ε)),

for x ∈ Tε := {x| dist(x, γ) ≤ δ}. Taking Tε sufficiently small if necessary,

we can find smooth coordinates y = (y1, y⊥) so that

Tε = {y| |y⊥| ≤ 1},
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γ ⊂ {y| y⊥ = 0},

and a = (0, 0), b = (1, 0). Since these coordinates are smooth and γ is a

straight segment from a to b, we can find C > 0 such that for suffciently

small h,

{y| y1 = 0, |y⊥| ≤ Chβ} ⊂ {x| |x− a| ≤ hβ},

{y| y1 = 1, |y⊥| ≤ Chβ} ⊂ {x| |x− b| ≤ hβ}.

Let T (h) := {y| |y⊥| ≤ Chβ}. From Lemma 4.1 and the definition of gh,

E1 − E0 = h2

∫
|∇gh|2|ψ0|2dx

≥ h2

∫
T (h)

|∇gh|2|ψ0|2dx.

We substitute (4.10) into this and change the variables from x to y. Since

the Jacobian is bounded above and below, |∂gh∂x | is bounded from below by

C|∂gh∂y |. Therefore,

(4.11) E1 − E0 ≥ C exp(−
√
−e0h

−β|a− b|(1 + ε))∫
|y⊥|≤Chβ

dy⊥

∫ 1

0
dy1

∣∣∣∣∂gh∂y

∣∣∣∣2 .
On the other hand,

|gh(0, y⊥) − gh(1, y⊥)|2 =

∣∣∣∣
∫ 1

0
dy1(

∂gh
∂y1

)(y1, y⊥)

∣∣∣∣
2

(4.12)

≤
∫ 1

0
dy1

∣∣∣∣∂gh∂y

∣∣∣∣2 .
The last inequality is due to the Schwarz inequality. By Lemma 4.3, if

|y⊥| ≤ Chβ, the LHS of (4.12) is bounded from below by (2C)2. Therefore,

we get

E1 − E0 ≥ Chβ(d−1)exp(−
√
−e0h

−β|a− b|(1 + ε)). �
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5. Appendix. The periodic potential

It is known that if the periodic potential have negative singularities, the

spectrum of the Schrödinger operator have the band structure. We will see

that the width of the lowest band have an asymptotic similar to that of

Theorem 5’. The strategy is based on that in [8].

Assumptions of V (x).

(1) There are a1, a2, · · · , ad ∈ Rd, mutually independent, such that

V (x + aj) = V (x) (j = 1, · · · , d).
(2) V (x) has an asymptotic expansion around a ∈ L := {njaj ;nj =

0,±1, · · · } in the following form,

V (x) ∼ − 1

|x− a|ρ+1

∞∑
|α|=1

aα(x− a)α.

(3) V (x) ∈ C∞(Rd \ L)

(4) If d ≤ 3, ρ < d/2. If d ≥ 4, ρ < 2.

Now we shall decompose H(h) := −h2� + V (x) on L2(Rd) into the

direct integral.

Definition.

(1) We say a mesurable set C ⊂ Rd is a fundamental cell if and only if,

(a) For any a ∈ L, C + a and C are disjoint. (b) Rd \ ∪a∈L(a + C)

has measure zero.

(2) A fundamental cell W is a Wigner-Seitz cell if and only if,

W = {x| x is the nearest point to the origin among all a ∈ L

with respect to the Euclidian metric}.
(3) We define the dual lattice of L (denoted by L∗) if and only if,

k ∈ L∗ ⇔ 1

2π
k · a ∈ Z for any a ∈ L.

(4) The Brillouin zone B is defined as the Wigner Seitz cell of L∗.
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We take any fundamental cell C. For each k ∈ B, we define the Hilbert

space Hk as follows:

Hk := {f ∈ L2
loc | f(x + a) = eik·af(x), for all a ∈ L}.

For f, g ∈ Hk, we define the inner product:

< f, g >:=

∫
C
f(x)g(x)dx.

For g ∈ L2(Rd), we define fk ∈ Hk, using the Fourier transform by

f̂k(l) = c
∑
K∈L∗

ĝ(l)δ(l − k −K),

where c = (2π)d/2[vol C]−1/2. This gives an isomorphism between L2(Rd)

and
∫ ⊕
B Hkdk. The fiber of H is

Dk := {f ∈ Hk| the Laplacian of f (in the sense of distribution)

belongs to Hk}.

And for f ∈ Dk, we define

(H(h; k)f) (x) := −h2(�f)(x) + V (x)f(x).

From the Assumptions, H(h; k) is self-adjoint on Dk, and has compact

resolvent, and

H(h) =

∫ ⊕

B
H(h; k)dk.

Let ε0(h; k) ≤ ε1(h; k) ≤ · · · denote the spectrum of H(h; k). Hence,

bn(h) := ∪k∈B εn(h; k) is the n-th band of H. The similar arguement

as Theorem 1 proves (for details, see [8])

Theorem A.1. Let e0 ≤ e1 ≤ · · · be the eigenvalues of h0 := −�−
1

|x|ρ+1

∑
|α|=1 aαx

α. It follows that

lim
h↓0

hαεn(h; k) = en, α =
2ρ

2 − ρ
,

and the convergence is uniform with respect to k.

We see from Theorem A.1, that the width of each band behaves

|bn(h)| → 0 as h tends to zero. We shall estimate |b0(h)| in more detail.
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Theorem A.2. For any ε > 0, there exist two positive constants C1,ε

and C2,ε such that

C1,ε exp

(
−
√−e0

hβ
min
a∈L

|a|(1 + ε)

)

≤ |b0(h)| ≤ C2,ε exp

(
−
√−e0

hβ
min
a∈L

|a|(1 − ε)

)
,

where β = 2
2−ρ .

The method of its proof is basically the same as [8]. To prove Theorem

A.2, we need the exponential decay of the eigenfunction ψ0 associated to

the lowest eigenvalue of H(h; 0).

Theorem A.3. For any ε > 0, κ > 0, there exist two positive con-

stants Cε,κ and Cε such that

ψ0 ≤ Cε,κ exp

(
−
√−e0

hβ
min
a∈L

|x− a|(1 − ε)

)
on min

a∈L
|x− a| > κ,

and

ψ0 ≥ Cε exp

(
−
√−e0

hβ
min
a∈L

|x− a|(1 + ε)

)
.
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