# Semiclassical analysis of Schrödinger operators with coulomb-like singular potentials

By Fumihiko Nakano

**Abstract.** In this paper, we study the behavior of eigenvalues and eigenfunctions of Schrödinger operators whose potentials have finitely many negative singularities. We prove that if potentials behave like  $O(|x - p_i|^{-\rho})(0 < \rho < 2)$  near singular points  $x = p_i$ , then eigenvalues behave like  $O(h^{-\frac{2\rho}{2-\rho}})$  when the Planck constant h approaches to zero. Then we obtain the asymptotic expansion of the eigenvalues and eigenfunctions in h. We also study the splitting of the lowest eigenvalues and show that the asymptotic is estimated by a suitable Riemann metric called Agmon distance.

# 0. Introduction

We consider Schrödinger operators whose potentials have finitely many negative singularities, and study the behavior of eigenfunctions and eigenvalues when h, the Planck constant, approaches to zero.

The Schrödinger operator we consider is the following:

$$H(h) := -h^2 \triangle + V(x)$$
 on  $L^2(\mathbf{R}^d)$ ,

where h is the Planck constant.

We always assume the following assumptions (A) throughout this paper.

Assumptions (A).

(1) V(x) has finitely many singular points  $p_1, p_2, \dots, p_n \in \mathbf{R}^d$ , and V(x) is bounded below in the complement of the union of neighborhoods of singular points, i.e., for any  $\varepsilon > 0$ , there exists a constant

1991 Mathematics Subject Classification. Primary 35Q40; Secondary 35P20.

 $M_{\varepsilon} > 0$  such that,

if 
$$|x - p_i| > \varepsilon$$
 (for any  $i = 1, \dots, n$ ), then  $V(x) \ge -M_{\varepsilon}$ .

(2)  $V(x) \in C^{\infty}(\mathbf{R}^d \setminus \{p_1, \cdots, p_n\})$ , and V(x) has asymptotic expansions near each  $p_i$  in the following form:

$$V(x) \sim -\frac{1}{|x-p_i|^{\rho+1}} \sum_{|\alpha|=1}^{\infty} a_{\alpha}^{(i)} (x-p_i)^{\alpha} \quad as \ x \to p_i.$$

(3) If d = 1, then  $0 < \rho < 1$ . Otherwise,  $0 < \rho < 2$ .

REMARK. When (3) is satisfied, V(x) is in the Kato class and hence H(h) has a unique Friedrichs extension and is bounded below (cf.[7]).

At first, we study the behavior of H(h) in the limit:  $h \downarrow 0$ . Let  $E_m(h)$ be the m-th eigenvalue of H(h), counting multiplicities. Let  $h_0^{(i)}(h) :=$  $-\triangle -\sum_{|\alpha|=1} \frac{a_{\alpha}^{(i)} x^{\alpha}}{|x|^{\rho+1}}$   $(i = 1, \dots, n)$  and let  $\{e_m\}_{m=0,1,2,\dots}$  be the eigenvalues of  $\bigoplus_{i=1}^n h_0^{(i)}$ , counting multiplicities.

THEOREM 1. Let  $N \in \mathbf{N}$ . For sufficiently small h, H(h) has at least N eigenvalues and

$$\lim_{h \downarrow 0} h^{\alpha} E_m(h) = e_m, \quad 0 \le m \le N, \quad \alpha = \frac{2\rho}{2-\rho}.$$

Secondly, we consider asymptotic expansions of eigenvalues and eigenfunctions in h as h tends to zero. For that purpose, we need additional assumptions on V(x).

Assumptions (B).

- (1) V(x) has at most polynomial growth, i.e., there exist k > 0, M > 0, C > 0, such that if |x| > M, then  $|V(x)| \le C(1 + |x|)^k$ .
- (2) If  $d \leq 3$ , then  $\rho < \frac{d}{2}$ .

THEOREM 2. Assume (B).

(1) Let  $e_m$  be a simple eigenvalue of  $\bigoplus_{i=1}^n h_0^{(i)}$ . Then the corresponding eigenvalue  $E_m(H)$  of H(h) has an asymptotic expansion in the following form:

$$E_m(h) \sim h^{-\alpha} (e_m + \sum_{j=1}^{\infty} \tilde{\alpha}_j (h^{\beta})^j),$$

*i.e.*,

$$E_m(h) - h^{-\alpha}(e_m + \sum_{j=1}^k \tilde{\alpha}_j (h^{\beta})^j) = O(h^{-\alpha + (k+1)\beta}),$$

where  $\alpha = \frac{2\rho}{2-\rho}$ ,  $\beta = \frac{2}{2-\rho}$ .

(2) Let  $\psi_m$  be the eigenfunction of H(h) corresponding to an eigenvalue  $E_m(h)$  and  $\varphi_m$  be the eigenfunction of  $h_0^{(i)}(h)$  corresponding to  $e_m$  (i is taken so that  $e_m$  is an eigenvalue of  $h_0^{(i)}$ ). And let  $U^{(i)}$  be an operator defined by

$$(U^{(i)}f)(x) := h^{d\beta/2}f(h^{\beta}x + p_i) \text{ for } f \in L^2(\mathbf{R}^d).$$

Then,  $U^{(i)}\psi_m$  has an asymptotic expansion in the following form in  $L^2$ -sense:

$$U^{(i)}\psi_m \sim \varphi_m + \sum_{j=1}^{\infty} (h^\beta)^j \tilde{\varphi}_m^{(i)}.$$

When  $e_m$  is degenerate, the situation is slightly different.

THEOREM 3. Assume (B). Let  $E_m, \dots, E_{m+k-1}$  be the eigenvalues such that  $h^{-\alpha}E_m$  appoaches to e, which is an eigenvalue of  $\bigoplus_{i=1}^n h_0^{(i)}$  with multiplicity k. Then each  $E_{m+p}$  has an asymptotic expansion in h:

$$E_{m+p} \sim h^{-\alpha} (e + \sum_{j=1}^{\infty} \tilde{\alpha}_j^p (h^\beta)^j), \quad p = 0, \cdots, k-1.$$

THEOREM 4. Under the same conditions as in Thoreom 3, if no two asymptotic expansions of  $E_m, \dots, E_{m+k-1}$  are the same, then for each corresponding eigenfunction  $\psi_j$ , there exists an unique singular point  $p_{n(j)}$  of V(x), such that for any  $N \in \mathbf{N}$ ,

$$||(J_{n(j)} - 1)\psi_j||_2 = O(h^N)$$

holds and  $U^{n(j)}\psi_j$  has an asymptotic expansion in  $L^2$  sense, where  $J_{n(j)}$  is a function with compact support that takes value one in the neighborhood of  $p_{n(j)}$  ( $\|\cdot\|_2$  is  $L^2(\mathbf{R}^d)$ -norm).

COROLLARY. If  $E_j(h)$  is simple for h > 0, then either of the following two holds, (1) There exists a singular point  $p_{n(j)} \in \mathbf{R}^d$  such that for any  $N \in \mathbf{N}$ ,

$$||(J_{n(j)} - 1)\psi_j||_2 = O(h^N), \quad as \ h \downarrow 0.$$

(2) There exists another eigenvalue  $E'_i(h)$  such that for any  $N \in \mathbf{N}$ ,

$$|E'_j - E_j| = O(h^N), \quad as \ h \downarrow 0.$$

Physically, the case (2) of this corollary corresponds to the situation that a particle exists near both of at least two singular points. And the quantity  $|E'_i - E_j|$  is related to the tunneling effect between the singularities.

When the number of the singularities is two (*i.e.*, n = 2), and  $E_j$  is the lowest eigenvalue of H(h), we can estimate  $|E'_j - E_j|$  sharply.

DEFINITION. For  $x, y \in \mathbf{R}^d$ , the Agmon distance  $\rho_h(x, y)$  with respect to the energy  $\tilde{E}_o(:=h^{-\alpha}e_0)$  is defined by

$$\rho_h(x,y) := \inf_{\gamma} \left\{ \int_0^1 \sqrt{\max(V(\gamma(s)) - \tilde{E}_0(h), 0)} |\dot{\gamma}(s)| ds \right|$$
$$\gamma(0) = x, \gamma(1) = y, \gamma \in H^1 \right\}.$$

THEOREM 5. Let n = 2, and let a and  $b \in \mathbf{R}^d$  be the singular points. Let  $J_a$  (resp.  $J_b$ ) be a function that takes value one in the neighborhood of a (resp. b). Let  $E_0(h)$  be the lowest eigenvalue of H(h). And let  $\psi_0$  be the eigenfunction corresponding to the eigenvalue  $E_0(h)$ .

Assume that, for any  $\varepsilon > 0$ , there exists  $C_{\varepsilon} > 0$  such that,

$$\|J_a\psi_0\|_2\|J_b\psi_0\|_2 \ge C_{\varepsilon}e^{-\varepsilon/h^{\beta}}$$

Then, for any  $\varepsilon > 0$ , there exist constants  $C_{1,\varepsilon}, C_{2,\varepsilon}$  such that

$$C_{1,\varepsilon} \exp\left(-\frac{\rho_h(a,b)}{h}(1+\varepsilon)\right) \le |E_1 - E_0| \le C_{2,\varepsilon} \exp\left(-\frac{\rho_h(a,b)}{h}(1-\varepsilon)\right),$$

where  $E_1$  is the second eigenvalue.

The assumption of Theorem 5,  $||J_a\psi_0||_2 ||J_b\psi_0||_2 \ge C_{\varepsilon}e^{-\varepsilon/h^{\beta}}$  comes from the postulate that particle exists on both *a* and *b*. For example, if V(x) has mirror symmetry with respect to one point, this condition is automatically satisfied.

Estimating  $\rho_h(a, b)$ , we obtain,

THEOREM 5'. Under the same conditions as in Theorem 5, for any  $\varepsilon > 0$  there exist constants  $C_{1,\varepsilon}$ ,  $C_{2,\varepsilon}$  such that

$$C_{1,\varepsilon} \exp\left(-\frac{\sqrt{-e_0}|a-b|}{h^{\beta}}(1+\varepsilon)\right) \le |E_1 - E_0|$$
$$\le C_{2,\varepsilon} \exp\left(-\frac{\sqrt{-e_0}|a-b|}{h^{\beta}}(1-\varepsilon)\right).$$

As for the known results, similar problems have been studied extensively by many mathematicians in the case that V(x) satisfies

- (1)  $V(x) \in C^{\infty}, V(x) \ge 0.$
- (2)  $\underline{\lim}_{|x|\to\infty} V(x) > 0.$
- (3) There exist finitely many points  $p_1, \dots, p_n$  such that  $V(p_i) = 0$   $(i = 1, \dots, n)$  and each minimum is non-degenerate ([1],[2],[4],[5],[6], and in their references).

The aim of this paper is to show that when V(x) has negative singularities, the results similar to above hold. We use mainly Simon's methods ([1],[2]). The main difference between "the singular case" and "the regular case" is the following:

- (1) In Theorems 1,2,3,4,5, the powers of h in each asymptotic formula is different. In the regular case,  $\alpha = -1, \beta = 1/2$  (In the above context, it corresponds to  $\rho = -2$ ).
- (2) From the Theorem 5', in the singular case, the behavior of  $|E_1 E_0|$  is determined by  $|a b|, \rho, \alpha_0$  only. Whereas in the regular case, it depends on the global properties of V(x).

We prove Theorem 1 in Section 1, Theorems 2,3,4 in Section 2, and Theorem 5 in Section 4. In the appendix, we show that the similar exponential estimates as in Theorem 5 and Theorem 5' can be obtained for the width of the ground state band of Schrödinger operator with periodic potential.

# 1. Proof of Theorem 1

#### 1.1. Upper bound

Here, we will show  $\overline{\lim}_{h\downarrow 0} h^{\alpha} E_m(h) \leq e_m$ . Take a function  $j(x) \in C_0^{\infty}(\mathbf{R}^d)$  which satisfies,

$$j(x) := \begin{cases} 1, & \text{if } |x| < 1, \\ 0, & \text{if } |x| > 2, \end{cases}$$

and let

$$J_{(i)}^{h} := j(h^{-\delta} (x - p_{i})), \quad i = 1, \cdots, n, \quad 0 < \delta < \frac{\rho}{2 - \rho}.$$

We can assume  $\text{Supp}J_{(i)} \cap \text{Supp}J_{(j)} = \phi$  by taking h sufficiently small if necessary.

Let  $e_m$  be the m-th eigenvalue of  $\bigoplus_{i=1}^n h_0^{(i)}$ , and  $\varphi_m$  be the corresponding eigenfuction. Then  $U^{i(m)-1}\varphi_m$  is an eigenfunction of  $H_0^{(i(m))}$ , where  $H_0^{(i)}(h) := -h^2 \triangle - \sum_{|\alpha|=1} \frac{a_{\alpha}^{(i)} x^{\alpha}}{|x-p^i|^{\rho+1}}$  and i(m) is defined so that  $e_m$  is the eigenvalue of  $h_0^{(i(m))}$ .

We take

$$\psi_m(h;x) := J_{i(n)}^h U^{i(m)-1} \varphi_m$$

as an approximating eigenfunction. Then, from the definition of  $J_{(i)}^h$  and Assumptions (A), we can see

(1.0) 
$$\left(\psi_l, (H - H_0^{(i)})\psi_m\right) = O(h^{\frac{2(1-\rho)}{2-\rho}}),$$

where  $(\cdot, \cdot)$  is  $L^2(\mathbf{R}^d)$ -product. Next, we study the properties of the approximating eigenfunctions.

CLAIM 1.

(1.1) 
$$(\psi_l, \psi_m) = \delta_{lm} + O\left(\exp(-ch^{\delta - \frac{2}{2-\rho}})\right).$$

PROOF OF CLAIM 1. When  $i(l) \neq i(m)$ , (1.1) is clear. Therefore we assume i(l) = i(m).

$$\begin{aligned} |(\psi_l, \psi_m) - \delta_{lm}| &= \left| \int (1 - J_{(i)}^{h^2}) U^{(i)^{-1}} \varphi_l U^{(i)^{-1}} \varphi_m dx \right| \\ &= \left| \int_{|x-p_i| \ge ch^{\delta}} U^{(i)^{-1}} \varphi_l U^{(i)^{-1}} \varphi_m dx \right| \\ &= \int_{|x| \ge ch^{\delta}} h^{-\frac{2d}{2-\rho}} \varphi_l (h^{-\frac{2}{2-\rho}} x) \varphi_m (h^{-\frac{2}{2-\rho}} x) dx \\ &= O\left( \exp(-ch^{\delta - \frac{2}{2-\rho}}) \right). \ \Box \end{aligned}$$

CLAIM 2.

(1.2) 
$$(\psi_l, H\psi_m) = h^{-\alpha} e_m \delta_{lm} + O(h^{-2\theta}),$$

where  $\theta := \max\{\delta, \frac{2(1-\rho)}{2-\rho}\}.$ 

PROOF OF CLAIM 2. As in the proof of Claim 1, we can assume i(l) = i(m).

We use the fact that if  $H\eta = E\eta$ , then

$$(f\tilde{\eta}, Hf\eta) = E(f\eta, f\tilde{\eta}) + (\eta, h^2(\nabla f)^2\tilde{\eta}).$$

We substitute  $f = J_{(i)}^h$ ,  $H = H_0^{(i)}$ ,  $\eta = U^{(i)^{-1}}\varphi_m$ ,  $\tilde{\eta} = U^{(i)^{-1}}\varphi_l$  into this identity. Then,

$$(\psi_l, H_0^{(i)}\psi_m) = h^{-\alpha}e_m(\psi_l, \psi_m) + (\psi_l, h^2(\nabla J_{(i)}^h)^2\psi_m).$$

Estimating  $\nabla J_{(i)}^h$ , and using (1.0), (1.1), we obtain (1.2).

Now we use the Min-Max principle. At first, let

$$\mu_m(h) := \sup_{\xi_1, \cdots, \xi_{m-1}} Q(\xi_1, \cdots, \xi_{m-1}; h),$$

$$Q(\xi_1, \cdots, \xi_{m-1}; h) := \inf \left\{ (\psi, H\psi) \mid \psi \in \mathcal{D}(H), \|\psi\|_2 = 1, \psi \in \{\xi_1, \cdots, \xi_{m-1}\}^{\perp} \right\}.$$

Then  $\mu_m(h)$  equals to either the m-th eigenvalue of H (counting multiplicities) or  $\inf \sigma_{ess}(H)$ .

Fix any  $\varepsilon > 0$ . For each  $h \in (0, 1]$ , we can find  $\xi_1^h, \dots, \xi_{m-1}^h$  such that,

$$\mu_m(h) \le Q(\xi_1^h, \cdots, \xi_{m-1}^h; h) + \varepsilon.$$

From (1.1),  $\{\psi_1, \dots, \psi_m\}$  span a m-dimensional subspace if h is sufficiently small. Hence there exists  $\varphi \in \{\xi_1, \dots, \xi_{m-1}\}^{\perp}$  which is a linear combination of  $\{\psi_1, \dots, \psi_m\}$ . From (1.2),

$$Q(\xi_1, \cdots, \xi_{m-1}; h) \le (\varphi, H\varphi) \le h^{-\alpha} e_m + O(h^{-2\delta}).$$

Since  $\varepsilon > 0$  is arbitrary,

$$\mu_m(h) \le h^{-\alpha} e_m + O(h^{-2\delta}).$$

As V(x) is bounded below outside of a compact set,  $\inf \sigma_{ess}(H) > -\infty$ . On the other hand,  $\lim_{h \downarrow 0} h^{-\alpha} e_m = -\infty$ . Hence  $\mu_m(h) = E_m(h)$  if h is sufficiently small and thus we obtain the upper bound.  $\Box$ 

#### 1.2. Lower bound

We prove  $\underline{\lim}_{h\downarrow 0} h^{\alpha} E_m(h) \ge e_m$  here. If we have proved it, we complete the proof of Theorem 1. Fix arbitrary r such that  $e_m \le r \le e_{m+1}$ . It suffices to show

 $H \geq rh^{-\alpha}\mathbf{1} + F$ 

where **1** is an identity operator and rank  $F \leq m$ .

We define  $J_0^h \in C^{\infty}(\mathbf{R}^d)$  so that  $(J_0^h)^2 := 1 - \sum_{i=1}^n (J_{(i)}^h)^2$ . Let  $P^{(i)}$  be eigenprojections onto the eigenspaces of  $H_0^{(i)}$  whose corresponding eigenvalues are smaller than  $h^{-\alpha}r$  (hence,  $\sum \operatorname{rank} P^{(i)} = m$ ), and let  $F^{(i)} := H_0^{(i)} P^{(i)}$ .

By IMS-localization formula (see [7]), for any  $\varepsilon > 0$ ,

(1.3) 
$$H = J_0 H J_0 + (1 - \varepsilon) \sum_{i \neq 0} J_i H_0^{(i)} J_i + \sum_{i \neq 0} J_i (\varepsilon H_0^{(i)} + H - H_0^{(i)}) J_i - \sum (\nabla J_i)^2.$$

From the definition of  $F^{(i)}$ ,

(1.4) 
$$J_{(i)}^{h}H_{0}^{(i)}J_{(i)}^{h} \ge J_{(i)}^{h}F^{(i)}J_{(i)}^{h} + h^{-\alpha}r(J_{(i)}^{h})^{2}.$$

On the other hand, since  $|x - p_i| \ge ch^{\delta}$  on  $\text{Supp}J_0$ ,

(1.5) 
$$J_0 H J_0 \ge (J_0)^2 O(-ch^{-\delta\rho}) \ge rh^{-\alpha} (J_0)^2,$$

and

(1.6) 
$$\varepsilon H_0^{(i)} + H - H_0^{(i)} \ge \frac{\varepsilon}{2} \left( -h^2 \bigtriangleup - \sum_{|\alpha|=1} \frac{2a_{\alpha}^{(i)} x^{\alpha}}{|x|^{\rho+1}} \right) \\ - \frac{\varepsilon}{2} h^2 \bigtriangleup - \sum_{|\alpha|=2} \frac{a_{\alpha}^{(i)} x^{\alpha}}{|x|^{\rho+1}} - O(h^{2-\rho}) \\ \ge -c\varepsilon h^{-\alpha} - c_{\varepsilon} h^{-\alpha'} - O(h^{2-\rho}),$$

where  $\alpha' := \frac{2(\rho-1)}{3-\rho}$ , and  $c, c_{\varepsilon}$  are independent of h. Substituting (1.4)~(1.6) into (1.3),

$$H \ge (1 - c\varepsilon)rh^{-\alpha}\mathbf{1} - O(h^{-\rho}) + F, \qquad \gamma := \max(\alpha', 2\delta),$$

 $(F = \sum J_{(i)}F^{(i)}J_{(i)}, \operatorname{rank} F \leq m)$ . Since  $\varepsilon > 0$  is arbitrary, we have done.

## **1.3.** Additional arguement

We shall show here that if  $e_m$  is non-degenerate, the "approximating eigenfunction" used in the proof of Theorem 1, approaches to the "real" eigenfunction in  $L^2$ -sense. We will use this result in Sections 2,4. At first, for each l, we find  $\varepsilon_l$  such that for any m, either  $e_m = e_l$  or  $|e_m - e_l| > \varepsilon_l$ holds.

PROPOSITION 1.1. Let

$$P_l^h := \frac{1}{2\pi i} \oint_{|z-h^{-\alpha}|=h^{-\alpha}e_l} (z - H(h))^{-1} dz$$

then,  $||(1 - P_l^h)\psi_l^h||_2 \to 0 \ (h \downarrow 0).$ 

PROOF. We use the inductive argument. Assume that the proposition is valid for any l for l < k. At first, we prove the following claim.

CLAIM. For any l such that  $e_l < e_k, P_l^h \psi_k^h \to 0$  in  $L^2$ .

PROOF OF CLAIM. If the degeneracy of  $e_l$  is m,  $P_l\psi_{l_j} - \psi_{l_j} \to 0$  in  $L^2$   $(j = 1, \dots, m)$  (where  $\psi_{l_j}(j = 1, \dots, m)$  are eigenfunctions corresponding to  $e_l$ ). From (1.1), we see  $\{\psi_{l_j}\}_{j=1,\dots,m}$  and moreover,  $\{P_l\psi_{l_j}\}_{j=1,\dots,m}$  are linearly independent (for h small). Let  $\{u_{l_j}\}_{j=1,\dots,m}$  be the orthonormal basis of Ran  $P_l$  (the range of  $P_l$ ). Since  $\{P_l\psi_{l_j}\}$  is linearly independent and contained in  $\text{Span}\{u_{l_j}\}(j = 1,\dots,m)$ , we can write each  $u_j$  by linear combination of  $\{P_l\psi_{l_j}\}_{j=1,\dots,m}$  and we write  $u_j = \sum a_k^j P_l\psi_{l_k}$ . Then, we have

$$P_{l}\psi_{k} = \sum_{j=1}^{m} (\psi_{k}, u_{l_{j}})u_{l_{j}}$$
$$= \sum_{j=1}^{m} (\psi_{k}, \sum_{p=1}^{m} a_{p}^{j} P_{l}\psi_{l_{p}}) \sum_{q=1}^{m} a_{q}^{j} P_{l}\psi_{q}$$

From the assumption of the induction,

$$(\psi_k, \sum_{p=1}^m a_p^j P_l \psi_{l_p}) - (\psi_k, \sum_{p=1}^m a_p^j \psi_{l_p}) \xrightarrow{h\downarrow 0} 0.$$

On the other hand, from (1.1),  $(\psi_k, \sum_{p=1}^m a_p^j \psi_{l_p}) \xrightarrow{h \downarrow 0} 0$ . By combining these two facts, we see that  $P_l \psi_k \to 0 (h \downarrow 0)$  in  $L^2$ .  $\Box$ 

Let  $E_{\Omega}^{h}$  be the spectral measure of  $h^{\alpha}H$ . From the claim above, for any  $\varepsilon > 0, E_{(-\infty,e_{k}-\varepsilon)}^{h}\psi_{k}^{h} \to 0$  as  $h \downarrow 0$  in  $L^{2}$ . On the other hand,  $(\psi_{k},h^{\alpha}H\psi_{k}) \to e_{k}$  (from (1.2)). Then it must follow that  $\|E_{(e_{k}-\varepsilon,e_{k}+\varepsilon)}^{h}\psi_{k}^{h}\|_{2} \to 1 \ (h \downarrow 0)$ .  $\Box$ 

# 2. Asymptotic expansions of eigenvalues and eigenfunctions

# 2.1. Proof of Theorem 2

To simplify the notation, we write i instead of i(m). Let

$$K_0 := h^{\alpha} U^{(i)} H_0^{(i)} U^{(i)^{-1}} \quad (= h_0^{(i)}),$$

$$K := h^{\alpha} U^{(i)} H U^{(i)^{-1}} = K_0 + h^{\alpha} V (h^{\beta} x + p_i) + \sum_{|\alpha|=1} \frac{a_0^{(i)} x^{\alpha}}{|x|^{\rho+1}}.$$

From the assumption,  $K - K_0$  has an asymptotic expansion near the origin in the following form as  $h \downarrow 0$ ,

(2.1) 
$$K - K_0 \sim -\frac{1}{|x|^{\rho+1}} \sum_{|\alpha|=2}^{\infty} a_{\alpha}^{(i)} (h^{\beta})^{|\alpha|} x^{\alpha}.$$

Let

$$\tilde{P}(h) := \frac{1}{2\pi i} \oint_{|z-e_m|=\varepsilon} (z-K)^{-1} dz,$$

where we take  $\varepsilon$  sufficiently small such that the set  $\{z \mid |z - e_m| < \varepsilon\}$  contains no other  $e_j (j \neq m)$ .

Then, by Theorem 1, rank  $\tilde{P}(h) = 1$  for h sufficiently small, and by Proposition 1.1,  $\tilde{P}(h)\varphi_m \to \varphi_m$   $(h \downarrow 0)$ . Hence it is enough to obtain the  $L^2$ -asymptotic expansion of  $\tilde{P}(h)\varphi_m$ . In fact, the relations

(2.2) 
$$h^{\alpha}E_m = \frac{(K\varphi_m, \dot{P}\varphi_m)}{(\varphi_m, \tilde{P}\varphi_m)},$$

Fumihiko Nakano

(2.3) 
$$U^{(i)}\psi_m = \frac{1}{\left(\varphi_m, \tilde{P}\varphi_m\right)^{1/2}}\tilde{P}\varphi_m$$

hold and  $K\varphi_m$  has obviously the  $L^2$ -asymptotic expansion under Assumptions (B). From the definition of  $\tilde{P}(h)$  it suffices to obtain the  $L^2$ -asymptotic expansion of  $(z-K)^{-1}\varphi_m$ .

One can expand  $(K-z)^{-1}\varphi_m$  as follows:

$$(K-z)^{-1}\varphi_m = \sum_{k=0}^{l} f_k + r_l,$$

where

$$f_k = (-1)^k (K_0 - z)^{-1} [V(K_0 - z)^{-1}]^k \varphi_m$$

and

$$r_l = (-1)^{-1} (K - z)^{-1} [V(K_0 - z)^{-1}]^{l+1} \varphi_m$$

We shall estimate the  $L^2$  norm of  $f_k$  and  $r_l$ . Write  $V = V_1 + V_2$  where  $V_1(x) = V\chi_{\mathbf{R}^d \setminus \bigcup_{j=1}^n B_j^{\varepsilon}}, V_2(x) = V\chi_{\bigcup_{j=1}^n B_j^{\varepsilon}} (\chi_A \text{ is the characteristic function} of A and <math>B_j^{\varepsilon} := \{x \mid |x - p_j| < \varepsilon\}).$ 

CLAIM. 
$$||f_k||_2 = O(h^{\beta k}), ||r_l||^2 = O(h^{\beta(l+1)}).$$

PROOF OF CLAIM. We prove by the induction. We assume  $||[V(K_0 - 1)^{-1}]^k \varphi_m||_2 = O(h^{\beta k})$ . At first we consider the contribution of  $V_2$ . By the Sobolev embedding theorem,

- (1) When  $d \leq 3$ ,  $H^2(\mathbf{R}^d) \subseteq L^{\infty}(\mathbf{R}^d)$ . From (2) of Assumptions (B),  $V_2 \in L^2(\mathbf{R}^d)$ . Hence  $V_2(K_0 - z)^{-1}\psi \in L^2$  (for any  $\psi \in L^2$ ).
- (2) When d = 4,  $\chi_K(K_0 z)^{-1}\psi \in L^r$  for any  $r < \infty$  and for any compact set K. And if  $\rho < 2$ , there exists  $\delta > 0$  such that  $V_2 \in L^{2+\delta}$ . Hence  $V_2(K_0 - z)^{-1}\psi \in L^2(\mathbf{R}^d)$  by the Hölder's inequality.
- (3) When  $d \ge 5$ ,  $H^2(\mathbf{R}^d) \subseteq L^q(\mathbf{R}^d)$  (where  $\frac{1}{q} := \frac{1}{2} \frac{2}{d}$ ). Hence if  $\rho < 2$ ,  $V_2(K_0 z)^{-1} \psi \in L^2(\mathbf{R}^d)$  by the Hölder's inequality.

Combining the above facts, we obtain,

$$\int O(\varepsilon^{(d-2\rho)/2} h^{\beta k}), \qquad \text{if } d \le 3,$$

$$\|V_2(K_0-z)^{-1}[V(K_0-z)^{-1}]^k\varphi_m\|_2 = \begin{cases} O(\varepsilon^{(4-(2+\delta)\rho)2/(2+\delta)}h^{\beta k}), & \text{if } d=4, \\ O(\varepsilon^{d(1-\rho/2)4/d}h^{\beta k}), & \text{if } d\geq 5. \end{cases}$$

600

If we take a suitable constant  $C_d > 0$  (dependent on the dimension d), and put  $\varepsilon = h^{\beta C_d(l+1)}$ , then we obtain

(2.4) 
$$\|V_2(K_0-z)^{-1}[V(K_0-z)^{-1}]^k \varphi_m\|_2 = O(h^{\beta(l+1)}).$$

If we take  $\varepsilon$  as above, we can write (from (2.1)) for any  $N \in \mathbf{N}$ ,

$$V_1 = Q_N(h; x) + R_N(h; x) + S(h; x)$$

where  $Q_N(h; x)$  is a polynomial of x and  $h^{\beta}$  of degree at most N, and

$$|R_N| \le Ch^{-\rho\beta c_d(l+1)} |h^\beta x|^{N+1},$$
$$|Q_N| \le Ch^\beta (1+|x|)^N,$$

$$|S| \le Ch^{\beta} |x|^{-(\rho-1)}.$$

We take N sufficiently large such that

(2.5)

(2.6) 
$$\beta(N+1) - \rho\beta c_d(l+1) \ge \beta(l+1).$$

Now we need the following lemma for the proof of Claim.

LEMMA 2.1. For any  $l \in \mathbf{R}$ ,  $(1+|x|)^{l}(K_{0}-z)^{-1}(1+|x|)^{-l}$  is a bounded operator.

For its proof, we refer to [3].

Put A := (1 + |x|). We can write  $V_1(K_0 - z)^{-1}[V(K_0 - z)^{-1}]^k \varphi_m = (A^{-b}V_1)A^b(K_0 - z)^{-1}A^{-b}(A^{-b}V)A^{2b}(K_0 - z)^{-1}A^{-2b}\cdots A^{(k+1)b}\psi_m$ . By lemma 2.1,  $A^{pb}(K_0 - z)^{-1}A^{-pb}$  is a bounded operator. On the other hand, by (2.5),  $||A^{-b}(Q_N + R_N)|| = O(h^\beta)$  for suitable b. Hence

$$||V_1(K_0 - z)^{-1}[V(K_0 - z)^{-1}]^k \varphi_m||_2 = O(h^{\beta(k+1)}).$$

Combining this with (2.4), we obtain  $||f_{k+1}||_2 = O(h^{\beta(k+1)})$ .

The estimate for  $r_l$  is similar. This proves the Claim.  $\Box$ 

We set  $f'_k := (-1)^k (K_0 - z)^{-1} [Q_N (K_0 - z)^{-1}]^k \varphi_m$ . Hence, by (2.4),(2.5), and (2.6), in the same way as in the above argument, we obtain

$$||f'_k - f_k||_2 = O(h^{\beta(l+1)})$$

Noting that  $f'_k$  is a polynomial of  $h^{\beta}$ , we obtain the asymptotic expansion of  $(K-z)^{-1}\varphi_m$ .  $\Box$ 

## 2.2. Proof of Theorem 3

We begin with stating the following lemma.

LEMMA 2.2. Let C(h) be a  $k \times k$  Hermitian matrix whose entries have asymptotic expansions of h. Then the eigenvalues of C(h) also have asymptotic expansions of h.

For the proof, we can refer to [1].

Let  $P_h$  be the projection onto the subspace which is spanned by the eigenfuctions of H corresponding to the eigenvalues  $E_m, \dots, E_{m+k-1}$ . Hence, by using the eigenfunctions of  $H_0^{(i)}$  corresponding to the eigenvalue  $h^{-\alpha}e$ , it follows that,

$$(2.7) \qquad \qquad (\psi_i, P_h \psi_j) \to \delta_{ij}$$

as h tends to 0 (by Proposition 1.1).

Thanks to the same arguement as in the proof of theorem 2, one can prove that

$$\Delta_{ij} := (\psi_i, P_h \psi_j), \quad H_{ij} := (\psi_i, HP \psi_j),$$

have asymptotic expansion of  $h^{\beta}$ . And from (2.7),  $\Delta_{ij} = \delta_{ij} + o(h^{\beta})$ . Hence  $C := \Delta^{-1/2} H \Delta^{-1/2}$  has asymptotic expansion of  $h^{\beta}$ . Therefore, by Lemma.2.2,  $E_m, \dots, E_{m+k-1}$  also have asymptotic expansion of  $h^{\beta}$ .  $\Box$ 

Theorem 4 and its corollary follow easily from the proof of Theorem 3.

# 3. Exponential decay of eigenfunctions

In order to prove Theorem 5 and Theorem 5', we obtain the exponential decay of the eigenfunction corresponding to the lowest eigenvalue of H. From now on, we assume the number of the singular points is two (n = 2):  $a, b \in \mathbf{R}^d$ .

PROPOSITION 3.1. There exist  $R_0 > 0, C > 0$ , and D > 0 such that if  $|x| > R_0$  and h is sufficiently small,

$$|\psi_0(h;x)| \le Ce^{-D|x|/h^\beta}.$$

PROOF. Take  $R_0 > 0$ ,  $\delta > 0$  such that, if  $|x| > R_0/4$  and h is sufficiently small,

(3.1) 
$$V(x) - \frac{\delta^2}{h^{\alpha}} - E_0(h) \le 1,$$

(That is possible since V(x) is bounded below far away from the origin and  $E_0(h) = O(h^{-\alpha})$ .).

Let  $\varphi$  be a function which satisfies

(1) 
$$\varphi \in L^{\infty}$$
,  $0 \leq \varphi'(s) \leq 1$ ,  
(2)  $\varphi(x) = x$ ,  $if \quad |x| \leq R_1$ ,  
(3)  $\varphi(x) = 0$ ,  $if \quad |x| \geq 2R_1$ ,

for a constant  $R_1 > 0$ .

We set  $\rho(x) := \delta \varphi(|x|)/h^{\rho/(2-\rho)}$   $(x \in \mathbf{R}^d)$ . Then it follows that  $|\nabla \rho(x)|^2 \leq \delta^2/h^{\alpha}$ ,  $\rho(x)$  is bounded, and is smooth in the complement of the neighborhood of the origin. Let  $\psi$  be an **R**-valued function such that its support is contained in  $\{x \mid |x| \geq R_0/4\}$ . From (3.1), for sufficiently small h, we obtain

(3.2) 
$$(e^{\rho/h}\psi, (H-E_0)e^{-\rho/h}\psi) \ge (\psi, (V-(\nabla\rho)^2 - E_0)\psi) \\ \ge \|\psi\|_2^2.$$

Therefore, if we define a function  $\eta$  on  $\mathbf{R}^d$  such that

(1) 
$$1 - \eta \in C_0^{\infty}$$
,  
(2)  $\eta = 0$ , if  $|x| < R_0/4$ ,  
(3)  $\eta = 1$ , if  $|x| > R_0/2$ ,

and if we set  $\psi := e^{\rho/h} \eta \psi_0$ , it follows that

(3.3) 
$$\left(e^{\rho/h}\psi, (H-E_0)e^{-\rho/h}\psi\right) = h^2\left(e^{2\rho/h}\eta\psi_0, -2(\nabla\eta)(\nabla\psi_0) - (\bigtriangleup\eta)\psi_0\right).$$

Since the RHS of (3.3) is independent of  $R_1$ , we can take  $R_1$  go to infinity and let  $\rho = \delta |x|/h^{\rho/(2-\rho)}$ . On the other hand, if we note that  $\|\psi_0\|_2 = 1$ and  $\|\nabla \psi_0\|_2 = O(h^{-1})$ , we obtain (from (3.2),(3.3)),

$$\int_{|x|>R_0/2} e^{2\delta|x|/h^{\beta}} |\psi_0|^2 dx \le Ch e^{\delta R_0/h^{\beta}}.$$

Hence,

$$\int_{|x|>R_0} e^{\delta|x|/h^\beta} |\psi_0|^2 dx \le Ch.$$

Since  $\psi_0$  is subharmonic on  $\{x \mid |x| > R_0\}$ , the value of  $\psi_0$  on x is bounded by the integral of itself over the unit ball around x. Therefore, we obtain the conclusion.  $\Box$ 

PROPOSITION 3.2. For any  $\varepsilon > 0$ ,  $R_0 > 0$ , and  $\kappa > 0$ , there exists a constant  $C_{\varepsilon,R_0,\kappa} > 0$  such that if  $|x| < R_0$ ,  $|x-a| > \kappa$ ,  $|x-b| > \kappa$  and h is sufficiently small,

$$|\psi_0(h;x)| \le C_{\varepsilon,R_0,\kappa} \exp\left(-\frac{\min(\rho(x,a),\rho(x,b))(1-\varepsilon)}{h}\right).$$

PROOF. Let  $\tilde{\varphi}(x) := \min(\rho(x, a), \rho(x, b))$ . Then,

$$|\tilde{\varphi}(x) - \tilde{\varphi}(y)| \le \int_0^1 d\theta \sqrt{V(\theta x + (1 - \theta)y)} |x - y|,$$

for  $x, y \in \{x | V(x) - \tilde{E}_0 \ge 0\}$ . Hence for any  $\varepsilon > 0$ , R > 0, we can find  $\delta > 0$  and  $\varphi(x)$  (by regularization and cutoff), such that if |x| < R,

$$(1 - \varepsilon)\tilde{\varphi}(x) \le \varphi(x) \le (1 + \varepsilon)\tilde{\varphi}(x),$$
$$|\nabla\varphi(x)| \le (1 - \delta)\sqrt{V(x) - \tilde{E}_0}.$$

Hence, for any  $\kappa > 0$ , we see that if  $|x - a| > \kappa$ ,  $|x - b| > \kappa$ ,

$$V(x) - E_0 - (\nabla \varphi)^2 \ge (2\delta - \delta^2)(V(x) - \tilde{E}_0) + \tilde{E}_0 - E_0$$
$$\ge c_{\delta,\kappa},$$

for h sufficiently small. Here, the second inequality follows from the fact that by Theorem 1,  $-\tilde{E}_0 = O(h^{-\alpha})$  and  $\tilde{E}_0 - E_0 = o(h^{-\alpha})$ . Therefore, if we take  $\psi$  so that its support is contained in  $\{x \mid |x - a| > \kappa, |x - b| > \kappa\}$ , we have, by following the same argument as (3.2),

$$\left(e^{\rho/h}\psi, (H-E_0)e^{-\rho/h}\psi\right) \ge c_{\delta,\kappa}\|\psi\|_2^2.$$

604

On the other hand, there exists  $\kappa_0$  determined by  $\kappa$  such that, if  $|y-a| \leq \kappa_0$  or  $|y-b| \leq \kappa_0$ , then  $\varphi(y) < \varepsilon \varphi(x)$ . By the method used in the proof of the Proposition 3.1, we can obtain

$$|\psi_0(h;x)| \le C \exp\left(-\frac{(1-\varepsilon)^2 \tilde{\varphi}}{h}\right)$$
 on  $|x| < R, |x-a| > \kappa, |x-b| > \kappa.$ 

Secondly, we consider the lower bound of  $\psi_0$ . In order that, we need the following lemma.

LEMMA 3.3. Let  $\bar{e_0}$  be the lowest eigenvalue of  $-\triangle$  on the (d-1)dimensional unit ball with Dirichlet boundary condition and let  $\eta$  be the corresponding eigenfunction ( $\eta$  is normalized so that  $\|\eta\|_{\infty} = 1$ ). And let  $d := \min_{|y| \leq 1/2} \eta(y)$ . Let  $D_0$  be a cylinder in  $\mathbf{R}^d$  such that,

$$D_0 := \{ x = (x_1, x_\perp) | \quad 0 \le x_1 \le a(1+\delta), \ |x_\perp| \le R \}.$$

Let  $\Omega(x)$  be such that  $\Omega(x) \geq 0$  and  $\Omega(x)$  satisfies  $\Delta \Omega(x) = W(x)\Omega(x)$ on  $D_0$  for some  $W \geq 0$ . Let  $\alpha^2 := \sup_{x \in D_0} \{\bar{e_0}R^{-2} + W(x)\}$ . Then the following estimate holds.

$$\min\{\Omega(x) | x_1 = a, |x_{\perp}| \le \frac{R}{2}\}$$
  
 
$$\ge de^{-\alpha a} (1 - e^{-2\delta\alpha a}) \min\{\Omega(x) | x_1 = 0, |x_{\perp}| \le R\}.$$

For its proof we can refer to [2].

PROPOSITION 3.4. Assume that any  $\varepsilon > 0$ ,  $||J_a\psi_0||_2||J_b\psi_0||_2 \ge C_{\varepsilon}e^{-\varepsilon/h^{\beta}}$  for a constant  $C_{\varepsilon} > 0$ . Then for any  $\varepsilon > 0$  and any compact set  $K(\subset \mathbf{R}^d)$ , there exists a constant  $C_{\kappa,\varepsilon} > 0$  such that if  $x \in K$ ,

$$|\psi_0(h;x)| \ge C_{\kappa,\varepsilon} \exp\left(-\frac{\sqrt{-e_0}\min(|x-a|, |x-b|)(1+\varepsilon)}{h^\beta}\right).$$

By estimating  $\rho_h(x, a)$  from below, we immediately obtain the following proposition.

COROLLARY. Under the same conditions as Proposition 3.4,

$$|\psi_0(h;x)| \ge C_{\kappa,\varepsilon} \exp\left(-\frac{\min(\rho_h(x,a),\rho_h(x,b))(1+\varepsilon)}{h}\right).$$

PROOF OF PROPOSITION 3.4. There is a constant C > 0 such that  $V(x) - E_0 \ge 0$  if  $|x - a| \ge Ch^{\beta}$ . Moreover, from the proof of Lemma 4.3 (in Section 4), for any  $C_1 > 0$ , we can find a constant  $C_2 > 0$  such that if  $|x - a| \le C_1 h^{\beta}$ , then  $|\psi_0| \ge C_2$ . Hence, we take a cylinder D so that its bottom starts at the position whose distance to a is  $Ch^{\beta}$  and its top is at x, and its radius is  $Rh^{\beta}$ . Then, there exists a constant C' (determined by C and R) such that on the bottom of D,  $|\psi_0| \ge C'$ . Thus we can apply Lemma 3.3 to D and  $\psi_0$ . The conclusion is that, for any  $\varepsilon > 0$ , there exists a sufficiently small  $\delta > 0$  such that for sufficiently small h,

$$|\psi_0(h;x)| \ge de^{-\alpha(x-a-\varepsilon)} \left(1-e^{-2\delta\alpha a}\right) C',$$

where  $\alpha^2 := e_0 R^{-2} h^{-2\beta} + \sup_{x \in D} h^{-2} (V(x) - E_0)$ . By taking *h* sufficiently small, we can let  $e^{-2\delta\alpha a} < 1/2$ . Moreover, by taking *R* sufficiently large, we can take  $e_0 R^{-2} < \varepsilon^2$ . Using the fact that  $-E_0 = O(h^{-\alpha})$  and the result of Theorem 1, we conclude

$$|\psi_0(h;x)| \ge C \exp\left(-\sqrt{-e_0}h^{-\beta}|x-a|(1+\varepsilon)\right)$$

The uniformity of the constant C for  $x \in K$  is obvious.  $\Box$ 

# 4. The proof of Theorem 5

## 4.1. The upper bound

To prove the upper bound, we need the following equality.

LEMMA 4.1. Let f be a  $C^1$  function which is uniformly bounded. Then

$$(f\psi_0, (H - E_0)f\psi_0) = h^2((\nabla f)\psi_0, (\nabla f)\psi_0).$$

For its proof, we can refer to [2]. We set

$$d_h(x) := \frac{\rho_h(x,a) - \rho_h(x,b)}{\rho_h(a,b)}$$

Fix any  $\delta > 0$ . By the regularization procedure, we can find a function  $d_{\delta}(x)$  which satisfies

$$d_{\delta}(x) \in C^{\infty}, \quad |d_h - d_{\delta}| \le \delta \quad (\text{uniformly in } h).$$

Fix any  $\alpha > 0$ , and take a smooth function h(x) on **R** so that

$$h(x) = \begin{cases} -1, & \text{on } (-\infty, -\alpha), \\ 1, & \text{on } (\alpha, \infty). \end{cases}$$

We set  $g(x) := h(d_{\delta}(x))$ . Then  $g(x) \in C^{\infty}(\mathbf{R}^d)$ , and  $\operatorname{Supp}\nabla g$  is contained in a neighborhood of the geodesic bisector of a, b (*i.e.*, it is contained in  $\{x \mid d(x) = 0\} =: B_h$ .). Since  $\min_{x \in B_h} \{\min(\rho_h(x, a), \rho_h(x, b)\} = \frac{1}{2}\rho_h(a, b)$ , we can see that, for any  $\varepsilon > 0$  and sufficiently small  $\alpha, \delta > 0$ ,

(4.1) 
$$\min_{x \in \operatorname{Supp} \nabla g} \{ \min(\rho_h(x, a), \rho_h(x, b)) \} \ge \frac{1}{2} \rho_h(a, b) (1 - \varepsilon).$$

Now, let

$$< g >_h := \int g \psi_0^2 dx, \quad f(x) := g(x) - \langle g >_h .$$

Then  $(f\psi_0, \psi_0) = 0$ . Therefore, by Lemma 4.1, we obtain

(4.2) 
$$E_1 - E_0 \le \frac{h^2 ((\nabla f) \psi_0, (\nabla f) \psi_0)}{(f \psi_0, f \psi_0)}$$

We shall estimate the RHS of (4.2).

CLAIM. For any  $\varepsilon > 0$ ,

(4.3) 
$$(f\psi_0, f\psi_0) \ge C_{\varepsilon} e^{-\varepsilon/h^{\beta}}.$$

PROOF OF CLAIM. Suppose that there is a constant C > 0 such that  $(f\psi_0, f\psi_0) \leq Ce^{-c/h^{\beta}}$ . Assume that there is a sequence  $\{h_n\}, h_n \downarrow 0$  such that  $\langle g \rangle_{h_n} \geq 0$ . Then  $|f(x)| \geq 1$  near the neighborhood of b. Hence  $\|J_b\psi_0\|_2 \leq Ce^{-c/2h^{\beta}}$ . On the other hand, if  $\langle g \rangle_{h_n} \leq 0$ , then  $\|J_a\psi_0\|_2 \leq Ce^{-c/2h^{\beta}}$ . But this contradicts the assumption of Theorem 5.  $\Box$ 

CLAIM. If  $x \in K$  (a compact set of  $\mathbf{R}^d$ ),  $|\nabla d_\delta| \leq C_K$  for a constant  $C_K > 0$ .

PROOF OF CLAIM. Let  $\rho_{\delta}$  be a regularization of  $\rho_h(x, a)$ . We can write,

(4.4) 
$$\nabla d_{\delta}(x) = \frac{\nabla \rho_{\delta}(x,a) - \nabla \rho_{\delta}(x,b)}{\rho_{h}(a,b)}.$$

Since  $x \in K$ , we can find M > 0 such that

(4.5) 
$$|\nabla \rho_{\delta}(x,a) - \nabla \rho_{\delta}(x,b)| \le 2\sqrt{M - \tilde{E}_0}.$$

For a suitable  $\varepsilon > 0$ ,  $V(x) \ge m$ , on  $|x - a| > \varepsilon$  and  $|x - b| > \varepsilon$ . Therefore,

(4.6) 
$$\rho(a,b) \ge |a-b|\sqrt{m-\tilde{E}_0}.$$

Combining  $(4.4) \sim (4.6)$ , we obtain the conclusion.  $\Box$ 

We estimate  $E_1 - E_0$  using (4.2), (4.3), the claim above, Proposition 3.1 (to estimate it in the area far from the origin) and Proposition 3.2. We have, for a constant C > 0,

$$E_1 - E_0 \le C \exp\left(-\frac{2\min_{x \in \text{Supp}\nabla g}\{\min(\rho(x, a), \rho(x, b))\}}{h}(1 - \varepsilon)\right)$$
  
from (4.1),  $\le C \exp\left(-\frac{\rho(a, b)(1 - \varepsilon)^2}{h}\right).$ 

This proves the upper bound in Theorem 5.

#### 4.2. Lower bound

At first, we need the following two lemmas.

LEMMA 4.2. Let  $\{W_n\}_{n=1,2,\dots}$  and  $W_{\infty}$  be a sequence of  $C^{\infty}$ -functions and a function such that they and all their derivatives converge to those of a function  $W_{\infty}$  in  $L_{loc}^{\infty}$ , and satisfy

$$(-\triangle + W_n)\varphi_n = E_n\varphi_n, \quad (-\triangle + W_\infty)\varphi_\infty = E_\infty\varphi_\infty.$$

Assume that  $E_n \to E_\infty$  and  $\varphi_n \to \varphi_\infty$  in  $L^2_{loc}$ . Then,  $\varphi_n \to \varphi_\infty$  in  $L^\infty_{loc}$ .

For its proof, we can refer to [2].

LEMMA 4.3. Let  $\psi_1(h; x)$  be the normalized eigenfunction associated to the eigenvalue  $E_1$ , and set  $g_h(x) := \frac{\psi_1(x)}{\psi_0(x)}$ . Then there exists a constant C > 0 such that for sufficiently small h,

$$g_h \ge C$$
, if  $|x-a| \le h^{\beta}$ ,  
 $g_h \le -C$ , if  $|x-b| \le h^{\beta}$ .

PROOF OF LEMMA 4.3. Let  $\xi_a, \xi_b$  be the eigenstates associated to the lowest eigenvalues of the Hamiltonians whose potentials are the first term of the asymptotic expansions of V arround a, b respectively. Then  $\xi_a, \xi_b$  are written as follows:

$$\xi_a(h;x) = h^{-2d/\beta} \kappa_a(h^{-\beta}(x-a)),$$
  
$$\xi_b(h;x) = h^{-2d/\beta} \kappa_b(h^{-\beta}(x-b)),$$

where  $\kappa_a, \kappa_b$  are the eigenstates corresponding to the lowest eigenvalues of  $h_0^{(a)}, h_0^{(b)}$  respectively. Let  $P_h$  be a projection to the subspace spanned by  $\xi_a, \xi_b$ . It is easy to see  $\|(1-P_h)\psi_j\|_2 \to 0$  (j=0,1) as h tends to zero (due to a similar argument to that in Proposition 1.1). Therefore, there exist  $\alpha(h) > 0, \beta(h) > 0$ , such that

(4.7) 
$$\alpha^2 + \beta^2 = 1, \quad \|\psi_0 - \alpha\xi_a - \beta\xi_b\|_2 \to 0 \quad (h \downarrow 0).$$

Since  $\psi_1$  is orthogonal to  $\psi_0$ ,

(4.8) 
$$\|\psi_1 - \beta \xi_a + \alpha \xi_b\|_2 \to 0 \quad (h \downarrow 0).$$

By the assumption of Theorem 5,  $\alpha \cdot \beta$  is bounded below(which means  $|\alpha \cdot \beta| \geq C$  for some constant C > 0 that is independent of h). Hence  $\alpha$  and  $\beta$  is bounded from above and below. If we set

$$\begin{split} \varphi_h &:= h^{d\beta/2} \alpha(h)^{-1} \psi_0(h^\beta x + a), \\ \tilde{\varphi_h} &:= h^{d\beta/2} \beta(h)^{-1} \psi_1(h^\beta x + a), \end{split}$$

then from (4.7) and (4.8),  $\varphi_h, \tilde{\varphi_h}$  converge to  $\kappa_a$  in  $L^2_{loc}$  (Here we use the exponential decay properties of  $\kappa_b$ ). Furthermore, it is easy to see that  $K\varphi_h = h^{\alpha}E_0\varphi_h$ , and  $K\tilde{\varphi_h} = h^{\alpha}E_1\tilde{\varphi_h}$ . Thus we can apply Lemma 4.2. Then  $\varphi_h \to \kappa_a$ , and  $\tilde{\varphi_h} \to \kappa_a$  in  $L^{\infty}_{loc}$  as h tends to zero. Thus we see that  $|g_h - \frac{\beta}{\alpha}| \to 0$  uniformly on  $\{x \mid |x - a| \le h^{\beta}\}$  and similarly  $|g_h + \frac{\alpha}{\beta}| \to 0$  on  $\{x \mid |x - b| \le h^{\beta}\}$ .  $\Box$ 

Now, we are ready to prove the lower bound part of Theorem 5. Estimating  $\rho_h(a, b)$  from below, we see that it is enough to show that for any  $\varepsilon > 0$ , there exists a constant C > 0 such that

$$E_1 - E_0 \ge C \exp(-\sqrt{-e_0}h^{-\beta}|a - b|(1 + \varepsilon)).$$

Let  $\gamma$  be a straight segment from a to b. Then,  $\max_{x \in \gamma} \{\min\{|x-a|, |x-b|\}\} = \frac{|a-b|}{2}$ . Thus for any  $\varepsilon > 0$ , there exists a positive constant  $\delta$  such that

(4.9) 
$$\max\{\min\{|x-a|, |x-b|\} | \operatorname{dist}(x, \gamma) \le \delta\} \le \frac{|a-b|}{2}(1+\varepsilon).$$

It follows from Proposition 3.4 that

(4.10) 
$$|\psi_0|^2 \ge C \exp(-\sqrt{-e_0}h^{-\beta}|a-b|(1+\varepsilon)),$$

for  $x \in T_{\varepsilon} := \{x | \operatorname{dist}(x, \gamma) \leq \delta\}$ . Taking  $T_{\varepsilon}$  sufficiently small if necessary, we can find smooth coordinates  $y = (y_1, y_{\perp})$  so that

$$T_{\varepsilon} = \{ y | |y_{\perp}| \le 1 \},$$

$$\gamma \subset \{y \mid y_\perp = 0\},\$$

and a = (0,0), b = (1,0). Since these coordinates are smooth and  $\gamma$  is a straight segment from a to b, we can find C > 0 such that for sufficiently small h,

$$\begin{aligned} \{y \mid y_1 &= 0, |y_{\perp}| \le Ch^{\beta}\} \subset \{x \mid |x - a| \le h^{\beta}\}, \\ \{y \mid y_1 &= 1, |y_{\perp}| \le Ch^{\beta}\} \subset \{x \mid |x - b| \le h^{\beta}\}. \end{aligned}$$

Let  $T^{(h)} := \{y \mid |y_{\perp}| \le Ch^{\beta}\}$ . From Lemma 4.1 and the definition of  $g_h$ ,

$$\begin{split} E_1 - E_0 &= h^2 \int |\nabla g_h|^2 |\psi_0|^2 dx \\ &\geq h^2 \int_{T^{(h)}} |\nabla g_h|^2 |\psi_0|^2 dx. \end{split}$$

We substitute (4.10) into this and change the variables from x to y. Since the Jacobian is bounded above and below,  $\left|\frac{\partial g_h}{\partial x}\right|$  is bounded from below by  $C\left|\frac{\partial g_h}{\partial y}\right|$ . Therefore,

(4.11) 
$$E_1 - E_0 \ge C \exp(-\sqrt{-e_0}h^{-\beta}|a-b|(1+\varepsilon))$$
$$\int_{|y_\perp| \le Ch^\beta} dy_\perp \int_0^1 dy_1 \left|\frac{\partial g_h}{\partial y}\right|^2$$

On the other hand,

(4.12) 
$$|g_h(0, y_{\perp}) - g_h(1, y_{\perp})|^2 = \left| \int_0^1 dy_1(\frac{\partial g_h}{\partial y_1})(y_1, y_{\perp}) \right|^2 \\ \leq \int_0^1 dy_1 \left| \frac{\partial g_h}{\partial y} \right|^2.$$

The last inequality is due to the Schwarz inequality. By Lemma 4.3, if  $|y_{\perp}| \leq Ch^{\beta}$ , the LHS of (4.12) is bounded from below by  $(2C)^2$ . Therefore, we get

$$E_1 - E_0 \ge Ch^{\beta(d-1)} exp(-\sqrt{-e_0}h^{-\beta}|a-b|(1+\varepsilon)). \square$$

### 5. Appendix. The periodic potential

It is known that if the periodic potential have negative singularities, the spectrum of the Schrödinger operator have the band structure. We will see that the width of the lowest band have an asymptotic similar to that of Theorem 5'. The strategy is based on that in [8].

Assumptions of V(x).

- (1) There are  $a_1, a_2, \dots, a_d \in \mathbf{R}^d$ , mutually independent, such that  $V(x + a_j) = V(x) \ (j = 1, \dots, d).$
- (2) V(x) has an asymptotic expansion around  $a \in L := \{n_j a_j; n_j = 0, \pm 1, \dots\}$  in the following form,

$$V(x) \sim -\frac{1}{|x-a|^{\rho+1}} \sum_{|\alpha|=1}^{\infty} a_{\alpha} (x-a)^{\alpha}.$$

 $\begin{array}{ll} (3) \ V(x) \in C^{\infty}({\bf R}^d \setminus L) \\ (4) \ \textit{ If } d \leq 3, \ \rho < d/2. \ \textit{ If } d \geq 4, \ \rho < 2. \end{array}$ 

Now we shall decompose  $H(h) := -h^2 \triangle + V(x)$  on  $L^2(\mathbf{R}^d)$  into the direct integral.

DEFINITION.

- (1) We say a mesurable set  $C \subset \mathbf{R}^d$  is a fundamental cell if and only if, (a) For any  $a \in L$ , C + a and C are disjoint. (b)  $\mathbf{R}^d \setminus \bigcup_{a \in L} (a + C)$  has measure zero.
- (2) A fundamental cell W is a Wigner-Seitz cell if and only if,  $W = \{x \mid x \text{ is the nearest point to the origin among all } a \in L$ with respect to the Euclidian metric $\}$ .
- (3) We define the dual lattice of L (denoted by  $L^*$ ) if and only if,

$$k \in L^* \Leftrightarrow \frac{1}{2\pi} k \cdot a \in \mathbf{Z} \text{ for any } a \in L.$$

(4) The Brillouin zone B is defined as the Wigner Seitz cell of  $L^*$ .

We take any fundamental cell C. For each  $k \in B$ , we define the Hilbert space  $\mathcal{H}_k$  as follows:

$$\mathcal{H}_k := \{ f \in L^2_{loc} \mid f(x+a) = e^{ik \cdot a} f(x), \text{ for all } a \in L \}.$$

For  $f, g \in \mathcal{H}_k$ , we define the inner product:

$$\langle f,g \rangle := \int_C \overline{f(x)}g(x)dx.$$

For  $g \in L^2(\mathbf{R}^d)$ , we define  $f_k \in \mathcal{H}_k$ , using the Fourier transform by

$$\widehat{f_k(l)} = c \sum_{K \in L^*} \widehat{g(l)} \delta(l - k - K),$$

where  $c = (2\pi)^{d/2} [vol \ C]^{-1/2}$ . This gives an isomorphism between  $L^2(\mathbf{R}^d)$ and  $\int_B^{\oplus} \mathcal{H}_k dk$ . The fiber of H is

 $D_k := \{f \in \mathcal{H}_k | \text{ the Laplacian of } f \text{ (in the sense of distribution)} \}$ 

belongs to  $\mathcal{H}_k$ .

And for  $f \in D_k$ , we define

$$(H(h;k)f)(x) := -h^2(\Delta f)(x) + V(x)f(x).$$

From the Assumptions, H(h; k) is self-adjoint on  $D_k$ , and has compact resolvent, and

$$H(h) = \int_B^{\oplus} H(h;k) dk.$$

Let  $\varepsilon_0(h;k) \leq \varepsilon_1(h;k) \leq \cdots$  denote the spectrum of H(h;k). Hence,  $b_n(h) := \bigcup_{k \in B} \varepsilon_n(h;k)$  is the n-th band of H. The similar argument as Theorem 1 proves (for details, see [8])

THEOREM A.1. Let  $e_0 \leq e_1 \leq \cdots$  be the eigenvalues of  $h_0 := -\triangle - \frac{1}{|x|^{\rho+1}} \sum_{|\alpha|=1} a_{\alpha} x^{\alpha}$ . It follows that

$$\lim_{h \downarrow 0} h^{\alpha} \varepsilon_n(h;k) = e_n, \quad \alpha = \frac{2\rho}{2-\rho}$$

and the convergence is uniform with respect to k.

We see from Theorem A.1, that the width of each band behaves  $|b_n(h)| \to 0$  as h tends to zero. We shall estimate  $|b_0(h)|$  in more detail.

THEOREM A.2. For any  $\varepsilon > 0$ , there exist two positive constants  $C_{1,\varepsilon}$ and  $C_{2,\varepsilon}$  such that

$$C_{1,\varepsilon} \exp\left(-\frac{\sqrt{-e_0}}{h^{\beta}} \min_{a \in L} |a|(1+\varepsilon)\right)$$
  
$$\leq |b_0(h)| \leq C_{2,\varepsilon} \exp\left(-\frac{\sqrt{-e_0}}{h^{\beta}} \min_{a \in L} |a|(1-\varepsilon)\right),$$

where  $\beta = \frac{2}{2-\rho}$ .

The method of its proof is basically the same as [8]. To prove Theorem A.2, we need the exponential decay of the eigenfunction  $\psi_0$  associated to the lowest eigenvalue of H(h; 0).

THEOREM A.3. For any  $\varepsilon > 0$ ,  $\kappa > 0$ , there exist two positive constants  $C_{\varepsilon,\kappa}$  and  $C_{\varepsilon}$  such that

$$\psi_0 \le C_{\varepsilon,\kappa} \exp\left(-\frac{\sqrt{-e_0}}{h^\beta} \min_{a \in L} |x-a|(1-\varepsilon)\right) \quad on \ \min_{a \in L} |x-a| > \kappa,$$

and

$$\psi_0 \ge C_{\varepsilon} \exp\left(-\frac{\sqrt{-e_0}}{h^{\beta}} \min_{a \in L} |x-a|(1+\varepsilon)\right).$$

Acknowledgements. The author is deeply thankful to Proffesor S. Nakamura for his fruitful discussions.

#### References

- Simon, B., Semi-Classical Analysis of Low Lying Eigenvalues I, Non-degenerate Minima: Asymptotic expansions, Ann. Inst. Henri-Poincaré 38 (1983), 295– 307.
- [2] Simon, B., Semi-Classical Analysis of Low Lying Eigenvalues II, Tunneling, Ann. of Math. 120 (1984), 89–118.
- [3] Simon, B., Schrödinger Semigroups, Bull. AMS 7 (1982), 447–526.

- [4] Helffer, B. and J. Sjöstrand, Multiple Wells in the Semi Classical Limit I, Comm. P. D. E. 9 (1984), 337–408.
- [5] Combes, J. M., Duclos, P. and R. Seiler, Kreinś formula and one dimensional multiple well, J. Funct. Anal. 52 (1983), 257–301.
- [6] Combes, J. M., Duclos, P. and R. Seiler, Convergent Expansions for Tunneling, Comm. Math. Phys. 92 (1983), 229–245.
- [7] Cycon, H. L., Froese, R. G., Kirsch, W. and B. Simon, Schrödinger Operators, T. M. P., Springer Verlag, New York, 1986.
- [8] Simon, B., Semi-Classical Analysis of Low Lying Eigenvalues III, Width of Ground State Band, Ann. of Phys. 158 (1984), 415–420.

(Received January 20, 1994)

Department of Mathematical Sciences University of Tokyo 7-3-1 Hongo Bunkyoku, Tokyo 113 Japan