A bifurcation of multiple eigenvalues and eigenfunctions for boundary value problems in a domain with a small hole

By Nguyen Minh Tri

Dedicated to Professor Sigeru Mizohata

Abstract

In the present paper we study the asymptotic expansion of the multiple eigenvalues and eigenfunctions for boundary value problems in a domain with a small hole. We prove the bifurcation of these eigenvalues under certain conditions.

1. Introduction and main results

The purpose of this article is to study asymptotic formula of multiple eigenvalues and eigenfunctions for boundary value problems in a domain with a small hole. Let Ω be a bounded domain with smooth boundary in \mathbb{R}^{3} and $\{0\} \in \Omega$. Let B_{1} be the unit ball in \mathbb{R}^{3}. We consider the following problem :

$$
\begin{align*}
& \Delta u(x, \varepsilon)+\lambda(\varepsilon) u(x, \varepsilon)=0, \quad \text { in } \Omega_{\varepsilon}=\Omega \backslash \varepsilon B_{1} \tag{1}\\
& \left.u(x, \varepsilon)\right|_{\partial \Omega_{\varepsilon}}=0 \tag{2}
\end{align*}
$$

All the eigenvalues of (1)-(2) may be put in non-decreasing order $0<$ $\lambda_{1}(\varepsilon)<\lambda_{2}(\varepsilon) \leq \lambda_{3}(\varepsilon) \cdots$. The first eigenvalue is always simple (see [1]). The eigenvalue from $\lambda_{2}(\varepsilon)$ may be multiple. We shall study the behavior of

[^0]the functions $\lambda_{n}(\varepsilon)$ when $\varepsilon \rightarrow 0(n \geq 2)$. The problem (1)-(2) is connected closely with following one in the limit case :
\[

$$
\begin{align*}
& \Delta u(x)+\lambda u(x)=0, \quad \text { in } \Omega \tag{3}\\
& \left.u(x)\right|_{\partial \Omega}=0 . \tag{4}
\end{align*}
$$
\]

All the eigenvalues of (3)-(4) may be also put in non-decreasing order $0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \ldots$. It is well-known that $\lim _{\varepsilon \rightarrow 0} \lambda_{j}(\varepsilon)=\lambda_{j}$ (see[2]). Let λ_{j} be a simple eigenvalue. In the work [2], [3] Ozawa S. obtained the statement :

$$
\lambda_{j}(\varepsilon)=\lambda_{j}+4 \pi u_{j}^{2}(0) \varepsilon+C_{j} \varepsilon^{2}+0\left(\varepsilon^{5 / 2}\right) \quad(\varepsilon \rightarrow 0)
$$

where $u_{j}(x)$ is the normed eigenfunction corresponding to λ_{j} and where C_{j} is a constant explicitly calculated.

We shall find a full asymptotic formula of $\lambda_{j}(\varepsilon)$ in a form $\lambda_{j}(\varepsilon)=$ $\sum_{i=0}^{\infty} \lambda_{j}^{<i>} \varepsilon^{i}$ and corresponding eigenfunctions $u_{j}(x, \varepsilon)$ in a form :

$$
u_{j}(x, \varepsilon)=\sum_{k=0}^{\infty}\left(m_{k j}(x)+n_{k j}(\xi)\right) \varepsilon^{k}
$$

where $\xi=x \varepsilon^{-1}$. The functions $m_{k j}(x)$ and $n_{k j}(\xi)$ have asymptotic expansions

$$
\begin{equation*}
m_{k j}(x)=\sum_{i=0}^{N} m_{k j}^{<i>}(\theta) \cdot|X|^{i}+\tilde{m}_{k j}^{<N>}(x) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
n_{k j}(\xi)=\sum_{i=1}^{N} n_{k j}^{<i>}(\theta) \cdot|\xi|^{-i}+\tilde{n}_{k j}^{<N>}(\xi) \tag{6}
\end{equation*}
$$

where $\left|D_{x}^{\alpha} \tilde{m}_{k j}^{<N>}(x)\right| \leq C_{N, k, \alpha, j}|x|^{-N+1-|\alpha|}$

$$
\left|D_{\xi}^{\alpha} \tilde{n}_{k j}^{<N>}(\xi)\right| \leq C_{N, k, \alpha, j}|\xi|^{-N-1-|\alpha|}
$$

$\theta=\left(\theta_{1}, \theta_{2}\right)$ denotes coordinates on S^{2} and $m_{k j}^{<i>}(\theta), n_{k j}^{<i>}(\theta)$ are smooth functions on S^{2}. In the paper [4] Mazia V.G., Nazarov S.A.,
B.A.Plamenevskii found a full asymptotic formula for simple eigenvalues. Let λ_{j} be a simple eigenvalue of the problem (3)-(4). Then we have the following expansion for $\lambda_{j}(\varepsilon)$:

$$
\lambda_{j}(\varepsilon)=\lambda_{j}+4 \pi u_{j}^{2}(0) \varepsilon+\lambda_{j}^{<2>} \varepsilon^{2}+\ldots+\lambda_{j}^{<M>} \varepsilon^{M}+0\left(\varepsilon^{M+1}\right)
$$

where M is any positive integer number. In the article [5] the author obtained the

Theorem. Let λ_{j} be a double eigenvalue of (3)-(4). It corresponds two orthonormal eigenfunctions $u_{j}(x), u_{j+1}(x)$. Assume that $u_{j}^{2}(0)+u_{j+1}^{2}(0)>$ 0 , then we have a formula for the eigenvalues $\lambda_{j}(\varepsilon) \leq \lambda_{j+1}(\varepsilon)$ (respectively)

$$
\lambda_{j+k}(\varepsilon)=\sum_{i=0}^{M} \lambda_{j+k}^{<i>} \varepsilon^{i}+0\left(\varepsilon^{M+1}\right) \quad k=0,1
$$

Furthemore $\lambda_{j}^{<0>}=\lambda_{j+1}^{<0>}=\lambda_{j}, \lambda_{j}^{<1>}=0, \lambda_{j+1}^{<1>}=4 \pi\left(u_{j}^{2}(0)+u_{j+1}^{2}(0)\right)$.
Remark. It is easy to see that the sum $\left(u_{j}^{2}(0)+u_{j+1}^{2}(0)\right)$ is invariant under any orthogonal transformations in the plane $\left(u_{j}, u_{j+1}\right)$.

Corollary. Assume that $\left(u_{j}^{2}(0)+u_{j+1}^{2}(0)\right)>0$. Then the eigenvalues $\lambda_{j}(\varepsilon), \lambda_{j+1}(\varepsilon)$ are simple and different as $\varepsilon \rightarrow 0$.

In the present paper the author continue the studies in [2]-[5]. We shall consider the case when λ_{j} is a double or triple eigenvalues. Let λ_{j} be a double and $u_{j}(0)=u_{j+1}(0)=0$. We expand $u_{j}(x), u_{j+1}(x)$ in series :

$$
u_{j+k}(x)=u_{j+k}^{<1>}(\theta) r+u_{j+k}^{<2>}(\theta) r^{2}+\ldots+u_{j+k}^{<M>}(\theta) r^{M}+0\left(r^{M+1}\right) \quad(r \rightarrow 0)
$$

where $k=0,1$ and $r=|x|$.
One can write the Laplace operator in the spherical coordinates

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \quad \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Delta_{S^{2}}
$$

where- $\Delta_{S^{2}}$ is the Laplace - Beltrami operator on sphere. Since the functions $u_{j}(x), u_{j+1}(x)$ are the eigenfunctions, it follows that $u_{j}^{<1>}(\theta), u_{j+1}^{<1>}(\theta)$ satisfy the equations (see [6]) :

$$
\Delta_{S^{2}} u_{j+k}^{<1>}(\theta)+2 u_{j+k}^{<1>}(\theta)=0 \quad(k=0,1)
$$

Therefore we have the indentities

$$
u_{j+k}^{<1>}(\theta)=a_{j+k}^{<1>} A_{1}(\theta)+a_{j+k}^{<2>} A_{2}(\theta)+a_{j+k}^{<3>} A_{3}(\theta) \quad(k=0,1)
$$

where $A_{1}(\theta), A_{2}(\theta), A_{3}(\theta)$ denote orthonormal eigenfunctions of $\Delta_{S^{2}}$ with the eigenvalue 2.

Theorem 1. Let λ_{j} be a double eigenvalue and $u_{j}(0)=u_{j+1}(0)=0$. Assume that

$$
T_{j}:=\left|\sum_{i=1}^{3}\left[a_{j}^{(i)}\right]^{2}-\sum_{i=1}^{3}\left[a_{j+1}^{(i)}\right]^{2}\right|+\left|\sum_{i=1}^{3} a_{j}^{(i)} a_{j+1}^{(i)}\right| \neq 0
$$

Then we have the expansions for $\lambda_{j}(\varepsilon) \leq \lambda_{j+1}(\varepsilon) \quad$ (resp.)
(7) $\lambda_{j+k}(\varepsilon)=\lambda_{j}+\lambda_{j+k}^{<3>} \varepsilon^{3}+\lambda_{j+k}^{<4>} \varepsilon^{4}+\cdots+\lambda_{j+k}^{<M>} \varepsilon^{M}+0\left(\varepsilon^{M+1}\right) \quad(\varepsilon \rightarrow 0)$ where $k=0,1$ and $\lambda_{j}^{<3>}<\lambda_{j+1}^{<3>}$.

Corollary 1. Assume that $u_{j}(0)=u_{j+1}(0)=0, T_{j} \neq 0$, then $\lambda_{j}(\varepsilon)$, $\lambda_{j+1}(\varepsilon)$ are simple and different as $\varepsilon \rightarrow 0$.

Remark. The condition $T_{j} \neq 0$ is equivalent to the following condition : the matrix

$$
\left(\begin{array}{ll}
\left(u_{j}^{<1>}(\theta), u_{j}^{<1>}(\theta)\right)_{L^{2}\left(\partial B_{1}\right)} & \left(u_{j}^{<1>}(\theta), u_{j+1}^{<1>}(\theta)\right)_{L^{2}\left(\partial B_{1}\right)} \\
\left(u_{j}^{<1>}(\theta), u_{j+1}^{<1>}(\theta)\right)_{L^{2}\left(\partial B_{1}\right)} & \left(u_{j+1}^{<1>}(\theta), u_{j+1}^{<1>}(\theta)\right)_{L^{2}\left(\partial B_{1}\right)}
\end{array}\right)=: M
$$

has two different eigenvalues. In the future it is easy to see that $3^{-1} \lambda_{j}^{<3>}$, $3^{-1} \lambda_{j+1}^{<3>}$ are the eigenvalues of the matrix M.

Now let λ_{j} are a triple eigenvalue of the problems (3)-(4). It corresponds three orthonormal functions $u_{j}(x), u_{j+1}(x), u_{j+2}(x)$. Assume that
$u_{j}^{2}(0)+u_{j+1}^{2}(0)+u_{j+2}^{2}(0) \neq 0$. Then we can always choose 3 functions $u_{j}^{*}(x), u_{j+1}^{*}(x), u_{j+2}^{*}(x)$ in the plane $\left(u_{j}(x), u_{j+1}(x), u_{j+2}(x)\right)$ such that

$$
\begin{gathered}
u_{j+k}^{*}(x)=u_{j+k}^{*<1>}(\theta)|x|+u_{j+k}^{*<2>}(\theta)|x|^{2}+\cdots+u_{j+k}^{*<M>}(\theta)|x|^{M}+0\left(|x|^{M+1}\right) \\
\left(u_{j+i}^{*}(x), u_{j+k}^{*}(x)\right)_{L^{2}(\Omega)}=\delta_{i k} \quad(i, k=0,1,2), u_{j}^{*}(0)=u_{j+1}^{*}(0)=0 \\
u_{j+2}^{* 2}(0)=u_{j}^{2}(0)+u_{j+1}^{2}(0)+u_{j+2}^{2}(0)
\end{gathered}
$$

TheOrem 2. Let λ_{j} be a triple eigenvalue of (3)-(4). Assume that $u_{j+2}^{*}(0) \neq 0$ and the matrix

$$
\left(\begin{array}{ll}
\left(u_{j}^{*<1>}(\theta), u_{j}^{*<1>}(\theta)\right)_{L^{2}\left(\partial B_{1}\right)} & \left(u_{j}^{*<1>}(\theta), u_{j+1}^{*<1>}(\theta)\right)_{L^{2}\left(\partial B_{1}\right)} \\
\left(u_{j}^{*<1>}(\theta), u_{j+1}^{*<1>}(\theta)\right)_{L^{2}\left(\partial B_{1}\right)} & \left(u_{j+1}^{*<1>}(\theta), u_{j+1}^{* * 1>}(\theta)\right)_{L^{2}\left(\partial B_{1}\right)}
\end{array}\right)=: M^{*}
$$

has two different eigenvalues. Then we have the asymptotic formula for $\lambda_{j}(\varepsilon) \leq \lambda_{j+1}(\varepsilon) \leq \lambda_{j+2}(\varepsilon)$

$$
\begin{aligned}
& \lambda_{j+k}(\varepsilon)=\lambda_{j}+\lambda_{j+k}^{<3>} \varepsilon^{3}+\lambda_{j+k}^{<4>} \varepsilon^{4}+\cdots+\lambda_{j+k}^{<M>} \varepsilon^{M}+0\left(\varepsilon^{M+1}\right) \quad(\varepsilon \rightarrow 0) \\
& \lambda_{j+2}(\varepsilon)=\lambda_{j}+4 \pi\left[u_{j+2}^{*}(0)\right]^{2} \varepsilon+\lambda_{j+2}^{<2>} \varepsilon^{2}+\cdots+\lambda_{j+2}^{<M>} \varepsilon^{M}+0\left(\varepsilon^{M+1}\right)
\end{aligned}
$$

$$
(\varepsilon \rightarrow 0)
$$

where $k=0,1$, and $\lambda_{j}^{<3>}<\lambda_{j+1}^{<3>}$.
Corollary 2. If $u_{j+2}^{*}(0) \neq 0$ and the matrix M^{*} has two different eigenvalues, then the eigenvalues $\lambda_{j}(\varepsilon), \lambda_{j+1}(\varepsilon), \lambda_{j+2}(\varepsilon)$ are simple and different when $\varepsilon \rightarrow 0$.

2. A process of finding the full asymptotic formula of the eigenvalues and the eigenfunctions A.
 The case of double eigenvalues :

Put $\lambda_{j+k}(\varepsilon)$ from (7) into (1) and (2) :

$$
\left[(\Delta + \lambda _ { j } + \lambda _ { j } ^ { < 1 > } \varepsilon + \lambda _ { j } ^ { < 2 > } \varepsilon ^ { 2 } + \lambda _ { j } ^ { < 3 > } \varepsilon ^ { 3 } + 0 (\varepsilon ^ { 4 })] \left[\left(u_{j o}+v_{j o}\right)+\varepsilon\left(u_{j 1}+v_{j 1}\right)+\right.\right.
$$

(8) $\left.+\varepsilon^{2}\left(u_{j 2}+v_{j 2}\right)+\varepsilon^{3}\left(u_{j 3}+v_{j 3}\right)+\varepsilon^{4}\left(u_{j 4}+v_{j 4}\right)+0\left(\varepsilon^{5}\right)\right]=0$ in Ω_{ε}
(9) $\left.\left[\left(u_{j o}+v_{j o}\right)+\varepsilon\left(u_{j 1}+v_{j 1}\right)+\varepsilon^{2}\left(u_{j 2}+v_{j 2}\right)+\cdots+0\left(\varepsilon^{5}\right)\right]\right|_{\partial \Omega_{\varepsilon}}=0$

$$
\left[(\Delta + \lambda _ { j } + \lambda _ { j + 1 } ^ { < 1 > } \varepsilon + \lambda _ { j + 1 } ^ { < 2 > } \varepsilon ^ { 2 } + \lambda _ { j + 1 } ^ { < 3 > } \varepsilon ^ { 3 } + 0 (\varepsilon ^ { 4 })] \left[\left(p_{j o}+q_{j o}\right)+\varepsilon\left(p_{j 1}+q_{j 1}\right)+\right.\right.
$$

(10) $\left.+\varepsilon^{2}\left(p_{j 2}+q_{j 2}\right)+\varepsilon^{3}\left(p_{j 3}+q_{j 3}\right)+\varepsilon^{4}\left(p_{j 4}+q_{j 4}\right)+0\left(\varepsilon^{5}\right)\right]=0$ in Ω_{ε}
(11) $\left.\left[\left(p_{j o}+q_{j o}\right)+\varepsilon\left(p_{j 1}+q_{j 1}\right)+\varepsilon^{2}\left(p_{j 2}+q_{j 2}\right)+\cdots+0\left(\varepsilon^{5}\right)\right]\right|_{\partial \Omega_{\varepsilon}}=0$
where

$$
\begin{aligned}
u_{j}(x, \varepsilon) & =\left[\left(u_{j o}+v_{j o}\right)+\varepsilon\left(u_{j 1}+v_{j 1}\right)+\varepsilon^{2}\left(u_{j 2}+v_{j 2}\right)+\ldots\right] \\
u_{j+1}(X, \varepsilon) & =\left[\left(p_{j 0}+q_{j 0}\right)+\varepsilon\left(p_{j 1}+q_{j 1}\right)+\varepsilon^{2}\left(p_{j 2}+q_{j 2}\right)+\ldots\right]
\end{aligned}
$$

denote eigenfunctions corresponding to $\lambda_{j}(\varepsilon), \lambda_{j+1}(\varepsilon)$. Functions $u_{j 0}(x)$, $u_{j 1}(x), \ldots, p_{j 0}(x), p_{j 1}(x), \ldots$ are defined in Ω and they keep an asymptotic expansion as the functions $m_{k j}(x)$ from (5). Functions $v_{j 0}(\xi), v_{j 1}(\xi)$, $q_{j 0}(\xi), q_{j 1}(\xi), \ldots$ are defined in $\mathbb{R}^{3} \backslash B_{1}$ and they keep an asymptotic expansions as the function $n_{k j}(\xi)$ from (6). In the following we shall write $u_{0}(x), u_{1}(x), \ldots, p_{0}(x), p_{1}(x), \ldots, v_{0}(\xi), v_{1}(\xi), \ldots, q_{0}(\xi), q_{1}(\xi), \ldots$ for $u_{j 0}(x), u_{j 1}(x), \ldots, \quad p_{j 0}(x), p_{j 1}(x), \ldots, \quad v_{j 0}(\xi), v_{j 1}(\xi), \ldots, q_{j 0}(\xi), q_{j 1}(\xi), \ldots$ Comparing the coefficients in the identical orders of ε in (8)-(11) one obtain :

$$
\begin{aligned}
& \varepsilon^{0}\left\{\begin{array}{l}
\Delta u_{0}(x)+\lambda_{j} u_{0}(x)=0, \quad \text { in } \Omega \\
\left.u_{0}(x)\right|_{\partial \Omega}=0
\end{array}\right. \\
& \varepsilon^{0}\left\{\begin{array}{l}
\Delta p_{0}(x)+\lambda_{j} p_{0}(x)=0, \quad \text { in } \Omega \\
\left.p_{0}(x)\right|_{\partial \Omega}=0
\end{array}\right.
\end{aligned}
$$

Hence $u_{0}(x)=a_{0}^{1} u_{j}(x)+a_{0}^{2} u_{j+1}(x), p_{0}(x)=b_{0}^{1} u_{j}(x)+b_{0}^{2} u_{j+1}(x)$. Since $\Delta_{\xi}=\varepsilon^{2} \Delta_{x}$ then

$$
\varepsilon^{-2}\left\{\begin{array} { l }
{ \Delta v _ { 0 } (\xi) = 0 , \quad \text { in } \mathbb { R } ^ { 3 } \backslash B _ { 1 } } \\
{ v _ { 0 } (\xi) | _ { \partial B _ { 1 } } = 0 } \\
{ \operatorname { l i m } _ { | \xi | \rightarrow \infty } v _ { 0 } (\xi) = 0 }
\end{array} \quad \varepsilon ^ { - 2 } \left\{\begin{array}{l}
\Delta q_{0}(\xi)=0, \quad \text { in } \mathbb{R}^{3} \backslash B_{1} \\
\left.q_{0}(\xi)\right|_{\partial B_{1}}=0 \\
\lim _{|\xi| \rightarrow \infty} q_{0}(\xi)=0 .
\end{array}\right.\right.
$$

Therefore $v_{0}(\xi)=q_{0}(\xi)=0$ and

$$
\begin{align*}
& \Delta u_{1}(x)+\lambda_{j} u_{1}(x)+\lambda_{j}^{<1>} u_{0}(x)=0, \quad \text { in } \Omega \tag{12}\\
& \left.u_{1}(X)\right|_{\partial \Omega}=0 \tag{13}
\end{align*}
$$

$$
\begin{align*}
& \Delta p_{1}(x)+\lambda_{j} p_{1}(x)+\lambda_{j+1}^{<1>} p_{0}(x)=0, \quad \text { in } \Omega \tag{14}\\
& \left.p_{1}(x)\right|_{\partial \Omega}=0 \tag{15}
\end{align*}
$$

For the solvability of the problems (12)-(15) we have $\lambda_{j}^{<1>}=\lambda_{j+1}^{<1>}=0$. Hence $u_{1}(x)=a_{1}^{1} u_{j}(x)+a_{1}^{2} u_{j+1}(x)$ and $p_{1}(x)=b_{1}^{1} u_{j}(x)+b_{1}^{2} u_{j+1}(x)$. Assume that under some conditions the eigenvalues $\lambda_{j}(\varepsilon)<\lambda_{j+1}(\varepsilon)$ for sufficiently small ε. In the process of finding the asymptotic formula that condition will be clear. If it happens, then we have $u_{0}{ }^{\perp} p_{0}$, i.e. if $u_{0}=$ $a_{0}^{1} u_{j}+a_{0}^{2} u_{j+1}$, so $p_{0}=-a_{0}^{2} u_{j}+a_{0}^{1} u_{j+1}$. Hence one can choose $u_{1}(x)=$ $c_{1} p_{0}(x)$ and $p_{1}(x)=d_{1} u_{0}(x)$. Suppose the functions $u_{1}(x)$ and $p_{1}(x)$ are found. Then the functions $v_{1}(\xi), q_{1}(\xi)$ satisfy :

$$
\begin{aligned}
& \varepsilon^{-1}\left\{\begin{array}{l}
\Delta v_{1}(\xi)=0, \quad \text { in } \mathbb{R}^{3} \backslash B_{1} \\
\left.v_{1}(\xi)\right|_{\partial B_{1}}=-\left(\operatorname{grad} u_{0}(0), \xi\right)=:-A_{1}(\theta) \\
\lim _{|\xi| \rightarrow \infty} v_{1}(\xi)=0
\end{array}\right. \\
& \varepsilon^{-1}\left\{\begin{array}{l}
\Delta q_{1}(\xi)=0, \quad \text { in } \mathbb{R}^{3} \backslash B_{1} \\
\left.q_{1}(\xi)\right|_{\partial B_{1}}=-\left(\operatorname{grad} p_{0}(0), \xi\right)=:-A_{2}(\theta) \\
\lim _{|\xi| \rightarrow \infty} q_{1}(\xi)=0
\end{array}\right.
\end{aligned}
$$

If $v_{1}(\xi), q_{1}(\xi)$ are found we can find $u_{2}(x)$ and $p_{2}(x)$ from

$$
\begin{align*}
& \Delta u_{2}(x)+\lambda_{j} u_{2}(x)+\lambda_{j}^{<2>} u_{0}(x)=0, \quad \text { in } \Omega \tag{16}\\
& \left.u_{2}(x)\right|_{\partial \Omega}=0 \tag{17}
\end{align*}
$$

$$
\begin{align*}
& \Delta p_{2}(x)+\lambda_{j} p_{2}(x)+\lambda_{j+1}^{<2>} p_{0}(x)=0, \quad \text { in } \Omega \tag{18}\\
& \left.p_{2}(x)\right|_{\partial \Omega}=0 . \tag{19}
\end{align*}
$$

From the solvability of (16)-(19) we deduce that $\lambda_{j}^{<2>}=\lambda_{j+1}^{<2>}=0$. Therefore one can choose $u_{2}(x)=c_{2} p_{0}(x), p_{2}(x)=d_{2} u_{0}(x)$. The functions $v_{2}(\xi)$ and $q_{2}(\xi)$ satisfy :

$$
\left\{\begin{array} { l }
{ \Delta v _ { 2 } (\xi) = 0 , \quad \text { in } \mathbb { R } ^ { 3 } \backslash B _ { 1 } } \\
{ v _ { 2 } (\xi) | _ { \partial B _ { 1 } } = - c _ { 1 } A _ { 2 } (\theta) - B _ { 1 } (\theta) , } \\
{ \operatorname { l i m } _ { | \xi | \rightarrow \infty } v _ { 2 } (\xi) = 0 }
\end{array} \quad \left\{\begin{array}{l}
\Delta q_{2}(\xi)=0, \quad \text { in } \mathbb{R}^{3} \backslash B_{1} \\
\left.q_{2}(\xi)\right|_{\partial B_{1}}=-d_{1} A_{1}(\theta)-B_{2}(\theta) \\
\lim _{|\xi| \rightarrow \infty} q_{2}(\xi)=0
\end{array}\right.\right.
$$

where $B_{1}(\theta)=\left.\sum_{i k=1}^{3} \frac{\partial^{2} u_{0}(0)}{\partial x_{i} \partial x_{k}} \xi_{i} \xi_{k}\right|_{\partial B_{1}}, B_{2}(\theta)=\left.\sum_{i k=1}^{3} \frac{\partial^{2} p_{0}(0)}{\partial x_{i} \partial x_{k}} \xi_{i} \xi_{k}\right|_{\partial B_{1}}$.
Note that $\Delta_{s^{2}} B_{1}(\theta)+6 B_{1}(\theta)=0$ and $\Delta_{s^{2}} B_{2}(\theta)+6 B_{2}(\theta)=0$. It follows that

$$
v_{2}(\xi)=-c_{1} A_{2}(\theta)|\xi|^{-2}-B_{1}(\theta)|\xi|^{-3}, q_{2}(\xi)=-d_{1} A_{1}(\theta)|\xi|^{-2}-B_{2}(\theta)|\xi|^{-3}
$$

Then $u_{3}(x), p_{3}(x)$ satisfy:

$$
\begin{align*}
& \Delta\left\{u_{3}-A_{1}(\theta)|x|^{-2}\right\}+\lambda_{j}\left\{u_{3}-A_{1}(\theta)|x|^{-2}\right\}+\lambda_{j}^{<3>} u_{0}=0 \tag{20}\\
& \left.\left\{u_{3}-A_{1}(\theta)|x|^{-2}\right\}\right|_{\partial \Omega}=0 \tag{21}
\end{align*}
$$

$$
\begin{align*}
& \Delta\left\{p_{3}-A_{2}(\theta)|x|^{-2}\right\}+\lambda_{j}\left\{p_{3}-A_{2}(\theta)|x|^{-2}\right\}+\lambda_{j+1}^{(3)} p_{0}=0 \tag{22}\\
& \left.\left\{p_{3}-A_{2}(\theta)|x|^{-2}\right\}\right|_{\partial \Omega}=0 \tag{23}
\end{align*}
$$

For solvability of (20)-(23) we have

$$
\lambda_{j}^{<3>}=3 \int_{\partial B_{1}} A_{1}^{2}(\theta) d \theta, \lambda_{j+1}^{<3>}=3 \int_{\partial B_{1}} A_{2}^{2}(\theta) d \theta
$$

Note that $A_{1}(\theta)=a_{0}^{1} u_{j}^{<1>}(\theta)+a_{0}^{2} u_{j+1}^{<1>}(\theta)$ and

$$
A_{2}(\theta)=-a_{0}^{2} u_{j}^{<1>}(\theta)+a_{0}^{1} u_{j+1}^{<1>}(\theta)
$$

Multiplying (20) by $u_{j}(x), u_{j+1}(x)$ and integrating over Ω_{ε} then turning $\varepsilon \rightarrow 0$ one obtain :
$\left(M-\frac{\lambda_{j}^{<3>}}{3} I\right)\binom{a_{0}^{1}}{a_{0}^{2}}=0$ (see the definition of M in the introduction).
It means that $3^{-1} \lambda_{j}^{<3>}$ is the eigenvalue of the matrix M and $\left(a_{0}^{1}, a_{0}^{2}\right)$ is its eigenvector. By analogy we can prove $3^{-1} \lambda_{j+1}^{<3>}$ is also eigenvalue of M. Therefore if M has two different eigenvalues then $\lambda_{j}^{<3>}, \lambda_{j+1}^{<3>}$ and $\left(a_{0}^{1}, a_{0}^{2}\right)$ are defined uniquely. So we found $\lambda_{j}^{<3>}, \lambda_{j+1}^{<3>}, u_{0}(x) p_{0}(x), v_{0}(\xi)$,
$q_{0}(\xi), v_{1}(\xi), q_{1}(\xi)$. Continuing this procedure we can find $\lambda_{j}^{<4>}, \lambda_{j+1}^{<4>}, u_{1}(x)$, $p_{1}(x), v_{2}(\xi), q_{2}(\xi)$.

A step of induction : Assume that $\lambda_{j}^{<n+3>}, \lambda_{j+1}^{<n+3>}, u_{n}(x), p_{n}(x)$, $v_{n+1}(\xi), q_{n+1}(\xi)$ are defined. We show how to find the functions $\lambda_{j}^{<n+4>}$, $\lambda_{j+1}^{<n+4>}, u_{n+1}(x), p_{n+1}(x), v_{n+2}(\xi), q_{n+2}(\xi)$. In previous steps we have already known the equations for $u_{n+1}(x), p_{n+1}(x)$ and found the condition for their solvability. However, the solutions are defined non-uniquely. Writing once again these equations :

$$
\begin{aligned}
& \left\{\begin{array}{c}
\Delta u_{n+1}+\sum_{i=0}^{n+1} \lambda_{j}^{<i>} u_{n+1-i}+\sum_{i=0}^{n} \lambda_{j}^{<i>} v_{n-i}^{<1>}(\theta)|x|^{-1}+ \\
\sum_{i=0}^{n-1} \lambda_{j}^{<i>} v_{n-1-i}^{<2>}(\theta)|x|^{-2}=0 \\
\left.\left\{u_{n+1}+\sum_{i=1}^{n+1} v_{n+1-i}^{<i>}(\theta)|x|^{-i}\right\}\right|_{\partial \Omega}=0
\end{array}\right. \\
& \left\{\begin{array}{c}
\Delta p_{n+1}+\sum_{i=0}^{n+1} \lambda_{j+1}^{<i>} p_{n+1-i}+\sum_{i=0}^{n} \lambda_{j+1}^{<i>} q_{n-i}^{<1>}(\theta)|x|^{-1}+ \\
\sum_{i=0}^{n-1} \lambda_{j+1}^{<i>} q_{n-1-i}^{<2>}(\theta)|x|^{-2}=0 \\
\left.\left\{p_{n+1}+\sum_{i=1}^{n+1} q_{n+1-i}^{<i>}(\theta)|x|^{-i}\right\}\right|_{\partial \Omega}=0
\end{array}\right.
\end{aligned}
$$

Suppose that $U_{n+1}(x), P_{n+1}(x)$ are the solutions of the above problem such that

$$
\int_{\Omega} U_{n+1} u_{0} d x=\int_{\Omega} U_{n+1} p_{0} d x=\int_{\Omega} P_{n+1} u_{0} d x=\int_{\Omega} P_{n+1} p_{0} d x=0
$$

A general solution must be found in a form :

$$
u_{n+1}=U_{n+1}+c_{n+1} p_{0}, \quad p_{n+1}=P_{n+1}+d_{n+1} u_{0}
$$

By analogy we should find $u_{n+2}(x), p_{n+2}(x), u_{n+3}(x), p_{n+3}(x)$ in form :

$$
\begin{array}{ll}
u_{n+2}=U_{n+2}+c_{n+2} p_{0}, & p_{n+2}=P_{n+2}+d_{n+2} u_{0} . \\
u_{n+3}=U_{n+3}+c_{n+3} p_{0}, & p_{n+3}=P_{n+3}+d_{n+3} u_{0}
\end{array}
$$

Then $v_{n+2}(\xi), q_{n+2}(\xi)$ satisfy :

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Delta v_{n+2}(\xi)+\sum_{i=0}^{n} \lambda_{j}^{<i>} \tilde{v}_{n-i}^{<2>}(\xi)=0 \\
\left.\left\{v_{n+2}(\theta)+u_{0}^{<n+2>}(\theta)+\cdots+u_{n+2}^{<0>}(\theta)\right\}\right|_{\partial B_{1}}=0 \\
\lim _{|\xi| \rightarrow \infty} v_{n+2}(\xi)=0
\end{array}\right. \\
& \left\{\begin{array}{l}
\Delta q_{n+2}(\xi)+\sum_{i=0}^{n} \lambda_{j+1}^{<i>} \tilde{q}_{n-i}^{<2>}(\xi)=0 \\
\left.\left\{q_{n+2}(\theta)+p_{0}^{<n+2>}(\theta)+\cdots+p_{n+2}^{<0>}(\theta)\right\}\right|_{\partial B_{1}}=0 \\
\lim _{|\xi| \rightarrow \infty} q_{n+2}(\xi)=0 .
\end{array}\right.
\end{aligned}
$$

Therefore $v_{n+2}=V_{n+2}-c_{n+1} A_{2}(\theta)|\xi|^{-2}, q_{n+2}=Q_{n+2}-d_{n+1} A_{1}(\theta)|\xi|^{-2}$. We denote by $V_{n+2}(\xi)$ and $Q_{n+2}(\xi)$ the solutions of the following problems :

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Delta V_{n+2}(\xi)+\sum_{i=0}^{n} \lambda_{j}^{<i>} \tilde{v}_{n-i}^{<2>}(\xi)=0 \\
\left.\left\{V_{n+2}(\theta)+E_{n+2}(\theta)\right\}\right|_{\partial B_{1}}=0 \\
\lim _{|\xi| \rightarrow \infty} V_{n+2}(\xi)=0
\end{array}\right. \\
& \left\{\begin{array}{l}
\Delta Q_{n+2}(\xi)+\sum_{i=0}^{n} \lambda_{j+1}^{<i>} \tilde{q}_{n-i}^{<2>}(\xi)=0 \\
\left.\left\{Q_{n+2}(\theta)+F_{n+2}(\theta)\right\}\right|_{\partial B_{1}}=0 \\
\lim _{|\xi| \rightarrow \infty} Q_{n+2}(\xi)=0
\end{array}\right.
\end{aligned}
$$

where the functions

$$
\begin{aligned}
& E_{n+2}(\theta)=u_{0}^{<n+2>}(\theta)+\cdots+u_{n}^{<2>}(\theta)+U_{n+1}^{<1>}(\theta)+U_{n+2}^{<0>}(\theta) \\
& F_{n+2}(\theta)=p_{0}^{<n+2>}(\theta)+\cdots+p_{n}^{<2>}(\theta)+P_{n+1}^{<1>}(\theta)+P_{n+2}^{<0>}(\theta)
\end{aligned}
$$

are already defined from previous steps.
By analogy we should find $v_{n+3}(\xi), q_{n+3}(\xi)$ in a form

$$
\begin{gathered}
v_{n+3}(\xi)=V_{n+3}(\xi)-c_{n+2} A_{2}(\theta)|\xi|^{-2}-c_{n+1} B_{2}(\theta)|\xi|^{-3} \\
q_{n+3}(\xi)=Q_{n+3}(\xi)-d_{n+2} A_{1}(\theta)|\xi|^{-2}-d_{n+1} B_{1}(\theta)|\xi|^{-3}
\end{gathered}
$$

Finally we write equations for $u_{n+4}(x), p_{n+4}(x)$:

$$
\begin{aligned}
& \left\{\begin{array}{c}
\Delta u_{n+4}+\sum_{i=0}^{n+4} \lambda_{j}^{<i>} u_{n+4-i}+\sum_{i=0}^{n+3} \lambda_{j}^{<i>} v_{n-i+3}^{\ll>}(\theta)|x|^{-1}+ \\
\sum_{i=0}^{n+2} \lambda_{j}^{<i>} v_{n-i+2}^{<2>}(\theta)|x|^{-2}=0 \\
\left.\left\{u_{n+4}+\sum_{i=1}^{n+4} v_{n+4-i}^{<i>}(\theta)|x|^{-i}\right\}\right|_{\partial \Omega}=0
\end{array}\right. \\
& \left\{\begin{array}{c}
\Delta p_{n+4}+\sum_{i=0}^{n+4} \lambda_{j+1}^{<i>} p_{n+4-i}+\sum_{i=0}^{n+3} \lambda_{j+1}^{<i>} q_{n-i+3}^{<1>}(\theta)|x|^{-1}+ \\
\sum_{i=0}^{n+2} \lambda_{j+1}^{<i>} q_{n-i+2}^{<2>}(\theta)|x|^{-2}=0 \\
\left.\left\{p_{n+4}+\sum_{i=1}^{n+4} q_{n+4-i}^{<i>}(\theta)|x|^{-i}\right\}\right|_{\partial \Omega}=0 .
\end{array}\right.
\end{aligned}
$$

Note that $\lambda_{j}^{<0>}=\lambda_{j+1}^{<0>}=\lambda_{j}, \lambda_{j}^{<1>}=\lambda_{j+1}^{<1>}=\lambda_{j}^{<2>}=\lambda_{j+1}^{<2>}=0$. So we have :

$$
\begin{align*}
& \Delta\left\{u_{n+4}(x)-c_{n+1} A_{2}(\theta)|x|^{-2}\right\}+\lambda_{j}\left\{u_{n+4}(x)-c_{n+1} A_{2}(\theta)|x|^{-2}\right\} \\
& \quad+\lambda_{j}^{<3>}\left\{U_{n+1}(x)+c_{n+1} p_{0}(x)\right\}+\lambda_{j}^{<n+4>} u_{0}(x)=G_{n}(x) \tag{24}\\
& \left.\left\{u_{n+4}(x)-c_{n+1} A_{2}(\theta)|x|^{-2}\right\}\right|_{\partial \Omega}=H_{n}(x) \tag{25}
\end{align*}
$$

where the functions $G_{n}(x), H_{n}(x)$ are defined from previous steps. Multiplying (24) by $u_{0}(x), p_{0}(x)$ and integrating over Ω_{ε} as $\varepsilon \rightarrow 0$ we obtain immediately c_{n+1} and $\lambda_{j}^{\langle n+4>}$. By analogy one can find d_{n+1} and $\lambda_{j+1}^{<n+4>}$. Our procedure is ended.

B. The case of a triple eigenvalue

We are interested only in the case of a bifurcation, i.e. $\lambda_{j}(\varepsilon) \leq \lambda_{j+1}(\varepsilon) \leq$ $\lambda_{j+2}(\varepsilon)$ when ε is sufficiently small.

Suppose :
$\lambda_{j+k}(\varepsilon)=\lambda_{j}+\lambda_{j+k}^{<1>} \varepsilon^{1}+\lambda_{j+k}^{<2>} \varepsilon^{2}+\cdots+\lambda_{j+k}^{<M>} \varepsilon^{M}+0\left(\varepsilon^{M+1}\right) \quad(k=0,1,2)$
and

$$
\begin{aligned}
u_{j}(x, \varepsilon) & =\left[\left(u_{0}+v_{0}\right)+\varepsilon\left(u_{1}+v_{1}\right)+\varepsilon^{2}\left(u_{2}+v_{2}\right)+\ldots\right] \\
u_{j+1}(x, \varepsilon) & =\left[\left(p_{0}+q_{0}\right)+\varepsilon\left(p_{1}+q_{1}\right)+\varepsilon^{2}\left(p_{2}+q_{2}\right)+\ldots\right] \\
u_{j+2}(x, \varepsilon) & =\left[\left(r_{0}+s_{0}\right)+\varepsilon\left(r_{1}+s_{1}\right)+\varepsilon^{2}\left(r_{2}+s_{2}\right)+\ldots\right] .
\end{aligned}
$$

Putting $u_{j}(x, \varepsilon), u_{j+1}(x, \varepsilon), u_{j+2}(x, \varepsilon), \lambda_{j}(\varepsilon), \lambda_{j+1}(\varepsilon), \lambda_{j+2}(\varepsilon)$ into (1), (2) and comparing the coefficient in the identical order of ε we obtain the quations for $u_{0}(x), p_{0}(x), r_{0}(x)$ as the equations for $u_{0}(x), p_{0}(x)$ in the case of double eigenvalues.

Therefore :

$$
\begin{aligned}
& u_{0}(x)=a_{0}^{1} u_{j}^{*}(x)+a_{0}^{2} u_{j+1}^{*}(x)+a_{0}^{3} u_{j+2}^{*}(x) \\
& p_{0}(x)=b_{0}^{1} u_{j}^{*}(x)+b_{0}^{2} u_{j+1}^{*}(x)+b_{0}^{3} u_{j+2}^{*}(x) \\
& r_{0}(x)=c_{0}^{1} u_{j}^{*}(x)+c_{0}^{2} u_{j+1}^{*}(x)+c_{0}^{3} u_{j+2}^{*}(x)
\end{aligned}
$$

(see the definition of u_{j}, u_{j+1}, u_{j+2} in the introduction). Since we are only interested in the case of a bifurcation, it follows that the functions u_{0}, p_{0}, r_{0} must be orthogonal. Then we have

$$
v_{0}(\xi)=-u_{0}(0)|\xi|^{-1}, q_{0}(\xi)=-p_{0}(0)|\xi|^{-1}, s_{0}(\xi)=-r_{0}(0)|\xi|^{-1}
$$

Now we write the equations for $u_{1}(x), p_{1}(x), r_{1}(x)$

$$
\left\{\begin{array}{l}
\Delta u_{1}(x)+\lambda_{j} u_{1}(x)+\lambda_{j}^{<1>} u_{0}(x)-\lambda_{j} u_{0}(0)|x|^{-1}=0 \quad \text { in } \Omega \\
\left.u_{1}(x)\right|_{\partial \Omega}=\left.u_{0}(0)|x|^{-1}\right|_{\partial \Omega}
\end{array}\right.
$$

From the conditions of their solvability and the conditions $\lambda_{j}(\varepsilon)<$ $\lambda_{j+1}(\varepsilon)<\lambda_{j+2}(\varepsilon)$ when ε is sufficiently small. We have

$$
\lambda_{j}^{<1>}=\lambda_{j+1}^{<1>}=0, \lambda_{j+2}^{<1>}=4 \pi\left\{u_{j+2}^{*}(0)\right\}^{2}, c_{0}^{1}=c_{0}^{2}=a_{0}^{3}=b_{0}^{3}=0, c_{0}^{3}=1
$$

So the function $r_{0}(x)$ is defined. Suppose provisionally the function $u_{0}(x)$, $p_{0}(x)$ are also defined. We show how to find $\lambda_{j+2}^{<2>}, s_{1}(\xi), r_{1}(x)$. Note
the problems for $r_{1}(x)$ are sovable. However the solution is defined nonuniquely. Suppose that $R_{1}(x)$ is a solution such that $\int_{\Omega} R_{1} u_{0} d x=$ $\int_{\Omega} R_{1} p_{0} d x=\int_{\Omega} R_{1} r_{0} d x=0$. A general solution $r_{1}(x)$ may be written as follows : $r_{1}(x)=R_{1}(x)+a_{1} u_{0}(x)+b_{1} p_{0}(x)$. Assume that a_{1}, b_{1} are found. Then $s_{1}(\xi)$ satisfies :

$$
\left\{\begin{array}{l}
\Delta s_{1}(\xi)=0, \text { in } \mathbb{R}^{3} \backslash B_{1} \\
\left.s_{1}(\xi)\right|_{\partial B_{1}}=-R_{1}(0)-r_{0}^{<1>}(\theta) \\
\lim _{|\xi| \rightarrow \infty} s_{1}(\xi)=0
\end{array}\right.
$$

Therefore $s_{1}(\xi)=-R_{1}(0)|\xi|^{-1}-r_{0}^{<1>}(\theta)|\xi|^{-2}$. We obtain the equations for $r_{2}(x)$

$$
\begin{array}{cr}
\Delta r_{2}-\lambda_{j} R_{1}(0)|x|^{-1}+\lambda_{j} r_{2}+\lambda_{j+2}^{<1>}\left(R_{1}+a_{1} u_{0}+b_{1} p_{0}\right)+ \\
\left.\left\{r_{2}(x)-R_{1}(0)|x|^{-1}\right\}\right|_{\partial \Omega}=0 . & \lambda_{j+2}^{<2>} r_{0}=0
\end{array}
$$

Multiplying (26) by $u_{0}(x), p_{0}(x), r_{0}(x)$ and intergrating over Ω_{ε} when $\varepsilon \rightarrow 0$ one deduce that $\lambda_{j+2}^{<2>}=0, a_{1}=b_{1}=0$. So we found $r_{1}(x), s_{1}(\xi)$, $\lambda_{j+2}^{<2>}$. By induction, as in the case of double eigenvalues, we can find all $r_{n}(x), s_{n}(\xi), \lambda_{j+2}^{<n+2>}$. Now, under some conditions, we show how to find $u_{0}(x)$ and $p_{0}(x)$. In the first step we had :

$$
\begin{aligned}
& u_{0}(x)=a_{0}^{1} u_{j}^{*}(x)+a_{0}^{2} u_{j+1}^{*}(x), p_{0}(x)=b_{0}^{1} u_{j}^{*}(x)+b_{0}^{2} u_{j+1}^{*}(x) \\
& \lambda_{j}^{<1>}=\lambda_{j+1}^{<1>}=0 .
\end{aligned}
$$

Since : $u_{0}(0)=p_{0}(0)=0$ it follows $v_{0}(\xi)=q_{0}(\xi)=0$. From the equations for $u_{1}(x), p_{1}(x)$ we can find them in a form :

$$
u_{1}(x)=c_{1} p_{0}(x)+d_{1} r_{0}(x), p_{1}(x)=e_{1} u_{0}(x)+f_{1} r_{0}(x)
$$

Suppose that $c_{1}, d_{1}, e_{1}, f_{1}$ are known. Then, from the equations for $v_{1}(\xi)$, $q_{1}(\xi)$ we obtain immediately :

$$
v_{1}(\xi)=-d_{1}|\xi|^{-1}-u_{0}^{<1>}(\theta)|\xi|^{-2}, q_{1}(\xi)=-f_{1}|\xi|^{-1}-p_{0}^{<1>}(\theta)|\xi|^{-2}
$$

Therefore the functions $p_{2}(x), u_{2}(x)$ satisfy :

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Delta\left(u_{2}-d_{1}|x|^{-1}\right)+\lambda_{j}\left(u_{2}-d_{1}|x|^{-1}\right)+\lambda_{j}^{<2>} u_{0}(x)=0 \\
\left.\left(u_{2}-d_{1}|x|^{-1}\right)\right|_{\partial \Omega}=0
\end{array}\right. \\
& \left\{\begin{array}{l}
\Delta\left(p_{2}-f_{1}|x|^{-1}\right)+\lambda_{j}\left(p_{2}-f_{1}|x|^{-1}\right)+\lambda_{j+1}^{<2>} p_{0}(x)=0 \\
\left.\left(p_{2}-f_{1}|x|^{-1}\right)\right|_{\partial \Omega}=0
\end{array}\right.
\end{aligned}
$$

From the conditions for solvability of this equation we deduce :

$$
\begin{gathered}
\lambda_{j}^{<2>}=\lambda_{j+1}^{<2>}=0, \quad d_{1}=f_{1}=0, \\
p_{2}(x)=P_{2}(x)+e_{2} u_{0}(x)+f_{2} r_{0}(x), \quad u_{2}(x)=U_{2}(x)+c_{2} p_{0}(x)+d_{2} r_{0}(x),
\end{gathered}
$$

where $P_{2}(x), U_{2}(x)$ denote the solutions such that:

$$
\begin{aligned}
\int_{\Omega} U_{2} u_{0} d x=\int_{\Omega} U_{2} p_{0} d x= & \int_{\Omega} U_{2} r_{0} d x= \\
& \int_{\Omega} P_{2} u_{0} d x= \\
& \int_{\Omega} P_{2} p_{0} d x=\int_{\Omega} P_{2} r_{0} d x=0 .
\end{aligned}
$$

From the equations for $v_{2}(\xi), q_{2}(\xi)$ we have :

$$
\begin{aligned}
& v_{2}(\xi)=-U_{2}(0)|\xi|^{-1}-d_{2} r_{0}(0)|\xi|^{-1}-c_{1} p_{0}^{<1>}(\theta)|\xi|^{-2}-u_{0}^{<2>}(\theta)|\xi|^{-3} \\
& q_{2}(\xi)=-p_{2}(0)|\xi|^{-1}-f_{2} r_{0}(0)|\xi|^{-1}-e_{1} u_{0}^{<1>}(\theta)|\xi|^{-2}-p_{0}^{<2>}(\theta)|\xi|^{-3}
\end{aligned}
$$

Finally we write the equations for $u_{3}(x), p_{3}(x)$

$$
\begin{aligned}
& \left\{\begin{array}{r}
\Delta u_{3}+\lambda_{j} u_{3}+\lambda_{j}^{<3>} u_{0}-\lambda_{j}\left(U_{2}(0)|x|^{-1}+d_{2} r_{0}(0)|x|^{-1}+\right. \\
u_{0}^{<1>}(\theta)|x|^{-2}=0 \\
\left.\left(u_{3}-U_{2}(0)|x|^{-1}-d_{2} r_{0}(0)|x|^{-1}-u_{0}^{<1>}(\theta)|x|^{-2}\right)\right|_{\partial \Omega}=0
\end{array}\right. \\
& \left\{\begin{array}{r}
\Delta p_{3}+\lambda_{j} p_{3}+\lambda_{j+1}^{<3>} p_{0}-\lambda_{j}\left(P_{2}(0)|x|^{-1}+f_{2} r_{0}(0)|x|^{-1}+\right. \\
\left.p_{0}^{<1>}(\theta)|x|^{-2}\right)=0 \\
\left.\left(p_{3}-P_{2}(0)|x|^{-1}-f_{2} r_{0}(0)|x|^{-1}-p_{0}^{<1>}(\theta)|x|^{-2}\right)\right|_{\partial \Omega}=0
\end{array}\right.
\end{aligned}
$$

From these conditions we have :

$$
\begin{aligned}
\lambda_{j}^{<3>} & =3 \int_{\partial B_{1}}\left|u_{0}^{<1>}(\theta)\right|^{2} d \theta, \quad \lambda_{j+1}^{<3>}=3 \int_{\partial B_{1}}\left|P_{0}^{<1>}(\theta)\right|^{2} d \theta \\
d_{2} & =\left[r_{0}(0)\right]^{-1} U_{2}(0), \quad f_{2}=\left[r_{0}(0)\right]^{-1} P_{2}(0)
\end{aligned}
$$

As in the case of double eigenvalues we conclude that $3^{-1} \lambda_{j}^{<3>}$ and $3^{-1} \lambda_{j+1}^{<3>}$ are the eigenvalues of the matrix M^{*} (see the definition in the introduction) and the vector $\left(a_{0}^{1}, a_{0}^{2}\right)$ is its eigenvector. So we found $\lambda_{j}^{<3>}, \lambda_{j+1}^{<3>}, u_{0}(x)$, $p_{0}(x), v_{0}(\xi), q_{0}(\xi), v_{1}(\xi), q_{1}(\xi)$.

A step of induction : Suppose that $\lambda_{j}^{<n+3>}, \lambda_{j+1}^{<n+3>}, u_{n}(x), p_{n}(x)$, $v_{n+1}(\xi), q_{n+1}(\xi)$ are found. We shall find $\lambda_{j}^{<n+4>}, \lambda_{j+1}^{<n+4>}, u_{n+1}(x)$, $p_{n+1}(x), v_{n+2}(\xi), q_{n+2}(\xi)$ as follows. In previous steps we have known the equations for $u_{n+1}(x), p_{n+1}(x)$ and found the conditions for their solvability. However, the solutions are defined non-uniquely. Assume that $U_{n+1}(x), P_{n+1}(x)$ are the solutions such that

$$
\begin{aligned}
& \int_{\Omega} U_{n+1} u_{0} d x=\int_{\Omega} U_{n+1} p_{0} d x=\int_{\Omega} U_{n+1} r_{0} d x=0 \\
& \int_{\Omega} P_{n+1} u_{0} d x=\int_{\Omega} P_{n+1} p_{0} d x=\int_{\Omega} P_{n+1} r_{0} d x=0 .
\end{aligned}
$$

The functions $u_{n+1}(x), p_{n+1}(x)$ may be found in a form :

$$
u_{n+1}=c_{n+1} p_{0}+d_{n+1} r_{0}+U_{n+1}, p_{n+1}=e_{n+1} u_{0}+f_{n+1} r_{0}+P_{n+1}
$$

By analogy we have :

$$
\begin{array}{ll}
u_{n+2}=c_{n+2} p_{0}+d_{n+2} r_{0}+U_{n+2}, & p_{n+2}=e_{n+2} u_{0}+f_{n+2} r_{0}+P_{n+2} \\
u_{n+3}=c_{n+3} p_{0}+d_{n+3} r_{0}+U_{n+3}, & p_{n+3}=e_{n+3} u_{0}+f_{n+3} r_{0}+P_{n+3}
\end{array}
$$

From the equations for $v_{n+2}(\xi), q_{n+2}(\xi)$ we claim that :

$$
v_{n+2}(\xi)=V_{n+2}(\xi)-d_{n+1} A_{3}(\theta)|\xi|^{-2}-d_{n+2} r_{0}(0)|\xi|^{-1}-c_{n+1} A_{2}(\theta)|\xi|^{-2}
$$

$$
q_{n+2}(\xi)=Q_{n+2}(\xi)-f_{n+1} A_{3}(\theta)|\xi|^{-2}-f_{n+2} r_{0}(0)|\xi|^{-1}-e_{n+1} A_{1}(\theta)|\xi|^{-2}
$$

where $A_{1}(\theta)=u_{0}^{<1>}(\theta), A_{2}(\theta)=p_{0}^{<1>}(\theta), A_{3}(\theta)=r_{0}^{<1>}(\theta)$ and $V_{n+2}(\xi)$, $Q_{n+2}(\xi)$ are defined by the equations as in the case of double eigenvalues.

By analogy we have

$$
\begin{gathered}
v_{n+3}(\xi)=V_{n+3}(\xi)-\left[d_{n+1}\left\{B_{3}(\theta)-6^{-1} \lambda_{j} r_{0}(0)\right\}+c_{n+1} B_{2}(\theta)\right]|\xi|^{-3} \\
-\left\{c_{n+2} A_{2}(\theta)+d_{n+2} A_{3}(\theta)\right\}|\xi|^{-2}-\left\{d_{n+3} r_{0}(0)+6^{-1} d_{n+1} \lambda_{j} r_{0}(0)\right\}|\xi|^{-1} \\
q_{n+3}(\xi)=Q_{n+3}(\xi)-\left[f_{n+1}\left\{B_{3}(\theta)-6^{-1} \lambda_{j} r_{0}(0)\right\}+e_{n+1} B_{1}(\theta)\right]|\xi|^{-3} \\
-\left\{e_{n+2} A_{1}(\theta)+f_{n+2} A_{3}(\theta)\right\}|\xi|^{-2}-\left\{f_{n+3} r_{0}(0)+6^{-1} f_{n+1} \lambda_{j} r_{0}(0)\right\}|\xi|^{-1}
\end{gathered}
$$

where the functions $B_{1}(\theta)=u_{0}^{<2>}(\theta), B_{2}(\theta)=p_{0}^{<2>}(\theta), B_{3}(\theta)=r_{0}^{<2>}(\theta)$, $V_{n+3}(\xi), Q_{n+3}(\xi), d_{n+1}, d_{n+2}, f_{n+1}, f_{n+2}$ are defined.

Finally, we write the equations for $u_{n+4}(x), p_{n+4}(x)$:

$$
\begin{array}{rr}
\Delta \bar{u}_{n+4}(x)+\lambda_{j} \bar{u}_{n+4}(x)+\lambda_{j}^{<n+4>} u_{0}+\lambda_{j}^{<3>}\left(U_{n+1}+c_{n+1} p_{0}+\right. \\
\left.d_{n+1} r_{0}\right)=G_{n+4}(x) \\
\left.\bar{u}_{n+4}\right|_{\partial \Omega}=H_{n+4}(x) & \tag{29}
\end{array}
$$

$$
\begin{array}{rr}
\Delta \bar{p}_{n+4}(x)+\lambda_{j} \bar{p}_{n+4}(x)+\lambda_{j+1}^{<n+4>} p_{0}+\lambda_{j+1}^{<3>}\left(P_{n+1}+e_{n+1} u_{0}+\right. \\
\left.f_{n+1} r_{0}\right)=I_{n+4}(x) \\
\left.\bar{p}_{n+4}\right|_{\partial \Omega}=K_{n+4}(x) & \tag{31}
\end{array}
$$

$$
\text { where } \quad \bar{u}_{n+4}(x):=\left(u_{n+4}-d_{n+3} r_{0}(0)|x|^{-1}-c_{n+1} A_{2}(\theta)|x|^{-2}\right)
$$

$$
\text { and } \quad \bar{p}_{n+4}(x):=\left(p_{n+4}-f_{n+3} r_{0}(0)|x|^{-1}-e_{n+1} A_{1}(\theta)|x|^{-2}\right)
$$

From the coditions for solvability of (28) - (31) we have :

$$
\begin{gathered}
c_{n+1}=\left(\lambda_{j}^{<3>}-\lambda_{j+1}^{<3>}\right)^{-1}\left[\int_{\Omega} G_{n+4} p_{0} d x+\int_{\partial \Omega} H_{n+4} \frac{\partial p_{0}}{\partial n} d s\right] \\
e_{n+1}=\left(\lambda_{j}^{<3>}-\lambda_{j+1}^{<3>}\right)^{-1}\left[\int_{\Omega} I_{n+4} u_{0} d x+\int_{\partial \Omega} K_{n+4} \frac{\partial u_{0}}{\partial n} d s\right] \\
\lambda_{j}^{<n+4>}-\left[\int_{\Omega} G_{n+4} p_{0} d x+\int_{\partial \Omega} H_{n+4} \frac{\partial p_{0}}{\partial n} d s-\lambda_{j}^{<3>} c_{n+1}\right] \\
\lambda_{j+1}^{<n+4>}=-\left[\int_{\Omega} I_{n+4} u_{0} d x+\int_{\partial \Omega} K_{n+4} \frac{\partial u_{0}}{\partial n} d s-\lambda_{j+1}^{<3>} e_{n+1}\right] \\
d_{n+3}=\left(4 \pi r_{0}^{2}(0)\right)^{-1}\left[\int_{\Omega} G_{n+4} r_{0} d x+\int_{\partial \Omega} H_{n+4} \frac{\partial r_{0}}{\partial n} d s-\lambda_{j}^{<3>} d_{n+1}\right] \\
f_{n+3}=\left(4 \pi r_{0}^{2}(0)\right)^{-1}\left[\int_{\Omega} I_{n+4} r_{0} d x+\int_{\partial \Omega} K_{n+4} \frac{\partial r_{0}}{\partial n} d s-\lambda_{j+1}^{<3>} f_{n+1}\right]
\end{gathered}
$$

Our procedure is ended.

3. Proof

We shall prove our results only in the case of double eigenvalues. The case of triple eigenvalues may be proved similarly. Suppose

$$
\begin{aligned}
\alpha_{N}(x, \varepsilon) & =\sum_{i=0}^{N} \varepsilon^{i}\left(u_{i}(x)+v_{i}\left(x \varepsilon^{-1}\right)\right), \beta_{N}(x, \varepsilon)=\sum_{i=0}^{N} \varepsilon^{i}\left(p_{i}(x)+q_{i}\left(x \varepsilon^{-1}\right)\right) \\
\lambda_{j}^{(N)}(\varepsilon) & =\sum_{i=0}^{N} \lambda_{j}^{(i)} \varepsilon^{i}, \lambda_{j+1}^{(N)}(\varepsilon)=\sum_{i=0}^{N} \lambda_{i+1}^{(i)} \varepsilon^{i} .
\end{aligned}
$$

We have

$$
\begin{aligned}
& \Delta \alpha_{N}(x, \varepsilon)+\lambda_{j}^{<N>}(\varepsilon) \alpha_{N}(x, \varepsilon)=\sum_{i=0}^{N} \varepsilon^{i}\left[\Delta u_{i}+\sum_{p=0}^{i-1} \lambda_{j}^{<p>} u_{i-p-1}+\sum_{p=0}^{i-2} \lambda_{j}^{<p>}\right. \\
& |x|^{-1} v_{i-p-2}^{<1>}(\theta) \\
& \left.+\sum_{p=0}^{i-3} \lambda_{j}^{<p>}|x|^{-2} v_{i-p-3}^{<2>}(\theta)\right]+\sum_{i=0}^{N} \varepsilon^{i-2}\left[\Delta_{\xi} v_{i}(\xi)+\sum_{p=0}^{i-3} \lambda_{j}^{<p>} \tilde{v}_{i-p-3}^{<2>}(\xi)\right] \\
& +\varepsilon \sum_{i=0}^{N-1} \varepsilon^{i} \lambda_{j}^{<i>}\left[\sum_{p=N-i}^{N} \varepsilon^{p} u_{p}+\sum_{p=N-i-2}^{N} \varepsilon^{p} \tilde{v}_{p}^{<2>}\left(x \varepsilon^{-1}\right)\right. \\
& \left.+\sum_{p=N-i-1}^{N} \varepsilon^{p+1}|x|^{-1} v_{p}^{<1>}(\theta)+\sum_{p=N-i-2}^{N} \varepsilon^{p+2}|x|^{-2} v_{p}^{<2>}(\theta)\right] .
\end{aligned}
$$

Obviously

$$
\begin{aligned}
\left|\Delta \alpha_{N}(x, \varepsilon)+\lambda_{j}^{<N>}(\varepsilon) \alpha_{N}(x, \varepsilon)\right| & =0\left(\varepsilon^{N+1}|x|^{-2}\right)=0\left(\varepsilon^{N-1}\right) \quad\left(x \in \Omega_{\varepsilon}\right) \\
\left.\alpha_{N}\right|_{\partial \Omega_{\varepsilon}} & =0\left(\varepsilon^{N+1}\right) .
\end{aligned}
$$

By analogy we can see :

$$
\begin{aligned}
\left|\Delta \beta_{N}(x, \varepsilon)+\lambda_{j+1}^{<N>}(\varepsilon) \beta_{N}(x, \varepsilon)\right| & =0\left(\varepsilon^{N+1}|x|^{-2}\right)=0\left(\varepsilon^{N-1}\right) \quad\left(x \in \Omega_{\varepsilon}\right) \\
\left.\beta_{N}\right|_{\partial \Omega_{\varepsilon}} & =0\left(\varepsilon^{N+1}\right) .
\end{aligned}
$$

Suppose that $\alpha_{N}^{*}(x, \varepsilon)=g_{N}(\varepsilon)\left[\alpha_{N}(x, \varepsilon)-\Gamma_{1}(x) \sum_{i=0}^{N} \varepsilon^{i} \tilde{v}_{i}^{(N-i)}\left(x \varepsilon^{-1}\right)-\right.$ $\left.\Gamma_{2}\left(x \varepsilon^{-1}\right) \sum_{i=0}^{N} \varepsilon^{i} \tilde{u}_{i}^{(N-i)}(x)\right]$,

$$
\begin{gathered}
\beta_{N}^{*}(x, \varepsilon)=k_{N}(\varepsilon)\left[\beta_{N}(x, \varepsilon)-\Gamma_{1}(x) \sum_{i=0}^{N} \varepsilon^{i} \tilde{v}_{i}^{(N-i)}\left(x \varepsilon^{-1}\right)\right. \\
\left.-\Gamma_{2}\left(x \varepsilon^{-1}\right) \sum_{i=0}^{N} \varepsilon^{i} \tilde{u}_{i}^{(N-i)}(x)\right]
\end{gathered}
$$

where $\Gamma_{1}(x) \in C^{\infty}\left(\mathbb{R}^{3}\right), \Gamma_{1}(x) \equiv 1$ in a neighborhood of $\partial \Omega$ and $\Gamma_{1}(x)=0$ in a neighborhood of $\{0\}$ and $\Gamma_{2}(x) \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right), \Gamma_{2}(x) \equiv 1$ in a neighborhood of \bar{B}_{1}. The constants $g_{N}(\varepsilon), k_{N}(\varepsilon)$ are chosen such that

$$
\left\|\alpha_{N}^{*}(x, \varepsilon)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}=\left\|\beta_{N}^{*}(x, \varepsilon)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}=1 .
$$

It is easy to see

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Delta \alpha_{N}^{*}(x, \varepsilon)+\lambda_{j}^{<N>}(\varepsilon) \alpha_{N}^{*}(x, \varepsilon)=L_{N}(x, \varepsilon) \text { in } \Omega_{\varepsilon} \\
\left.\alpha_{N}^{*}(x, \varepsilon)\right|_{\partial \Omega_{\varepsilon}}=0
\end{array}\right. \\
& \left\{\begin{array}{l}
\Delta \beta_{N}^{*}(x, \varepsilon)+\lambda_{j+1}^{<N>}(\varepsilon) \beta_{N}^{*}(x, \varepsilon)=M_{N}(x, \varepsilon) \text { in } \Omega_{\varepsilon} \\
\left.\beta_{N}^{*}(x, \varepsilon)\right|_{\partial \Omega_{\varepsilon}}=0 .
\end{array}\right.
\end{aligned}
$$

Expand $\alpha_{N}^{*}(x, \varepsilon)$ and $\beta_{N}^{*}(x, \varepsilon)$ in the series of orthonormal eigenfunctions $u_{1}(x, \varepsilon), u_{2}(x, \varepsilon), \ldots$ in Ω_{ε} one have :

$$
\begin{aligned}
& \alpha_{N}^{*}(x, \varepsilon)=\sum_{i=1}^{\infty} \alpha_{i}(\varepsilon) u_{i}(x, \varepsilon) \quad \text { where } \quad \sum_{i=1}^{\infty} \alpha_{i}^{2}(\varepsilon)=1 \\
& \beta_{N}^{*}(x, \varepsilon)=\sum_{i=1}^{\infty} \beta_{i}(\varepsilon) u_{i}(x, \varepsilon) \quad \text { where } \quad \sum_{i=1}^{\infty} \beta_{i}^{2}(\varepsilon)=1
\end{aligned}
$$

We claim that

$$
\begin{array}{r}
\Delta \alpha_{N}^{*}(x, \varepsilon)=-\sum_{i=1}^{\infty} \lambda_{i}(\varepsilon) \alpha_{i}(\varepsilon) u_{i}(x, \varepsilon)=-\lambda_{j}^{<N>}(\varepsilon) \sum_{i=1}^{\infty} \alpha_{i}(\varepsilon) u_{i}(x, \varepsilon)+ \\
L_{N}(x, \varepsilon)
\end{array}
$$

Obviously $\left.\left|D^{\alpha} L_{N}(x, \varepsilon)\right|\right|_{\Omega_{\varepsilon}}=0\left(\varepsilon^{N+1}|x|^{-|\alpha|}\right)$.
Therefore $\left|\lambda_{j}^{<N>}(\varepsilon)-\lambda_{j}(\varepsilon)\right| \sim\left|\lambda_{j+1}^{<N>}(\varepsilon)-\lambda_{j+1}^{<N>}(\varepsilon)\right|=0\left(\varepsilon^{N-1}\right)$.
Since we have known $\lim _{\varepsilon \rightarrow 0} \lambda_{j}(\varepsilon)=\lambda_{j} \quad(j=1, \ldots \infty)$ it follows that

$$
\left\|\alpha_{N}^{*}(x, \varepsilon)-u_{j}(x, \varepsilon)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \sim\left\|\beta_{N}^{*}(x, \varepsilon)-u_{j+1}(x, \varepsilon)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}=0\left(\varepsilon^{N-1}\right)
$$

We have also :

$$
\begin{gathered}
\Delta\left\{\alpha_{N}^{*}(x, \varepsilon)-u_{j}(x, \varepsilon)\right\}+\lambda_{j}(\varepsilon)\left\{\alpha_{N}^{*}(x, \varepsilon)-u_{j}(x, \varepsilon)\right\}= \\
L_{N}(x, \varepsilon)-\left\{\lambda_{j}^{<N>}(\varepsilon)-\lambda_{j}(\varepsilon)\right\} \alpha_{N}^{*}(x, \varepsilon) \text { in } \Omega_{\varepsilon} \\
\left.\left|D^{\alpha}\left\{\alpha_{N}^{*}(x, \varepsilon)-u_{j}(x, \varepsilon)\right\}\right|\right|_{\partial \Omega_{\varepsilon}}=0\left(\varepsilon^{N-1-|\alpha|}\right) \text { for }|\alpha| \leqslant N-1, \\
\Delta\left\{\beta_{N}^{*}(x, \varepsilon)-u_{j+1}(x, \varepsilon)\right\}+\lambda_{j+1}(\varepsilon)\left\{\beta_{N}^{*}(x, \varepsilon)-u_{j+1}(x, \varepsilon)\right\}= \\
\quad M_{N}(x, \varepsilon)-\left\{\lambda_{j+1}^{<N>}(\varepsilon)-\lambda_{j+1}(\varepsilon)\right\} \beta_{N}^{*}(x, \varepsilon) \text { in } \Omega_{\varepsilon} \\
\left.\left|D^{\alpha}\left\{\beta_{N}^{*}(x, \varepsilon)-u_{j+1}(x, \varepsilon)\right\}\right|\right|_{\partial \Omega_{\varepsilon}}=0\left(\varepsilon^{N-1-|\alpha|}\right) \text { for }|\alpha| \leqslant N-1 .
\end{gathered}
$$

From a priori estimates for elliptic boundary value problems we conclude that:

$$
\begin{aligned}
& \max _{X \in \Omega_{\varepsilon}}\left|D^{\alpha}\left\{\alpha_{N}^{*}(x, \varepsilon)-u_{j}(x, \varepsilon)\right\}\right| \leq C \varepsilon^{N-1}|x|^{-|\alpha|} \\
& \max _{X \in \Omega_{\varepsilon}}\left|D^{\alpha}\left\{\beta_{N}^{*}(x, \varepsilon)-u_{j+1}(x, \varepsilon)\right\}\right| \leq C \varepsilon^{N-1}|x|^{-|\alpha|}
\end{aligned}
$$

which completes the proof.

4. The final remark

The author of this note think we can study a bifurcations of any eigenvalues by our method under some conditions (for a bifurcation). These conditions are necessary because the bifurcation may be not occured when Ω is the ball (in general, when Ω is a domain with some symmetries).

References

[1] Vladimirov, V. S., Equations of Mathematical Phisics, USSR, Moscow (1988).
[2] Ozawa, S., Electrostatic capacity and eigenvalues of the Laplacian, J. Fac. Sci. Univ. Tokyo 30 (1983), 53-62.
[3] Ozawa, S., An asymptotic formula for the eigenvalues of the Laplacian in a three dimensional domain with a small hole, J. Fac. Sci. Univ. Tokyo 30 (1983), 243-257.
[4] Mazia, V. G., Nazarov, S. A. and B. A. Plamenevski, Asymptotic expansions of eigenvalues of boundary value problems for operator Laplace in a domain with small holes, Izvestia. Akad. Nayk. USSR 48 (1984), 347-371.
[5] Tri, M. N., An asymptotic formula of eigenvalues for boundary value problems in a domain with a small hole, Vestnik. Moscow. State Univ. 4 (1987), 17-20.
[6] Michlin, S. G., Linear partial differential equations, USSR, Moscow (1977).
(Received January 14, 1994)
(Revised April 25, 1994)

Institute of Mathematics
P.O. Box 631 Bo Ho
10000 Hanoi
VIET NAM

[^0]: 1991 Mathematics Subject Classification. Primary 35B20; Secondary 35B32, 35C20, 35P99.

