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On the maximum value of the first coefficients of

Kazhdan-Lusztig polynomials for symmetric groups

By Hiroyuki Tagawa

Abstract. In this article, we show that max{c−(w);w ∈ Sn} =
[n2/4], where c−(w) is the number of elements covered by w ∈ Sn in
the Bruhat order. Using this result, we can see that the maximum value
of the first coefficients of Kazhdan-Lusztig polynomials for Sn equals
[n2/4] − n+ 1.

0. Introduction

Let (W,S) be a Coxeter system and ≤B denote the Bruhat order on W .

We put

c−(w) = �{y ∈W ;w covers y in the Bruhat order},
g(w) = �{s ∈ S; s ≤B w}.

The purpose of this article is to show that, if W is the symmetric group Sn

of degree n, the maximum value of c−(w) (resp. c−(w)−g(w)) over w ∈ Sn

is equal to [n2/4] (resp. [n2/4] − n + 1), where [x] denotes the Gaussian

symbol, i.e. the greatest integer not exceeding x.

The maximum value of c−(w) plays a role in solving problems concerning

with the Bruhat order with help of computers. Also, by results of Dyer [D]

and Irving [I], the maximum value of c−(w) − g(w) gives the maximum

value of the coefficient p1(x, y) of q in the Kazhdan-Lusztig polynomial

Px,y(q) =
∑

i≥0 pi(x, y)q
i.

This article is organized as follows: In Section 1, we associate a poset

Px to each permutation x ∈ Sn and show that c−(x) (resp. c−(x)− g(x)) is
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equal to the number of edges of the Hasse diagram of Px (resp. n−comp(Px),

where comp(Px) is the number of the connected components of the Hasse

diagram of Px). In Section 2, we use the Turán’s theorem in the graph

theory to evaluate the maximum values of c−(x) and c−(x)−g(x) (Theorem

A and B). In Section 3, we combine Theorem A, B with results of Dyer [D]

and Irving [I] and prove that the maximum value of the first coefficients of

Kazhdan-Lusztig polynomials is given by [n2/4] − n + 1 (Theorem C).

1. Poset Px associated to a permutation x

First, we define a poset Px for x ∈ Sn.

Definition 1.1. For each integer n ≥ 1, we put [n] := {1, 2, · · · , n}.
For x ∈ Sn, we define a poset (Px,≤x) as follows:

Px = {̃i; i ∈ [n]} as a set, j̃ ≤x ĩ ⇔ i ≤ j and x(i) ≥ x(j).

Example 1.2. Let x =
(

1 2 3 4 5
3 1 5 2 4

)
∈ S5. Then the Hasse diagram of

(Px,≤x) is the following.
1̃ 3̃

/ \ / \
2̃ 4̃ 5̃

Remarks 1.3.

(i) When n ≤ 5, for any poset P with n elements, there exists x ∈ Sn

such that Px 
 P , where P 
 Q means that there exists a bijection f from

P to Q satisfying x ≤ y in P ⇔ f(x) ≤ f(y) in Q.

(ii) When n ≥ 6, the above statement is incorrect. For example, we

cannot find x ∈ S6 such that Px 
 P , where P is a poset with the following

Hasse diagram.

(iii) It is easy to check that if Px = Py, then x = y.

Let us recall the definition of the Bruhat order on Sn and we define

some notations.
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Definition 1.4. Let a, b be elements in Sn. We write a <′ b if there

exist i, j such that i < j, b(i) > b(j) and a = b(i, j), where (i, j) is the

permutation switching the number i and j and leaving the other numbers

fixed. Then the Bruhat order denoted by ≤B is defined as follows:

x ≤B y ⇔ there exist z0, z1, · · · , zk ∈ Sn such that

x = z0 <
′ z1 <

′ z2 <
′ · · · <′ zk = y.

For x, y ∈ Sn, we put [x, y]:={z ∈ Sn;x ≤B z ≤B y}, c−(x):=�{z ∈
[e, x]; �(z) = �(x) − 1}, G(x):={s ∈ [e, x]; �(s) = 1}, g(x):=�G(x), where

e is the identity element and � is the length function (cf. [Hu]). In other

words, c−(x) (resp. g(x)) is the number of the coatoms (resp. atoms) of the

interval [e, x].

We define some more notations.

Definition 1.5. Let (P,≤P ) and (Q,≤Q) be posets. We write x �P

y if y covers x in P (i.e. x <P z ≤P y ⇒ z = y). If P ∩ Q = ∅, then we

define a new poset (P +Q,≤P+Q) as follows: P +Q = P ∪Q as a set and

x ≤P+Q y if and only if (i) x, y ∈ P and x ≤P y or (ii) x, y ∈ Q and x ≤Q y.

Also we define a new poset (P ⊕Q,≤P⊕Q) as follows: P ⊕Q = P ∪Q as a

set and x ≤P⊕Q y if and only if (i) x, y ∈ P and x ≤P y, (ii) x, y ∈ Q and

x ≤Q y or (iii) x ∈ P and y ∈ Q. We put

h(P ) := �{(x, y) ∈ P 2; y �P x},
comp(P ) := the number of the connected components

of the Hasse diagram of P .

In other words, h(P ) is the number of edges of the Hasse diagram of P . We

say that P is connected if and only if comp(P ) = 1.

Remark 1.6. For x, y ∈ Sn, it is well known that y �B x if and only

if there exist i, j such that y = x(i, j), i < j, x(i) > x(j) and x(k) ≤ x(j)
or x(i) ≤ x(k) for any k ∈ [i, j], where [i, j] := {i, i+ 1, · · · , j}.

Then we have the following.

Proposition 1.7. For x ∈ Sn, we have

(i) c−(x) = h(Px),

(ii) g(x) = n− comp(Px).

Before the proof of Proposition 1.7, we prepare some more notations.
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Definition 1.8. For x ∈ Sn, we put

C(x) := {(i, j); i < j, x(i, j) �B x},
H(x) := {(̃i, j̃) ∈ Px2; j̃ �x ĩ}.

Remark 1.9. We can check that �(x) = �{(̃i, j̃) ∈ Px2; j̃ <x ĩ} for

any x ∈ Sn.

Proof of Proposition 1.7 (i). We define the map η from C(x) to

H(x) by η(i, j) := (̃i, j̃). Then, by Remark 1.6 and the definition of ≤x, we

have

(i, j) ∈ C(x) ⇔ i < j, x(i, j) �B x

⇔ i < j, x(i) > x(j), x(k) ≤ x(j) or x(i) ≤ x(k)
for any k ∈ [i, j]

⇔ j̃ <x ĩ, x(k) ≤ x(j) or x(i) ≤ x(k) for any k ∈ [i, j]

⇔ j̃ �x ĩ

⇔ (̃i, j̃) ∈ H(x).

Hence, η is a bijection. It is easy to check that �C(x) = c−(x) and �H(x) =

h(Px). So, we obtain c−(x) = h(Px). �

Before the proof of Proposition 1.7 (ii), we will show a lemma.

Lemma 1.10. For x ∈ Sn, we have the following.

(i) If Px is connected, then g(x) = n− 1.

(ii) Let P1 be the connected component of Px containing 1̃. Then P1 =

{1̃, 2̃, · · · , m̃} for some m and x([m]) = [m].

Proof. (i) Suppose that g(x) �= n− 1. Then there exists k ∈ [n− 1]

such that s1, s2, · · · , sk−1 ∈ G(x) and sk �∈ G(x), where si := (i, i + 1) for

each i ∈ [n−1]. If there exist r̃, m̃ such that r ∈ [k],m ∈ [n]\[k] and r̃ and m̃

are comparable, then we have m̃ <x r̃ (i.e. r < m and x(r) > x(m)). On the

other hand, since r ≤ k, k+1 ≤ m and sk �∈ G(x), we can see that x(r) ≤ k
and k+1 ≤ x(m). This is a contradiction. So, we can get that every element

in {1̃, 2̃, · · · , k̃} is incomparable to every element in {k̃ + 1, k̃ + 2, · · · , ñ}.
This contradicts the assumption that Px is connected. Hence, we have
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g(x) = n− 1. (ii) First, we will show that P1 = {1̃, 2̃, · · · , m̃} as a set. Let

P1 = {ĩ1, ĩ2, · · · , ĩm}, where 1 = i1 < i2 < · · · < im, as a set. Suppose

that there exists k ∈ [m] such that ip = p for any p ∈ [k − 1] and ik > k.

Then we can see that k̃ �∈ P1 and every element of P1 is incomparable to

k̃. Hence, by the inequality i1 < i2 < · · · < ik−1 < k < ik < · · · < im, we

have x(ip) < x(k) < x(ir) for any p ∈ [k − 1] and for any r ∈ [m] \ [k − 1].

This means that every element in {ĩ1, ĩ2, · · · , ĩk−1} is incomparable to every

element in {ĩk, ĩk+1, · · · , ĩm}. This contradicts the assumption that P1 is

connected. Next, we will show that x([m]) = [m]. Suppose that there exists

k ∈ [m] such that x(p) ≤ m for any p ∈ [k − 1] and x(k) > m. Then it

follows from x(k) > m that

�{j̃; j̃ ≤x k̃} ≥ �{j; j ≥ k, x(j) ≤ m} + 1 = m− k + 2.

On the other hand, we have

1̃, 2̃, · · · , k̃ − 1 �∈ {j̃; j̃ ≤x k̃},

here we use the inequality that x(p) ≤ m < x(k) for any p ∈ [k − 1]. Since

P1 is connected and k̃ ∈ P1, we have

P1 ⊃ {1̃, 2̃, · · · , k̃ − 1} � {j̃; j̃ ≤x k̃} (disjoint union).

It follows that we get �P1 ≥ m+ 1. This is a contradiction. So, we obtain

x([m]) = [m]. �

Proof of Proposition 1.7 (ii). Let Px = P1 + P2 + · · · + Pk be

the decomposition into connected components, and put �Pi = mi ≥ 1 and

Pi = {p̃i,1, p̃i,2, · · · , p̃i,mi}, where pi,1 < pi,2 < · · · < pi,mi . We may assume

that p1,1 < p2,1 < · · · < pk,1. Then, for each i ∈ [k], it follows from Lemma

1.10 (ii) that there exists xi ∈ Smi such that Pi is isomorphic to Pxi . Hence,

by Lemma 1.10 (i), we have

g(x) = g(x1) + g(x2) + · · · + g(xk)
= (m1 − 1) + (m2 − 1) + · · · + (mk − 1)

= m1 +m2 + · · · +mk − k
= n− comp(Px). �
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2. The maximum values of c−(w) and c−(w) − g(w)

In this section, by the Turán’s theorem, we evaluate the maximum values

of c−(x) and c−(x) − g(x).

Theorem (Turán). The maximum number of the edges in n-vertex

graphs which has no triangles is [n2/4].

By the Turán’s theorem, we can easily see the following.

Corollary 2.1. If P is a poset with n elements, then we have h(P )

≤ [n2/4].

Hence, we have

Theorem A.

max{c−(x);x ∈ Sn} = [n2/4].

Proof. By Proposition 1.7 (i) and Corollary 2.1, we have

max{c−(x);x ∈ Sn} = max{h(Px);x ∈ Sn} ≤ [n2/4].

We define zn ∈ Sn as follows:

(zn(1), zn(2), · · · , zn(n))

:=

{
(m+ 1,m+ 2, · · · , 2m, 1, 2, · · · ,m) if n = 2m,

(m+ 1,m+ 2, · · · , 2m+ 1, 1, 2, · · · ,m) if n = 2m+ 1.

Then we can see that c−(zn) = [n2/4]. Hence, we obtained this theorem. �

Also, we have the following.

Proposition 2.2. For a poset P with n elements, we have

h(P ) − (n− comp(P )) ≤ [n2/4] − n+ 1.

This proposition immediately follows from the next lemma.
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Lemma 2.3. Let P be a poset with n elements. If P = P1+P2+· · ·+Pk
is the decomposition into the connected components, then we have

h(P ) − (n− comp(P )) ≤ h(P ′) − (n− comp(P ′)),

where P ′ = (P1 ⊕ P2) + · · · + Pk.

Proof. Since P1, P2 �= ∅, we have h(P1 + P2) + 1 ≤ h(P1 ⊕ P2).

Hence, we can see h(P ) + 1 ≤ h(P ′). So, by the equality n − comp(P ) =

n− comp(P ′) − 1, we obtained this lemma. �

Proof of Proposition 2.2. Let P = P1 + P2 + · · · + Pk be the

decomposition into the connected components. Then, by Corollary 2.1 and

Lemma 2.3, we have

h(P ) − (n− comp(P )) = h(P1 + P2 + · · · + Pk) − (n− k)
≤ h((P1 ⊕ P2) + · · · + Pk) − (n− k + 1)

≤ h((P1 ⊕ P2 ⊕ P3) + · · · + Pk) − (n− k + 2)

≤ h(P1 ⊕ P2 ⊕ · · · ⊕ Pk) − (n− 1)

≤ [n2/4] − n+ 1. �

Hence, we have the following.

Theorem B.

max{c−(x) − g(x);x ∈ Sn} = [n2/4] − n+ 1.

Proof. By Proposition 1.7 and Proposition 2.2, we have

max{c−(x) − g(x);x ∈ Sn} = max{h(Px) − (n− comp(Px));x ∈ Sn}
≤ [n2/4] − n+ 1.

On the other hand, for zn defined in the proof of Theorem A, we can see

that

c−(zn) − g(zn) = [n2/4] − n+ 1.

Hence, we proved Theorem B. �



468 Hiroyuki Tagawa

3. The maximum value of the first coefficient of

Kazhdan-Lusztig polynomials

Here, we combine Theorem A, B with results of Dyer [D] and Irving

[I] and prove that the maximum value of the first coefficients of Kazhdan-

Lusztig polynomials is given by [n2/4] − n+ 1.

First, we define Kazhdan-Lusztig polynomials.

Definition 3.1. Let (W,S) be a Coxeter system. For x,w ∈ W ,

we define the Kazhdan-Lusztig polynomial for x,w denoted by Px,w(q) =∑
i≥0 pi(x,w)qi ∈ Z[q] as follows:

Px,x(q) = 1 for all x ∈W , Px,w(q) = 0 if x � w.

If x < w, then choose s ∈ S satisfying �(sw) < �(w) and set

c :=

{
0 if x < sx,

1 if sx < x.

Then Px,w(q) is defined inductively as follows:

Px,w(q) = q1−cPsx,sw(q) + qcPx,sw(q) −
∑

sz<z<sw

µ(z, sw)q(�(w)−�(z))/2Px,z(q),

where µ(z, sw) is the coefficient of q(�(sw)−�(z)−1)/2 of Pz,sw(q).

Remark 3.2. This definition is independent of the choice of s and is

equivalent to the original definition in [KL]. See [Hu].

We can obtain the following.

Theorem C.

max{p1(x,w);x,w ∈ Sn} = [n2/4] − n+ 1.
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Proof. First, the following statements are valid. p1(e, w) = c−(w) −
g(w) for any w ∈ Sn([D]). Px,z(q) − Py,z(q) has non-negative coefficients

for any x, y, z ∈ Sn with x ≤B y ≤B z([I]). Hence, by virtue of Theorem B,

we have

max{p1(x,w);x,w ∈ Sn} ≤ max{p1(e, w);w ∈ Sn}
= max{c−(w) − g(w);w ∈ Sn}
= [n2/4] − n+ 1.

In particular, for zn defined in the proof of Theorem A, we have

p1(e, zn) = [n2/4] − n+ 1. �
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