On the maximum value of the first coefficients of Kazhdan-Lusztig polynomials for symmetric groups

By Hiroyuki TAGawa

Abstract

In this article, we show that $\max \left\{c^{-}(w) ; w \in \mathfrak{S}_{n}\right\}=$ $\left[n^{2} / 4\right]$, where $c^{-}(w)$ is the number of elements covered by $w \in \mathfrak{S}_{n}$ in the Bruhat order. Using this result, we can see that the maximum value of the first coefficients of Kazhdan-Lusztig polynomials for \mathfrak{S}_{n} equals $\left[n^{2} / 4\right]-n+1$.

0. Introduction

Let (W, S) be a Coxeter system and \leq_{B} denote the Bruhat order on W. We put

$$
\begin{aligned}
c^{-}(w) & =\sharp\{y \in W ; w \text { covers } y \text { in the Bruhat order }\}, \\
g(w) & =\sharp\left\{s \in S ; s \leq_{B} w\right\} .
\end{aligned}
$$

The purpose of this article is to show that, if W is the symmetric group \mathfrak{S}_{n} of degree n, the maximum value of $c^{-}(w)$ (resp. $\left.c^{-}(w)-g(w)\right)$ over $w \in \mathfrak{S}_{n}$ is equal to $\left[n^{2} / 4\right]$ (resp. $\left[n^{2} / 4\right]-n+1$), where $[x]$ denotes the Gaussian symbol, i.e. the greatest integer not exceeding x.

The maximum value of $c^{-}(w)$ plays a role in solving problems concerning with the Bruhat order with help of computers. Also, by results of Dyer [D] and Irving $[\mathrm{I}]$, the maximum value of $c^{-}(w)-g(w)$ gives the maximum value of the coefficient $p_{1}(x, y)$ of q in the Kazhdan-Lusztig polynomial $P_{x, y}(q)=\sum_{i \geq 0} p_{i}(x, y) q^{i}$.

This article is organized as follows: In Section 1, we associate a poset P_{x} to each permutation $x \in \mathfrak{S}_{n}$ and show that $c^{-}(x)$ (resp. $\left.c^{-}(x)-g(x)\right)$ is

[^0]equal to the number of edges of the Hasse diagram of $P_{x}\left(\right.$ resp. $n-\operatorname{comp}\left(P_{x}\right)$, where $\operatorname{comp}\left(P_{x}\right)$ is the number of the connected components of the Hasse diagram of P_{x}). In Section 2, we use the Turán's theorem in the graph theory to evaluate the maximum values of $c^{-}(x)$ and $c^{-}(x)-g(x)$ (Theorem A and B). In Section 3, we combine Theorem A, B with results of Dyer [D] and Irving [I] and prove that the maximum value of the first coefficients of Kazhdan-Lusztig polynomials is given by $\left[n^{2} / 4\right]-n+1$ (Theorem C).

1. Poset P_{x} associated to a permutation x

First, we define a poset P_{x} for $x \in \mathfrak{S}_{n}$.
Definition 1.1. For each integer $n \geq 1$, we put $[n]:=\{1,2, \cdots, n\}$. For $x \in \mathfrak{S}_{n}$, we define a poset $\left(P_{x}, \leq_{x}\right)$ as follows:

$$
P_{x}=\{\widetilde{i} ; i \in[n]\} \text { as a set, } \widetilde{j} \leq_{x} \widetilde{i} \Leftrightarrow i \leq j \text { and } x(i) \geq x(j)
$$

Example 1.2. Let $x=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4\end{array}\right) \in \mathfrak{S}_{5}$. Then the Hasse diagram of $\left(P_{x}, \leq_{x}\right)$ is the following.

REmARKS 1.3.
(i) When $n \leq 5$, for any poset P with n elements, there exists $x \in \mathfrak{S}_{n}$ such that $P_{x} \simeq P$, where $P \simeq Q$ means that there exists a bijection f from P to Q satisfying $x \leq y$ in $P \Leftrightarrow f(x) \leq f(y)$ in Q.
(ii) When $n \geq 6$, the above statement is incorrect. For example, we cannot find $x \in \mathfrak{S}_{6}$ such that $P_{x} \simeq P$, where P is a poset with the following Hasse diagram.

(iii) It is easy to check that if $P_{x}=P_{y}$, then $x=y$.

Let us recall the definition of the Bruhat order on \mathfrak{S}_{n} and we define some notations.

Definition 1.4. Let a, b be elements in \mathfrak{S}_{n}. We write $a<^{\prime} b$ if there exist i, j such that $i<j, b(i)>b(j)$ and $a=b(i, j)$, where (i, j) is the permutation switching the number i and j and leaving the other numbers fixed. Then the Bruhat order denoted by \leq_{B} is defined as follows:

$$
\begin{aligned}
x \leq_{B} y \Leftrightarrow & \text { there exist } z_{0}, z_{1}, \cdots, z_{k} \in \mathfrak{S}_{n} \text { such that } \\
& x=z_{0}<^{\prime} z_{1}<^{\prime} z_{2}<^{\prime} \cdots<^{\prime} z_{k}=y .
\end{aligned}
$$

For $x, y \in \mathfrak{S}_{n}$, we put $[x, y]:=\left\{z \in \mathfrak{S}_{n} ; x \leq_{B} z \leq_{B} y\right\}, c^{-}(x):=\sharp\{z \in$ $[e, x] ; \ell(z)=\ell(x)-1\}, G(x):=\{s \in[e, x] ; \ell(s)=1\}, g(x):=\sharp G(x)$, where e is the identity element and ℓ is the length function (cf. [Hu]). In other words, $c^{-}(x)$ (resp. $\left.g(x)\right)$ is the number of the coatoms (resp. atoms) of the interval $[e, x]$.

We define some more notations.
Definition 1.5. Let $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ be posets. We write $x \lessdot_{P}$ y if y covers x in P (i.e. $x<_{P} z \leq_{P} y \Rightarrow z=y$). If $P \cap Q=\emptyset$, then we define a new poset $\left(P+Q, \leq_{P+Q}\right)$ as follows: $P+Q=P \cup Q$ as a set and $x \leq_{P+Q} y$ if and only if (i) $x, y \in P$ and $x \leq_{P} y$ or (ii) $x, y \in Q$ and $x \leq_{Q} y$. Also we define a new poset $\left(P \oplus Q, \leq_{P \oplus Q}\right)$ as follows: $P \oplus Q=P \cup Q$ as a set and $x \leq_{P \oplus Q} y$ if and only if (i) $x, y \in P$ and $x \leq_{P} y$, (ii) $x, y \in Q$ and $x \leq_{Q} y$ or (iii) $x \in P$ and $y \in Q$. We put

$$
\begin{aligned}
h(P):= & \sharp\left\{(x, y) \in P^{2} ; y \lessdot_{P} x\right\}, \\
\operatorname{comp}(P):= & \text { the number of the connected components } \\
& \text { of the Hasse diagram of } P .
\end{aligned}
$$

In other words, $h(P)$ is the number of edges of the Hasse diagram of P. We say that P is connected if and only if $\operatorname{comp}(P)=1$.

REmARK 1.6. For $x, y \in \mathfrak{S}_{n}$, it is well known that $y \lessdot_{B} x$ if and only if there exist i, j such that $y=x(i, j), i<j, x(i)>x(j)$ and $x(k) \leq x(j)$ or $x(i) \leq x(k)$ for any $k \in[i, j]$, where $[i, j]:=\{i, i+1, \cdots, j\}$.

Then we have the following.
Proposition 1.7. For $x \in \mathfrak{S}_{n}$, we have
(i) $c^{-}(x)=h\left(P_{x}\right)$,
(ii) $g(x)=n-\operatorname{comp}\left(P_{x}\right)$.

Before the proof of Proposition 1.7, we prepare some more notations.

Definition 1.8. For $x \in \mathfrak{S}_{n}$, we put

$$
\begin{aligned}
& C(x):=\left\{(i, j) ; i<j, x(i, j) \lessdot_{B} x\right\}, \\
& H(x):=\left\{(\widetilde{i}, \widetilde{j}) \in P_{x}^{2} ; \widetilde{j} \lessdot_{x} \widetilde{i}\right\} .
\end{aligned}
$$

Remark 1.9. We can check that $\ell(x)=\sharp\left\{(\widetilde{i}, \widetilde{j}) \in P_{x}{ }^{2} ; \widetilde{j}<_{x} \widetilde{i}\right\}$ for any $x \in \mathfrak{S}_{n}$.

Proof of Proposition 1.7 (i). We define the map η from $C(x)$ to $H(x)$ by $\eta(i, j):=\widetilde{i}, \widetilde{j})$. Then, by Remark 1.6 and the definition of \leq_{x}, we have

$$
\begin{aligned}
&(i, j) \in C(x) \Leftrightarrow i<j, x(i, j) \lessdot_{B} x \\
& \Leftrightarrow i<j, x(i)>x(j), x(k) \leq x(j) \text { or } x(i) \leq x(k) \\
& \quad \text { for any } k \in[i, j] \\
& \Leftrightarrow \widetilde{j}<_{x} \widetilde{i}, x(k) \leq x(j) \text { or } x(i) \leq x(k) \text { for any } k \in[i, j] \\
& \Leftrightarrow \widetilde{j} \lessdot_{x} \widetilde{i} \\
&\Leftrightarrow \widetilde{(i}, \widetilde{j}) \in H(x) .
\end{aligned}
$$

Hence, η is a bijection. It is easy to check that $\sharp C(x)=c^{-}(x)$ and $\sharp H(x)=$ $h\left(P_{x}\right)$. So, we obtain $c^{-}(x)=h\left(P_{x}\right)$.

Before the proof of Proposition 1.7 (ii), we will show a lemma.
Lemma 1.10. For $x \in \mathfrak{S}_{n}$, we have the following.
(i) If P_{x} is connected, then $g(x)=n-1$.
(ii) Let P_{1} be the connected component of P_{x} containing $\widetilde{1}$. Then $P_{1}=$ $\{\widetilde{1}, \widetilde{2}, \cdots, \widetilde{m}\}$ for some m and $x([m])=[m]$.

Proof. (i) Suppose that $g(x) \neq n-1$. Then there exists $k \in[n-1]$ such that $s_{1}, s_{2}, \cdots, s_{k-1} \in G(x)$ and $s_{k} \notin G(x)$, where $s_{i}:=(i, i+1)$ for each $i \in[n-1]$. If there exist $\widetilde{r}, \widetilde{m}$ such that $r \in[k], m \in[n] \backslash[k]$ and \widetilde{r} and \widetilde{m} are comparable, then we have $\widetilde{m}<_{x} \widetilde{r}$ (i.e. $r<m$ and $\left.x(r)>x(m)\right)$. On the other hand, since $r \leq k, k+1 \leq m$ and $s_{k} \notin G(x)$, we can see that $x(r) \leq k$ and $k+1 \leq x(m)$. This is a contradiction. So, we can get that every element in $\{\widetilde{1}, \widetilde{2}, \cdots, \widetilde{k}\}$ is incomparable to every element in $\{\widetilde{k+1}, \widetilde{k+2}, \cdots, \widetilde{n}\}$. This contradicts the assumption that P_{x} is connected. Hence, we have
$g(x)=n-1$. (ii) First, we will show that $P_{1}=\{\widetilde{1}, \widetilde{2}, \cdots, \widetilde{m}\}$ as a set. Let $P_{1}=\left\{\widetilde{i_{1}}, \widetilde{i_{2}}, \cdots, \widetilde{i_{m}}\right\}$, where $1=i_{1}<i_{2}<\cdots<i_{m}$, as a set. Suppose that there exists $k \in[m]$ such that $i_{p}=p$ for any $p \in[k-1]$ and $i_{k}>k$. Then we can see that $\widetilde{k} \notin P_{1}$ and every element of P_{1} is incomparable to \widetilde{k}. Hence, by the inequality $i_{1}<i_{2}<\cdots<i_{k-1}<k<i_{k}<\cdots<i_{m}$, we have $x\left(i_{p}\right)<x(k)<x\left(i_{r}\right)$ for any $p \in[k-1]$ and for any $r \in[m] \backslash[k-1]$. This means that every element in $\left\{\widetilde{i_{1}}, \widetilde{i_{2}}, \cdots, \widetilde{i_{k-1}}\right\}$ is incomparable to every element in $\left\{\widetilde{i_{k}}, \widetilde{i_{k+1}}, \cdots, \widetilde{i_{m}}\right\}$. This contradicts the assumption that P_{1} is connected. Next, we will show that $x([m])=[m]$. Suppose that there exists $k \in[m]$ such that $x(p) \leq m$ for any $p \in[k-1]$ and $x(k)>m$. Then it follows from $x(k)>m$ that

$$
\sharp\left\{\tilde{j} ; \widetilde{j} \leq_{x} \widetilde{k}\right\} \geq \sharp\{j ; j \geq k, x(j) \leq m\}+1=m-k+2 .
$$

On the other hand, we have

$$
\widetilde{1}, \widetilde{2}, \cdots, \widetilde{k-1} \notin\left\{\tilde{j} ; \widetilde{j} \leq_{x} \widetilde{k}\right\}
$$

here we use the inequality that $x(p) \leq m<x(k)$ for any $p \in[k-1]$. Since P_{1} is connected and $\widetilde{k} \in P_{1}$, we have

$$
P_{1} \supset\{\widetilde{1}, \widetilde{2}, \cdots, \widetilde{k-1}\} \sqcup\left\{\widetilde{j} ; \widetilde{j} \leq_{x} \widetilde{k}\right\} \text { (disjoint union). }
$$

It follows that we get $\sharp P_{1} \geq m+1$. This is a contradiction. So, we obtain $x([m])=[m]$.

Proof of Proposition 1.7 (ii). Let $P_{x}=P_{1}+P_{2}+\cdots+P_{k}$ be the decomposition into connected components, and put $\sharp P_{i}=m_{i} \geq 1$ and $P_{i}=\left\{\widetilde{p_{i, 1}}, \widetilde{p_{i, 2}}, \cdots, \widetilde{p_{i, m_{i}}}\right\}$, where $p_{i, 1}<p_{i, 2}<\cdots<p_{i, m_{i}}$. We may assume that $p_{1,1}<p_{2,1}<\cdots<p_{k, 1}$. Then, for each $i \in[k]$, it follows from Lemma 1.10 (ii) that there exists $x_{i} \in \mathfrak{S}_{m_{i}}$ such that P_{i} is isomorphic to $P_{x_{i}}$. Hence, by Lemma 1.10 (i), we have

$$
\begin{aligned}
g(x) & =g\left(x_{1}\right)+g\left(x_{2}\right)+\cdots+g\left(x_{k}\right) \\
& =\left(m_{1}-1\right)+\left(m_{2}-1\right)+\cdots+\left(m_{k}-1\right) \\
& =m_{1}+m_{2}+\cdots+m_{k}-k \\
& =n-\operatorname{comp}\left(P_{x}\right) . \square
\end{aligned}
$$

2. The maximum values of $c^{-}(w)$ and $c^{-}(w)-g(w)$

In this section, by the Turán's theorem, we evaluate the maximum values of $c^{-}(x)$ and $c^{-}(x)-g(x)$.

Theorem (Turán). The maximum number of the edges in n-vertex graphs which has no triangles is $\left[n^{2} / 4\right]$.

By the Turán's theorem, we can easily see the following.
Corollary 2.1. If P is a poset with n elements, then we have $h(P)$ $\leq\left[n^{2} / 4\right]$.

Hence, we have
Theorem A.

$$
\max \left\{c^{-}(x) ; x \in \mathfrak{S}_{n}\right\}=\left[n^{2} / 4\right]
$$

Proof. By Proposition 1.7 (i) and Corollary 2.1, we have

$$
\max \left\{c^{-}(x) ; x \in \mathfrak{S}_{n}\right\}=\max \left\{h\left(P_{x}\right) ; x \in \mathfrak{S}_{n}\right\} \leq\left[n^{2} / 4\right]
$$

We define $z_{n} \in \mathfrak{S}_{n}$ as follows:

$$
\begin{aligned}
& \left(z_{n}(1), z_{n}(2), \cdots, z_{n}(n)\right) \\
& \quad:= \begin{cases}(m+1, m+2, \cdots, 2 m, 1,2, \cdots, m) & \text { if } n=2 m \\
(m+1, m+2, \cdots, 2 m+1,1,2, \cdots, m) & \text { if } n=2 m+1\end{cases}
\end{aligned}
$$

Then we can see that $c^{-}\left(z_{n}\right)=\left[n^{2} / 4\right]$. Hence, we obtained this theorem.
Also, we have the following.
Proposition 2.2. For a poset P with n elements, we have

$$
h(P)-(n-\operatorname{comp}(P)) \leq\left[n^{2} / 4\right]-n+1 .
$$

This proposition immediately follows from the next lemma.

Lemma 2.3. Let P be a poset with n elements. If $P=P_{1}+P_{2}+\cdots+P_{k}$ is the decomposition into the connected components, then we have

$$
h(P)-(n-\operatorname{comp}(P)) \leq h\left(P^{\prime}\right)-\left(n-\operatorname{comp}\left(P^{\prime}\right)\right),
$$

where $P^{\prime}=\left(P_{1} \oplus P_{2}\right)+\cdots+P_{k}$.
Proof. Since $P_{1}, P_{2} \neq \emptyset$, we have $h\left(P_{1}+P_{2}\right)+1 \leq h\left(P_{1} \oplus P_{2}\right)$. Hence, we can see $h(P)+1 \leq h\left(P^{\prime}\right)$. So, by the equality $n-\operatorname{comp}(P)=$ $n-\operatorname{comp}\left(P^{\prime}\right)-1$, we obtained this lemma.

Proof of Proposition 2.2. Let $P=P_{1}+P_{2}+\cdots+P_{k}$ be the decomposition into the connected components. Then, by Corollary 2.1 and Lemma 2.3, we have

$$
\begin{aligned}
h(P)-(n-\operatorname{comp}(P)) & =h\left(P_{1}+P_{2}+\cdots+P_{k}\right)-(n-k) \\
& \leq h\left(\left(P_{1} \oplus P_{2}\right)+\cdots+P_{k}\right)-(n-k+1) \\
& \leq h\left(\left(P_{1} \oplus P_{2} \oplus P_{3}\right)+\cdots+P_{k}\right)-(n-k+2) \\
& \leq h\left(P_{1} \oplus P_{2} \oplus \cdots \oplus P_{k}\right)-(n-1) \\
& \leq\left[n^{2} / 4\right]-n+1 . \square
\end{aligned}
$$

Hence, we have the following.
Theorem B.

$$
\max \left\{c^{-}(x)-g(x) ; x \in \mathfrak{S}_{n}\right\}=\left[n^{2} / 4\right]-n+1
$$

Proof. By Proposition 1.7 and Proposition 2.2, we have

$$
\begin{aligned}
\max \left\{c^{-}(x)-g(x) ; x \in \mathfrak{S}_{n}\right\} & =\max \left\{h\left(P_{x}\right)-\left(n-\operatorname{comp}\left(P_{x}\right)\right) ; x \in \mathfrak{S}_{n}\right\} \\
& \leq\left[n^{2} / 4\right]-n+1
\end{aligned}
$$

On the other hand, for z_{n} defined in the proof of Theorem A, we can see that

$$
c^{-}\left(z_{n}\right)-g\left(z_{n}\right)=\left[n^{2} / 4\right]-n+1
$$

Hence, we proved Theorem B.

3. The maximum value of the first coefficient of Kazhdan-Lusztig polynomials

Here, we combine Theorem A, B with results of Dyer [D] and Irving [I] and prove that the maximum value of the first coefficients of KazhdanLusztig polynomials is given by $\left[n^{2} / 4\right]-n+1$.

First, we define Kazhdan-Lusztig polynomials.
Definition 3.1. Let (W, S) be a Coxeter system. For $x, w \in W$, we define the Kazhdan-Lusztig polynomial for x, w denoted by $P_{x, w}(q)=$ $\sum_{i \geq 0} p_{i}(x, w) q^{i} \in \mathbb{Z}[q]$ as follows:

$$
P_{x, x}(q)=1 \text { for all } x \in W, \quad P_{x, w}(q)=0 \text { if } x \not \leq w .
$$

If $x<w$, then choose $s \in S$ satisfying $\ell(s w)<\ell(w)$ and set

$$
c:= \begin{cases}0 & \text { if } x<s x \\ 1 & \text { if } s x<x\end{cases}
$$

Then $P_{x, w}(q)$ is defined inductively as follows:
$P_{x, w}(q)=q^{1-c} P_{s x, s w}(q)+q^{c} P_{x, s w}(q)-\sum_{s z<z<s w} \mu(z, s w) q^{(\ell(w)-\ell(z)) / 2} P_{x, z}(q)$,
where $\mu(z, s w)$ is the coefficient of $q^{(\ell(s w)-\ell(z)-1) / 2}$ of $P_{z, s w}(q)$.
REmark 3.2. This definition is independent of the choice of s and is equivalent to the original definition in $[\mathrm{KL}]$. See $[\mathrm{Hu}]$.

We can obtain the following.
Theorem C.

$$
\max \left\{p_{1}(x, w) ; x, w \in \mathfrak{S}_{n}\right\}=\left[n^{2} / 4\right]-n+1
$$

Proof. First, the following statements are valid. $p_{1}(e, w)=c^{-}(w)-$ $g(w)$ for any $w \in \mathfrak{S}_{n}([\mathrm{D}]) . P_{x, z}(q)-P_{y, z}(q)$ has non-negative coefficients for any $x, y, z \in \mathfrak{S}_{n}$ with $x \leq_{B} y \leq_{B} z([\mathrm{I}])$. Hence, by virtue of Theorem B, we have

$$
\begin{aligned}
\max \left\{p_{1}(x, w) ; x, w \in \mathfrak{S}_{n}\right\} & \leq \max \left\{p_{1}(e, w) ; w \in \mathfrak{S}_{n}\right\} \\
& =\max \left\{c^{-}(w)-g(w) ; w \in \mathfrak{S}_{n}\right\} \\
& =\left[n^{2} / 4\right]-n+1
\end{aligned}
$$

In particular, for z_{n} defined in the proof of Theorem A, we have

$$
p_{1}\left(e, z_{n}\right)=\left[n^{2} / 4\right]-n+1 .
$$

Acknowledgements. The author wishes to express his deep gratitude to Professor M. Dyer for many valuable suggestions. Without his advice, this article wouldn't be written.

References

[D] Dyer, M., Hecke algebras and reflections in Coxeter groups, Ph. D. thesis, Univ. of Sydney (1987).
[Ha] Harary, F., Graph Theory, Addison-Wesley Publishing Company, 1969.
[Hu] Humphreys, J. E., Reflection groups and Coxeter groups, Cambridge University Press, Cambridge, 1990.
[I] Irving, R. S., The socle filtration of a Verma module, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 1, 47-65.
[KL] Kazhdan, D. and G. Lusztig, Representation of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165-184.
[S] Stanley, R. P., Enumerative Combinatorics Vol. I, The Wadsworth \& Brooks/Cole Mathematics Series, 1986.
(Received December 7, 1993)
Department of Mathematical Sciences
University of Tokyo
Hongo, Tokyo
113 Japan

[^0]: 1991 Mathematics Subject Classification. Primary 06A07; Secondary 20B30.

