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On the maximum value of the first coefficients of

Kazhdan-Lusztig polynomzials for symmetric groups

By Hiroyuki TAGAWA

Abstract. In this article, we show that max{c™ (w);w € &} =
[n? /4], where ¢~ (w) is the number of elements covered by w € &,, in
the Bruhat order. Using this result, we can see that the maximum value
of the first coefficients of Kazhdan-Lusztig polynomials for &, equals
[n2/4] —n + 1.

0. Introduction

Let (W, S) be a Coxeter system and <p denote the Bruhat order on W.
We put

¢ (w) =t{y € W;w covers y in the Bruhat order},
g(w) = #{s € S;s <p w}.

The purpose of this article is to show that, if W is the symmetric group &,
of degree n, the maximum value of ¢~ (w) (resp. ¢~ (w) — g(w)) over w € &,,
is equal to [n?/4] (resp. [n?/4] — n + 1), where [z] denotes the Gaussian
symbol, i.e. the greatest integer not exceeding x.

The maximum value of ¢~ (w) plays a role in solving problems concerning
with the Bruhat order with help of computers. Also, by results of Dyer [D]
and Irving [I], the maximum value of ¢~ (w) — g(w) gives the maximum
value of the coefficient p;(x,y) of ¢ in the Kazhdan-Lusztig polynomial
Pry(q) = Zizo pi(7,y)q".

This article is organized as follows: In Section 1, we associate a poset
P, to each permutation z € &,, and show that ¢~ (z) (resp. ¢~ (z) — g(z)) is
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equal to the number of edges of the Hasse diagram of P, (resp. n—comp(P;),
where comp(P;) is the number of the connected components of the Hasse
diagram of P,). In Section 2, we use the Turdn’s theorem in the graph
theory to evaluate the maximum values of ¢~ (z) and ¢~ (x) —g(z) (Theorem
A and B). In Section 3, we combine Theorem A, B with results of Dyer [D]
and Irving [I] and prove that the maximum value of the first coefficients of
Kazhdan-Lusztig polynomials is given by [n?/4] — n + 1 (Theorem C).

1. Poset P, associated to a permutation x

First, we define a poset P, for x € &,,.

DEFINITION 1.1. For each integer n > 1, we put [n] := {1,2,--- ,n}.
For z € 6,,, we define a poset (P, <,) as follows:

P, ={i;ien]} asaset, j<,iei<jandz(i)>z(j).

Ezample 1.2. Let z = (; f g ;1 Z) € G5. Then the Hasse diagram of
(P, <) is the following.

1 3
NAVEAY
2 4 5

REMARKS 1.3.

(i) When n < 5, for any poset P with n elements, there exists z € &,
such that P, ~ P, where P ~ () means that there exists a bijection f from
P to @ satisfying z <y in P & f(z) < f(y) in Q.

(i) When n > 6, the above statement is incorrect. For example, we
cannot find x € &g such that P, ~ P, where P is a poset with the following

Hasse diagram.

(ili) It is easy to check that if P, = P, then z = y.

Let us recall the definition of the Bruhat order on &,, and we define
some notations.
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DEFINITION 1.4. Let a,b be elements in &,,. We write a < b if there
exist 4,7 such that ¢ < j, b(i) > b(j) and @ = b(7,j), where (i,7) is the
permutation switching the number ¢ and j and leaving the other numbers
fixed. Then the Bruhat order denoted by <p is defined as follows:

x <p Yy < there exist zg, 21, - , 2 € &, such that
T = 20 </21 </z2 <'-~<'zk:y.
For z,y € &,, we put [z,y]:={z € Gn;x <p z <p y}, ¢ (z):=t{z €
le,2];(z) = €(x) — 1}, G(a):={s € [e,a};£(5) = 1}, g(z)=tG(z), where
e is the identity element and ¢ is the length function (cf. [Hu]). In other

words, ¢~ (x) (resp. g(z)) is the number of the coatoms (resp. atoms) of the
interval [e, z].

We define some more notations.

DEFINITION 1.5. Let (P,<p) and (@, <g) be posets. We write  <p
yifycovers z in P (iie. z <p z<py=z=y). If PNQ = 0, then we
define a new poset (P + @, <piq) as follows: P+ @Q = PUQ as a set and
z <pigyifandonlyif (i) z,y € Pand z <p yor (ii) z,y € Q and = <g v.
Also we define a new poset (P ® Q, <pg) as follows: P& Q = PUQ as a
set and  <pgq y if and only if (i) z,y € P and z <p y, (ii) =,y € Q and
x <gyor (ili) x € P and y € Q. We put

h(P) = H{(x,y) € P4y <p o},
comp(P) := the number of the connected components

of the Hasse diagram of P.

In other words, h(P) is the number of edges of the Hasse diagram of P. We
say that P is connected if and only if comp(P) = 1.

REMARK 1.6. For z,y € &,, it is well known that y <p x if and only
if there exist 4, j such that y = z(7,5), i < j, () > x(j) and z(k) < z(j)
or z(i) < x(k) for any k € [4, j], where [i,j] :={i,i+1,---,j}.

Then we have the following.

ProproOSITION 1.7. Forx € G, we have
(i) ¢ (x) = h(Fy),
(ii) g(x) =n — comp(Py).

Before the proof of Proposition 1.7, we prepare some more notations.
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DEFINITION 1.8. For x € &,,, we put

C(J?) ( ]),Z<],LE(’L,]) <B 1:}7
H(w) = {(i,j

{G,
{(i,)) € P j < 1}

REMARK 1.9. We can check that £(z) = #{(i,j) € P,%j <4 i} for
any x € G,,.

PROOF OF PROPOSITION 1.7 (i). We define the map 7 from C(z) to
H(x) by n(i,7) := (i,7). Then, by Remark 1.6 and the definition of <,, we
have

(1,5) e C(x) i<y, 2(i,j) <p =z
i< g, z(t) > x(j), x(k) <z(j) or (i) < x(k)
for any k € [i, j]
& j <g 1, x(k) < x(j) or z(i) < (k) for any k € [, ]
&<
& (i,7) € H(x).
Hence, 7 is a bijection. It is easy to check that §C(z) = ¢~ (z) and tH (z) =
h(Py). So, we obtain ¢~ (z) = h(P,). O

Before the proof of Proposition 1.7 (ii), we will show a lemma.

LEMMA 1.10. For xz € &,, we have the following.

(i) If P, is connected, then g(x) =n — 1.

(ii) Let Py be the connected component of P, containing 1. Then P, =
{1,2,--- ,m} for some m and x([m]) = [m].

PROOF. (i) Suppose that g(x) # n — 1. Then there exists k € [n — 1]
such that si,s9,---,s,—1 € G(x) and s &€ G(x), where s; := (i,i + 1) for
each i € [n—1]. If there exist 7, m such that r € [k], m € [n]\[k] and 7 and m
are comparable, then we have m <, 7 (i.e. r < m and z(r) > z(m)). On the
other hand, since r < k, k+1 < m and s; & G(z), we can see that z(r) < k
and k+1 < x(m). This is a contradiction. So, we can get that every element
in {T, 2, ,%} is incomparable to every element in {151/1, lm, RIS
This contradicts the assumption that P, is connected. Hence, we have
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g(z) =n — 1. (ii) First, we will show that P, = {1,2,--- ,m} as a set. Let
P = {z:,z; ,{;}, where 1 = i1 < 49 < -+ < 1y, as a set. Suppose
that there exists k € [m] such that i, = p for any p € [k — 1] and i, > k.
Then we can see that k ¢ P; and every element of P is incomparable to
k. Hence, by the inequality i1 < o < -+ <11 < k < i < -+ < by, WE
have z(ip) < z(k) < z(i,) for any p € [k — 1] and for any r € [m] \ [k — 1].
This means that every element in {z:, ig, - ,z'/;;_/l} is incomparable to every
element in {z'Nk,z?J:l, e ,7;;} This contradicts the assumption that P; is
connected. Next, we will show that z([m]) = [m]. Suppose that there exists
k € [m] such that x(p) < m for any p € [k — 1] and z(k) > m. Then it
follows from x(k) > m that

477 <o B} = 405d = k() Sm} +1=m —k+2.
On the other hand, we have
15?"' vk/:/l ¢ {;aggzc fk’v},

here we use the inequality that z(p) < m < x(k) for any p € [k — 1]. Since
P is connected and k € P;, we have

P >{1,2,-- ,k/:/l} U {j;j < k} (disjoint union).

It follows that we get 4P > m + 1. This is a contradiction. So, we obtain
z([m]) = [m]. O

PROOF OF PROPOSITION 1.7 (ii). Let P, = P+ Py + --- + P} be
the decomposition into connected components, and put §F; = m; > 1 and
Py ={pi1,pi2, s Dim,}, Where pi1 < pia < -+ < pjm,. We may assume
that p11 < p21 < --- < pg1. Then, for each i € [k], it follows from Lemma
1.10 (ii) that there exists z; € S,y such that P; is isomorphic to P,,. Hence,
by Lemma 1.10 (i), we have

9(x) = g(x1) + g(x2) + - + g(w)
=(m—1)+(me—1)+ -+ (m — 1)
=mp+mg+---+mp—k
=n — comp(P,). O
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2. The maximum values of ¢~ (w) and ¢~ (w) — g(w)
In this section, by the Turan’s theorem, we evaluate the maximum values
of ¢ (z) and ¢~ (x) — g(z).

THEOREM (TURAN). The mazimum number of the edges in n-vertex
graphs which has no triangles is [n?/4].

By the Turan’s theorem, we can easily see the following.

COROLLARY 2.1. If P is a poset with n elements, then we have h(P)
< [*/4].

Hence, we have

THEOREM A.
max{c™ (z);z € &,} = [n?/4].

PrROOF. By Proposition 1.7 (i) and Corollary 2.1, we have
max{c (z);z € 6,} = max{h(P,);z € &,} < [n?/4].
We define z, € &,, as follows:

(2n(1),2n(2),- -+, 2n(n))
{(m+1,m+2,---,2m,1,2,-~,m) if n=2m,

Sl m+1m+2,--2m+1,1,2,- m)  if n=2m+1.

Then we can see that ¢~ (z,,) = [n?/4]. Hence, we obtained this theorem. [J
Also, we have the following.

ProproOSITION 2.2. For a poset P with n elements, we have

h(P) — (n — comp(P)) < [n?/4] —n + 1.

This proposition immediately follows from the next lemma.



First coefficients of Kazhdan-Lusztig polynomials 467

LEMMA 2.3. Let P be a poset withn elements. If P = P+ Po+-- -+ Py
18 the decomposition into the connected components, then we have

h(P) — (n — comp(P)) < h(P") — (n — comp(P")),

where P’ = (P, & Py) + -+ + P.

PROOF. Since P, P, # (), we have h(Py + P») + 1 < h(P1 & Py).
Hence, we can see h(P) + 1 < h(P’). So, by the equality n — comp(P) =
n — comp(P’) — 1, we obtained this lemma. [J

PROOF OF PROPOSITION 2.2. Let P = P, + Py, + --- + P, be the
decomposition into the connected components. Then, by Corollary 2.1 and
Lemma 2.3, we have

h(P) — (n — comp(P)) P+Po+---+PFP)—(n—k)
(Pr®P)+--+P,)—(n—k+1)
(PL®P,®Py)+-+P)— (n—k+2)
Pl@PQ@”’@Pk)—(n—l)

2/4 —n+1.0

h(
h(
h(
h(
[

IA AN IA A

Hence, we have the following.

THEOREM B.

max{c (z) — g(z);z € &,} = [n?/4] —n + 1.

Proor. By Proposition 1.7 and Proposition 2.2, we have

max{c (z) — g(x);x € 6,} = max{h(FP;) — (n — comp(Py));x € &, }
< [n%/4] —n+1.

On the other hand, for z, defined in the proof of Theorem A, we can see
that

¢ (zn) = g(za) = [n?/4] = n + 1.

Hence, we proved Theorem B. [J
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3. The maximum value of the first coefficient of
Kazhdan-Lusztig polynomials

Here, we combine Theorem A, B with results of Dyer [D] and Irving
[I] and prove that the maximum value of the first coefficients of Kazhdan-
Lusztig polynomials is given by [n?/4] —n + 1.

First, we define Kazhdan-Lusztig polynomials.

DEFINITION 3.1. Let (W, S) be a Coxeter system. For x,w € W,
we define the Kazhdan-Lusztig polynomial for x,w denoted by Py ,(q) =

Zizo pi(z,w)q" € Z[q] as follows:
Poo(g)=1forallz € W, Pr,(q)=01if z £ w.

If x < w, then choose s € S satisfying /(sw) < ¢(w) and set

{0 if ¢ < sz,
c:=
1 if sx < .

Then P, ,,(q) is defined inductively as follows:

Px,w(Q) = ql_cpsx,sw(Q) + qcpxysw((ﬁ - Z M(Za Sw)q(f(W)—é(Z))/me’Z(q)’
Sz<z<sw
where jui(z, sw) is the coefficient of ¢\/C®)=4=)=1/2 of P, . (q).

REMARK 3.2. This definition is independent of the choice of s and is
equivalent to the original definition in [KL]. See [Hul.

We can obtain the following.

THEOREM C.

max{pi (z,w); x,w € &,} = [n*/4] —n + 1.
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PrOOF. First, the following statements are valid. p;(e,w) = ¢~ (w) —
g(w) for any w € &,([D]). P, .(¢q) — Py.(q) has non-negative coefficients
for any z,y,z € 6, with x <p y <p z([I]). Hence, by virtue of Theorem B,
we have

max{p; (z,w);z,w € &, } < max{pi(e,w);w € &, }
= max{c (w) — g(w);w € &,,}
= [n?/4 —n+1.

In particular, for z, defined in the proof of Theorem A, we have

pi(e,zn) = [n*/4 —n+1.0
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