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On the number of rational maps

between wvarieties of general type

By T. BANDMAN* and D. MARKUSHEVICH**

Abstract. Let X,Y be two complex projective varieties with only
canonical singularities and big and nef canonical line bundles K x, Ky .
Then the set R(X,Y") of all dominant rational maps f : X — Y is finite.
We prove that the number #R(X,Y) of this maps has the upper esti-
mate, which depends only on the dimension dimX = n, selfintersection
K¢ and product r = rxry of indices rx and 7y of varieties X and Y.

§1. Introduction

In this paper the set R(X,Y) of all the dominant rational mappings
f: X -->Y between two complex algebraic varieties X,Y is considered.
It is well known that if the image variety Y is hyperbolic in a sense (which
will be specified later) the set R(X,Y) is finite. One of the first results in
this field was the de Franchis Theorem ([Fr|. It has two parts:

1) For any Riemann surface X and hyperbolic Riemann surface Y the
set R(X,Y) is finite;

2) the number #R(X,Y) of mappings f € R(X,Y) has an estimate
¢(X) depending on the surface X only.

The first statement of this Theorem as well as the notion of hyperbol-
icity itself was lately generalized for the higher dimensional situations. Sh.
Kobayashi and T.Ochiai ([Ko-O]) proved that the set R(X,Y’) is finite for
two complex projective varieties X, Y provided that Y is of general type.
In the review ([Ko]) the question was raised whether the second part of the
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de Franchis Theorem is valid for multidimensional varieties as well. It ap-
peared to be the case for nonsingular projective varieties X,Y with ample
canonical line bundles ([Bal]). Moreover in this situation there exists an up-
per estimate for #R(X,Y’) depending on the “almost topological”invariants
of the variety only, namely on n = dim X and (¢;(X))" ([Ba2]).

The subject of this paper is the generalization of this fact to a wider
class of varieties.

THEOREM 1. There exists such an integer function o of three vari-
ables, that for any pair of projective varieties X, Y with only canonical sin-
gularities and nef and big canonical line bundles Kx and Ky, the number

#R(X,Y) <o(n,k,r)

where n =dim X, k = K% and r = r(X) xr(Y') is the product of indices of
varieties X,Y .

Note that the bound o depends once more not on the variety X itself
but on its topological invariants. If X and Y are nonsingular, r =1 and ¢
becomes a function of n = dim X and K% = (—1)"(c1(X))", where ¢;1(X)
denotes the first Chern class of variety X. The proof of Theorem 1 is similar
to one used already in [Bal] but the modification of technical details enabled
us to obtain a more general result.

For the two dimensional case, Theorem 1 provides the following

COROLLARY 1. There is an integer function oz of two variables, such
that for any two surfaces of general type the number

#R(X,Y) < oo(ht, h?)

where h! = dim HY(X, R), h? = dim H?(X, R).

This Corollary was stated in [Bal] but there was an error in the proof.
Now it easily follows from the existence of the minimal model for surfaces
and the Noether formula for K%.

By the “variety”we always mean an irreducible quasi-projective variety
over the complex numbers. This does not concern the term “Chow va-
riety” which may be reducible. We will not distinguish between divisors,
divisor classes and line bundles when no confusion may arise. Further on,
the following notations will be used:
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K x—the canonical class of variety X;
| D|—the linear system of a divisor D;
D", Dy --- D,—the intersection indices of Q-Cartier divisors on an
n-dimensional variety;
a—the map of X - - >P" =T'(sKx)" defined by the linear system
‘SK X | .

2. Estimate depending on degrees and dimensions

Let X C PV and Y C PM be projective varieties. Denote by RF(X,Y)
the set of all the dominant rational maps f : X - - > Y whose graph
'y € XxY CP"x PM has degree < k with respect to the standard
hyperplane sections of P x PM C pN+M+NM

ProrosiTioN 1. Let M,N,k,n,m,d;,ds be positive integers. Then
the graphs of all the maps f € R¥(X,Y) for all X C PN,Y C PM with
dim X = n,dimY = m, deg X = di,degY = do form a bounded algebraic
family of subvarieties of PN x PM. More precisely let T (resp. U) be the
Chow variety parameterizing all the n-dimensional (resp. m-dimensional)
projective varieties Xy C PN (resp. Y, C IP’M) with degrees deg X; < dj,
degV, < da, and let V be the Chow variety of all the n-dimensional subva-
rieties Z, C X; XY, of deg Z, < k in PN x PM . Then there exists a closed
algebraic subset V! C V' whose points correspond to the graphs of all the
maps f € R¥(X; x X,,) for allt € T and u € U.

Proor. Let X,),Z be the universal families of projective varieties
over T, U, V. There is a commutative diagram of natural morphisms.

X e X=Xy VEZ2ZBY_yxyV - Y

Px N\ Pi o\ pzl /by /Py
T & 1% L U

The morphisms p,py,pz, Ta, Ty are projective (74, resp. Ty being
induced by the projection of subvariety Z, C Xy x Yy, nr(V) =t, 7y (V) = u
to the first resp. to the second factor). Hence the image Xy = 74(Z), o =
WJ}(Z) are closed and, hence, projective over V. By the semicontinuity of
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the dimension of fibers of a proper morphism ([S1], Corollary of Theorem
7, Ch. 1, n.6) the following two subsets of V' are closed:

Vi ={v € V|dim(p3|X) ' (v) > n}
Vo ={v e V]| dim(py\yo)_l(v) > m}

Hence Vy = Vi N V5 is closed. The points v € V| parameterize all the
subvarieties Z, C X; x Y,, whose projection to X; and Y, are dominant
(and hence surjective). To be a graph of a rational map f : X — Y it is
sufficient for Z, that the projection of it onto X; was birational.

Let X’ be the union of such components X, ofp/,_\?l(/lf’a) that 7 ; | 77;?1 (Xa)
is birational isomorphism and V' = p4(X’). Since the fibers of py are
irreducible varieties the inverse image p}l (Vi) of any irreducible component
Vg € V is irreducible ([S1], Theorem 8, n.6, Ch.1). Hence V' is a closed
subset of Vj.. For the generic point v C V' this map is generically finite.
By the Zarisky Theorem ([Ha], Corollary 11.4, Ch.3) this means that the
fibers of 7w are connected over every normal point of X’. In fact, it is true
for every point of X’. Indeed, let us consider the normalization X, and V,/
of X" and V' respectively. Since py is smooth in the generic points of its
fibers, the lift p, : X — V. has the same generic points of fibers as py
itself.

So, for every point v € V' the restriction 7y | p;?l (v) is a birational
isomorphism. Hence, V' is the desired set. [J

COROLLARY. There exists a function T = 7(N, M, k,n,m,d;y,ds), such
that for every pair of projective varieties X C PN dimX = n, and Y C
PM dimY = m, of degrees di and do respectively, the inequality

#Rk(Xa Y) < T(Na Makanamadlde)

holds.

PROOF. Let p =7 x 7y |V : V' — T x U. Then p~!(t,u) param-
eterizes the graphs of all the maps from R(Xy,Y,). By construction V'
is the quasiprojective scheme over T' x U and we may choose 7 to be the
maximum of the projective degrees of fibers of p. [J
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3. Estimates for pluricanonical mappings

ProrosiTioN 2. Let X,Y be projective n- and m-dimensional vari-
eties with canonical singularities of indices r(X) and r(Y); Kx and Ky
their canonical divisor classes, r = r(X) - r(Y). Assume that R(X,Y) #
0, Kx and Ky are nef and big and ax : X - - > X' C PN oay : Y - -
> Y' CPM be birational maps defined by the systems |srKx| and |srKy|
for some s > 1. Then we have

n nKn
1) M <N < P05 g(s);
n!
2) degY’ < deg X' < s"r"K¥%;
3) for every f € R(X,Y) the map f' = ax fay' € RE(X',Y") for some
k< 2nshn KL

Here q(s) is a known polynomial of degree n — 1, coefficients of which

depend on K% and r.

Proof.
1) By the Kawamata Base Free Theorem ([Ka], [Sh]) divisors Kx and

Ky are semiample Cartier divisors on X and Y respectively, and by the
Kollar-Matsusaka Theorem ([K-M]) we have:

N, 7N
VK

(1) dim HO(X,vrKx) < '
n.

+q(v,r" K%, r"K%)

where (v, a, 3) is a known polynomial in v of degree n — 1, coefficients of

which depend on « and 3. Hence for v = s we obtain the estimate for N.
Now consider the resolution of singularities of X,Y and mappings ax,

ay such that the following diagram is commutative:

ax \, I I Jay
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X/ L’) Y/

in which f is a surjective morphism oy, oy, px, py are birational mor-
phisms and X,V are nonsingular projective varieties. For every p and
w € H(Y, uKy) the inverse image f*o}-w € HO(X,MKX). By definition of
canonical singularities o x+O ¢ (uK ¢) = Ox (uKx ), hence

(3) dim H°(Y, uKy) < dim H(X, uKx).

For y = rs the required estimate of the number M follows from (3).
2) to prove the estimates for deg X’ and degY”’ we need the following

LEMMA 1. Let V be an n-dimensional normal projective variety; H;
E;-Cartier divisors on' V' such that H;, H; + E; are nef and F; are effective
(t=1,...,n). Then

Hi- Hy < (Hi+Ey) - (Hy + Ey).

ProoOF. Split one factor H,, + F, on the right hand side of the in-
equality and observe that

(Hi+E)--- (Hp-1+En—1)E, >0

as all H; + E; are nef ([Kl]).
Hence

(Hi+E1)-- (Hy1+Ep)H, < (Hi+ Ey)--- (H, + Ey).

We proceed by induction on the number of E; # 0 to conclude the proof. [J

Now we return to the proof of the Proposition 2. We have % (srKx) =
p H% + E, where E is the fixed part, % H% is the movable part of the
system o% (srKx) and HY is a hyperplane section of X’. By Lemma 1

deg X' = (HY)" = (¢% HY)" < 0% (srKx)" = s"1" K%
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The inequality degY”’ < deg X’ follows from the fact that f': X' - - > Y’
is the restriction on X’ of a linear projection map PV - - > PM = |srKy |V
and from [F], example 8.4.6.

3) To prove the last inequality of the statement of Proposition 2 we
introduce the projections

TX Ty

XXy 2Ly

! s
X/ X X/ X Y/ Y Y/

and the morphism ¢ = px X @y : X xY — X' xY’. Consider the divisors
Hy, Hy, Hx = o5 HY, Hy = oy Hy, H' = m3Hy + 7y Hy, H = ¢"H' on
XY, X,Y, X' x Y' X x Y respectively, where H’, H}, are hyperplane
sections of X’ ¢ PN, Y’ ¢ PM. We have

'n n "% i % n—i
W degry =t "= 3 (1) (e )

Since ¢*ny HYy = 7% Hx, ¢*my Hy = 7% Hy, and ¢I'; = 'y, by projection
the formula for ¢ we have

Do (w5 Hy ) (myf Hy )" = T (w5 Hx ) (7 By )" = Hy J H ™

by the definition of f* Now recall that by our construction, Hy is the
movable part of |03 srKy|, hence O'YsTKY = Hy + E for some effective
divisor E, and f*Hy = srf*c vEy — f*E. Sunllarly, Hy = sroxy Ky — F
with an effective divisor F'. As HX, f oy Ky, f Hy and ox Kx are nef, the
Lemma yields the inequality

(5) Hy frHy ™ < s"r" ok Kx) (Fr oy Ky)"

By the Kawamata Base Point Free Theorem ([Kal) there is such an integer
so that the linear systems |soK x|, |soKy | are base point free. By Bertini’s
Theorem [S2] applied ¢ times we can find a nonsingular (n — i)-dimensional

subvariety L C X representing the cycle s (0% Kx)'. We have L = o (L)
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and by [Rei], (1.14), L has only canonical singularities. Let o = ox | L,D=
sof*oy Ky | L. We have

K, = (80+1)Kfo,KZ: (SQU}}K)(—FKXHL
= (80+1)0’}}K)(|E+ZajEj

where E; are the exceptional divisors of o and a; > 0 are the j discrepancies
([Rei]). As above it is possible to pull back the pluricanonical differentials
from Y to X, hence Kx = f*U;Ky + R with an effective divisor R. Upon
the restriction to f/, we have for any k£ > 0,

HY(L,k(so +1)D) € H(L, k(so + 1)soK ¢ | L)
= HO(E, ksoo* Ky, + Z k(So + 1)SoajEj).

Now we use the following fact: if o : L — L is a resolution of canonical
singularities, then

U*Oi(VU*KL + Z bjEj) = OL(VKL)
for any N > 0,b; > 0 ([Rei]). This implies that
(7) Ho(i, kJSOO'*KL + Z k)(So + 1)80ajEj) = HO(E, ]{JSOU*KL).

Now, combining (6), (7) and applying once more the Kollar-Matsusaka
Theorem([K-M]) mentioned above, we obtain

((so + 1)D)"" = lim dimHO(i,k:(so—l—l)D)(n_i)!

k—o0 k‘nfi
< lim dim HO(L, k(sg + 1)§QKX |L)(n —1)! _ Sg_iKZ_i,
k— 00 knfz
which implies
* 10 Pk _* n—i Dn_i SniiKnii n
(0" Kx)' (ffoy Ky)" " < : Lo — = K%

sg_isé ~ si(sp+ 1)t

Now from (4) and (5) it follows that

deg Ff/ < Z (7) f{&f*H{j—Z < Z (7;) T”s“K;l( < 2”7’”3”}{?&. [l
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4. Proof of the Theorem 1

Let X,Y be as in the hypothesis of Theorem 1, K% =k and R(X,Y) #
0. Let (X,0x), (Y,oy) be the desingularizations of X and Y. Then the
divisors ro% Kx and roy Ky are semiample Cartier divisors on X and Y
respectively. For every integer ¢ > 1,

(—1)"x(Y,—rtoy Ky) =Y (~1) dim H'(Y, —troy Ky)
= (~1)/ dim H/(Y, Ky + troy Ky)
= dim H(Y,, (tr + 1)o} Ky)
< dim HY(X, (tr + 1)o% Kx)
<(t+1)"r"K¥x+n—1

([K-M], Lemma 5.1). In particular, for 1 <t <m + 2
| x(Y, —rtoy Ky) | < (m + 3)"r"K% +n — 1.

It is obvious that there may be only finite set @1,...Q, of polynomials
which have integer values in integer points and fulfill this condition. On
the other hand, by the Kollar-Matsusaka Lemma ([K-M]) there may be
only finite set Pp, ..., P, of polynomials X(X ,tro Kx ) with given value of
r"K% = r"k. For each polynomial Q1,...,Q, P1,..., P, there is a number
sy (sx) such that the linear system |sytroy Ky| (|sxtroyKx|) defines
the birational map for ¢ > 1 ([Luo|, Theorem 1.2). Choosing s to be the
product of all the sx and sy for all the polynomials Pi,..., P, Q1,...,Qy,
we obtain the birational maps ax : X -- > X' and ay : Y - - > Y”, defined
by the linear systems |sro% Kx| and |sroy Ky | for all pairs of varieties X, Y
with R(X,Y’) # () and with given parameters k,r, n.

By Proposition 2 there are estimates N’, d’ for all parameters N, M, d; =
deg X', dy = degY’ depending only on 7,k = K%, s, and the latter is also
defined by k. Moreover R(X,Y) = RY(X',Y’) for ¢ = 2"r"s"k.

Now by Proposition 1,

#RQ(X’7 Y/) S T(Na M: q,n,m, dla d2)
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Assuming

o(n, k,r)
=max{7(N, M, q,n,m,di,do) | M < N <N' dy <dy <d,m<n},

we obtain the desired function. O

[Ko-O]
[Luo]

[Rei]
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