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On some differential inclusions and their applications

By Grzegorz �Lukaszewicz and Bui An Ton

Abstract. The existence of a solution of the evolution inclusion

u′ + ∂φ(t, u) + g(t, u) − F (u) � 0 on (0, T ), u(0) = ξ

is established. For each t in [0,T], φ (t, ·) is a proper l.s.c. convex
function from H to [0, ∞] and F is an upper hemicontinuous set-valued
mapping of L2(0, T ;H) into its closed convex subsets.

The time periodic problem

u′ + ∂φ(t, u) − F (u) � 0 on (0, T ), u(0) = u(T )

is studied. Applications to the heat equation with mixed boundary
conditions and to the coupled Navier Stokes and heat equations with
convection, dissipation and control terms in non-cylindrical domains are
given.

Introduction

In this paper we consider the initial value problem for the nonlinear

evolution inclusion

(0.1) ut + ∂φ(t, u) + g(t, u) − F (u) � 0 on (0, T ), u(0) = ξ,

in a real Hilbert space H. For each t ∈ [0, T ], φ(t, ·) is a proper lower

semicontinuous convex function from H to [0, + ∞], and F is an upper

hemicontinuous set-valued mapping of L2(0, T ;H) into its closed and convex

subsets.
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The time periodic problem

(0.2) ut + ∂φ(t, u) − F (u) � 0 on (0, T ), u(0) = u(T ),

is also studied.

Abstract evolution equations as in this paper, with F (u(t)) = f(t), where

f is an element of L2(0, T ;H), have been studied by Brezis [B], then by

Attouch and Damlamian [AD], Kenmochi [K], Yamada [Y1],[Y2], Watanabe

[W], and others.

In the works of Kenmochi [K] and of Yamada [Y1],[Y2], the lower semi-

continuous convex function φ depends on t, and this allows, in particular,

to have a unified approach to the study of parabolic equations in both

cylindrical and noncylindrical domains.

In this paper we shall extend the above cited works to the case when F is

a set-valued mapping. In Section 1 the notations and the basic assumptions

of the paper are given. The initial value problem for (0.1) is studied in

Section 2. The existence of periodic solutions of problem (0.2) is established

in Section 3. Applications are given in Section 4, first to the coupled Navier-

Stokes and heat equations with convection, dissipation and control terms,

then to the heat equation with mixed boundary conditions.

1. Notations and basic assumptions

Let H be a real Hilbert space with inner product (·, ·) and norm ‖ · ‖.
We denote by L2(0, T ;H) the space of strongly measurable functions from

(0, T ) to H, with the norm

‖v‖L2(0,T ;H) =

{∫ T

0
‖v(t)‖2

Hdt

}1/2

,

and the obvious inner product.

C(0, T ;H) is the space of continuous functions from [0, T ] to H, with the

usual norm. For each t ∈ [0, T ], let φ(t, ·) be a proper lower semicontinuous

convex function from H to [0,+∞], with

D(φ(t, ·)) = {u ∈ H : 0 ≤ φ(t, u) <∞}.
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The subdifferential of φ(t, ·) at u is the set

∂φ(t, u) = {f ∈ H : φ(t, v) − φ(t, u) ≥ (f, v − u) for all v ∈ D(φ(t, ·))}.

The domain of the subdifferential is

D(∂φ(t, ·)) = {u ∈ D(φ(t, ·)) : ∂φ(t, u) �= ∅}.

It is known that A(t, ·) = ∂φ(t, ·) is maximal monotone in H. The images of

A(t, ·) are closed and convex subsets of H, and hence, for each t ∈ [0, T ] and

u ∈ D(A(t, ·)) there exists a unique element m[A(t, u)] in the set A(t, u),

with minimal H-norm.

Assumption I.1. For each t ∈ [0, T ] and c > 0

Kc(t) = {u ∈ H : 0 ≤ φ(t, u) ≤ c}

is a non-empty and compact subset of H, with φ(t, 0) = 0.

Let Sc(T ) be the set

Sc(T ) = {u ∈ L2(0, T ;H) : ‖ut‖2
L2(0,T ;H) + sup

0≤t≤T
φ(t, u)+

‖m[A(t, u)]‖2
L2(0,T ;H) ≤ c},

and denote by Xc(T ) the closure in L2(0, T ;H) of the convex hull of Sc(T ).

The set Sc(T ) is not empty as it contains zero.

Assumption I.2. φ(t, ·) is a proper lower semicontinuous convex

function from H to [0,+∞] such that for some positive constants τ0, C1

and C2, each t0 ∈ [0, T ] and each v0 ∈ D(φ(t0, ·)), there exists an H-valued

function v on the interval I(t0) = [max{t0 − τ0, 0},min{t0 + τ0, T}] with

(1.1) ‖v(t) − v0‖ ≤ C1|t− t0|φ1/2(t0, v0)

and

(1.2) φ(t, v(t)) ≤ φ(t0, v0) + C2|t− t0|φ1/2(t0, v0),

for all t ∈ I(t0).
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Assumption I.3. For given λ > 0, F is a set-valued mapping of

Xλ(T ) ⊂ L2(0, T ;H) into subsets of L2(0, T ;H), such that

1) F is upper hemicontinuous,

2) For each u ∈ Xλ(T ), F (u) is a closed and convex subset of L2(0, T ;

H),

3) For each ε > 0, there exists C(ε) > 0, independent of λ, such that

sup{‖y(t)‖2 : y ∈ F (u)} ≤ ελ+ C(ε)(1 + ‖u(t)‖2),

for all u ∈ Xλ(T ), and almost all t ∈ [0, T ].

Remark. Alternatively, one can write “semicontinuous” instead of

“hemicontinuous”, and “compact” instead of “closed”, in conditions 1) and

2), respectively, of Assumption I.3.

Definition. F is upper semi-continuous at x0 ∈ L2(0, T ;H) if for any

open N containing F (x0) there exists a neighborhood M of x0 such that

F (M) ⊂ N .

In the next two sections we shall use the following lemma (cf. [Y1],

[ÔY]):

Lemma 1.1. Let φ be a proper lower semicontinuous convex function

from H to [0,+∞]. Suppose that Assumption I.2 is satisfied, and let u ∈
H1(0, T ;H), with u(t) ∈ D(∂φ(t, ·)) for almost all t ∈ [0, T ].

Suppose further that the function t→ φ(t, u(t)) is absolutely continuous

on [0, T ].

Then there exist positive constants C3, C4 such that

∣∣∣∣ ddtφ(t, u(t)) − (a(t, u),
d

dt
u(t))

∣∣∣∣ ≤ C3φ(t, u(t)) + C4φ
1/2(t, u(t))‖a(t, u)‖,

for a(t, u) ∈ A(t, u) and for almost all t ∈ (0, T ).

2. Initial value problems for inclusions

The main result of this section is

Theorem 2.1. Let Assumptions I.1–I.3 be satisfied, and let for some

p ∈ [2,+∞), C‖u‖p ≤ φ(t, u) for all u ∈ D(φ(t, ·)), t ∈ [0, T ]. For an

arbitrary λ > 0, let u→ g(·, u(·)) be a single-valued mapping of Xλ(T ) into

L2(0, T ;H). Suppose that:



Differential inclusions 373

1) For any given ε > 0, there exist C(ε) > 0, independent of λ, and

r ≥ 0 with

‖g(t, u)‖ ≤ ελ+ C(ε){1 + φr(t, u)} a.e. in t ∈ [0, T ],

for all u ∈ Xλ(T ),

2) If un ∈ Xλ(T ) and un → u in L2(0, T ;H), then for a subsequence

{uµ}, g(t, uµ) → g(t, u) weakly in L2(0, T ;H).

Then, for each ξ ∈ D(φ(0, ·)) there exist:

(i) a non-empty interval (0, T), with T = T if 0 ≤ r ≤ 1/2,

(ii) a solution u ∈ C(0, T;H) of the differential inclusion

(2.1) ut + g(t, u) ∈ −A(t, u) + F (u) on (0, T), u(0) = ξ.

Furthermore, ut and A(t, u) are in L2(0, T;H) and φ(t, u(t)) is absolutely

continuous on [0, T].

For c > 0, the set-valued mapping ξ → uξ, where uξ is a solution of

(2.1), is upper semicontinuous from Kc(0) ⊂ H into L2(0, T;H), with

T = T(c).

Theorem 2.1 extends earlier results of Attouch and Damlamian [AD],

where g(t, u) = g(t), F (u) = 0 and of Ōeda [Ō], Yamada [Y1], where F (u) =

f(t).

Let v be an element of Xλ(T ) and consider the initial value problem

(2.2) ut ∈ −A(t, u) + f(v) − g(t, v) on (0, T ), u(0) = ξ.

Lemma 2.1. Suppose that all the hypotheses of Theorem 2.1 are satis-

fied, and let, for λ > 0, f be a continuous mapping of Xλ(T ) ⊂ L2(0, T ;H)

into L2(0, T ;H). Suppose that for ε > 0 given, there exists a constant

C(ε) > 0, independent of λ, with

‖f(v(t))‖2 ≤ ελ+ C(ε){1 + ‖v(t)‖2} a.e. in t ∈ [0, T ],

for all v ∈ Xλ(T ).

Then there exists a unique solution u of (2.2). Moreover,

(2.3) ‖ut‖2
L2(0,t;H) + φ(t, u(t)) + ‖m[A(·, u(·)]‖2

L2(0,t;H)

≤M{φ(0, ξ) + ελt+ C(ε) +

∫ t

0
(φ(s, v)) + φ2r(s, v)ds},

where M is a constant independent of t, ξ, v, and λ.
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Proof. The existence of a unique solution u ∈ L2(0, T ;H) with ut
and A(t, u) in L2(0, T ;H) is known. Moreover, φ(t, u(t)) is absolutely con-

tinuous on [0, T ] (cf. Yamada [Y1], [ÔY]).

Let a(t, u) be an element of A(t, u). From (2.2) we have

(2.4) (
d

dt
u, a(t, u)) + ‖a(t, u)‖2 ≤ 1

2
‖a(t, u)‖2 + ‖g(t, v)‖2 + ‖f(v)‖2.

By Lemma 1.1

d

dt
φ(t, u) +

1

2
‖a(t, u)‖2 ≤ C3φ(t, u) + C4φ

1/2(t, u)‖a(t, u)‖

+ ‖g(t, v)‖2 + ‖f(v)‖2.

Thus

(2.5)

d

dt
φ(t, u) +

1

4
‖a(t, u)‖2 ≤ C5φ(t, u)

+ C{ελ+ C(ε)(1 + ‖v‖2 + φ2r(t, v))}.
Hence

φ(t, u) +
1

4
‖a(t, u)‖2

L2(0,t;H) ≤ φ(0, ξ) + Ct[ελ+ C(ε)] + C5

∫ t

0
φ(s, u)ds

+ C6

∫ t

0
(φ(s, v) + φ2r(s, v))ds.

The Gronwall lemma gives

(2.6) φ(t, u) ≤ C7{φ(0, ξ) + t(ελ+ C(ε)) +

∫ t

0
(φ(s, v) + φ2r(s, v))ds}.

Therefore

(2.7) ‖a(t, u)‖2
L2(0,t;H) ≤ C8{φ(0, ξ) + t(ελ+ C(ε))

+

∫ t

0
(φ(s, v) + φ2r(s, v))ds}.

It then follows from (2.2), (2.7) and from the hypotheses on f, g that

(2.8) ‖ut‖2
L2(0,t;H) ≤ C9{φ(0, ξ)+ t(ελ+C(ε))+

∫ t

0
(φ(s, v)+φ2r(s, v))ds}.

The different constants C are independent of λ, t, v. The lemma is proved. �
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Lamma 2.2. Suppose that all the hypotheses of Lemma 2.1 are satis-

fied. Then, for sufficiently large λ, there exists T(λ) > 0 such that if v is

in Xλ(T) then the unique solution u of (2.2) is in Sλ(T).

Proof. For λ large we take T = min(T, T̄ ), where

T̄ = {λ−Mφ(0, ξ)}/{M(ελ+ C(ε) + λ+ λ2r)}.

Then it follows from (2.3) that u is in Sλ(T). �

Lemma 2.3. Suppose that all the hypotheses of Lemma 2.2 are sat-

isfied and let T be as in Lemma 2.2. Then there exists a solution u ∈
C(0, T;H), with ut, A(t, u) in L2(0, T;H), of the inclusion

(2.9) ut ∈ −A(t, u) − g(t, u) + f(u) on (0, T), u(0) = ξ.

Moreover, u is in Sλ(T) for some λ > 0.

Proof. Let L be the mapping of Xλ(T), considered as a subset of

L2(0, T;H), into L2(0, T;H), given by L(v) = u, where u is the unique

solution of (2.2).

From Lemma 2.2 we know that L maps Xλ(T) into Xλ(T). It is clear

that Xλ(T) is a closed and convex subset of L2(0, T;H). Since Kλ(t) is a

compact subset of H for each t ∈ [0, T ] by Assumption I.1, it follows from

the Arzela-Ascoli theorem that Sλ(T) is a compact subset of L2(0, T;H),

and hence Xλ(T) is also compact in L2(0, T;H).

To show that L has a fixed point we apply Schauder’s theorem and thus,

it suffices to prove the continuity of L.

Suppose that {vn} ⊂ Xλ(T) and that vn → v in L2(0, T;H). Since

Xλ(T) is closed, v ∈ Xλ(T). Let un = L(vn) be the solution of the

inclusion

(2.10) (un)t + g(t, vn) − f(vn) ∈ −A(t, un) on (0, T), u(0) = ξ.

Since f is continuous in L2(0, T;H), f(vn) → f(v) in L2(0, T;H). With

our hypotheses on g we have g(t, uµ) → g(t, v) weakly in L2(0, T;H). Since

{umu} ⊂ Sλ(T) we may assume that uµ → u in L2(0, T;H), (uµ)t → ut
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weakly in L2(0, T;H) and a(t, uµ) → ψ weakly in L2(0, T;H). From the

maximal monotonicity of A(·, ·) we obtain ψ = a(t, u). By (2.10)

(2.11) ut + g(t, v) − f(v) ∈ −A(t, u) on (0, T), u(0) = ξ.

Since the inclusion (2.11) has a unique solution, it follows that the sequence

{un} itself and not just a subsequence of it converges to u in L2(0, T;H).

The lemma is proved. �

Lemma 2.4. Suppose that all the hypotheses of Lemma 2.1 are satis-

fied and let 0 ≤ r ≤ 1/2, where r is as in Theorem 2.1. Then T = T .

Proof. Let u be a solution of (2.9) given by Lemma 2.3. With v = u

in (2.6) we get

φ(t, u) ≤ C7{φ(0, ξ) + t(ελ+ C(ε)) +

∫ t

0
(φ(s, u) + 1)ds}

From (2.7) we obtain

‖m[A(·, u(·))]‖2
L2(0,t;H) ≤ C8{φ(0, ξ) + t(ελ+ C(ε)) +

∫ t

0
(φ(s, u) + 1)ds}.

It follows from the Gronwall lemma that

φ(t, u(t)) + ‖m[A(·, u(·))]‖2
L2(0,t;H) ≤ C9φ(0, ξ) exp(C10t).

C is independent of t and T. By continuation we get T = T . �

Proof of Theorem 2.1. Since F is an upper semicontinuous map

of Xλ(T) ⊂ L2(0, T;H) into closed and convex subsets of L2(0, T;H), it

follows from the approximate selection theorem that there exists a sequence

{fn} of a single-valued continuous mappings Xλ(T) ⊂ L2(0, T;H) →
L2(0, T;H) such that for all n ∈ N :

(i) the range of fn is contained in the convex hull of the range of F ,

(ii) graph(fn) ⊂ graph(F ) + (1/n) (unit ball about the graph of F ).
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cf. Aubin and Cellina [AC. p. 84]

1) Let un be a solution of the inclusion

(2.12) (un)t ∈ −A(t, un) − g(t, un) + fn(un) on (0, T), un(0) = ξ.

From Lemma 2.2 we know that T is independent of n and it follows from

Lemma 2.3 that un is in Sλ(T). There exists a subsequence {µ} of inte-

gers such that: uµ → u in L2(0, T;H), (uµ)t → ut weakly in L2(0, T;H),

and m[A(t, uµ)] → ψ weakly in L2(0, T;H). From the maximal mono-

tonicity of A(·, ·) we deduce that ψ = m[A(t, u)]. With our hypotheses

on g and F we may assume that g(t, uµ) → g(t, u) and fµ(uµ) → h, both

weakly in L2(0, T;H). On the other hand there exist yµ ∈ F (uµ) such that

‖yµ − fµ(uµ)‖L2(0,T�;H) ≤ 1/µ. Thus, yµ → h weakly in L2(0, T;H). By

Assumption I.3 the graph of F is strongly-weakly closed, hence h ∈ F (u),

and we have

(2.13) ut ∈ −A(t, u) − g(t, u) + F (u) on (0, T), u(0) = ξ.

2) We shall show that the mapping L : ξ → uξ of Kc(0) ⊂ H into

L2(0, T;H), T = T(c), is upper semicontinuous. Here uξ is a solution of

(2.13).

Since Sλ(T) is, by Assumption I.1, a compact subset of L2(0, T;H),

to prove that L is upper semicontinuous it suffices to show that its graph

is closed. Suppose that ξn → ξ in H and that un → u in L2(0, T;H), un ∈
L(ξn). We have to show that u ∈ L(ξ). Since Sλ(T) is closed, it contains

u. As in the previous part we show that (2.13) holds. Thus u ∈ L(ξ). The

theorem is proved. �

It is clear that when L is single-valued, i.e. when (2.13) has a unique

solution for a given ξ, then upper semicontinuity is equivalent to continuity

and we have the continuous dependence of the solution on the initial data.

3. Periodic solutions of evolution inclusions

In this section we consider the inclusion problem

(3.1) ut ∈ −A(t, u) + F (u) on (0, T ), u(0) = u(T ).

The main result is the following
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Theorem 3.1. Let φ be as in Theorem 2.1, and suppose that Assump-

tions I.1 and I.2 are satisfied, with φ(0, w) = φ(T,w). Assume moreover

that A is strictly maximal monotone. Let F be an upper hemicontinuous

set-valued mapping of L2(0, T ;H) into its closed and convex subsets, with

sup{‖y(t)‖ : y ∈ F (u)} ≤ C{1 + ‖u(t)‖α} a.e. in t ∈ [0, T ],

for all u ∈ L2(0, T ;H) and for some α ∈ [0, 1).

Then there exists u ∈ C(0, T ;H), solution of (3.1). Moreover, ut,

A(t, u) are in L2(0, T ;H), and φ(t, u(t)) is absolutely continuous on [0, T ].

In [Y2] Yamada proved the existence of a periodic solution of (3.1) when

F is a single-valued mapping with F (u(t)) = f(t).

First we consider the differential inclusion

(3.2) ut ∈ −A(t, u) + f(v) on (0, T ), u(0) = u(T ).

Lemma 3.1. Let f be a single-valued continuous mapping in L2(0, T ;

H) such that

‖f(w(t))‖ ≤ C{1 + ‖w(t)‖α} a.e. in t ∈ [0, T ],

for all w ∈ L2(0, T ;H) with some α ∈ [0, 1). Suppose that all the hypotheses

of Theorem 3.1 are satisfied.

Then for each v ∈ L2(0, T ;H) there exists a unique solution u ∈ C(0, T ;

H) of (3.2), with ut, A(t, u) in L2(0, T ;H), and φ(t, u(t)) is absolutely

continuous on [0,T].

Proof. To establish the existence of a solution of (3.2) we use the

Poincaré method and study the single-valued mapping ξ → u(T ), where

u = u(t) is the unique solution of the initial value problem

ut ∈ −A(t, u) + f(v) on (0, T ), u(0) = ξ.

A standard argument shows that for large λ the above mapping takes the

compact convex set Kλ(0) = {w : φ(0, w) ≤ λ} into itself. Moreover, the

mapping is continuous. Thus the Schauder fixed point theorem gives the

stated result. Since the estimates needed in order to show that the mapping
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takes Kλ(0) into itself are similar to the ones used in the next lemma, we

shall not reproduce them.

Suppose that u1, u2 are two solutions of (3.2). Then, for a(t, uj) ∈
A(t, uj), j = 1, 2,

1

2

d

dt
‖u1 − u2‖2 + (a(t, u1) − a(t, u2), u1 − u2) = 0.

So ∫ T

0
(a(t, u1) − a(t, u2), u1 − u2)dt = 0.

Hence u1 = u2. �

Lemma 3.2. Suppose that all the hypotheses of Theorem 3.1 and of

Lemma 3.1 are satisfied. Let u be a solution of the inclusion

(3.3) ut ∈ −A(t, u) + µf(u) on (0, T ), u(0) = u(T ).

Then there exists a constant M independent of µ, 0 ≤ µ ≤ 1, such that

sup
0≤t≤T

φ(t, u) + ‖ut‖L2(0,T ;H) + ‖m[A(·, u(·))]‖L2(0,T ;H) ≤M.

Proof. 1) We have

1

2

d

dt
‖u‖2 + C‖u‖p ≤ ‖u‖‖f(u)‖ ≤ C‖u‖ + C‖u‖1+α + C.

Thus, with 0 ≤ α < 1 and p ≥ 2, we get

d

dt
‖u‖2 + C‖u‖2 ≤ C1.

Hence, ‖u(t)‖2 ≤ ‖u(0)‖2 exp(−Ct) + C1/c. It follows that ‖u(T )‖2 ≤
C1/c(1 − exp(−CT )). Thus

(3.4) ‖u(t)‖2 ≤ C1{exp(−Ct)/c(1 − exp(−CT )) + 1}
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2) As in (2.4) let a(t, u) be an element of A(t, u), we have

d

dt
φ(t, u) +

1

2
‖a(t, u)‖2 ≤ C3φ(t, u) + C4φ

1/2(t, u)‖a(t, u)‖ +
1

2
‖f(u)‖2,

so that
d

dt
φ(t, u) +

1

4
‖a(t, u)‖2 ≤ C5φ(t, u) + C6(1 + ‖u‖2).

On the other hand φ(t, u) ≤ (a(t, u), u) ≤ ‖a(t, u)‖‖u‖. It follows that

d

dt
φ(t, u) +

1

4
‖a(t, u)‖2 ≤ 1

8
‖a(t, u)‖2 + C7(1 + ‖u‖2).

Hence, taking into account (3.4), we have

(3.5)
d

dt
φ(t, u) +

1

8
‖a(t, u)‖2 ≤ C8.

Therefore
d

dt
φ(t, u) +

C

4
φ(t, u) ≤ C9,

and

(3.6) φ(t, u) ≤ φ(0, u(0)) exp(−(C/4)t) + C10.

With φ(T, u(T )) = φ(0, u(0)) we obtain φ(0, u(0)) ≤ C10/(1−exp(−CT/4)).

Hence

(3.7) φ(t, u(t)) ≤ C10{exp(−C/4)t)/(1 − exp(−(C/4)T ) + 1}.

3) It follows from (3.5)-(3.7) that

(3.8) ‖m[A(t, u)]‖2
L2(0,t;H) ≤ C11{φ(0, u(0)) + 1} ≤ C12.

From the equation we obtain ‖ut‖2
L2(0,t;H) ≤ C13. The different constants

C are all independent of t and of µ, 0 ≤ µ ≤ 1. �
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Remark. If C‖u‖p ≤ φ(t, u) for all u ∈ D(φ(t, ·)) and some p ∈
(2,+∞) then we may take α = 1 in Lemma 3.2.

Let L be the single-valued mapping of [0, 1]×L2(0, T ;H) into L2(0, T ;H)

defined by

(3.9) L(µ, v) = u,

where u is the unique solution of

(3.10) ut ∈ −A(t, u) + µf(v) on (0, T ), u(0) = u(T ),

given by Lemma 3.1.

Lemma 3.3. The mapping L is continuous and compact.

Proof. 1) We show that L is continuous. Suppose that µn → µ and

that vn → v in L2(0, T ;H), with un = L(µn, vn). We have

(un)t ∈ −A(t, un) + µnf(vn) on (0, T ), un(0) = un(T ).

A proof as that in Lemma 3.2 gives

‖(un)t‖L2(0,T ;H) + sup
0≤t≤T

φ(t, un(t)) + ‖m[A(·, un(·))]‖L2(0,T ;H) ≤M,

with M independent of n.

From Assumption I.1 and the Arzela-Ascoli theorem as well as the weak

compactness of the unit ball in a Hilbert space we obtain, for a subsequence

{ν} : uν → u in L2(0, T ;H), (uν)t → ut weakly in L2(0, T ;H),m[A(·, uν(·))]
→ ψ weakly in L2(0, T ;H). Moreover, sup0≤t≤T φ(t, u(t)) ≤M .

The maximal monotonicity of A(·, ·) and the strong convergence of {uν}
yield ψ = m[A(·, u(·))]. Moreover

(3.11) ut ∈ −A(t, u) + µf(v) on (0, T ), u(0) = u(T ).

Thus, L(µν , vν) = uν → u = L(µ, v) in L2(0, T ;H). Since the problem

has a unique solution, we may take the sequence {un} itself instead of a

subsequence, i.e. L(µn, vn) → L(µ, v) in L2(0, T ;H).

2) We now show that L is compact. Suppose that 0 ≤ µn ≤
1, ‖vn‖L2(0,T ;H) ≤ M , and set un = L(µn, vn). As above, {un} stays in

a compact subset of L2(0, T ;H), i.e. L is compact. This completes the

proof of the lemma. �
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Lemma 3.4. 1) L(0, v) = 0 for all v ∈ L2(0, T ;H).

2) If u = L(µ, u) then there exists C, independent of µ, such that

‖u‖L2(0,T ;H) < C.

Proof. The first assertion is trivial to check. The lemma is now an

immediate consequence of Lemma 3.2. �

Proof of Theorem 3.1. 1) The existence of a periodic solution of

the differential inclusion

ut ∈ −A(t, u) + f(u) on (0, T ), u(0) = u(T )

is a consequence of the Leray-Schauder fixed point theorem. Indeed, it

follows from Lemmas 3.3 and 3.4 that L(µ, ·) given by (3.9) satisfies all the

conditions of the Leray-Schauder theorem. Thus, the equation u = L(1, u)

has a solution.

2) Since F is upper hemicontinuous in L2(0, T ;H), with convex and

weakly compact images, we may apply the approximate selection theorem

just as in Section 2. This completes the proof of Theorem 3.1. �

4. Applications

Let Ωt be a bounded open set of Rn with boundary Γt and set Ω =

∪0<t<T (Ωt × {t}),Γ = ∪0<t<T (Γt × {t}). We shall make the following as-

sumptions on Ω.

Assumption IV. 1) There exist k ∈ N and ε0 > 0 such that for

each t ∈ [0, T ],Γt consists of k closed hypersurfaces Γjt of class C3, and

dist(Γjt ,Γ
i
t) ≥ ε0 > 0 for j �= i.

2) Let Ωts = ∪s<r<t(Ωr × {r}). Then the domain Ω is covered by N

slices Ω
δj+tj
tj

, δj > 0 and j = 1, · · · , N . For each j,Ω
tj+δj
tj

is mapped onto a

cylindrical domain Ωtj × (tj , tj + δj) by a diffeomorphism of class C4 up to

the boundary which preserves the time variable.

Let G be an open ball in Rn with Ω̄t ⊂ G for all t ∈ [0, T ]. By

W k,p(G),W k,p
0 (G) we denote the usual Sobolev spaces, and by W−1,2(G)

the dual of W 1,2
0 (G).

1. Navier-Stokes equations coupled with a heat equation in-

volving convection and dissipation terms. We shall take n = 3 and
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denote by Hσ(G), H1
σ(G) the closure of the set

Dσ(G) = {w = (w1, w2, w3) ∈ C∞
0 (G) : div(w) = 0}

with respect to the L2(G) and to the W 1,2(G) norms, respectively.

By P we denote the orthogonal projection of L2(G) onto Hσ(G).

Consider the initial boundary value problem in (u, θ):

(4.1) ut − ν � u+ (u · ∇)u+ ∇p ∈ F1(θ), div(u) = 0 in Ω,

u = 0 on Γ, u(x, 0) = u0 in Ω0,

with

(4.2) θt − µ�θ + u · ∇θ − ν
2

n∑
j,k=1

(uk,xj + uj,xk)
2 ∈ F2(θ) in Ω,

θ = 0 on Γ, θ(x, 0) = θ0 in Ω0.

We shall apply Theorem 2.1 to problem (4.1)-(4.2), and establish the ex-

istence of its local solution. Let U = (u, θ) and let φ̄ be the proper lower

semicontinuous convex function on H = Hσ(G) ×W−1,2(G) given by

(4.3) φ̄(U) =
ν

2
‖∇u‖2

L2(G) +
µ

2
‖θ‖2

L2(G), if U ∈ H1
σ(G) × L2(G);

= +∞, otherwise.

The canonical isomorphism of W 1,2
0 (G) onto W−1,2(G) is Λw = −�w, for

w ∈ W 1,2
0 (G). The inner product in W−1,2(G) is given by (f, g)W−1,2(G) =

< Λ−1f, g >, where < ·, · > is the pairing between W 1,2
0 (G) and its dual.

Since φ̄ is a lower semicontinuous convex function on H, its subdiffer-

ential ∂φ̄ is maximal monotone in H.

Let φ̄1 be the lower semicontinuous convex function on W−1,2(G) given

by

φ̄1(θ) =
µ

2
‖θ‖2

L2(G), if θ ∈ L2(G);(4.4)

= +∞, otherwise.
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Lemma 4.1. Let φ̄1 be as in (4.4). Then ∂φ̄1 = µΛ.

Proof. If f ∈ ∂φ̄1(θ) then

φ̄1(σ) − φ̄1(θ) ≥ (f, σ − θ)W−1,2(G), for all σ ∈ D(φ̄1).

First we shall show that W 1,2
0 (G) ⊂ D(∂φ̄1), and that −µ� ⊂ ∂φ̄1, with

−µ� defined on W 1,2
0 (G). In fact, it is easy to check that if θ ∈ W 1,2

0 (G)

and f = −µ�θ then the above inequality reduces to

∫
G
θσ ≤

∫
G

1

2
(θ2 + σ2) for all σ ∈ L2(G).

To show that −µ� = ∂φ̄1 with D(∂φ̄1) =W 1,2
0 (G) it suffices to prove that

−µ� is maximal monotone. Monotonicity is evident, moreover R(−µ� +

I) =W−1,2(G). This completes the proof. �

Lemma 4.2. Let φ̄ be as in (4.3). Then ∂φ̄(U) = (−νP (�u), µΛ).

Proof. It follows from Lemma 4.1 and results in [ÔY]. �

Let K(t) be the closed convex set

K(t) = {U ∈ H : U = 0 in G− Ωt},

and let

(4.5) φ(t, U) = φ̄(U) + IK(t)(U),

where IK(t) is the indicator of the set K(t). We have

D(φ(t, ·)) = {U ∈ H : U |Ωt ∈ H1
σ(Ωt) × L2(Ωt), U = 0 on G− Ωt},

and

(4.6) D(∂φ(t, ·)) = {U ∈ H : U |Ωt ∈ (H1
σ(Ωt) ∩W 2,2(Ωt)) ×W 1,2

0 (Ωt),

U = 0 on G− Ωt}.
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Lemma 4.3. If φ(t, ·) is as in (4.5) then Assumptions I.1 and I.2 are

satisfied. Moreover Xλ(T ) = co(Sλ(T )) = co(Sλ(T )) = Sλ(T ).

Proof. For each t ∈ [0, T ] the set Kλ(t) = {U ∈ H : φ(t, U) ≤ λ}
is a compact convex subset of H. Indeed, a straightforward application of

the Sobolev imbedding theorem gives the stated assertion.

We now show that Assumption I.2 is verified. Let V0 be in D(φ(t0, ·)).
The existence of V = (v, θ) ∈ D(φ(t, ·)) with all the properties stated in

Assumption I.2 follows from Lemma 3.2 of Ôtani and Yamada [ÔY] for v,

and from Yamada [Y1], p.119 for θ.

Moreover,

∂φ(t, U) = {(f1, f2) ∈ H : P (Ωt)(f1 |Ωt) = −νP (Ωt)(�(u|Ωt)),

f2 = −µΛ(θ), U = (u, θ) ∈ D(∂φ(t, ·))},

whence the last statement of the lemma. �

Lemma 4.4. Let g1 be the mapping of H1
0 (G) ∩ W 2.2(G) into

W−1,2(G), given by

g1(u) =
ν

2

3∑
j,k=1

(uk,xj + uj,xk)
2.

Then

‖g1(u)‖W−1,2(G) ≤ ε‖P (�u)‖Hσ(G) + C(ε)‖u‖3
H1

σ(G).

Proof. With G being a bounded subset of R3, the Sobolev imbedding

theorem gives

‖u‖L6(G) ≤ C‖u‖W 1,2
0 (G), ‖∇u‖L3(G) ≤ ‖∇u‖1/2

W 1,2(G)
‖∇u‖1/2

L2(G)
.

Thus

|(g1(u), v)| ≤ C‖u‖W 1,2
0 (G)‖∇u‖L3(G)‖v‖L6(G)

≤ C‖u‖3/2
W 1,2(G)

‖u‖1/2
W 2,2(G)

‖v‖W 1,2
0 (G).

Moreover, for u as in the lemma, ‖u‖W 2,2(G) ≤ C3‖P (�u)‖Hσ(G), and now

the desired inequality easily follows. �
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Lemma 4.5. Let g2(u, θ) be the mapping of H1
σ(G) × W 1,2

0 into

W−1,2(G), given by

< g2(u, θ), v >= (u · ∇θ, v), for all v ∈W 1,2
0 (G).

Then

‖g2(u, θ)‖W−1,2(G) ≤ ε‖�θ‖W−1,2(G) + C(ε)(‖u‖4
H1

σ(G) + ‖θ‖2
L2(G)).

Proof. With u, v, and θ as in the lemma we have

|(u · ∇θ, v)| = |(u · ∇v, θ)| ≤ C‖u‖L6(G)‖v‖W 1,2
0 (G)‖θ‖L3(G).

Moreover,

‖θ‖L3(G) ≤ C‖θ‖1/2

W 1,2
0 (G)

‖θ‖1/2
L2(G)

, ‖θ‖W 1,2
0 (G) ≤ C‖�θ‖W−1,2(G),

whence the lemma follows. �

Theorem 4.1. Let (u0, θ0) ∈ H1
σ(Ω0)×L2(Ω0), and let Fj , j = 1, 2 be

set-valued mappings of L2(0, T ;W 1,2
0 (G)) ⊂ L2(0, T ;W−1,2(G)) into

L2(0, T ;W−1,2(G)). Suppose that

1) Fj are upper hemicontinuous,

2) For each θ, Fj(θ) is a closed convex subset of L2(0, T ;W−1,2(G)),

3) For each ε > 0 there exists C(ε) such that

sup{‖f(θ(t))‖2
W−1,2(G) : f(θ) ∈ Fj(θ)}

≤ ε‖θ(t)‖2
W 1,2

0 (G)
+ C(ε){1 + ‖θ(t)‖2

W−1,2(G)},

for all θ ∈ L2(0, T ;W 1,2
0 (G)) and for almost all t ∈ [0, T ].

Then there exists a non-empty interval (0, T) and a pair of functions

(u, θ) ∈ (L2(0, T;H
1
σ(Ωt)) ∩W 2,2(Ωt)) × L2(0, T;W

1,2
0 (Ωt)),

such that

(ut, θt) ∈ L2(0, T;Hσ(G)) × L2(0, T;W
−1,2(G)),

satisfying system (4.1)-(4.2), with T = T.

The mapping (u0, θ0) → (u, θ) of Kc(0) ⊂ H into L2(0, T;H), where

H = Hσ(G) ×W−1,2(G), is upper semicontinuous.
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Proof. Let U = (u, θ) and let φ(t, U) be as in (4.5). Set

g(U) = (g0(u), g1(u) + g2(u, θ)),

where g0(u) = P ((u · ∇)u),

F (U) = (F1(θ), F2(θ)), U(0) = (u0, θ0),

and A(t, U) = ∂φ(t, U).

Using Lemmas 4.4 and 4.5 as well as earlier results (cf. [ÔY], [Ō], [KF])

it is easy to check that

‖g(U)‖H ≤ ε‖A(t, U)‖H + C(ε)(1 + φ2(t, U)).

A direct application of Theorem 2.1 gives the stated result. �

2. Mixed boundary problems for evolution inclusions. Let Ωt
be as before and let G be a bounded, open and simply connected subset

of Rn with a smooth boundary. We assume that Ωt is a subset of G and

that for each t ∈ [0, T ], γt = ∂G ∩ Γt is a non-empty closed surface. Set

γ = ∪0<t<Tγt and let

H(G) = {u ∈W 1,2(G) : u = 0 on ∂G− γ}.

Let j be a proper lower semicontinuous convex function from R to [0,+∞]

with j(0) = 0 and let β = ∂j. We shall consider the initial boundary value

problem

(4.7) ut −�u ∈ F (u) in Ω, − ∂

∂n
u ∈ β(u) on γ,

u = 0 on Γ − γ, u(x, 0) = ξ in Ω0;

as well as the time periodic problem

(4.8) ut −�u ∈ F (u) in Ω, − ∂

∂n
u ∈ β(u) on γ,

u = 0 on Γ − γ, u(x, 0) = u(x, T ) in Ω0 = ΩT .

Let H = L2(G) and φ̄ be defined by

(4.9) φ̄(u) =
1

2

∫
G
|∇u|2dx+

∫
γ
j(u)dσ,

if u ∈ H(G) and j(u) ∈ L1(γ);

= +∞, otherwise.
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Lemma 4.6. Let φ̄ be as in (4.9). Then 1) ∂φ̄(u) = −�u,
2) D(∂φ̄(u)) = {u ∈ H(G) : �u ∈ H, − ∂

∂nu ∈ β(u) on γ}.

Proof. For u ∈ W 1,2(G) and �u ∈ L2(G), ∂∂nu ∈ W−1/2,2(∂G) (cf.

Lions and Magenes [LM]). Let Au = −�u, with

D(A) = {u ∈ H(G); �u ∈ L2(G), − ∂

∂n
u ∈ β(u) on γ}.

We shall show that A is maximal monotone in H and that A ⊂ ∂φ̄.
1) Clearly A is monotone. For u ∈ D(A), and v ∈ D(φ̄) we have

−
∫
G
�u(v − u)dx =

∫
G
∇u∇(v − u)dx− < ∂

∂n
u, v − u >,

where < ·, · > is the pairing between W−1/2,2(γ) and W 1/2,2(γ). Thus

−
∫
G
�u(v − u)dx ≤ φ̄(v) − φ̄(u),

whence A ⊂ ∂φ̄.
2) To show that A is maximal monotone in H it suffices to prove that

I+A is onto. Since β is maximal monotone, its resolvent operator (I+λβ)−1

is non-expansive for all λ > 0.

Consider the elliptic boundary value problem

−�uλ + uλ = f in G, uλ = 0 on ∂G− γ,(4.10)

uλ + λ
∂

∂n
uλ = (I + λβ)−1v on γ.

For (f, v) ∈ L2(G) × L2(γ) there exists a unique solution uλ ∈ W 1,2(G) of

(4.10). Let L be the mapping of L2(γ) into itself, defined by

(4.11) Lv = uλ |γ .

3) We now show that L is a contraction. Let Lvk = ukλ |γ . Then

‖u1
λ − u2

λ‖2
W 1,2(G)− <

∂

∂n
(u1
λ − u2

λ), u
1
λ − u2

λ >= 0.
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Hence

‖u1
λ − u2

λ‖2
W 1,2(G) + λ−1‖u1

λ − u2
λ‖2
L2(γ)

= λ−1((I + λβ)−1v1 − (I + λβ)−1v2, u1
λ − u2

λ).

In particular, with 0 < α = 1/(λc+ 1) < 1,

‖u1
λ − u2

λ‖L2(γ) ≤ α‖v1 − v2‖L2(γ).

It follows that L has a fixed point, i.e. Luλ = uλ.

The constant c is given by ‖w‖L2(γ) ≤ c−1/2‖w‖w1,2(G) for all w in

W 1,2(G)

4) We have

‖uλ‖2
W 1,2(G)− <

∂

∂n
uλ, uλ >= (f, uλ) ≤ ‖f‖L2(G)‖uλ‖L2(G),

so, using the boundary conditions we obtain

1

2
‖uλ‖2

W 1,2(G) +
1

λ
(uλ, uλ) ≤

1

2
‖f‖2

L2(G) +
1

λ
‖uλ‖L2(γ)‖(I + λβ)−1uλ‖L2(γ).

Since 0 ∈ β(0) and (I + λβ)−1 is non-expansive, we have

‖(I + λβ)−1uλ‖L2(γ) ≤ ‖uλ‖L2(γ).

Thus,

‖uλ‖W 1,2(G) ≤ ‖f‖L2(G).

Let λ → 0+, and we obtain by taking subsequences: uλ → u weakly in

W 1,2(G) and strongly in W r,2(G) for 0 ≤ r < 1. It is clear that u = 0 on

∂G− γ. On the other hand

− ∂

∂n
uλ = βλ(uλ) → − ∂

∂n
u

weakly in W−1/2,2(γ).
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The Yosida approximation βλ has the property: βλ(uλ) ∈ β((I +

λβ)−1uλ). Since (I + λβ)−1uλ → u in L2(γ), it follows from the maxi-

mal monotonicity of β that − ∂
∂nu ∈ β(u). The lemma is proved. �

Let K(t) = {u ∈ L2(G); u = 0 a.e. in G− Ωt}, and let

(4.12) φ(t, u) = φ̄(t, u) + IK(t)(u),

where φ̄ is as in (4.9) and IK(t) is the indicator of the set K(t). Then

D(∂φ(t, ·)) = {u ∈ L2(G),�u ∈ L2(G), u |Ωt ∈W 1,2(Ωt),

u = 0 on G− Ωt, − ∂

∂n
u ∈ β(u) on γt}.

Lemma 4.7. Let φ(t, ·) be as in (4.12). Then Assumptions I.1 and

I.2 are satisfied.

Proof. As in Lemma 4.3. �

For the initial value problem (4.7) we have the following result.

Theorem 4.2. Let F be an upper hemicontinuous set-valued map in

L2(0, T ;L2(G)). Suppose that for each u, F (u) is a closed and convex subset

of L2(0, T ;L2(G)). Suppose further that

sup{‖y(t)‖2
L2(G) : y ∈ F (u)} ≤ C{1 + ‖u(t)‖2α

L2(G)},

for some α ∈ [0, 1], all u ∈ L2(0, T ;L2(G)) and almost all t ∈ [0, T ].

Then, for any given ξ ∈ W 1,2(Ω0), with ξ = 0 on Γ0 − γ0 and − ∂
∂nξ ∈

β(ξ) on γ0, there exists a solution u of (4.7) such that u ∈ C(0, T ;L2(G)), ut
and �u are in L2(0, T ;L2(G)), u ∈ L2(0, T ;W 1,2(Ωt)).

The set-valued mapping ξ → uξ of Kc(0) into L2(0, T ;L2(G)) is upper

semicontinuous.

Proof. In view of Lemmas 4.6 and 4.7 the stated result is an imme-

diate consequence of Theorem 2.1. �

For time-periodic solutions, by applying Theorem 3.1 we obtain the

following

Theorem 4.3. Suppose all the hypotheses of Theorem 4.2 are satisfied

and suppose further that Ω0 = ΩT and that 0 ≤ α < 1. Then there exists a

solution u of (4.8) with the same regularity properties as in Theorem 4.2.
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