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On some generating functions for McKay

numbers—prime power divisibilities of

the hook products of Young diagrams

By Hiroaki Nakamura

Abstract. We discuss combinatorics related with p-adic valua-
tions of hook products of Young diagrams and obtain some infinite
product generating functions in two variables for McKay-Macdonald
numbers of some classical finite groups.

1. Introduction

Let G be a finite group and p be a fixed prime number. The number of

irreducible characters of G whose degrees are exactly k-times divisible by p is

denoted by mp(k,G). These integers are called McKay numbers. If G runs

over a series of groups {Gn}, the McKay numbers form a double sequence

{mp(k,Gn)} indexed by pairs of natural numbers (k, n). We give generating

functions for these numbers in the style of infinite product (or sum of two

infinite products) in some special cases when {Gn} = the symmetric groups

{Sn}, alternating groups {An}, classical Weyl groups {W (Bn)}, {W (Dn)},
and finite general linear groups {GL(n, q)}.

We can also consider similar double sequence for the Macdonald number

µp(k,G) which is the number of conjugacy classes of G whose sizes are

exactly k-times divisible by p. We give generating functions for µp(k,Gn)

in the style of infinite product when {Gn} = {Sn}, {GL(n, q)} (p � q).

In [O1], J.B.Olsson gave a recursive formula for McKay numbers of the

symmetric groups, in the context of the Alperin-McKay conjecture in the

1991 Mathematics Subject Classification. Primary 05E15; Secondary 05A19, 20C30,
20C15.

321



322 Hiroaki Nakamura

modular representation theory of finite groups (see also [F]). In this report,

it is shown that this Olsson’s formula can be put into a relatively simple

generating function, which reflects the distribution of the p-adic valutations

of the hook products of the Young diagrams (Theorem 3.5).

The author would like to express his sincere gratitudes to Professor

N.Iwahori for suggesting hints to the problems and to members of Iwahori

Seminar, especially to S.Ariki, for information of the existence of Olsson’s

work and many helpful discussions. By personal communications Professor

Olsson gave me several essential remarks concerning the original works of

several other authors. The author is very grateful to Professor Olsson about

these notices.

Note. This paper is a revised and abridged version of my Master’s

thesis (Part 3) written in 1987 and submitted to the university of Tokyo in

January 1989. I thank the referee who suggested a mistake to be corrected

and several possible improvements which were very helpful in the latest

revision process. Here, it would be appropriate to add a few remarks about

recent related works. Firstly, generating functions for the number of p-

defect 0 characters of some series of finite groups were given by J.B.Olsson

“On the p-Blocks of Symmetric and Alternating Groups and Their Covering

Groups” J. of Algebra 128, 188–213 (1990). More recently, a refinement of

Theorem 6.8 (Theorem 8.9 of old version) was given in a more sophisticated

context by J.B.Olsson and K.Uno “Dade’s conjecture for general linear

groups in the defining characteristic” preprint.

2. Some partitions

We prepare some notations in this paragraph. A partition λ = (λ1, . . . ,

λd) is a finite sequence of nonnegative integers in non-increasing order. Each

λi is called a part of λ. The sum of the parts is called the size of λ, denoted

by |λ|. We define the multiplicity mi(λ) to be the number of parts of λ

which equal i. Then we formally write as λ = ⊕∞
i=1mi(λ) · [i].

Let us associate a Young diagram with λ by the ordinary method and

identify it with λ. In particular, we often neglect the 0 parts of a partition.

If two partitions λ = (λ1, . . . , λd), µ = (µ1, . . . , µd) satisfy λi ≥ µi for all i,

then we write λ ⊃ µ.
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Example.

(3, 2, 2, 0, 0) = (3, 2, 2) = 2 · [2] ⊕ [3] =

∣∣∣∣∣∣
� � �
� �
� �

∣∣∣∣∣∣
.

Now let e be a fixed positive integer. It is well-known that any partition

λ has a unique partition λ(e) called the e-core of λ, and has a unique e-tuple

of partitions (λ
(e)
0 , . . . , λ

(e)
e−1) called the e-quotients of λ (See [JK] or [O2]).

The sum of the sizes of e-quotients of λ is called the e-weight of λ and

denoted by we(λ). We denote by Hk(λ) the multiset of the hook lengths

of a Young diagram λ (see [Ma] for hook length, [St], [O2] for multiset).

We also define Hk(λ)e to be the submultiset of Hk(λ) consisting of the

members divisible by e. On the other hand, e · Hk(λ) denotes the multiset

of the e-multiples of the members of Hk(λ).

Proposition 2.1. Let λ be a partition. Then,

(1) If n ∈ Hk(λ(e)), then e � n.

(2) Hk(λ)e =
⋃e−1
i=0 e · Hk(λ

(e)
i ).

(3) |λ| = |λ(e)| + we(λ) · e.
(4) λ is uniquely determined by λ(e) and (λ

(e)
0 , . . . , λ

(e)
e−1).

Proof. See [JK] or [O2]. �

Definition 2.2. Let e, r be positive integers and n a nonnegative

integer. The core number Ce(r, n) is the number of re-cores of size rn

whose r-cores are empty.

Proposition 2.3.
∑∞

n=0 Ce(r, n)xn =
∏∞

n=1(1 − xen)er(1 − xn)−r.

Proof. After replacing the variable x by xr, we may prove

∞∏
n=1

(1 − xrn)−r = (
∞∑
n=0

Ce(r, n)xrn)
∞∏
n=1

(1 − xern)−er.

But this follows from the observation through Proposition 2.1 that the

both sides represent a generating function for the partitions with r-cores

empty. �
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Let tλ denote the conjugate partition of a partition λ (i.e., the partition

whose Young diagram is the transpose of the diagram λ.) If tλ = λ, we say

λ to be self-conjugate.

Lemma 2.4. Let e be a positive integer. Then, a partition λ is self-

conjugate if and only if λ(e) is self-conjugate and λ
(e)
i = tλ

(e)
e−i−1 (i =

0, . . . , e− 1).

Proof. We use the “pictorial” description of the e-quotients in [JK,

p.84–85]. It says that the i-th e-quotient is the partition which is formed

by the corner nodes of all e-hooks of λ whose hand node’s content number

≡ i modulo e. Here an e-hook means a hook of length e, and the content

number of the (i, j) node of the Young diagram λ is j − i. The above

pictorial description justifies the formula

t(λ
(e)
i ) = (tλ)

(e)
e−i−1 (i = 0, . . . , e− 1)

for any partition λ. The lemma follows from this easily. �

Definition 2.5. Let e, r be positive integers, and n be a nonnega-

tive integer. We define the self-conjugate core number SCe(r, n) to be the

number of self-conjugate re-cores of size rn whose r-cores are empty.

By virtue of Lemma 2.4, the following proposition follows in a similar

way to Proposition 2.3.

Proposition 2.6.

∞∑
n=0

SCe(r, n)xn =




∏∞
n=1

(1+x2n−1)(1−x2en)(re−1)/2

(1+xe(2n−1))(1−x2n)(r−1)/2 , if r, e : odd,

∏∞
n=1

(1−x2en)re/2(1+x2n−1)

(1−x2n)(r−1)/2 , if r : odd, e : even,

∏∞
n=1

(1−x2en)re/2

(1−x2n)r/2
, if r : even. �

Next, we study some classes of partitions. Let us fix a positive integer

q(> 1). For nonnegative integers k, we put [k] = [k]q = (qk − 1)/(q − 1),

and call these numbers q-projective numbers. We also call the integers of

the form qk (k = 0, 1, ...) q-affine numbers. A q-projective (resp. q-affine)

partition is a partition such that all (nontrivial) parts are q-projective (resp.
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q-affine) numbers. A q-adic partition is a partition λ = (λ1, . . . ) such that

λi ≥ qλi+1 (i = 1, 2, . . . ). We define an operator − which sends the q-affine

number qk to the q-projective number [k]q, and extend it naturally to send

q-affine partitions to q-projective partitions.

Example. Let q = 3. λ = (27, 9, 9, 3, 1, 1) = 2[30]⊕ [31]⊕ 2[32]⊕ [33] is

a 3-affine partition, and µ = (13, 4, 4, 1, 0, 0) = 2[0]3 ⊕ [1]3 ⊕ 2[2]3 ⊕ [3]3 is a

3-projective partition. Then λ̄ = µ. �

Proposition 2.7. The number of q-projective partitions of size n is

equal to the number of q-adic partitions of size n.

Proof. We construct a bijection between the two sets by using tab-

leax. Let σ = ⊕i≥0bi[i]q be a q-projective partition. We draw the Young

diagram of ⊕i≥1bi[i] and write 1, q, q2, ... successively in the boxes of each

rows from the right to the left. Let µi be the sum of the written numbers

in the i-th column. Then µ = (µ1, µ2, . . . ) is a q-adic partition clearly. We

call this µ the q-transposition of σ and denote it by †σ. Apparently † gives

a desired bijection. �

Example. Let q = 3 and σ = (13, 4, 4, 1, 0, 0) = 2[0]q⊕ [1]q⊕2[2]q⊕ [3]q
is a 3-projective partition. The corresponding tableau is the following:

∣∣∣∣∣∣∣∣

9 3 1

3 1

3 1

1

∣∣∣∣∣∣∣∣
.

Hence †σ = (16, 5, 1). �

Let σ = a0[q
0] ⊕ a1[q

1] ⊕ · · · ⊕ an[q
n] be a q-affine partition. By the

reduction of σ at i (1 ≤ i ≤ n), we mean the q-affine partition

σ(i) = a0[q
0] ⊕ · · · ⊕ (ai−1 + q)[qi−1] ⊕ (ai − 1)[qi] ⊕ · · · ⊕ an[q

n].

Note that we always have |σ| = |σ(i)|. If a q-affine partition τ is obtained

from σ by successive applications of reductions at various positions, then τ

is just said to be a reduction of σ and denoted τ ≺q σ. Obviously ≺q gives

an order structure on the set of the q-affine partitions of the same size.
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Proposition 2.8. Let σ, τ be q-affine partitions with |σ| = |τ |, and

suppose τ ≺q σ. Then |τ̄ | ≤ |σ̄| and †τ̄ ⊂ †σ̄.

Proof. The proof is reduced to the case τ = σ(i). In this case, our

claim can be verified directly. �

Definition 2.9. Let p be a prime number. We denote by vp(n) the

exponential p-adic valuation of an integer n, i.e., vp(n) = k if and only if

pk | n, pk+1 � n.

Corollary 2.10. Let p be a prime number and n be a positive inte-

ger. We also assume that n =
∑k

i=0 aip
i (0 ≤ ai < p).

(1) Each p-affine partition α of size n satisfies α ≺p a0[p
0]⊕· · ·⊕ak[p

k];

hence by Proposition 2.8, |ᾱ| ≤ vp(n!).

(2) The above equality holds only when α = a0[p
0] ⊕ · · · ⊕ ak[p

k].

3. Affine type and projective type

Let λ be a partition and p be a fixed prime number. We define a p-affine

partition Ap(λ) and a p-projective partition Pp(λ) as follows.

Ap(λ) = ⊕i≥0ai[p
i],

Pp(λ) = Ap(λ),

where ai is the pi-weight of the pi+1-core of λ. The former is called the

p-affine type of λ and the latter is called the p-projective type of λ.

Definition 3.1. For a partition λ, we denote by hλ the product of

all the hook lengths of λ.

Proposition 3.2.

(1) vp(hλ) = |Pp(λ)|.
(2) |λ| = |Ap(λ)|.

Proof. As (2) is clear from the definition, we prove (1). If Ap(λ) =

⊕i≥0ai[p
i], then by the definition ai = (|λ(pi+1)| − |λ(pi)|)/pi. Hence,

|Pp(λ)| =
∑
i

ai[i]p =
∑
i≥0

(|λ| − |λ(pi+1)|)/pi+1 =
∑
i≥0

wpi+1(λ) = vp(hλ). �
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Definition 3.3. For a p-affine partition σ = ⊕i≥0bi[p
i], we define

C(p, σ) :=
∏

i≥0 Cp(p
i, bi) and SC(p, σ) :=

∏
i≥0 SCp(p

i, bi).

Proposition 3.4. For a p-affine partition σ, we have C(p, σ) =

#{λ | Ap(λ) = σ}.

Proof. We assume σ = ⊕k
i=0bi[p

i] with bk �= 0, and prove the propo-

sition by induction on k. For k = 0, the statement is clear from Definition

3.3. Put S = {λ | Ap(λ) = σ}. Then Proposition 2.1 and the induction

hypothesis imply

#{λ(pk) | λ ∈ S} = Cp(1, b0) · · ·Cp(p
k−1, bk−1).

On the other hand, if λ ∈ S then #Hk(λ)pk = bk, Hk(λ)pk+1 = ∅. Hence by

using Proposition 2.1 (2), we obtain

#{(λ(pk)
0 , ..., λ

(pk)

pk−1
) | λ ∈ S} = #{(λ0, ..., λpk−1) | λi : p-core,

∑
|λi| = bk}

= Cp(p
k, bk). �

Now we are ready to prove the following

Theorem 3.5.

∑
λ

xvp(hλ)y|λ| =
∞∏
k=0

∞∏
n=1

(1 − x[k]ppnyp
k+1n)p

k+1

(1 − x[k]pnypkn)pk
.

Here λ runs over all partitions including empty, and [k]p = (pk− 1)/(p− 1)

for k ≥ 0.

Proof. By Proposition 3.4, we get

∑
λ

xvp(hλ)y|λ| =
∑
σ

p-affine

C(p, σ)x|σ̄|y|σ| =
∞∏
k=0

(
∞∑
n=0

Cp(p
k, n)x[k]pnyp

kn).

From this and Proposition 2.3, we conclude the theorem. �
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Proposition 3.6. For a p-affine partition σ, it holds that

SC(p, σ) = #{λ | tλ = λ, Ap(λ) = σ}. �

Applying Proposition 2.6 and 3.6, we obtain the following

Theorem 3.7.

∑
λ

self-conjugate

xvp(hλ)y|λ| =
∞∏
k=0

fp,k(x
[k]pyp

k
).

where fp,k(x) is the power series in variable x of the right hand side of

Proposition 2.6 with r = pk, e = p. �

4. McKay numbers for classical Weyl groups, alternating

groups

Let G be a finite group and p a prime number. The McKay number

mp(k,G) is defined to be the number of complex irreducible characters χ

of G with vp(χ(1)) = k. In this paragraph, we give generating functions

for the double sequences {mp(k, Sn)}, {mp(k,An)}, {mp(k,W (Bn))} and

{mp(k,W (Dn))} in the style involving infinite products, where Sn is the

symmetric group of degree n (S0 = S1 = {1}), An is the alternating group

of degree n, and W (Bn) (resp. W (Dn)) is the classical Weyl group of

type Bn (resp. Dn) with W (B0) = W (C0) = W (C1) = {1}, W (B1) =

{±1}. The irreducible characters of Sn (resp. W (Bn)) are well-known to

be parametrized by the Young diagrams of size n (resp. the ordered pairs of

Young diagrams of total size n), and they have simple degree formulae of the

form n! divided by the products of all the hook-lengths in the diagram(s).

Their restriction laws from Sn to An (resp. W (Bn) to W (Dn)) are described

in simple manners in terms of Young diagrams, and all the irreducible

characters of An (resp. W (Dn)) are obtained through such restrictions (cf.

[JK], [May2-3]). Therefore, using the results of previous sections, we can

estimate the p-adic valuations of the degrees of these irreducible characters

and obtain the following
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Lemma 4.1.

(1) (Olsson) mp(k, Sn) =
∑

τ C(p, τ),

(2) mp(k,An) = {
∑

τ C(p, τ) + 3
∑

τ SC(p, τ)}/2 (p > 2),

= {
∑

τ C(2, τ)−
∑

τ SC(2, τ)+4
∑

σ SC(2, σ)}/2 (p = 2),

(3) mp(k,W (Bn)) =
∑

(τ1,τ2) C(p, τ1)C(p, τ2),

(4) mp(k,W (Dn)) = {
∑

(τ1,τ2) C(p, τ1)C(p, τ2) + 3
∑

ρC(p, ρ)}/2
(p > 2),

= {
∑

(τ1,τ2) C(2, τ1)C(2, τ2) −
∑

ρC(2, ρ) + 4
∑

κC(2, κ)}/2
(p = 2).

Here τ , σ, ρ, κ run over p-affine partitions with |τ | = n, |τ̄ | = vp(n!) − k,

|σ| = n, |σ̄| = vp(n!) − k − 1, 2|ρ| = n, 2|ρ̄| = vp(n!) − k, 2|κ| = n,

2|κ̄| = vp(n!)− k− 1, and (τ1, τ2) runs over pairs of p-affine partitions with

|τ1| + |τ2| = n, |τ̄1| + |τ̄2| = vp(n!) − k. �

If two power series f(x, y) and g(x, y) in two variables x, y have the

same coefficients of xmyn for m ≥ s, n ≥ t, we write

f(x, y) ∼ g(x, y) coeff(xsyt).

By combining Theorems 3.5, 3.7 and Lemma 4.1, we obtain

Theorem 4.2. For a prime p, let Fp(x, y) (resp. Gp(x, y)) denote the

right hand side of Theorem 3.5 (resp. Theorem 3.7). Then,

∞∑
k=0

∞∑
n=0

mp(k, Sn)x
vp(n!)−kyn = Fp(x, y).(1)

∞∑
k=0

∞∑
n=0

mp(k,An)x
vp(n!)−kyn(2)

∼ 1

2
{Fp(x, y)2 + 3Gp(x, y)}

coeff(y2) (p > 2),

∼ 1

2
{F2(x, y)

2 + (4x− 1)G2(x, y)}

coeff(y2) (p = 2).
∞∑
k=0

∞∑
n=0

mp(k,W (Bn))x
vp(n!)−kyn = Fp(x, y)

2.(3)
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∞∑
k=0

∞∑
n=0

mp(k,W (Dn))x
vp(n!)−kyn(4)

∼ 1

2
{Fp(x, y)2 + 3Fp(x

2, y2)}
coeff(y) (p > 2),

∼ 1

2
{F2(x, y)

2 + (4x− 1)F2(x
2, y2)}

coeff(y) (p = 2). �

5. Formulae of mp(0, Gn)

In [Ma1-2], Macdonald calculated mp(Gn) := mp(0, Gn) for finite Cox-

eter groups. Here we deduce formulae for Gn = Sn,W (Bn),W (Dn) and An.

Let k(r, s) be the numbers defined by
∑∞

s=0 k(r, s)T s =
∏∞

n=1(1 − Tn)−r,
and n =

∑
i aip

i (0 ≤ ai ≤ p− 1) be the p-adic expansion of n. Then, from

Lemma 4.1, we see mp(Sn) =
∏

i k(pi, ai) and mp(W (Bn)) =
∏

i k(2pi, ai)

([Ma1-2]). Observing Theorem 4.2, we further obtain the following for

W (Dn) (n ≥ 1). Suppose first that p > 2. If ai =even for all i, then

mp(W (Dn)) = {mp(W (Bn)) + 3mp(Sn/2)}/2, and if ai =odd for some i,

then mp(W (Dn)) = mp(W (Bn))/2. Next we suppose p = 2. If n is a positive

power of 2, then m2(W (Dn)) = {m2(W (Bn)) + 4m2(Sn/2)}/2, otherwise,

m2(W (Dn)) = m2(W (Bn))/2.

For the alternating groups, we introduce the numbers k̂(r, s) as fol-

lows. If r is even,
∑∞

s=0 k̂(r, s)T s =
∏∞

n=1(1 − T 2n)−r/2, and if r is odd,∑∞
s=0 k̂(r, s)T s =

∏∞
n=1(1 + T 2n−1)(1 − T 2n)−(r−1)/2. Then for p odd, we

can deduce from Lemma 4.1 that mp(An) = {
∏

i k(pi, ai)+3
∏

i k̂(pi, ai)}/2.

For p = 2, M.Sato’s result is recorded in Note added in proof of [Mc]. It says

that m2(A1) = m2(A2) = 1, m2(A3) = 3, and if n is of the form 2t or 2t+1

for some t ≥ 2, then m2(An) = m2(Sn), and otherwise m2(An) = m2(Sn)/2.

We can obtain a proof for this result from Lemma 4.1 together with the

following combinatorial lemma.

Lemma. A 2-affine partition σ = ⊕ibi[2
i] satisfies |σ| = n, |σ̄| =

v2(n!) − 1 if and only if (1) 0 ≤ bi ≤ 3 for all i, (2) #{bi | bi = 2, 3} = 1

and (3) bi = 2, 3 ⇒ bi+1 = 0.
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Proof. We use 2-transposition of Proposition 2.7. Let τ be the

(unique multiplicity-free) 2-affine partition with |τ | = n and |τ̄ | = v2(n!).

Since σ ≺2 τ , we have †σ̄ ⊂ †τ̄ . From this, it follows that the shape of †σ̄
is obtained by removing one rim node of †τ̄ . In other words, the tableax

for σ̄ is obtained by removing one box written 1 and splitting the row into

two rows whose boxes have numbers half as much as before (see example

below). Hence the multiplicities bi of σ must satisfy (1)-(3). Conversely, if

σ satisfies (1)-(3), then we can find a multiplicity free 2-affine partition τ

with †σ̄ ⊂ †τ̄ and |σ̄| + 1 = |τ̄ |. Then our assertion follows. �

Example. Let n = 23. Then τ = [1] ⊕ [2] ⊕ [4] ⊕ [16], τ̄ = [0] ⊕ [1] ⊕
[3] ⊕ [15] and the corresponding tableau is

∣∣∣∣∣∣

8 4 2 1

2 1

1

∣∣∣∣∣∣
.

If we remove a box written 1 and split the row, we get one of the following

tableax.
∣∣∣∣∣∣∣∣∣∣∣

4 2 1

4 2 1

2 1

1

∣∣∣∣∣∣∣∣∣∣∣

,

∣∣∣∣∣∣∣∣∣∣∣

8 4 2 1

1

1

1

∣∣∣∣∣∣∣∣∣∣∣

,

∣∣∣∣∣∣∣∣∣∣

8 4 2 1

2 1

∣∣∣∣∣∣∣∣∣∣
,

which give 2-affine partitions σ = [1] ⊕ [2] ⊕ [4] ⊕ 2[8], [1] ⊕ 3[2] ⊕ [16],

3[1] ⊕ [4] ⊕ [16] satisfying |σ| = |τ |, |σ̄| + 1 = |τ̄ | respectively. �

6. McKay numbers for finite general linear groups

Letting q be a fixed positive integer, we shall begin this paragraph by

recalling prime factorization properties of the numbers qk−1 after e.g. [FS].

For a prime number l not dividing q, define el(q) to be the multiplicative

order of q mod l, and put al(q) := vl(q
el(q) − 1). Suppose that a positive

integer k has the prime factorization k =
∏

l:prime l
bl . Then, we have

qk − 1 =
∏

l:prime
el(q)|k

lbl+al(q).
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The statement is equivalent to the following formula:

vl(q
el(q)m − 1) = vl(m) + al(q).

The proof follows from a simple induction argument on vl(k) = vl(k/el(q))

after assuming el(q) | k without loss of generality. For a partition λ, define

hλ(q) :=
∏

h∈Hk(λ)(q
h − 1).

Theorem 6.1. Let l be a prime number not dividing a positive integer

q. Then

∑
λ

xvl(hλ(q))y|λ| =

∞∏
n=1

fe(y
n)

∞∏
k=0

fl(x
([k]l+l

ka)nyel
kn)el

k
,

where fn(T ) = (1 − Tn)n/(1 − T ), e = el(q), a = al(q).

Proof. By the above properties of vl(q
k − 1), we see that

vl(hλ(q)) =
e−1∑
i=0

∑

h∈Hk(λ
(e)
i )

vl(q
eh − 1).

Since |λ| = |λ(e)| + e
∑

i |λ
(e)
i |, the left hand side of the theorem can be

written as

(
∞∑
n=0

Ce(1, n)yn)(
∑
λ

xa|λ|+vl(hλ)ye|λ|)e.

Then we conclude the proof by Proposition 2.3 and Theorem 3.5. �

In the following, we let q be a power of a prime number p, and Fq

denote the finite field with q elements. Write Φ for the set of monic ir-

reducible polynomials f(T ) with f(T ) �= T , and let Φd ⊂ Φ denote the

subset of degree d. Then the cardinality N(q, d) of the set Φd is equal to

d−1
∑

s|d µ(d/s)qd for d > 1 and q − 1 for d = 1. Let us introduce a new

notation (n)q! to denote (qn − 1) · · · (q − 1) for n > 0 and 1 for n = 0.

The irreducible characters of the general linear group GL(n, q) were

studied by J.A.Green [G], and they were parametrized by the partition-

valued functions
−→
λ on Φ with

∑
f∈Φ deg(f)|−→λ (f)| = n (see [Ma] Chap.IV).
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The degree of the character χ−→
λ

corresponding to
−→
λ is given by the formula:

(6.2) χ−→
λ

(1) = (n)q!
∏
f∈Φ

qdeg(f)n(t
−→
λ (f))

h−→
λ (f)

(qdeg(f))
.

where n(λ) =
∑

i(i − 1)λi for a partition λ = (λ1, . . . ). By combining

this formula with Theorem 6.1, we can compute the following generating

function.

Theorem 6.3. For a prime l � q, we have

∞∑
k=0

∞∑
n=0

ml(k,GL(n, q))xvl((n)q !)−kyn =
∞∏
d=1

Fl(q
d;x, yd)N(q,d),

where Fl(q;x, y) is the power series of the right hand side of Theorem 6.1. �

Next, we shall study the McKay numbers mp(k,GL(n, q)).

Theorem 6.4. Let p be a prime number and q = ps for s > 0. Then,

∞∑
k=0

∞∑
n=0

mp(k,GL(n, q))xkyn =
∞∏
n=1

1 − xsn(n−1)/2yn

1 − qxsn(n−1)/2yn
.

Proof. Let E(x, y) denote the left hand side. By the degree formula

(6.2), we have

E(x, y) =
∏
f∈Φ

(
∑
λ

xdeg(f)sn(λ)ydeg(f)|λ|).

If tλ =
⊕

imi[i], then n(λ) =
∑

imii(i− 1)/2. Therefore

∑
λ

xsn(λ)y|λ| =
∞∏
k=1

∞∑
m=0

xmsk(k−1)/2ykm =
∞∏
k=1

(1 − xsk(k−1)/2yk)−1.

The proof is then reduced to the following elementary equation:
∏∞

d=1(1−
T d)−N(q,d) = (1 − T )/(1 − qT ). �

We obtain the following two corollaries by specializing x = 0, 1 respec-

tively in Theorem 6.4.
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Corollary 6.5 (Alperin [A]). mp(0, GL(n, q)) = qn − qn−1. �

Corollary 6.6 (Feit and Fein [FF], [Ma3]). If c(n, q) denotes the

number of conjugacy classes of GL(n, q), then

∞∑
n=0

c(n, q)yn =

∞∏
n=1

1 − yn

1 − qyn
. �

We remark that qn − qn−1 of 6.5 gives also the number of p-regular

classes of GL(n, q). From 6.6 follows that c(n, q) is a polynomial in q. If

we put c(n, q) =
∑

k r(n, k)qk, then we can deduce the recurrence formula

r(n, k) = r(n−1, k−1)+r(n−k, k) by replacing q by qy in the power series

in 6.6. The numbers r(n, 0) are well-known Euler’s pentagonal numbers.

Definition 6.7. For a partition λ = (λ1, . . . , 0), we define

2(λ) := #{i | λi �= 0},
δ(λ) := #{i | λi > λi+1}.

Theorem 6.8. If q = ps (s ≥ 1), then we have

∞∑
k=0

mp(k,GL(n, q))xk =
∑
|λ|=n

(q − 1)δ(λ)q�(λ)−δ(λ)xsn(tλ).

Proof. Let φn(x) denote the left hand side of the above, and consider

the power series
∑∞

n=0 φn(x)yn. Then by Theorem 6.4 it equals to

∞∏
n=1

(1 +
∞∑
k=1

(qk − qk−1)xskn(n−1)/2ykn)

=
∑
λ

{
∏
i>0

mi(λ)>0

(qmi(λ) − qmi(λ)−1)}xsn(tλ)y|λ|.

From this Theorem 6.8 follows. �
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Remark. Let G = GL(n, q). Then c(n, q) is the number of G-conju-

gacy classes of pairs (s, u) such that s is a semisimple element of G, u is a

unipotent element of G and su = us. Furthermore, (q − 1)δ(λ)q�(λ)−δ(λ) is

the number of G-conjugacy classes of such (s, u) with u a unipotent element

of type λ. A recent work of J.B.Olsson and K.Uno (see Note in Paragraph

1) gives an explanation of the meaning of (q − 1)δ(λ)q�(λ)−δ(λ) in terms of

irreducible characters of GL(n, q).

7. Macdonald numbers

Let G be a finite group, p a prime number and k a nonnegative integer.

The Macdonald number µp(k,G) is defined to be the number of conjugacy

classes C of G with vp(#C) = k.

We first consider the Macdonald number µp(k, Sn). Let C(λ) denote

the conjugacy class of Sn whose cycle type is a partition λ. The order

zλ of the centralizer of any element of C(λ) is well-known to be equal to∏
i i
mi(λ)mi(λ)!. Notice that |λ| = n and #C(λ) · zλ = n!. If k has the

p-adic expansion k =
∑

i aip
i (0 ≤ ai < p), then vp(k!) =

∑
i ai[i]p. From

this we have

(7.1)
∞∑
k=0

xvp(k!)yk =
∞∏
k=0

1 − xp[k]pyp
k+1

1 − x[k]pypk
.

In this stage, we can deduce the following theorem easily.

Theorem 7.2.

∑
λ

xvp(zλ)y|λ| =
∞∑
k=0

∞∑
n=0

µp(k, Sn)x
vp(n!)−kyn

=
∞∏
k=0

∞∏
n=1

1 − xp[k]p+vp(n)pk+1
ynp

k+1

1 − x[k]p+vp(n)pkynpk
. �

Next we shall consider the case G = GL(n, q), where q is a power of a

prime p. For a partition λ = ⊕imi[i], we define Mλ(q) =
∏

i(mi)q!.
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Theorem 7.3. Let l be a prime number with l � q, and put e = el(q),

a = al(q). Then,

∑
λ

xvl(Mλ(q))y|λ| =
∞∏
n=1

ge(y
n)

∞∏
k=0

gl(x
[k]l+l

kayel
kn),

where gn(T ) = (1 − Tn)/(1 − T ). If we denote the right hand side of the

above by Gl(q;x, y), then we have

∞∑
k=0

∞∑
n=0

µl(k,GL(n, q))xvl((n)q !)−kyn =
∞∏
d=1

Gl(q
d;x, yd)N(q,d).

Proof. The first formula follows from (7.1) in a similar way to Theo-

rem 6.1. Here notice that vl((se+i)q!) = vl(s!)+sa for 0 ≤ i ≤ e−1. For the

second, recall that the conjugacy classes of GL(n, q) are parametrized by

the partition-valued functions −→µ on Φ with
∑

f∈Φ deg(f)|−→µ (f)| = n and

that the size of the class C−→µ corresponding to −→µ satisfies multiplicatively

the congruence:

#C−→µ ≡ (n)q!∏
f∈Φ M−→µ (f)(q

deg(f))
mod qZ.

(See [Ma] Chap.IV for the precise formula.) Then the second formula follows

at once. �

The author did not obtain a good expression of the generating function

for the Macdonald numbers µp(k,GL(n, q)).
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