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On the special values of abelian L-functions

By Ki-Seng Tan

Abstract. Here we give a proof of the p-portion of a conjecture of
Gross over the global function fields of characteristic p. In this case, the
conjecture is in fact a refinement of the class number formula. Here the
classic Dedekind Zeta function is generalized by a p-adic measure which
interpolates the special values of abelian L-functions, and the regulator
of the units group is generalized by a p-adic regulator.

The L-functions are associated to the characters of the maximal
abelian extension of the given global field unramified outside a finite set
v0, v1, . . . , vr, of places of the field. The case that r = 1 has been proved
by Hayes. Gross also proved some congruence of the formula.

0. Introduction

In this note, we will prove the p-portion of a conjecture of Gross [G] over

the global function fields.

The conjecture is about the special values of abelian L-functions. Let

K be a global function field of characteristic p, and S = {v0, v1, . . . , vr},
r ≥ 1, a finite set of primes of K. Suppose that L/K is an abelian extension

unramified outside S, and G is the corresponding Galois group. There is

an element θG in the ring Z[[G]] of integral measures of G, which interpo-

lates special values of abelian L-function (see [G] or [T], V). Namely, for

each continuous character χ of G, the value χ(θG) equals the special value

LT (χ, 0) of the L-function relative to S, and modified at a non-empty finite

set T of primes not contained in S (see [G],[T] or Section 1). The Gross

conjecture is about the order of vanishing of θG as a measure and its leading

term in a Taylor expansion. The leading term involves the (modified) class

number and the G-valued regulator defined by Gross. Over function fields,
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this conjecture is a generalization of the classical class number formula. In

[H], Hayes has proved the conjecture for r = 1, K a function field and any

G. In [G], Gross prove the conjecture up to a constant, for G cyclic of prime

order.

In this note, we consider the case that G equals H, the Galois group

of the maximal abelian pro-p-extension of K unramified outside S. We’ll

give a proof of the Gross conjecture for the case G = H and r any positive

integer. An immediate consequence is that the conjecture is true for every

quotient of H.

Note that the conjecture can be stated universally for G = GS the Galois

group of the maximal abelian extension of K unramified outside S. For each

prime number l, the conjecture for G = Zl, the Galois group of the cyclic

constant field extension, is just the class number formula and is true. Our

result then implies that the conjecture is true for G = H ×
∏

l �=p Zl. This

group is a quotient of GS by a finite subgroup with order prime to p.

The author would like to thank B. Gross, J. Tate, J.-K. Yu and the

referee for many valuable suggestions.

1. The θ Element

We will follow the notations in [G]. The modified Zeta-function is defined

as

ζT (s) =
∏

v∈T
(1−N(v)1−s)

∏

v/∈S
(1−N(v)−s)−1.

For an abelian pro-finite Galois group G over K and a complex character χ

of G, via Class Field Theory, the associated modified L-function is defined

as

LT (χ, s) =
∏

v∈T
(1− χ(v) ·N(v)1−s)

∏

v/∈S
(1− χ(v) ·N(v)−s)−1.

For finite G, the theta element θG is the unique element of Z[G] such

that

χ(θG) = LT (χ, 0).

The augmentation ideal IG ⊂ Z[G] is defined as the kernel of the ring

homomorphism

Z[G] −→ Z,

g 	→ 1.
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Note that if H is a quotient of G and φ : G −→ H is the projection, then

φ(θG) = θH . Using this compatibility property, we define the theta element

for pro-finite G as

θG = lim←−
G′

θG′ ,

where the projective limit is taken over all finite quotients of G. Thus θG
can be viewed as an element of the ring Z[[G]] of integral measures of G.

The augmentation ideal IG ⊂ Z[[G]] is defined as the ideal of measures of

volume zero. If χ0 is the trivial character of G, then IG is just the kernel

of the induced ring homomorphism (by integration) χ0 : Z[[G]] −→ Z.

For a finite extension L/K, let L(S) and L(T ) respectively be the sets

of primes of L sitting over those in S and T . Also denote by ζL(T )(s) the

modified Zeta-function of L relative to L(S).

Suppose that χ is a continuous character of G of order pn. Let L(n) be

the cyclic extension determined by χ, and L(n−1) that determined by χp.

Then we have

(1.1)
∏

a (mod pn)
(a,p)=1

χa(θG) = lim
s→0

ζL(n)(T )(s)

ζL(n−1)(T )(s)
.

By the functional equation of Zeta-functions and the Dirichlet formula, the

order of vanishing of ζL(n)(T )(s) at zero equals the rank of the L(n)(S)-units

in L(n).

Lemma 1.2. Let χ be a character of order exactly pn, then χ(θG) = 0

if and only if the χ-eigen space of the L(n)(S)-units is of positive rank.

Proof. The complex numbers χa(θG), (a, p) = 1, are algebraic and

conjugate to each other over Q. They must be either all zero or all non-

zero. The lemma is then a consequence of (1.1). �

In particular, we have χ0(θG) = 0 for the trivial character χ0, since we

are assuming that S has at least two elements. Consequently,

(1.3) θG ∈ IG.

Another direct consequence of Lemma 1.2 is the following:

Lemma 1.4. If some place of S splits completely in L/K, then θG = 0.
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2. The Gross Conjecture

The G-regulator is defined as follows (see [G], p. 179). Let Y be the free

abelian group generated by the primes v ∈ S and X = {
∑

av ·v :
∑

av = 0}
the subgroup of elements of degree zero in Y . Let U be the group of S-units,

and UT the rank r free abelian group of S-units which are ≡ 1 (mod T ).

Let G be an abelian pro-finite Galois group over K. For each v ∈ S, let fv
be the homomorphism

fv : UT −→ K∗v −→ A∗K/K∗ −→ G.

Also let λG be the morphism

λG : UT −→ G⊗X(2.1)

ε 	→
∑

S

fv(ε) · v.

Choosing bases < ε1, . . . , εr > and < x1, . . . , xr >, we obtain an r × r

matrix (gij) for λG with entries in G. Recall that G is an abelian group

and hence a Z-module. The determinant det(gij) =:
∑

π∈Sr
sign(π)g1π(1) ·

g2π(2) · . . . ·grπ(r) is an element of the symmetric product Symr(G) of G over

Z.

It is well-known that for finite G, the map g 	→ g − 1 (mod I2
G) gives

an isomorphism G
∼−→ IG/I

2
G � H1(G,Z) (see [Hi]). If G is pro-finite,

we have G = lim←
µ
Gµ over the finite quotients. If Iµ is the augmentation

ideal of Gµ, then IG = lim←
µ
Iµ and I2

G = lim←
µ
I2
µ. Since for µ > µ′, the

map I2
µ −→ I2

µ′ is surjective, the map G
∼−→ IG/I

2
G is also an isomorphism

(Mittag-Leffler Condition, see [A], p.104). We have the induced map

Symr(G) −→ IrG/I
r+1
G .

Let detGλ be the image of det(gij) in IrG/I
r+1
G . The Gross Conjecture says

that

(2.2) θG ≡ m · detGλ (mod Ir+1
G ).
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Here m = ±hT where hT is the modified class number of the S-integers of

K and the sign depends on the choice of the orientation of the bases < εi >

and < xi > (see [G], p. 182).

Let H be the por-p completion of the group A∗K/K∗ ·
∏

v/∈S O∗v . It is

the Galois group of the maximal abelian pro-p-extension of K unramified

outside S. In this note, we show the following :

Theorem 2.3. The Gross conjecture (2.2) is true for G = H.

Note that for fixed G, the conjecture does not depend on S, as we have

the following (see [G], p. 182):

(2.4) Compatibility of the Conjecture. Suppose that S ⊂ S′

and G′ is a quotient of G. If the conjecture is true for (G,S), then it is

also true for (G′, S′).

As a consequence of Theorem 2.3 and (2.4), the conjecture is true for

every pro-p group G. When G is a pro-p group, it is advantageous to

work over Zp. Let Zp[[G]] be the ring of Zp-measures over G and IG,p the

augmentation ideal of it.

Lemma 2.5. If G is a pro-p group, then for each non-negative integer

r,

IrG,p ∩ Z[[G]] = IrG(1)

the natural map IrG/I
r+1
G −→ IrG,p/I

r+1
G,p is an injection.(2)

Proof. The second statement is a direct consequence of the first one.

If G is finite, then the first statement can be deduced from the fact that

Zp[[G]] = Z[[G]] ⊗Z Zp and IrG,p = IrG ⊗Z Zp. For infinite G, we just take

the projective limit over the finite quotients of G. �

As a corollary, we have the following.

Lemma 2.6. If G is a pro-p group, then θG and detGλ can be viewed

respectively as elements of Zp[[G]] and IrG,p/I
r+1
G,p . The Gross conjecture is

then equivalent to

θG ≡ m · detGλ (mod Ir+1
G,p ).
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Remark. As pointed out to the author by J. Tate, if we are working

over Zp, then the auxiliary set T can be discarded. This is explained as

follows. For each v not in S, let [v] ∈ G be the Frobenius element. Define

θ′ = θ ·
∏

v∈T
(1− [v]N(v))−1,

and

L(χ, s) =
∏

v/∈S
(1− χ(v) ·N(v)−s)−1.

Then for each character χ of G, we have χ(θ′) = L(χ, 0). Since (1−[v]N(v))

is invertible in Zp[[G]], θ′ ∈ Zp[[G]], too. The S-unit group U is in general

not free. As in the beginning of this section, by choosing a subgroup (e.g.

UT ) of U of rank r we can define a regulator detλ in IrG,p/I
r+1
G,p . Since

the order of the group of roots of unit is relatively prime to p and hence

invertible in Zp, the regulator detλ is independent of the choice of the free

subgroup of U . In particular, the regulator detGλ in the conjecture (2.2) is

independent of the set T . In (2.2), if we replace θ by θ′ and m by a suitable

m′ ∈ Zp then we get a new conjecture (2.2)′ which does not depend on T .

By Lemma 2.6, (2.2)′ is equivalent to (2.2).

3. Reduction of the Conjecture for G = H and a Sketch of the

Proof

In this section, we fix the sets S and T described before. A projective

system of quotient groups of H will be called a fine system, if every finite

quotient group of H is a quotient of some group in this system. By (2.4),

the proof of Theorem 2.3 can be reduced to proving (2.2) for every G in a

fine system. Let H be the sub-system of quotients of H consisting of those

which are isomorphic to Zd
p, for some positive integer d.

Lemma 3.1 (see also [K]).

(1) (Local Leopoldt) For each v, the homomorphism U ⊗ Zp −→ K∗v is

injective.

(2) H is isomorphic, as a topological group, to a countable infinite prod-

uct of Zp.

(3) The system H is a fine system.
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Proof. Given an element a ∈ K∗, which is not a pth power in K∗,
we need to show that a is not a pth power in K∗v . Then the first statement

follows. By the structure theorem of K∗v ([W]), the second statement also

follows. If a is a pth power in K∗v , then the non-trivial pure inseparable

extension K(u
1
p )/K would be locally trivial at v. This is impossible.

The third statement is a consequence of the second statement. �

Let gr(Zp[[G]]) = Zp⊕IG,p/I
2
G,p⊕I2

G,p/I
3
G,p⊕ . . . . be the graded algebra

associated to the group ring. Suppose that G ∈ H. Then the natural

morphism Symk(G) −→ IkG,p/I
k+1
G,p induces an isomorphism

δ = δG :
⊕

k≥0

Symk(G)⊗ Zp
∼−→ gr(Zp[[G]]).

Suppose that G � Zd
p and < σ1, . . . , σd > is a basis of G over Zp. Let ti =

σi−1 ∈ ZP[[G]]. Then it is well known that Zp[[G]] = Zp[[t]], t = (ti)i=1,...,d.

In this case, IkG,p = (tk), and we have a non-canonical isomorphism of

algebras

gr(Zp[[G]])
∼−→ Zp[t] ⊂ Zp[[G]].

This and the isomorphism δ induce the following non-canonical isomorphism

δ(t) = δG(t) :
⊕

k≥0

Symk(G)⊗ Zp
∼−→ Zp[t] ⊂ Zp[[G]].

σi 	→ ti.

Let θ1(t) = θ1,G(t) = θG. Recall that (gij) is the matrix associated with the

morphism λG defined in Section 2. Let tij = δ(t)(gij). Then θ2 = θ2,G =

θ2,(t) := det(tij) = δ(t)(δ−1(detGλ)) is the unique homogeneous polynomial

of degree r such that

θ2 ≡ detGλ (mod Ir+1
G,p ).

Then by Lemma 2.6, for G ∈ H, the Gross Conjecture is equivalent to

(3.2) θ1 ≡ m · θ2. (mod (t)r+1)

The polynomial θ2,(t) depends on the choice of the basis of G. If θ2,(t) =

F (t) for a form F of degree r and < σ′1, . . . , σ
′
d > is another basis of G such
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that (σ′1, . . . , σ
′
d) = (σ1, . . . , σd) · A for some A ∈ GL(d,Zp), then we have

θ2,(t′) = F (t′ ·A−1).

Suppose G ∈ H and G � Zd
p. Let V = VG be the d-dimensional affine

space over Zp such that V (Zp) = HomZp(G,Zp). Then the coordinate

ring of V equals
⊕

k≥0 Symk(G)⊗ Zp. By the non-canonical map δ(t), we

identify this coordinate ring with Zp[t]. Then the homogeneous polynomial

θ2 defines a Zariski closed set D = DG in V . It is known that θ2 = det(tij)

is absolutely irreducible provided the tij are independent variables (see [V]

Vol.1, p.94). Note that the absolute irreducibility of θ2 does not depend on

the choice of the basis of G. This motivates the following definition. Let

H′ be the set consisting of all those G ∈ H with gij , i, j = 1, . . . , r, linearly

independent over Zp. In particular, if G is in H′, then d =: rkZp(G) ≥ r2.

Lemma 3.3.

(1) The system H′ is a fine system.

(2) If G is in H′, then θ2 is absolutely irreducible and D(Zp) is Zariski

dense in D.

Proof. For (1), since every G ∈ H is a quotient of H, it is sufficient

to show that for G = H the associated gij are linearly independent over

Zp. We can then take < xi = vi − v0, i = 1, . . . , r > as a basis of X. For

a chosen basis < εi > of UT , we have gij = fvi(εj). By Lemma 3.1 and the

definiton of H, we see that the gij are linearly independent over Zp.

For (2), we may assume that {tij , i, j = 1, . . . , r} is a subset of {ti, i =

1, . . . , d}, and t11 = t1. Denote t− = (t2, . . . , td), and denote by V − the

locus of t1 = 0. The coordinate ring of V − can be identified with Zp[t
−].

This identification corresponds to a projection φ from V to V −. Let g(t−)

be the (1,1)-minor of (tij). Then D is defined by an equation of the from

t11 · g(t−) = F (t−).

Let W = V −{zeros of g} and W− = V −−{zeros of g}. Then φ induces

an isomorphism from D ∩W to W−. Since W−(Zp) is dense in W− and

D ∩W is dense in D (which is irreducible), D(Zp) is dense in D. �

We now sketch the proof of Theorem 2.3. Two method will be applied

frequently. The first is to go up to a larger group of which G is a quotient.



Abelian L-functions 313

If Theorem 2.3 is true for this group, then by (2.4), it is also true for G.

This will allow us to work on a group which is more “generic” than G. The

second method is to go down to the Zp-quotients of G, i.e. those which are

isomorphic to Zp. In Section 4, by this going down method, we reduce the

proof to the case that G is degenerate, namely, G � Zp and θ2,G = 0. For

degenerate G, Theorem 2.3 is equivalent to that at the origin, the theta

element θ1,G has order of vanishing greater than r. In Section 5, we study

the order of vanishing of θ1,G for degenerate G. There are in general two

possibilities :

(1) We can show directly that θ1,G is 0.

(2) From G, we can go up to a canonical Γ in H. The corresponding Zp-

affine space VΓ will contain the Zp-line VG. We show that VΓ also contains

(maybe not distinct) r + 1 affine hyperplanes to which the restrictions of

θ1,Γ are all zero. The theta element θ1,Γ has then r+ 1 homogeneous linear

factors. If the r + 1 hyperplanes are distinct (in this case, we say that

G is good, this is true when r = 1), then θ1,Γ is divisible by r + 1 distinct

homogeneous linear factors hence has order of vanishing larger than r. Then

the order of vanishing of θ1,G is also greater than r. In particular, the

theorem is proved for r = 1. In Section 6, our last step of the proof is to

go up again from G to an H ∈ H such that a generic Zp-quotient of H

is degenerate and good. By the going down method, we show that at the

origin, θ1,H has order of vanishing greater than r, and so does θ1,G.

4. The Degeneration

For each H � Zp contained in H, recall the homomorphisms fv, v ∈ S,

defined in Section 2 (taking G = H). We say that H is degenerate if there

is a non-trivial u ∈ UT ⊗ Zp such that fv ⊗ 1(u) = 0,∀v ∈ S. It is easy to

see that H � Zp contained in H is degenerate if and only if θ2,H = 0. For

each G ∈ H, we use ord(θ1,G) to denote the order of vanishing of θ1,G at

the origin.

Proposition 4.1. The Gross Conjecture is true for H if and only if,

for all H � Zp which is degenerate, ord(θ1,H) ≥ r + 1.

Proof. “⇒” is a direct consequence of (3.2). To show “⇐ ”, we need

the following geometric lemma. For each G � Zd
p contained in H, we have
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the following identifications.

{(H � Zp a quotient of G, σ a topological generator of H)}
�{Zp-linear projection G −→ Zp}
�{surjective, zero-degree, Zp-graded-algebra homomorphism

µ : Zp[t] −→ Zp[x]}
�{embedding of Zp into VG(Zp)}.

For a µ : Zp[t] −→ Zp[x] corresponding to an embedding of Zp into VG(Zp),

we also denote by µ the induced morphism from Zp[[t]] to the one variable

power series ring Zp[[x]]. Let D be the affine scheme defined by θ2. We

have µ(θ2) = 0 if and only if H is degenerate. In this case, we say that µ

belongs to D.

Lemma 4.2. Let θ2(t1, . . . , td) be an rth degree absolutely irreducible

homogeneous polynomial over Zp and D the affine scheme defined by θ2.

Suppose that D(Zp) is Zariski dense in D. Let θ1 ∈ Zp[[t1, . . . , td]] be such

that for every µ belonging to D, we have ord(µ(θ1)) ≥ r+ 1. Then we have

θ1 ∈ Qp · θ2 + (t1, . . . , td)
r+1.

Proof. Let θ1 =
∑

i θ
(i)
1 be such that each θ

(i)
1 is the homogeneous

polynomial of degree i. Then for each µ belonging to D,µ(θ
(i)
1 ) = 0 for

i ≤ r. This shows that for i ≤ r, θ
(i)
1 = 0 on each Zp-line inside D(Zp).

Since D is a Zp-cone, we have, for i ≤ r, θ
(i)
1 = 0 on D(Zp) hence on D. As

θ2 is absolutely irreducible of degree r, we must have θ
(i)
1 = 0 for i < r and

θ
(r)
1 ∈ Qp · θ2. �

We now consider the proof of “⇐”. Suppose the condition of the propo-

sition holds. We need to show that (3.2) is true for each G ∈ H′. For such

G, we consider all its degenerate Zp quotients. By the compatibility of θ1

under quotients, Lemma 3.3 and Lemma 4.2, we deduce that

θ1 ≡ m′ · θ2 ( mod (t)r+1),

for some m′ ∈ Qp. We can assume that G is large enough that some quotient

of it is Gp, the Galois group of the Zp-extension obtained by constant field
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extensions. On Gp, the formula (2.2) is nothing but the (modified) classical

class number formula and so is true (see [G], Section 1). By projecting to

Gp, we must have m′ = m. �

5. Consequences of the Degeneration

By Proposition 4.1, to complete the proof of Theorem 2.3 for each r, it

is enough to show that θ1 = θ1,G is divisible by tr+1 for each degenerate

G � Zp contained in H. In this section, we study some useful consequence

of the degeneration. To illustrate the main idea for the proof of Theorem

2.3, at the end of this section we complete the proof for the special case

r = 1.

Suppose that G � Zp is degenerate. Then there is a non-zero u in

UT ⊗ Zp such that fv ⊗ 1(u) = 0 for all v ∈ S. For each v, let Nv ⊂ K∗v be

the kernel of

K∗v −→ A∗K/K∗ −→ G.

For each v ∈ S, there are three possibilities : K∗v/Nv � {1},Z or Zp.

Suppose that for some v ∈ S,

(5.1) K∗v/Nv � {1}.

Then v splits completely under the corresponding Zp-extension. By Lemma

1.4, θ1 = θG = 0.

Suppose that

(5.2) K∗v/Nv � Z or Zp,∀v ∈ S.

Then Gv, the local Galois group, is isomorphic to Zp for all v ∈ S. Note

that if K∗v/Nv � Z, then O∗v = Nv. Since for a non-trivial u, we can not

have uv ∈ O∗v for all v, we must have O∗v �= Nv for some v. Let Γ be the

pro-p completion of the group

(A∗K/K∗
∏

v∈S
Nv

∏

v/∈S
O∗v)/{torsions}.

Consider the natural homomorphism

ρ :
⊕

v∈S
Gv −→ Γ.
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The cokernel of ρ is finite, since it is the Galois group over K of an unram-

ified abelian extension which splits over S. The kernel of ρ contains, with

finite index, the image of the natural map

UT ⊗ Zp −→
⊕

v∈S
Gv.

Since G is degenerate, this kernel has rank at most r − 1. By computing

the rank, we see that Γ � Zd
p, for some d ≥ 2. Note that Γ is in H and G

is a quotient of Γ.

For each v ∈ S, let Γv be the image in Γ of Gv and γv a topological

generator of Γv. Let L/K, LG/K and L/L(v) be the field extensions with

Galois groups equal to Γ, G and Γv respectively. We have the following

picture:

Since v splits under the abelian extension L(v)/K, Lemma 1.4 again

implies that θΓ/Γv
is zero. This shows that as an element of Zp[[Γ]], θΓ is in

the kernel of the homomorphism of algebras

Zp[[Γ]] −→ Zp[[Γ/Γv]],

i.e., θΓ is divisible by γv − 1. Thus we have proved the following.

Lemma 5.3. If (5.2) holds, then θΓ is divisible by γv − 1 for each v.

Proof (of Theorem 2.3 for the case r = 1). Suppose that G ∈ H is

degenerated. If (5.1) holds, then θG = 0. Suppose that (5.2) holds. Since

we are in the case that r = 1, the morphism ρ is injective and γv0 and γv1

are linearly independent. As a consequence of Lemma 5.3, θΓ is divisible

by (γv0 − 1)(γv1 − 1). By the projection Γ −→ G, we see that θ1 = θG is

divisible by t2. By Lemma 4.1, the proof for r = 1 is completed. �
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6. The General Case

In this section, we complete the proof of Theorem 2.3 for the general

r. As explained in Section 5, for each degenerate G � Zp, there are two

possibilities, i.e., one of (5.1) and (5.2) will hold. The main difficulty is that

when (5.2) holds, for distinct v and v′ in S, the associated γv and γv′ may

be proportional to each other over Zp. To overcome this, we need further

consideration of linear algebra.

Recall that for each v ∈ S and each H ′ ∈ H, fv = fv,H′ : UT −→ H ′ is
the map defined in Section 2. For each u in UT ⊗ Zp not divisible by p, let

pu(H
′) be the maximal Zp-free quotient of

H ′/ < fv ⊗ 1(Zp · u), v ∈ S > .

Let H′u be the set of all the pu(H
′), H ′ ∈ H′.

Suppose that H is in H′u for some u. Then H is a Galois group

over K of certain abelian extension unramified outside S. Suppose that

H = pu(H
′) and H ′

φ−→ H is the projection. Let < ε1, . . . , εr > be a basis

of UT ⊗ Zp. Without loss of generality, we may assume that u = εr. Since

H ′ ∈ H′, by definition, the entries of the matrix (fvi,H′(εj))i=1,...,r
j=1,...,r

are lin-

early independent over Zp (see the proof of Lemma 3.3). Consequently, the

matrix (fvi,H(εj)(= φfvi,H′(εj))) i=0,1,...,r
j=1,...,r−1

has the property that each (r−1)-

minor of it has rank r− 1 over Zp. For each subset R of S with cardinality

equal to r − 1, the symmetric tensor fR,H := det((fv,H(εj)) v∈R
j=1,...,r−1

) ∈
Symr−1(H)⊗Zp is non-zero. Let t = (t1, . . . , td), where < σi := ti + 1, i =

1, . . . , d > is a basis of H over Zp. The non-canonical isomorphism δH(t)

(defined in Section 3) then identifies
⊕

k≥0 Symk(H)⊗ Zp with Zp[t]. Un-

der this, fR,H is identified with a homogeneous polynomial, which will be

denoted by fR,H(t).

Let V = VH be the d-dimensional Zp affine space defined in Section 3

(taking G = H). Recall that each projection π : H −→ Zp can be viewed

as an embedding of Zp into V (Zp). Let

V0 = (V − ∪all R{zeros of fR,H(t)}) ∪ {0}.
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Lemma 6.1. Suppose that H ∈ H′u and the projection π : H −→
G

∼−→ Zp belongs to V0(Zp). Then

(1) fv,G ⊗ 1(u) = 0 in G, for all v ∈ S. Hence G is degenerate.

(2) If for some subset R of S with cardinality r−1, u′ ∈ UT⊗Zp satisfies

fv,G ⊗ 1(u′) = 0,∀v ∈ R, then u′ ∈ Zp · u.
(3) If (5.2) holds for G, then all the γv defined in Section 5 are not

proportional to each other.

Proof. Since fv,G factors through fv,H , (1) follows from the fact that

H ∈ H′u. Since π is in V0(Zp), det((fv,G(εi)) v∈R
i=1,...,r−1

) = π∗(fR,H) �= 0 and

(2) follows.

Suppose that (5.2) holds for G. Let α ∈ Gv0 and β ∈ Gv′0
be such that

ρ(α) = γv0 and ρ(β) = γv′0 . If γv0 and γv′0 are linearly dependent over Zp,

then there are non-zero a, b ∈ Zp such that a · α + b · β is in the kernel

of ρ. For each v ∈ S, denote by iv the natural map from UT ⊗ Zp to Gv.

Since the kernel of ρ contains, with finite index, the image of UT ⊗ Zp in⊕
v∈S Gv, there is a u′ ∈ UT ⊗ Zp and a non-zero c ∈ Zp such that

iv(u
′) = 0, for v ∈ R =: S − {v0, v

′
0},

and

iv0(u
′) = ac · α, iv′0(u

′) = bc · β.

Since fv factors through iv, by (2) we then have u′ ∈ Zp · u. But then we

must have ac · γv0 = fv0(u
′) = 0, a contradiction. �

Proof (of Theorem 2.3). By Proposition 4.1, we need to show that

for any S of cardinality r and any degenerate G � Zp, θ1,G is of order of

vanishing at least r + 1. Being degenerate, G is a quotient of certain H in

H′u for some u. Let π : H −→ G be a projection. Since π∗(θ1,H) = θ1,G, it

is sufficient to show that θ1,H ∈ (t1, . . . td)
r+1.

Suppose that H −→ G0
∼−→ Zp is a projection belonging to V0(Zp).

Then by Lemma 6.1, G0 is degenerate. As showed in Section 5, if (5.1)

holds for G0, then θ1,G0 = 0. If (5.2) holds for G0, then by Lemma 6.1

again, all the γv are not proportional to each other. As a consequence of

Lemma 5.3, ord(θ1,G0) > r.
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Let θ1,H =
∑

i θ
(i)
1,H be the decomposition of θ1,H into homogeneous

polynomials. Then we just showed that for i ≤ r, θ
(i)
1,H = 0 on each Zp-line

inside V0(Zp) hence on V0(Zp). Since V0(Zp) is Zariski dense in V , we have

θ
(i)
1,H = 0 for i ≤ r. This shows that θ1,H ∈ (t1, . . . , td)

r+1. �
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