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On the discrete Boltzmann equation

with linear and nonlinear terms

By Mitsuru Yamazaki

Abstract. For the discrete Boltzmann equation with linear and
nonlinear terms, we show a boundedness of solutions with an explicit es-
timate and their asymptotic behavior when the momentum is conserved.
Secondly when the Cauchy data are small, we show an exponential de-
cay of solutions, for a model in which the nonlinear terms represent the
‘binary collisions’ and also ‘multiple collisions’.

1. Formulation and results

In this paper, we study the discrete Boltzmann equation in one-dimen-

sional space with linear and nonlinear terms. This system, which is different

from the usual one by the intervention of linear terms, describes the gas

motion of molecules which take only a finite number of velocities under the

interactions between particles represented by the quadratic terms and also

under the reflection of molecules at the inner wall of an infinite thin tube,

represented by the linear terms. This linear terms are more general than the

ones which are obtained by considering solutions around constant stationary

solutions. Using the sign function and decomposing the solutions into two

parts, which are explained later, under the conservation of momentum in the

course of reflection, we prove the boundedness of solutions and asymptotic

behavior of solutions which shows that all solutions tend to a free motion,

hence we can define a ‘wave operator’ like in the sense of the scattering

theory. This is the first work to define the wave operator for a large data

even if in the case of the discrete models only with the quadratic terms. The

wave operator was introduced by Bony [4] for a small Cauchy data. Finally,
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278 Mitsuru Yamazaki

for the small Cauchy data, with binary and also multiple collisions, we have

the estimates of solutions which show that the components of solutions with

loss term in reflection decay exponentially.

We study the discrete model of Boltzmann equations in a thin infinite

tube as follows :

(B)



∂ui
∂t

+ ci
∂ui
∂x

= Qi(u) + Li(u) ,

ui(x, 0) = u0
i (x) (� 0) for x ∈ R, t ∈ R+ .

where
Qi(u) =

∑
j,k,�∈I

(Ak�
ij uku� −Aij

k�uiuj) ,

Li(u) =
∑
k∈I

(αk
i uk − αi

kui) .

Remark. ci is considered as the first component of Ci ∈ R3. Since

ui represents the distribution function of molecules with velocity Ci, i �= j

implies that Ci �= Cj but not that ci �= cj . Nevertheless in this paper we

assume, for simplicity, i �= j implies that ci �= cj , which is not an essential

hypothesis at all and without it we can recover the proof for all results

obtained in this paper, using Bony’s interesting induction argument [3],

[15].

The natural physical conditions are the following :

Condition 1.

Ak�
ij � 0, Ak�

ij = Ak�
ji = A�k

ij ,

Aij
k� �= 0 ⇒ i �= j and ci + cj = ck + c� ,

∀i ∃(j, k, �) such that Aij
k� �= 0 ,

αk
i � 0 and αi

i = 0 .

Condition 2.

∀i ∈ I ,
∑
k∈I

αi
k(ck − ci) = 0 .
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Remark. In this paper, we never use the microreversibility condition

Ak�
ij = Aij

k� nor H-theorem.

Here we consider the equations (B) which differs from the ordinary ones

[5], [7], by the intervention of linear terms. Nevertheless the contribution of

linear terms is important at least by two reasons : the linear terms must be

considered when we study a solution near the constant stationary solutions

[10] (in this case, the corresponding linear matrix is symmetric, which we

won’t assume later), and the equations with linear and nonlinear terms

express a model of the motion of particles which are animated in a thin

infinite tube under the binary collisions between particles and also under the

linear reflections at the inner wall [12], [13], [14]. In this article, we improve

the results obtained in [12] and extend an estimate of solution [3] to the case

with linear and quadratic terms. Secondly, for small Cauchy data, we obtain

an estimate of solutions in the Sobolev space under a similar assumption to

the one in [4]. Furthermore we obtain an asymptotic result which expresses

a closer look of the behavior of solutions even for the equations without

linear terms.

We put Ik, k = 0, 1, · · · , as follows :

(1.1)

I0 = {i;αi
k = 0 for all k ∈ I}

= {i; particles with velocity ci don’t provoke any reflection} ,
I1 = {i �∈ I0; there exists j ∈ I0 such that αi

j > 0}
= {i; particles with velocity ci is transformed

into a particle with velocity cj , j ∈ I0 by reflection},

Ik+1 = {i �∈
k⋃

�=0

I�; there exists j ∈ Ik such that αi
j > 0} .

Remark. As we see later, I0 is not empty, if we assume Condition 2.

Proposition 1.1. Suppose Condition 1 is satisfied. Let ui =

ui(x, t) ∈ C1(R+,S(R)) (i ∈ I) be a solution of (B). Then, for any t ∈ R+,

we have

(1.2)

∫
R

∑
i

ui(x, t)dx =

∫
R

∑
i

u0
i (x)dx ≡ µ
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(mass conservation law) .

Furthermore assuming Condition 2, we have

(1.3)

∫
R

∑
i

ciui(x, t)dx =

∫
R

∑
i

ciu
0
i (x)dx

(momentum conservation law) .

Proposition 1.2. Condition 2 implies that I0 is not empty.

Proof. Let M [resp. m ] be an index such that cM > ci for i �= M

[resp. cm < ci for i �= m]. Then Condition 2 means

∑
k

αM
k (cM − ck) = 0 .

Then we have αM
k = 0 for all k ∈ I, because αi

k � 0 .

Similarly we have αm
k = 0 for all k ∈ I. That is M and m ∈ I0. �

Our results are the following :

under Condition 2

Theorem 1. Suppose Conditions 1 and 2 are satisfied. For the

Cauchy data u0
i positive, summable and bounded, there exists an unique

global bounded solution ui(x, t) ∈ L∞(R × R+) and we obtain the estimate

(1.4) ui(x, t) � (1 + sup
i,x

u0
i (x)) exp (aµ2 + bµ) ,

where a and b depend only on the equations, and µ is the total mass defined

in Proposition 1.1.

Corollary 2. Suppose Conditions 1 and 2 are satisfied. For the

Cauchy data u0
i positive and bounded, there exists an unique global solution

ui(x, t) ∈ L∞
�oc(R × R+) and we obtain the estimate

(1.5) ui(x, t) � exp (Aµ2t2 +B) ,

where A and B don’t depend on time.
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Theorem 3. Assume the same hypotheses as in Theorem 1. We have

the asymptotic behavior of a solution : When t tends to the infinity, ui(x+

cit, t) converge, in Lp (2 � p � ∞), to a function ϕi(x) which is zero except

for i ∈ I0.

without Condition 2

We put other hypotheses :

Condition 3.

αk
i > 0 for i �= k .

Proposition 1.2 implies

Proposition 1.3. Condition 2 is not compatible with Condition 3.

for the small Cauchy data :

i) Case with the binary collision terms.

In this case, we treat the general form of the binary collision terms :

(gQ) Qi(u) =
∑
jk

Bjk
i ujuk,

which is introduced by Bony [4]. In this paper, he showed that the global

existence of the solution for the small Cauchy data in the case Li = 0 in RN

and defined the corresponding wave operators and scattering operators.

The equations are the following :

(B)



∂ui
∂t

+ ci
∂ui
∂x

= Qi(u) + Li(u) ,

ui|t=0 = u0
i (·) ,

with Li is of the form as before. On this system, we impose some assump-

tions :

Condition 4.

Bjk
i �= 0 ⇒ j �= k ,

Bjk
i �= 0 ⇒ j and k �∈ I0 ,

αk
i � 0, ∀j∃iαi

j > 0 .
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Condition 5. {
I0 �= ∅ ,
i ∈ I\I0 =⇒ i ∈ I1 .

Remark. The first condition in Condition 4 is introduced in [4] and it

is a reasonable condition for developing a general theory of global existence,

because a blow-up example is known in the case without this condition.

The second condition in Condition 4 means that the particles which don’t

provoke any reflection don’t make any binary collision.

Theorem 4. Suppose Conditions 4 and 5 are satisfied. If the Cauchy

data are sufficiently small in Hs(s = 1, 2, · · · ), the solution has the decay

estimate as follows :

(1.6)

‖ui‖Hs( so ‖ui‖L∞)

�
{
C∗
∥∥u0
∥∥
Hs for i ∈ I0 ,

C∗
∥∥u0
∥∥
Hse

−λt for i ∈ I1 ,

where C∗ and λ > 0 depend only on the equation.

ii) Case with the multiple collision terms.

The case with the multiple collision terms is studied only in a few papers

[1][2][6]. We consider the general multiple collision terms as follows :

(R) Ri(u) =
σ∑

p=2

∑
j1

· · ·
∑
jp

E
j1···jp
i uj1 · · ·ujp ,

where we permit the cases jk = j�, k �= �.

Then the equations is following :

(M)



∂ui
∂t

+ ci
∂ui
∂x

= Ri(u) + Li(u) ,

ui|t=0 = u0
i (·) ,

where Li is of the form as before. On this system, we impose the similar

assumptions to Condition 4 :
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Condition 6.

E
j1···jp
i �= 0 ⇒ ∃jα �= jβ, jα, jβ ∈ {j1, · · · jp} ,

E
j1···jp
i �= 0 ⇒

{ ∃jα �∈ I0 if i ∈ I0

∃jα �= jβ �∈ I0 if i �∈ I0 ,

αk
i � 0, ∀j ∃i αi

j > 0 .

We obtain the result with the similar estimates as in Theorem 4 :

Theorem 5. Suppose Conditions 5 and 6 are satisfied. If the Cauchy

data are sufficiently small in Hs(s = 1, 2, · · · ), the solution has the decay

estimate as follows :

(1.7)

‖ui‖Hs( so ‖ui‖L∞)

�
{
C∗
∥∥u0
∥∥
Hs for i ∈ I0

C∗
∥∥u0
∥∥
Hse

−λt for i ∈ I1 ,

where C∗ and λ > 0 depend only on the equation.

2. The proof

2.1 Estimates

In this section, assuming Conditions 1 and 2, we establish the estimates

of solutions, improving the method due to Bony [3].

Let’s define Bony’s function [3] and its variation :

ϕ(t) =
∑
i,j

(ci − cj)

∫∫
sgn(y − x)ui(x, t)uj(y, t)dxdy ,(2.1)

ψ(t;x0, c0) =
∑
i

(ci − c0)

∫
sgn{x− (x0 + c0t)}ui(x, t)dx .(2.2)

Differentiating these functions, we have

Lemma 2.1. Suppose T < T ∗. Under Conditions 1 and 2, we have

∆(0, T ) � Cµ2 ,(2.3)

δ(0, T ) � Cµ ,(2.4)
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where T ∗ is the existence time of solutions and

∆(t1, t2) = sup
ci �=cj

∫ t2

t1

∫
R
ui(x, t)uj(x, t)dxdt ,(2.5)

δ(t1, t2) = sup
ci �=cj

sup
x∈R

∫ t2

t1

ui(x+ cjt, t)dt .(2.6)

Proof. We differentiate ϕ(t) with respect t :

ϕ′(t) = −2
∑
i,j

(ci − cj)
2

∫
uiujdx .

Hence

(2.7) 2
∑
i,j

(ci − cj)
2

∫ T

0

∫
R
uiujdx = ϕ(0) − ϕ(T ) .

On the other hand, we have

(2.8) |ϕ(t)| � Cµ2 for all t .

Therefore we obtain

(2.9)

∫ T

0

∫
R
ui(x, t)uj(x, t)dxdt � Cµ2 for ci �= cj .

In the same way,

(2.10) ψ′(t) = 2
∑
i

(ci − c0)
2ui(x0 + c0t, t) .

This implies

(2.11) 2
∑
i

(ci − c0)
2

∫ T

0
ui(x0 + c0t, t) dt = ψ(T ) − ψ(0) .

On the other hand, we have

(2.12) |ψ(t)| � Cµ for all t .

Then we obtain

(2.13)

∫ T

0
ui(x0 + c0t, t)dt � Cµ for ci �= c0 . �
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Proposition 2.2. Suppose Conditions 1 and 2 are satisfied. Then

there exists p � 0 such that

(2.14) I = I0 ∪ I1 ∪ · · · ∪ Ip .

Proof. Suppose i �∈ I0. Then there exists j such that αi
j > 0. Fur-

thermore, there exists j such that αi
j > 0 and cj > ci, because if not, every

j such that αi
j > 0 verifies cj < ci, then Condition 2 would fail. Therefore

we have

(2.15) i ∈ I ⇒




αi
j = 0 for all j, that is i ∈ I0

or

there exists j such that αi
j > 0

and cj > ci . �
If � holds, we repeat this procedure :

(2.16)




j ∈ I0 then i ∈ I1

or

there exists k such that αj
k > 0 and ck > cj . ��

If �� holds, we do as above :

(2.17)




k ∈ I0 then j ∈ I1, i ∈ I2

or

there exists � such that αk
� > 0 and c� > ck . ���

However this procedure must be finished because )I is finite. Then we prove

the proposition. �
For analyzing closely our partial differential system, now we consider a

simpler ordinary system ; this idea is motivated by the dissipation of the

effect of the binary collision terms when the time is going to the infinity.

This dissipation is suggested by the definability of the wave operator for

the system without the linear term for the small Cauchy data, due to Bony

[4] :

(O)




dfi
dt

= Li(f) ,

fi|t=0 = f0
i > 0 .
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Proposition 2.3. Let L be a matrix corresponding to the linear op-

erator (Li)i. Then each eigenvalue of L is 0 or of real part negative.

To prove this proposition, we state a classical theorem :

Lemma 2.4. (Geršgorin) Let A = [aij ] ∈ Mn, and let

(2.18) C ′
j(A) ≡

∑
i�=j

|aij |

denote the deleted absolute column sums of A. Then all the eigenvalues of

A are located in the union of n discs

(2.19)
n⋃

i=1

{z ∈ C : |z − aii| � C ′
i(A)} ≡ G(A) .

Proof. See Chapter 6 in [8] for example. �

Proof of Proposition 2.3. Simply apply Lemma 2.4 to the matrix

L. �

Proposition 2.5. Suppose Conditions 1 and 2 are satisfied. Then

we have

1) for all i ∈ I, fi(t) is positive.

2)
∑

i∈I0 fi(t) is increasing and bounded, so tends to a limit > 0 as

t → +∞.

3) for i �∈ I0, fi(t) tends to 0 exponentially as t → +∞.

Proof. 1) The assertion is clear when we write the system in the

following form :

(2.20)
dfi
dt

+ (
∑
k

αi
k)fi =

∑
k

αk
i fk .

2) and 3) We show, for the first, for i ∈ I1, fi(t) tends to 0 exponentially

as t → +∞. Suppose that there exists c > 0 and i ∈ I1 such that fi(t) > c
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for all t ∈ R+. Then

(2.21)

d

dt
(
∑
i∈I0

fi) =
∑
j

(
∑
i∈I0

αj
i )fj −

∑
i∈I0

(
∑
j

αi
j)fi

=
∑
j∈I1

(
∑
i∈I0

αj
i )fj

� C∗c > 0 with C∗ > 0 .

Then
∑

i∈I0 fi increases exponentially, which is a contradiction because of

Proposition 2.3. Hence, for i ∈ I1, fi(t) tends to 0 exponentially as t → +∞.

Then we have

(2.22)
d

dt
(
∑
i∈I0

fi) =
∑
j∈I1

(
∑
i∈I0

αj
i ) exp (−λjt) × Pj(t),

where �e λj > 0 and Pj(t) > 0 is a polynomial in t. Then the right-hand

side is positive and integrable over [0,∞]. Hence,
∑

i∈I0 fi(t) is increasing

and bounded, so tends to a limit > 0 as t → +∞. Now we show, for

i ∈ I2, fi(t) tends to 0 exponentially as t → +∞, by reduction to absurdity.

Suppose that there exists c > 0 and i ∈ I2 such that fi(t) > c for all t ∈ R+.

Then

(2.23)

d

dt
(
∑
i∈I1

fi) =
∑
j∈I2

(
∑
i∈I1

αj
i )fj −

∑
i∈I1

(
∑
j

αi
j)fi

� C∗c−
∑
i∈I1

(
∑
j

αi
j)fi with C∗ > 0 .

Then, taking a sufficiently large T , for t > T , we have

(2.24)
d

dt
(
∑
i∈I1

fi) �
1

2
C∗c > 0 .

Hence
∑

i∈I1 fi increases exponentially, which is a contradiction. Hence,

for i ∈ I2, fi(t) tends to 0 exponentially as t → +∞. We continue this
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procedure until Ip, taking account of Proposition 2.2. Then we complete

the proof. �

Now we fix t1 and decompose ui into the sum of “(quasi-)linear part” vi
and “(essential-)nonlinear part” wi. Let vi be a solution for the equations :

(V)



(
∂

∂t
+ ci

∂

∂x

)
vi = Li(v) −

∑
j,k,�

Aij
k�uj · vi ,

vi|t=t1 = ui(·, t1) ,

where ui is the solution of (B).

Then wi = ui − vi should satisfy

(W)




(
∂

∂t
+ ci

∂

∂x

)
wi = Li(w) +Qi(w) + ri − si ,

wi|t=t1 = 0 ,

with ri =
∑
j,k,�

Ak�
ij (vkv� + wkv� + vkw�) ,

si =
∑
j,k,�

Aij
k�wivj .

Definition. The operator P = (Pi)i is said to be positively preserving

if and only if the solution ui is nonnegative over R × R+, where ui(x, t) is

a solution for the equations :

(2.25)



(
∂

∂t
+ ci

∂

∂x

)
ui = P(u) ,

ui|t=0 = u0
i (x) � 0 .

Corollary 2.6. The operators (Qi)i and (Li)i are positively preserv-

ing.

Proof. The assertions follow, for Li, from Proposition 2.5 and, for

Qi, from a classical argument of the semi-linear equations, given in [11] for

example. �
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Proposition 2.7.

(2.26) vi(x, t) � 0 and wi(x, t) � 0 for any x ∈ R and t ∈ R+ .

Proof. We take account of ui(x, t) � 0 for all x ∈ R and t ∈ R+.

From the equations, we have

(2.27)

(
∂

∂t
+ ci

∂

∂x

)
vi +

∑
j,k,�

Aij
k�uj · vi = Li(v) .

Then we have vi(x, t) � 0, because the linear operator (Li)i is positively

preserving and ui(x, t) � 0. On the other hand,

(2.28)



(
∂

∂t
+ ci

∂

∂x

)
wi +


∑

j,k,�

Aij
k�vj


 · wi = Li(w) +Qi(w) + ri ,

with ri � 0 .

Then we have wi(x, t) � 0, because the linear operator (Li)i and the binary

operator (Qi)i are positively preserving and vi(x, t) � 0. �

Now we have some remarks :

Corollary 2.8.

(2.29)

∫ t2

t1

∫
R
ridxdt � C∗∆(t1, t2),

∫ t2

t1

∫
R
sidxdt � C∗∆(t1, t2)

Proof. Combine the previous propositions. �

We are now going to estimate the “linear part” solution vi. Its estimate

in “L∞” is as follows :

Proposition 2.9. The function V (t) ≡ sup
i,x

vi(x, t)

fi(t)
is strictly de-

creasing.



290 Mitsuru Yamazaki

Proof. By a classical argument, it is sufficient to show
vi(x, t)

fi(t)
is

decreasing at the points (i, x) where the sup is attained. At such point

(i, x), we have

(2.30)

∂

∂t

vi(x, t)

fi(t)
=
∂tvi
fi

− vi
∂tfi

fi
2

=
Li(v) −

∑
j,k,�A

ij
k�uj · vi

fi
− vi

Li(f)

fi
2

<
∑
k

(
αk
i

vk
fi

− αi
k

vi
fi

)
− vi
fi

∑
k

(
αk
i

fk
fi

− αi
k

)

=
∑
k

αk
i

fk
fi

(
vk
fk

− vi
fi

)

� 0,

where we used Condition 1 in the third inequality. �

The estimates for vi and wi along the characteristic are the following :

Proposition 2.10. For ci �= cj and t1 < t2, we have

sup
x∈R

∫ t2

t1

vi(x+ cjt, t)dt � C∗δ(t1, t2) ,(2.31)

sup
x∈R

∫ t2

t1

wi(x+ cjt, t)dt � C∗∆(t1, t2) ,(2.32)

where these constants C∗ depend only on the equations.

Proof. The inequality for vi is evident, because 0 � vi � ui and the

definition of δ(t1, t2). For proving the second inequality, we define, like as

in §2.1 :

(2.33) ψw(t;x0, c0) =
∑
i

(ci − c0)

∫
sgn{x− (x0 + c0t)}wi(x, t)dx.

Now we differentiate it. Then we have

(2.34) ψ′
w(t) = 2

∑
i

(ci − c0)
2wi(x0 + c0t, t) +R− S,
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where

R =
∑
i

∫
sgn{x− (x0 + c0t)}ri(x, t)dx ,(2.35)

S =
∑
i

∫
sgn{x− (x0 + c0t)}si(x, t)dx .(2.36)

On the other hand,

∫ t2

t1

Rdt and

∫ t2

t1

Sdt � C∗∆(t1, t2) ,

by virtue of Corollary 2.8. Furthermore we have

(2.37)

d

dt

∥∥∥∥∥
∑
i

wi

∥∥∥∥∥
L1

=

∥∥∥∥∥
∑
i

(ri − si)

∥∥∥∥∥
L1

�
∥∥∥∥∥
∑
i

ri

∥∥∥∥∥
L1

.

Hence we have, for t1 < t < t2,

(2.38)

∥∥∥∥∥
∑
i

wi(·, t)
∥∥∥∥∥
L1

�
∫ t2

t1

∥∥∥∥∥
∑
i

ri

∥∥∥∥∥
L1

dt � C∗∆(t1, t2) .

Then we have, for t1 < t < t2,

(2.39) |ψw(t;x0, c0)| � C∗∆(t1, t2) .

Therefore we have, by integration,

(2.40)

∫ T

0
wi(x0 + c0t, t)dt � C∗ |ψw(t1;x0, c0)| + C∗ |ψw(t2;x0, c0)|

+ C∗

∫ t2

t1

Rdt+ C∗

∫ t2

t1

Sdt

� C∗∆(t1, t2) . �
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Now we estimate more closely M(t2) in terms of M(t1) for t1 < t2 < T ∗,
where

(2.41) M(t) = max
i∈I

sup
s≤t

sup
x∈R

ui(x, s) for t < T ∗ .

First, we integrate the equations for wi along a characteristic curve. Then

we have

(2.42)

wi(t2, x∗) � C∗

∫ t2

t1

(
∑
j �=i

wj +
∑
k,j �=i

wkwj +
∑
k,j �=i

vkvj

+
∑
k,j �=i

wkvj +
∑
k,j �=i

vkwj)(x+ cit, t)dt ,

where x∗ = x+ ci(t2 − t1). Then we have

∫ t2

t1

∑
j �=i

wj(x+ cit, t)dt � C∗∆(t1, t2) ,(2.43)

∫ t2

t1

∑
k,j �=i

wkwj(x+ cit, t)dt � C∗M(t2)∆(t1, t2) ,(2.44)

∫ t2

t1

∑
k,j �=i

vkvj(x+ cit, t)dt � C∗M(t2)δ(t1, t2) .(2.45)

Hence we have

(2.46) sup
x
wi(x, t2) � C∗ (1 +M(t2)) · ∆(t1, t2) + C∗M(t2)δ(t1, t2) .

Consequently for ui(x, t), we have

(2.47)

sup
x
ui(x, t2) � sup

x
vi(x, t2) + sup

x
wi(x, t2)

� C∗M(t1) + C∗ (1 +M(t2)) · ∆(t1, t2)

+ C∗M(t2)δ(t1, t2) .

We take T < T ∗ and thereafter a sequence 0 = t0 < t1 < · · · < tN = T

such that ∆(tj , tj+1) < (4C∗)−1 and δ(tj , tj+1) < (4C∗)−1. Then, seeing
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that ∆(0, T ) � C∗µ2 and δ(0, T ) � C∗µ by virtue of Lemma 2.1, we have

N = O(µ2 + µ) and

(2.48)
M(tj+1) � C∗M(tj) + C∗∆(tj , tj+1)

� C∗M(tj) + C∗ .

Therefore we obtain

(2.49) ui(x, t) � (1 + sup
i,x

u0
i ) exp (aµ2 + bµ) .

2.2 Proof of Theorem 3

We examine in a more detailed way the argument developed in the last

section, that is, to decompose the solution ui into the sum of “(quasi-)linear

part” vi and “(essential-) nonlinear part wi. Later on, we specify t1, which

will be denoted T , and the dependence of vi and wi on a cut time T . Let’s

write down ui of the form ui = vTi + wT
i :



(
∂

∂t
+ ci

∂

∂x

)
vTi = Li(v

T ) −
∑
j,k,�

Aij
k�uj · vTi ,

vTi |t=T = ui(·, T ) .

(V T )




(
∂

∂t
+ ci

∂

∂x

)
wT
i = Li(w

T ) +Qi(w
T ) + rTi − sTi ,

wT
i |t=T = 0 ,

with rTi =
∑
j,k,�

Ak�
ij (vTk v

T
� + wT

k v
T
� + vTk w

T
� ) ,

sTi =
∑
j,k,�

Aij
k�w

T
i v

T
j .

(W T )

Proposition 2.11. Assume the same hypotheses as in Theorem 1.

Then vTi (x, t) verifies that, for any ε > 0, there exists a large T such that

for t > T , we have

(2.50)
∥∥ui(·, t) − vTi (·, t)

∥∥
Lp < ε (1 � p � ∞) for all i
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and

(2.51)

∥∥vTi (·, t)
∥∥
Lp

�
{
m(t) i ∈ I0

m(t) exp {−λt(1 − 1
p)} i �∈ I0

for all i, where 2 � p � ∞, λ > 0 and m(t) is a strictly decreasing function.

Proof. Knowing that

(2.52) ui(x, t) � M ≡ (1 + sup
i,x

u0
i ) exp (aµ2 + bµ),

we have, for t > T ,

sup
x
wT
i (x, t) � C∗ (1 +M(t)) · ∆(T, t) + C∗M(t)δ(T, t)

� C∗(1 +M)(∆(T, t) + δ(T, t)) ,
(2.53)

∥∥∥∥∥
∑
i

wT
i (·, t)

∥∥∥∥∥
L1

� C∗∆(T, t) .(2.54)

Using Lemma 2.1 which says ∆(0,∞) � C∗µ2 and δ(0,∞) � C∗µ, we

conclude that, for any ε > 0, there exists T such that

(2.55) ∆(T,∞) + δ(T,∞) < [C∗(1 +M) × (){i ∈ I})]−1 · ε .

Then we have, for t > T ,

(2.56)

∥∥∥∥∥
∑
i

wT
i (·, t)

∥∥∥∥∥
L1∩L∞

< ε .

Hence we have

(2.57) sup
i

∥∥wT
i (·, t)

∥∥
Lp < ε (1 � p � ∞) ,

i.e.

(2.58) sup
i

∥∥ui(x, t) − vTi (x, t)
∥∥
Lp < ε (1 � p � ∞),
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save for trivial constants. Consequently we prove the first assertion of

Proposition 2.11.

In order to prove the second assertion, we shall estimate vi :

Proposition 2.12.
∑

i ‖Vi(·, t)‖
2
L2 is also strictly decreasing, where

Vi(x, t) ≡
vTi (x, t)√

fi(t)
.

Proof. We have

(2.59)

(
∂

∂t
+ ci

∂

∂x

)
Vi =

∑
k

{
αk
i

(
fk(t)

fi(t)

) 1
2

Vk − αi
kVi

}

−
∑
jk�

Aij
k�uj · Vi −

Li(f(t))

2fi(t)
Vi .

Hence we have

(2.60)

d

dt

∑
i

‖Vi(·, t)‖2
L2

= −
∑
i

(∑
k

αi
k

)
‖Vi‖2 −

∑
ik

αi
k‖Vi‖2 −

∑
i

Li(f)

fi
‖Vi‖2

+ 2
∑
ik

αk
i

(
fk
fi

) 1
2

(Vk, Vi) − 2
∑
ijk�

Aij
k� (ujVi, Vi)

= −
∑
ik

αk
i fk

∥∥∥∥ Vi√
fi

− Vk√
fk

∥∥∥∥
2

− 2
∑
ijk�

Aij
k� (ujVi, Vi)

< 0,

where we used the positivity of ui and Vi and Condition 1. �

We pursue the proof of Proposition 2.11. By Proposition 2.9 and 2.12,

we have

(2.61) max
i

∥∥∥∥vTi (·, t)
fi(t)

∥∥∥∥
L∞

and max
i

∥∥∥∥vTi (·, t)
fi(t)

∥∥∥∥
L2

are strictly decreasing, where a positive bounded functions fi(t) verifies the

following condition :
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– for i ∈ I0, fi(t) is increasing and tends to a limit > 0 as t → +∞,

– for i �∈ I0, fi(t) tends to 0 exponentially as t → +∞.

The interpolation between L2 and L∞ achieves then the proof. �

Now we show the theorem. We take a sequence Tn which tends to the

infinity. We show that ui(x+ciTn, Tn) is a Cauchy sequence for an adequate

Tn. Owing to Proposition 2.11,
∑

iw
Tn
i (x+ ciTn, Tn) is a Cauchy sequence.

On the other hand, we have

(2.62)

∫
R

∣∣∣∣∣
∑
i

v
Tn+1

i (x+ ciTn+1, Tn+1) −
∑
i

vTn
i (x+ ciTn, Tn)

∣∣∣∣∣
2

dx

� C∗M
2(Tn+1 − Tn)

∑
ij

∫
R

∫ Tn+1

Tn

uiujdtdx

� C∗M
2(Tn+1 − Tn)∆(Tn, Tn+1) .

Hence
∑

i v
Tn
i (x + ciTn, Tn) is a Cauchy sequence in L2. Furthermore we

have

(2.63)

∣∣∣∣∣
∑
i

v
Tn+1

i (x+ ciTn+1, Tn+1) −
∑
i

vTn
i (x+ ciTn, Tn)

∣∣∣∣∣
� C∗Mδx+ciTn(Tn, Tn+1) ,

where δx(t1, t2) = supci �=cj

∫ t2
t1
ui(x + cjt, t)dt. Hence

∑
i v

Tn
i (x + ciTn, Tn)

is a Cauchy sequence also in L∞. Consequently we prove the theorem. �

2.2 Proof of Theorem 4

Let’s consider the following equations with parameter ε :

(Bε)



∂ui
∂t

+ ci
∂ui
∂x

= εQi(u) + Li(u) ,

ui|t=0 = u0
i (·) ,

where ε is a positive constant.

For this Cauchy problem, we seek a solution ui(x, t) of type ui =
∞∑

m=0

εmu
(m)
i .

To prove Theorem 4, it is sufficient to show the following theorem :
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Theorem 2.12. Suppose Conditions 4 and 5 are satisfied.

For ε ∈
[
0, C∗∗

(∑s
k=0 I

2
k

)− 1
2

[
, the series ui =

∑∞
m=0 ε

mu
(m)
i converge

in Hs(s = 1, 2, · · · ), so L∞, uniformly with respect to t ∈ R+ and then we

have

(2.64)

‖ui‖Hs( so ‖ui‖L∞)

�
{
C∗
(∑s

k=0 I
2
k

) 1
2 i ∈ I0

C∗
(∑s

k=0 I
2
k

) 1
2 e−λt i ∈ I1 ,

where Ik =
(∑

i

∥∥Dku0
i

∥∥2

L2

) 1
2
, the constants C∗, C∗∗ and λ > 0 depend only

on the equations.

As in the preceding section, we use

(O)




dfi
dt

= Li(f) ,

fi|t=0 = f0
i > 0 .

Condition 5 implies a more precise estimate for fi than Proposition 2.3 :

Proposition 2.13. Suppose Conditions 4 and 5 are satisfied. There

exists f0
i > 0 such that, for i ∈ I1, fi tends to 0 with the same order i.e.

there is λ > 0 such that fi(t) = e−2λtPi(t) with Pi polynomial in t and

that, for i ∈ I0, fi(t) is increasing and bounded, so tends to a limit > 0 as

t −→ +∞.

Proof. Let’s put a matrix L′ = (αj
i − δij

∑
k α

i
k)ij∈I1 . Then let n be

a positive constant and M = L′ + n. The matrix M is nonnegative for

sufficiently large n. We have then

(2.65) exp tM = ent exp tL′ that is exp tL′ = e−nt exp tM .

Hence exp tL′ is a positive matrix. The Perron-Frobenius theorem for the

matrix theory says that exp tL′ has a real and positive eigenvalue which is a

simple root of the characteristic equation and exceeds the moduli of all the

other eigenvalues and that, to this ‘maximal’ eigenvalue, there corresponds

an eigenvector z = (zi)i with positive coordinates zi > 0 (i ∈ I1). Let e−2λ
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be its ‘maximal’ eigenvalue for t = 1. Let f0 = (f0
i )i∈I1 be a corresponding

eigenvector with positive coordinates f0
i > 0(i ∈ I1). It implies that

(2.66)
fi(t) = exp (tL′)f0

i

= e−2tλf0
i for i ∈ I1 .

Moreover using Lemma 2.4 and Condition 5, we easily obtain that each

eigenvalue of matrix L′ is of real part negative and then we have λ > 0. We

prove then the assertion for i ∈ I1. On the other hand, the assertion for

i ∈ I0 is clear, because we have

(2.67) fi(t) = f0
i +

∫ t

0

∑
k∈I1

αk
i e

−2λτf0
kdτ .�

Let put wi(x, t) =
ui(x, t)√
fi(t)

. Now we write down the equation for wi(x, t),

and put wi(x, t) =
∑∞

i=0 ε
mw

(m)
i (x, t). Then we have for m = 0, 1, 2, · · · ,

(2.68)




(
∂

∂t
+ ci

∂

∂x

)
w

(m)
i =

∑
k

{
αk
i

(
fk
fi

) 1
2

w
(m)
k − αi

kw
(m)
i

}

− Li(f)

2fi
w

(m)
i + F

(m)
i (w) ,

w
(m)
i |t=0 =

{
u0
i (x), m = 0

0, m = 1, 2, · · ·
,

where

(2.69) F
(m)
i (w) =




m−1∑
n=0

∑
jk

Bjk
i

(
fjfk
fi

) 1
2

w
(n)
j w

(m−n−1)
k

for m = 1, 2, · · · ,
0 for m = 0 .

The energy estimate leads us :
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Proposition 2.14. Suppose Conditions 4 and 5 are satisfied. For

s = 0, 1, 2, · · · ,

(2.70)

d

dt

∑
i

∥∥∥Dsw
(m)
i

∥∥∥2

L2
= −

∑
ik

αk
i f

k

∥∥∥∥∥∥Ds


w

(m)
i

f
1
2
i

− w
(m)
k

f
1
2
k



∥∥∥∥∥∥

2

L2

+ 2
∑
i

{(
DsF

(m)
i (w), Dsw

(m)
i

)
L2

}
,

and especially for m = 0,

(2.71)
d

dt

∑
i

∥∥∥Dsw
(0)
i

∥∥∥2

L2
= −

∑
ik

αk
i f

k

∥∥∥∥∥∥Ds


w

(0)
i

f
1
2
i

− w
(0)
k

f
1
2
k



∥∥∥∥∥∥

2

L2

� 0 .

Corollary 2.15. Suppose Conditions 4 and 5 are satisfied. Then we

have, for s = 0, 1, 2, · · · ,

(2.72)
∥∥∥Dsw

(0)
i

∥∥∥
L2

� C∗Is for all i

where Is =
(∑

i

∥∥Dsu0
i

∥∥2

L2

) 1
2
.

Proposition 2.16. Suppose Conditions 4 and 5 are satisfied. For

s = 1, 2, · · · ,

(2.73)

∫ ∞

0

∑
i

∥∥∥F (1)
i (w)

∥∥∥
Hs
dt � C∗

s∑
k=0

I2
k .

Proof. By the equation, we have

(2.74) F
(1)
i (w) =

∑
jk

Bjk
i

(
fjfk
fi

) 1
2

w
(0)
j w

(0)
k .
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On the other hand

(2.75)

∥∥∥w(0)
j w

(0)
k

∥∥∥
Hs

� C∗
(∥∥∥w(0)

j

∥∥∥
Hs

∥∥∥w(0)
k

∥∥∥
L∞

+
∥∥∥w(0)

j

∥∥∥
L∞

∥∥∥w(0)
k

∥∥∥
Hs

)
� C∗

∥∥∥w(0)
j

∥∥∥
Hs

∥∥∥w(0)
k

∥∥∥
Hs

for s = 1, 2, · · · .

Condition 4 and Proposition 2.13 give us

(2.76) Bjk
i

(
fjfk
fi

) 1
2

� Ce−λt .

These estimates and Corollary 2.15 imply

(2.77)

∫ ∞

0

∑
i

∥∥∥F (1)
i (w)

∥∥∥
Hs
dt � C∗

∑
ijk

∥∥∥w(0)
j

∥∥∥
Hs

∥∥∥w(0)
k

∥∥∥
Hs

∫ ∞

0
e−λtdt

� C∗

s∑
k=0

I2
k . �

Proposition 2.17. Suppose Conditions 4 and 5 are satisfied. Then

we have, for s = 1, 2, · · · ,

(2.78)
∥∥∥w(1)

i

∥∥∥
Hs

� C∗

s∑
k=0

I2
k for all i .

Proof. Using Proposition 2.14, we have

(2.79)

2

(∑
i

∥∥∥w(1)
i

∥∥∥
Hs

)
·
(
d

dt

∑
i

∥∥∥w(1)
i

∥∥∥
Hs

)

=
d

dt

∑
i

∥∥∥w(1)
i

∥∥∥2

Hs

� C∗
∑
i

∥∥∥w(1)
i

∥∥∥
Hs

·
∥∥∥F (1)

i (w)
∥∥∥
Hs

� C∗

(∑
i

∥∥∥w(1)
i

∥∥∥
Hs

)
·
(∑

i

∥∥∥F (1)
i (w)

∥∥∥
Hs

)
.
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This implies that

(2.80)
d

dt

∑
i

∥∥∥w(1)
i

∥∥∥
Hs

� C∗
∑
i

∥∥∥F (1)
i (w)

∥∥∥
Hs

.

Hence we have,

(2.81)

0 �
∑
i

∥∥∥w(1)
i

∥∥∥
Hs

�
∑
i

∥∥∥w(1)
i |t=0

∥∥∥
Hs

+ C∗
∑
i

∫ t

0

∥∥∥F (1)
i (w)

∥∥∥
Hs
dt

� 0 + C∗

s∑
k=0

I2
k ,

by virtue of the previous proposition. �

Now let’s put
∥∥∥w(m)

i

∥∥∥
Hs

� a
(m)
s for s = 1, 2, · · · , then we have, by

induction,

(2.82) a(m+1)
s � C∗

m∑
n=0

a(n)
s a(m−n)

s .

Let’s put f(x) = fs(x) =
∞∑
n=0

a(n)
s xn and F (x) = Fs(x) =

∞∑
n=0

A(n)
s xn, where

(2.83)




A(m+1)
s = C∗

m∑
n=0

A(n)
s A(m−n)

s ,

A(0)
s = C∗

(
s∑

k=0

I2
k

) 1
2

.

Then the inequality (2.82) means that

(2.84) a(m)
s � As(m) and A(m)

s � 0 for m = 0, 1, 2, · · ·

i.e. F (x) is majorant series of f(x). By the definition, F (x) satisfies

(2.85)
F (x) − F (0)

x
= C∗{F (x)}2 .
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Then we have

(2.86) F (x) =
1 −

√
1 − 4C∗xF (0)

2C∗x
, F (0) = C∗

(
s∑

k=0

I2
k

) 1
2

.

It is easy to see that the right-hand side can be written in infinite series

with a positive convergence radius. Hence the series F (x) and f(x) have a

positive convergence radius. Consequently we achieve the proof.

2.4 Proof of Theorem 5

As in the previous section, we consider the following equations with

parameter ε :

(Mε)



∂ui
∂t

+ ci
∂ui
∂x

= εRi(u) + Li(u) ,

ui|t=0 = u0
i (·) ,

where ε is a positive constant.

The similar argument shows

(2.85)
∥∥∥w(m)

i

∥∥∥
Hs

� b(m)
s for s = 1, 2, · · · ,

where

(2.86)




b(m+1)
s � C

σ∑
p=2

∑
n1+···np=m

b(n1)
s · · · b(np)

s ,

b(0)
s = C

(
s∑

k=0

I2
k

) 1
2

.

In the same way, we complete the proof.
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