On the discrete Boltzmann equation with linear and nonlinear terms

By Mitsuru Yamazaki

Abstract

For the discrete Boltzmann equation with linear and nonlinear terms, we show a boundedness of solutions with an explicit estimate and their asymptotic behavior when the momentum is conserved. Secondly when the Cauchy data are small, we show an exponential decay of solutions, for a model in which the nonlinear terms represent the 'binary collisions' and also 'multiple collisions'.

1. Formulation and results

In this paper, we study the discrete Boltzmann equation in one-dimensional space with linear and nonlinear terms. This system, which is different from the usual one by the intervention of linear terms, describes the gas motion of molecules which take only a finite number of velocities under the interactions between particles represented by the quadratic terms and also under the reflection of molecules at the inner wall of an infinite thin tube, represented by the linear terms. This linear terms are more general than the ones which are obtained by considering solutions around constant stationary solutions. Using the sign function and decomposing the solutions into two parts, which are explained later, under the conservation of momentum in the course of reflection, we prove the boundedness of solutions and asymptotic behavior of solutions which shows that all solutions tend to a free motion, hence we can define a 'wave operator' like in the sense of the scattering theory. This is the first work to define the wave operator for a large data even if in the case of the discrete models only with the quadratic terms. The wave operator was introduced by Bony [4] for a small Cauchy data. Finally,

[^0]for the small Cauchy data, with binary and also multiple collisions, we have the estimates of solutions which show that the components of solutions with loss term in reflection decay exponentially.

We study the discrete model of Boltzmann equations in a thin infinite tube as follows :

$$
\left\{\begin{align*}
\frac{\partial u_{i}}{\partial t}+c_{i} \frac{\partial u_{i}}{\partial x} & =Q_{i}(u)+L_{i}(u), \tag{B}\\
u_{i}(x, 0) & =u_{i}^{0}(x) \quad(\geqq 0) \quad \text { for } \quad x \in \mathbf{R}, t \in \mathbf{R}_{+}
\end{align*}\right.
$$

where

$$
\begin{aligned}
Q_{i}(u) & =\sum_{j, k, \ell \in I}\left(A_{i j}^{k \ell} u_{k} u_{\ell}-A_{k \ell}^{i j} u_{i} u_{j}\right) \\
L_{i}(u) & =\sum_{k \in I}\left(\alpha_{i}^{k} u_{k}-\alpha_{k}^{i} u_{i}\right)
\end{aligned}
$$

Remark. $\quad c_{i}$ is considered as the first component of $C_{i} \in \mathbf{R}^{3}$. Since u_{i} represents the distribution function of molecules with velocity $C_{i}, i \neq j$ implies that $C_{i} \neq C_{j}$ but not that $c_{i} \neq c_{j}$. Nevertheless in this paper we assume, for simplicity, $i \neq j$ implies that $c_{i} \neq c_{j}$, which is not an essential hypothesis at all and without it we can recover the proof for all results obtained in this paper, using Bony's interesting induction argument [3], [15].

The natural physical conditions are the following :
Condition 1.

$$
\begin{gathered}
A_{i j}^{k \ell} \geqq 0, \quad A_{i j}^{k \ell}=A_{j i}^{k \ell}=A_{i j}^{\ell k} \\
A_{k \ell}^{i j} \neq 0 \quad \Rightarrow \quad i \neq j \quad \text { and } \quad c_{i}+c_{j}=c_{k}+c_{\ell} \\
\forall i \exists(j, k, \ell) \quad \text { such that } \quad A_{k \ell}^{i j} \neq 0 \\
\alpha_{i}^{k} \geqq 0 \quad \text { and } \quad \alpha_{i}^{i}=0
\end{gathered}
$$

Condition 2.

$$
\forall i \in I, \sum_{k \in I} \alpha_{k}^{i}\left(c_{k}-c_{i}\right)=0
$$

REMARK. In this paper, we never use the microreversibility condition $A_{i j}^{k \ell}=A_{k \ell}^{i j}$ nor H-theorem.

Here we consider the equations (B) which differs from the ordinary ones [5], [7], by the intervention of linear terms. Nevertheless the contribution of linear terms is important at least by two reasons : the linear terms must be considered when we study a solution near the constant stationary solutions [10] (in this case, the corresponding linear matrix is symmetric, which we won't assume later), and the equations with linear and nonlinear terms express a model of the motion of particles which are animated in a thin infinite tube under the binary collisions between particles and also under the linear reflections at the inner wall [12], [13], [14]. In this article, we improve the results obtained in [12] and extend an estimate of solution [3] to the case with linear and quadratic terms. Secondly, for small Cauchy data, we obtain an estimate of solutions in the Sobolev space under a similar assumption to the one in [4]. Furthermore we obtain an asymptotic result which expresses a closer look of the behavior of solutions even for the equations without linear terms.

We put $I_{k}, k=0,1, \cdots$, as follows :

$$
\begin{align*}
I_{0}= & \left\{i ; \alpha_{k}^{i}=0 \text { for all } k \in I\right\} \\
= & \left\{i ; \text { particles with velocity } c_{i} \text { don’t provoke any reflection }\right\}, \\
I_{1}= & \left\{i \notin I_{0} ; \text { there exists } j \in I_{0} \text { such that } \alpha_{j}^{i}>0\right\} \\
= & \left\{i ; \text { particles with velocity } c_{i}\right. \text { is transformed } \tag{1.1}\\
& \left.\quad \text { into a particle with velocity } c_{j}, j \in I_{0} \quad \text { by reflection }\right\}, \\
I_{k+1}= & \left\{i \notin \bigcup_{\ell=0}^{k} I_{\ell} ; \quad \text { there exists } \quad j \in I_{k} \quad \text { such that } \quad \alpha_{j}^{i}>0\right\}
\end{align*}
$$

Remark. As we see later, I_{0} is not empty, if we assume Condition 2.
Proposition 1.1. Suppose Condition 1 is satisfied. Let $u_{i}=$ $u_{i}(x, t) \in C^{1}\left(\mathbf{R}_{+}, \mathcal{S}(\mathbf{R})\right)(i \in I)$ be a solution of (B). Then, for any $t \in \mathbf{R}_{+}$, we have

$$
\begin{equation*}
\int_{\mathbf{R}} \sum_{i} u_{i}(x, t) d x=\int_{\mathbf{R}} \sum_{i} u_{i}^{0}(x) d x \equiv \mu \tag{1.2}
\end{equation*}
$$

(mass conservation law).
Furthermore assuming Condition 2, we have

$$
\begin{equation*}
\int_{\mathbf{R}} \sum_{i} c_{i} u_{i}(x, t) d x=\int_{\mathbf{R}} \sum_{i} c_{i} u_{i}^{0}(x) d x \tag{1.3}
\end{equation*}
$$

(momentum conservation law).
Proposition 1.2. Condition 2 implies that I_{0} is not empty.
Proof. Let M [resp. m] be an index such that $c_{M}>c_{i}$ for $i \neq M$ [resp. $\quad c_{m}<c_{i}$ for $i \neq m$]. Then Condition 2 means

$$
\sum_{k} \alpha_{k}^{M}\left(c_{M}-c_{k}\right)=0 .
$$

Then we have $\alpha_{k}^{M}=0 \quad$ for all $\quad k \in I$, because $\alpha_{k}^{i} \geqq 0$.
Similarly we have $\alpha_{k}^{m}=0 \quad$ for all $\quad k \in I$. That is M and $m \in I_{0}$.
Our results are the following :
under Condition 2
Theorem 1. Suppose Conditions 1 and 2 are satisfied. For the Cauchy data u_{i}^{0} positive, summable and bounded, there exists an unique global bounded solution $u_{i}(x, t) \in L^{\infty}\left(\mathbf{R} \times \mathbf{R}_{+}\right)$and we obtain the estimate

$$
\begin{equation*}
u_{i}(x, t) \leqq\left(1+\sup _{i, x} u_{i}^{0}(x)\right) \exp \left(a \mu^{2}+b \mu\right) \tag{1.4}
\end{equation*}
$$

where a and b depend only on the equations, and μ is the total mass defined in Proposition 1.1.

Corollary 2. Suppose Conditions 1 and 2 are satisfied. For the Cauchy data u_{i}^{0} positive and bounded, there exists an unique global solution $u_{i}(x, t) \in L_{\ell o c}^{\infty}\left(\mathbf{R} \times \mathbf{R}_{+}\right)$and we obtain the estimate

$$
\begin{equation*}
u_{i}(x, t) \leqq \exp \left(A \mu^{2} t^{2}+B\right) \tag{1.5}
\end{equation*}
$$

where A and B don't depend on time.

Theorem 3. Assume the same hypotheses as in Theorem 1. We have the asymptotic behavior of a solution: When t tends to the infinity, $u_{i}(x+$ $\left.c_{i} t, t\right)$ converge, in $L^{p}(2 \leqq p \leqq \infty)$, to a function $\varphi_{i}(x)$ which is zero except for $i \in I_{0}$.
without Condition 2
We put other hypotheses :
Condition 3.

$$
\alpha_{i}^{k}>0 \quad \text { for } \quad i \neq k
$$

Proposition 1.2 implies
Proposition 1.3. Condition 2 is not compatible with Condition 3.
for the small Cauchy data :
i) Case with the binary collision terms.

In this case, we treat the general form of the binary collision terms :

$$
\begin{equation*}
Q_{i}(u)=\sum_{j k} B_{i}^{j k} u_{j} u_{k} \tag{gQ}
\end{equation*}
$$

which is introduced by Bony [4]. In this paper, he showed that the global existence of the solution for the small Cauchy data in the case $L_{i}=0$ in \mathbf{R}^{N} and defined the corresponding wave operators and scattering operators.

The equations are the following :
(B)

$$
\left\{\begin{aligned}
\frac{\partial u_{i}}{\partial t}+c_{i} \frac{\partial u_{i}}{\partial x} & =Q_{i}(u)+L_{i}(u) \\
\left.u_{i}\right|_{t=0} & =u_{i}^{0}(\cdot)
\end{aligned}\right.
$$

with L_{i} is of the form as before. On this system, we impose some assumptions :

Condition 4.

$$
\begin{aligned}
B_{i}^{j k} \neq 0 & \Rightarrow \quad j \neq k \\
B_{i}^{j k} \neq 0 & \Rightarrow \quad j \text { and } k \notin I_{0} \\
\alpha_{i}^{k} \geqq 0, & \forall j \exists i \alpha_{j}^{i}>0
\end{aligned}
$$

Condition 5.

$$
\left\{\begin{array}{l}
I_{0} \neq \emptyset \\
i \in I \backslash I_{0} \Longrightarrow i \in I_{1}
\end{array}\right.
$$

Remark. The first condition in Condition 4 is introduced in [4] and it is a reasonable condition for developing a general theory of global existence, because a blow-up example is known in the case without this condition. The second condition in Condition 4 means that the particles which don't provoke any reflection don't make any binary collision.

Theorem 4. Suppose Conditions 4 and 5 are satisfied. If the Cauchy data are sufficiently small in $H^{s}(s=1,2, \cdots)$, the solution has the decay estimate as follows :

$$
\begin{align*}
& \left\|u_{i}\right\|_{H^{s}}\left(\text { so }\left\|u_{i}\right\|_{L^{\infty}}\right) \\
& \leqq \begin{cases}C_{*}\left\|u^{0}\right\|_{H^{s}} & \text { for } \quad i \in I_{0} \\
C_{*}\left\|u^{0}\right\|_{H^{s}} e^{-\lambda t} & \text { for } \quad i \in I_{1}\end{cases} \tag{1.6}
\end{align*}
$$

where C_{*} and $\lambda>0$ depend only on the equation.
ii) Case with the multiple collision terms.

The case with the multiple collision terms is studied only in a few papers $[1][2][6]$. We consider the general multiple collision terms as follows :

$$
\begin{equation*}
R_{i}(u)=\sum_{p=2}^{\sigma} \sum_{j_{1}} \cdots \sum_{j_{p}} E_{i}^{j_{1} \cdots j_{p}} u_{j_{1}} \cdots u_{j_{p}} \tag{R}
\end{equation*}
$$

where we permit the cases $j_{k}=j_{\ell}, k \neq \ell$.
Then the equations is following :

$$
\left\{\begin{align*}
\frac{\partial u_{i}}{\partial t}+c_{i} \frac{\partial u_{i}}{\partial x} & =R_{i}(u)+L_{i}(u) \tag{M}\\
\left.u_{i}\right|_{t=0} & =u_{i}^{0}(\cdot)
\end{align*}\right.
$$

where L_{i} is of the form as before. On this system, we impose the similar assumptions to Condition 4 :

Condition 6.

$$
\begin{aligned}
E_{i}^{j_{1} \cdots j_{p}} \neq 0 & \Rightarrow \quad \exists j_{\alpha} \neq j_{\beta}, j_{\alpha}, j_{\beta} \in\left\{j_{1}, \cdots j_{p}\right\} \\
E_{i}^{j_{1} \cdots j_{p}} \neq 0 & \Rightarrow \quad \begin{cases}\exists j_{\alpha} \notin I_{0} & \text { if } i \in I_{0} \\
\exists j_{\alpha} \neq j_{\beta} \notin I_{0} & \text { if } i \notin I_{0}\end{cases} \\
\alpha_{i}^{k} \geqq 0, & \forall j \exists i \alpha_{j}^{i}>0
\end{aligned}
$$

We obtain the result with the similar estimates as in Theorem 4:
Theorem 5. Suppose Conditions 5 and 6 are satisfied. If the Cauchy data are sufficiently small in $H^{s}(s=1,2, \cdots)$, the solution has the decay estimate as follows :

$$
\begin{align*}
& \left\|u_{i}\right\|_{H^{s}}\left(\text { so }\left\|u_{i}\right\|_{L^{\infty}}\right) \\
& \leqq\left\{\begin{array}{ll}
C_{*}\left\|u^{0}\right\|_{H^{s}} & \text { for } \\
C_{*}\left\|u^{0}\right\|_{H^{s}} e^{-\lambda t} & \text { for }
\end{array} \quad i \in I_{1}\right.
\end{align*} \text {, } . ~ \begin{array}{ll} \tag{1.7}
\end{array}
$$

where C_{*} and $\lambda>0$ depend only on the equation.

2. The proof

2.1 Estimates

In this section, assuming Conditions 1 and 2 , we establish the estimates of solutions, improving the method due to Bony [3].

Let's define Bony's function [3] and its variation :

$$
\begin{gather*}
\varphi(t)=\sum_{i, j}\left(c_{i}-c_{j}\right) \iint \operatorname{sgn}(y-x) u_{i}(x, t) u_{j}(y, t) d x d y \tag{2.1}\\
\psi\left(t ; x_{0}, c_{0}\right)=\sum_{i}\left(c_{i}-c_{0}\right) \int \operatorname{sgn}\left\{x-\left(x_{0}+c_{0} t\right)\right\} u_{i}(x, t) d x \tag{2.2}
\end{gather*}
$$

Differentiating these functions, we have
Lemma 2.1. Suppose $T<T^{*}$. Under Conditions 1 and 2, we have

$$
\begin{align*}
\Delta(0, T) & \leqq C \mu^{2} \tag{2.3}\\
\delta(0, T) & \leqq C \mu \tag{2.4}
\end{align*}
$$

where T^{*} is the existence time of solutions and

$$
\begin{align*}
\Delta\left(t_{1}, t_{2}\right) & =\sup _{c_{i} \neq c_{j}} \int_{t_{1}}^{t_{2}} \int_{\mathbf{R}} u_{i}(x, t) u_{j}(x, t) d x d t \tag{2.5}\\
\delta\left(t_{1}, t_{2}\right) & =\sup _{c_{i} \neq c_{j}} \sup _{x \in \mathbf{R}} \int_{t_{1}}^{t_{2}} u_{i}\left(x+c_{j} t, t\right) d t \tag{2.6}
\end{align*}
$$

Proof. We differentiate $\varphi(t)$ with respect t :

$$
\varphi^{\prime}(t)=-2 \sum_{i, j}\left(c_{i}-c_{j}\right)^{2} \int u_{i} u_{j} d x
$$

Hence

$$
\begin{equation*}
2 \sum_{i, j}\left(c_{i}-c_{j}\right)^{2} \int_{0}^{T} \int_{\mathbf{R}} u_{i} u_{j} d x=\varphi(0)-\varphi(T) \tag{2.7}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
|\varphi(t)| \leqq C \mu^{2} \text { for all } t \tag{2.8}
\end{equation*}
$$

Therefore we obtain

$$
\begin{equation*}
\int_{0}^{T} \int_{\mathbf{R}} u_{i}(x, t) u_{j}(x, t) d x d t \leqq C \mu^{2} \text { for } c_{i} \neq c_{j} \tag{2.9}
\end{equation*}
$$

In the same way,

$$
\begin{equation*}
\psi^{\prime}(t)=2 \sum_{i}\left(c_{i}-c_{0}\right)^{2} u_{i}\left(x_{0}+c_{0} t, t\right) \tag{2.10}
\end{equation*}
$$

This implies

$$
\begin{equation*}
2 \sum_{i}\left(c_{i}-c_{0}\right)^{2} \int_{0}^{T} u_{i}\left(x_{0}+c_{0} t, t\right) d t=\psi(T)-\psi(0) \tag{2.11}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
|\psi(t)| \leqq C \mu \quad \text { for all } \quad t \tag{2.12}
\end{equation*}
$$

Then we obtain

$$
\begin{equation*}
\int_{0}^{T} u_{i}\left(x_{0}+c_{0} t, t\right) d t \leqq C \mu \quad \text { for } \quad c_{i} \neq c_{0} \tag{2.13}
\end{equation*}
$$

Proposition 2.2. Suppose Conditions 1 and 2 are satisfied. Then there exists $p \geqq 0$ such that

$$
\begin{equation*}
I=I_{0} \cup I_{1} \cup \cdots \cup I_{p} \tag{2.14}
\end{equation*}
$$

Proof. Suppose $i \notin I_{0}$. Then there exists j such that $\alpha_{j}^{i}>0$. Furthermore, there exists j such that $\alpha_{j}^{i}>0$ and $c_{j}>c_{i}$, because if not, every j such that $\alpha_{j}^{i}>0$ verifies $c_{j}<c_{i}$, then Condition 2 would fail. Therefore we have

$$
i \in I \Rightarrow\left\{\begin{array}{l}
\alpha_{j}^{i}=0 \text { for all } j, \text { that is } i \in I_{0} \tag{2.15}\\
o r \\
\text { there exists } j \text { such that } \alpha_{j}^{i}>0 \\
\text { and } c_{j}>c_{i} . \star
\end{array}\right.
$$

If \star holds, we repeat this procedure :
(2.16) $\begin{cases}j \in I_{0} \text { then } & i \in I_{1} \\ \text { or } \\ \text { there exists } & k \text { such that } \alpha_{k}^{j}>0 \quad \text { and } c_{k}>c_{j} \cdot \star \star\end{cases}$

If $\boldsymbol{\star} \boldsymbol{\star}$ holds, we do as above :
(2.17)

$$
\left\{\begin{array}{l}
k \in I_{0} \text { then } \quad j \in I_{1}, i \in I_{2} \\
\text { or } \\
\text { there exists } \quad \ell \text { such that } \quad \alpha_{\ell}^{k}>0 \quad \text { and } \quad c_{\ell}>c_{k}
\end{array}\right.
$$

However this procedure must be finished because $\sharp I$ is finite. Then we prove the proposition.

For analyzing closely our partial differential system, now we consider a simpler ordinary system ; this idea is motivated by the dissipation of the effect of the binary collision terms when the time is going to the infinity. This dissipation is suggested by the definability of the wave operator for the system without the linear term for the small Cauchy data, due to Bony [4] :

$$
\left\{\begin{align*}
\frac{d f_{i}}{d t} & =L_{i}(f) \tag{O}\\
\left.f_{i}\right|_{t=0} & =f_{i}^{0}>0
\end{align*}\right.
$$

Proposition 2.3. Let \mathcal{L} be a matrix corresponding to the linear operator $\left(L_{i}\right)_{i}$. Then each eigenvalue of \mathcal{L} is 0 or of real part negative.

To prove this proposition, we state a classical theorem :
Lemma 2.4. (Geršgorin) Let $A=\left[a_{i j}\right] \in M_{n}$, and let

$$
\begin{equation*}
C_{j}^{\prime}(A) \equiv \sum_{i \neq j}\left|a_{i j}\right| \tag{2.18}
\end{equation*}
$$

denote the deleted absolute column sums of A. Then all the eigenvalues of A are located in the union of n discs

$$
\begin{equation*}
\bigcup_{i=1}^{n}\left\{z \in \mathbf{C}:\left|z-a_{i i}\right| \leqq C_{i}^{\prime}(A)\right\} \equiv G(A) \tag{2.19}
\end{equation*}
$$

Proof. See Chapter 6 in [8] for example.
Proof of Proposition 2.3. Simply apply Lemma 2.4 to the matrix \mathcal{L}.

Proposition 2.5. Suppose Conditions 1 and 2 are satisfied. Then we have

1) for all $i \in I, f_{i}(t)$ is positive.
2) $\sum_{i \in I_{0}} f_{i}(t)$ is increasing and bounded, so tends to a limit >0 as $t \rightarrow+\infty$.
3) for $i \notin I_{0}, f_{i}(t)$ tends to 0 exponentially as $t \rightarrow+\infty$.

Proof. 1) The assertion is clear when we write the system in the following form :

$$
\begin{equation*}
\frac{d f_{i}}{d t}+\left(\sum_{k} \alpha_{k}^{i}\right) f_{i}=\sum_{k} \alpha_{i}^{k} f_{k} \tag{2.20}
\end{equation*}
$$

2) and 3) We show, for the first, for $i \in I_{1}, f_{i}(t)$ tends to 0 exponentially as $t \rightarrow+\infty$. Suppose that there exists $c>0$ and $i \in I_{1}$ such that $f_{i}(t)>c$
for all $t \in \mathbf{R}_{+}$. Then

$$
\begin{align*}
\frac{d}{d t}\left(\sum_{i \in I_{0}} f_{i}\right) & =\sum_{j}\left(\sum_{i \in I_{0}} \alpha_{i}^{j}\right) f_{j}-\sum_{i \in I_{0}}\left(\sum_{j} \alpha_{j}^{i}\right) f_{i} \\
& =\sum_{j \in I_{1}}\left(\sum_{i \in I_{0}} \alpha_{i}^{j}\right) f_{j} \tag{2.21}\\
& \geqq C_{*} c>0 \quad \text { with } \quad C_{*}>0
\end{align*}
$$

Then $\sum_{i \in I_{0}} f_{i}$ increases exponentially, which is a contradiction because of Proposition 2.3. Hence, for $i \in I_{1}, f_{i}(t)$ tends to 0 exponentially as $t \rightarrow+\infty$. Then we have

$$
\begin{equation*}
\frac{d}{d t}\left(\sum_{i \in I_{0}} f_{i}\right)=\sum_{j \in I_{1}}\left(\sum_{i \in I_{0}} \alpha_{i}^{j}\right) \exp \left(-\lambda_{j} t\right) \times P_{j}(t) \tag{2.22}
\end{equation*}
$$

where $\Re e \lambda_{j}>0$ and $P_{j}(t)>0$ is a polynomial in t. Then the right-hand side is positive and integrable over $[0, \infty]$. Hence, $\sum_{i \in I_{0}} f_{i}(t)$ is increasing and bounded, so tends to a limit >0 as $t \rightarrow+\infty$. Now we show, for $i \in I_{2}, f_{i}(t)$ tends to 0 exponentially as $t \rightarrow+\infty$, by reduction to absurdity. Suppose that there exists $c>0$ and $i \in I_{2}$ such that $f_{i}(t)>c$ for all $t \in \mathbf{R}_{+}$. Then

$$
\begin{align*}
\frac{d}{d t}\left(\sum_{i \in I_{1}} f_{i}\right) & =\sum_{j \in I_{2}}\left(\sum_{i \in I_{1}} \alpha_{i}^{j}\right) f_{j}-\sum_{i \in I_{1}}\left(\sum_{j} \alpha_{j}^{i}\right) f_{i} \tag{2.23}\\
& \geqq C_{*} c-\sum_{i \in I_{1}}\left(\sum_{j} \alpha_{j}^{i}\right) f_{i} \quad \text { with } \quad C_{*}>0
\end{align*}
$$

Then, taking a sufficiently large T, for $t>T$, we have

$$
\begin{equation*}
\frac{d}{d t}\left(\sum_{i \in I_{1}} f_{i}\right) \geqq \frac{1}{2} C_{*} c>0 \tag{2.24}
\end{equation*}
$$

Hence $\sum_{i \in I_{1}} f_{i}$ increases exponentially, which is a contradiction. Hence, for $i \in I_{2}, f_{i}(t)$ tends to 0 exponentially as $t \rightarrow+\infty$. We continue this
procedure until I_{p}, taking account of Proposition 2.2. Then we complete the proof.

Now we fix t_{1} and decompose u_{i} into the sum of "(quasi-)linear part" v_{i} and "(essential-)nonlinear part" w_{i}. Let v_{i} be a solution for the equations :

$$
\left\{\begin{align*}
\left(\frac{\partial}{\partial t}+c_{i} \frac{\partial}{\partial x}\right) v_{i} & =L_{i}(v)-\sum_{j, k, \ell} A_{k \ell}^{i j} u_{j} \cdot v_{i} \tag{V}\\
\left.v_{i}\right|_{t=t_{1}} & =u_{i}\left(\cdot, t_{1}\right)
\end{align*}\right.
$$

where u_{i} is the solution of (B).
Then $w_{i}=u_{i}-v_{i}$ should satisfy

$$
\left\{\begin{align*}
\left(\frac{\partial}{\partial t}+c_{i} \frac{\partial}{\partial x}\right) w_{i} & =L_{i}(w)+Q_{i}(w)+r_{i}-s_{i} \tag{W}\\
\left.w_{i}\right|_{t=t_{1}} & =0 \\
\text { with } r_{i} & =\sum_{j, k, \ell} A_{i j}^{k \ell}\left(v_{k} v_{\ell}+w_{k} v_{\ell}+v_{k} w_{\ell}\right) \\
s_{i} & =\sum_{j, k, \ell} A_{k \ell}^{i j} w_{i} v_{j}
\end{align*}\right.
$$

Definition. The operator $\mathcal{P}=\left(\mathcal{P}_{i}\right)_{i}$ is said to be positively preserving if and only if the solution u_{i} is nonnegative over $\mathbf{R} \times \mathbf{R}_{+}$, where $u_{i}(x, t)$ is a solution for the equations :

$$
\left\{\begin{align*}
\left(\frac{\partial}{\partial t}+c_{i} \frac{\partial}{\partial x}\right) u_{i} & =\mathcal{P}(u) \tag{2.25}\\
\left.u_{i}\right|_{t=0}=u_{i}^{0}(x) & \geqq 0
\end{align*}\right.
$$

Corollary 2.6. The operators $\left(Q_{i}\right)_{i}$ and $\left(L_{i}\right)_{i}$ are positively preserving.

Proof. The assertions follow, for L_{i}, from Proposition 2.5 and, for Q_{i}, from a classical argument of the semi-linear equations, given in [11] for example.

Proposition 2.7.

$$
\begin{equation*}
v_{i}(x, t) \geqq 0 \text { and } w_{i}(x, t) \geqq 0 \text { for any } x \in \mathbf{R} \text { and } t \in \mathbf{R}_{+} \tag{2.26}
\end{equation*}
$$

Proof. We take account of $u_{i}(x, t) \geqq 0$ for all $x \in \mathbf{R}$ and $t \in \mathbf{R}_{+}$. From the equations, we have

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+c_{i} \frac{\partial}{\partial x}\right) v_{i}+\sum_{j, k, \ell} A_{k \ell}^{i j} u_{j} \cdot v_{i}=L_{i}(v) \tag{2.27}
\end{equation*}
$$

Then we have $v_{i}(x, t) \geqq 0$, because the linear operator $\left(L_{i}\right)_{i}$ is positively preserving and $u_{i}(x, t) \geqq 0$. On the other hand,

$$
\left\{\begin{array}{rl}
\left(\frac{\partial}{\partial t}+c_{i} \frac{\partial}{\partial x}\right) w_{i}+\left(\sum_{j, k, \ell} A_{k \ell}^{i j} v_{j}\right) \cdot & w_{i} \tag{2.28}
\end{array}=L_{i}(w)+Q_{i}(w)+r_{i},\right.
$$

Then we have $w_{i}(x, t) \geqq 0$, because the linear operator $\left(L_{i}\right)_{i}$ and the binary operator $\left(Q_{i}\right)_{i}$ are positively preserving and $v_{i}(x, t) \geqq 0$.

Now we have some remarks :
Corollary 2.8.

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} \int_{\mathbf{R}} r_{i} d x d t \leqq C_{*} \Delta\left(t_{1}, t_{2}\right), \quad \int_{t_{1}}^{t_{2}} \int_{\mathbf{R}} s_{i} d x d t \leqq C_{*} \Delta\left(t_{1}, t_{2}\right) \tag{2.29}
\end{equation*}
$$

Proof. Combine the previous propositions.
We are now going to estimate the "linear part" solution v_{i}. Its estimate in " L^{∞} " is as follows :

Proposition 2.9. The function $V(t) \equiv \sup _{i, x} \frac{v_{i}(x, t)}{f_{i}(t)}$ is strictly decreasing.

Proof. By a classical argument, it is sufficient to show $\frac{v_{i}(x, t)}{f_{i}(t)}$ is decreasing at the points (i, x) where the sup is attained. At such point (i, x), we have

$$
\begin{aligned}
\frac{\partial}{\partial t} \frac{v_{i}(x, t)}{f_{i}(t)} & =\frac{\partial_{t} v_{i}}{f_{i}}-v_{i} \frac{\partial_{t} f_{i}}{f_{i}{ }^{2}} \\
& =\frac{L_{i}(v)-\sum_{j, k, \ell} A_{k \ell}^{i j} u_{j} \cdot v_{i}}{f_{i}}-v_{i} \frac{L_{i}(f)}{f_{i}{ }^{2}} \\
& <\sum_{k}\left(\alpha_{i}^{k} \frac{v_{k}}{f_{i}}-\alpha_{k}^{i} \frac{v_{i}}{f_{i}}\right)-\frac{v_{i}}{f_{i}} \sum_{k}\left(\alpha_{i}^{k} \frac{f_{k}}{f_{i}}-\alpha_{k}^{i}\right) \\
& =\sum_{k} \alpha_{i}^{k} \frac{f_{k}}{f_{i}}\left(\frac{v_{k}}{f_{k}}-\frac{v_{i}}{f_{i}}\right) \\
& \leqq 0
\end{aligned}
$$

where we used Condition 1 in the third inequality.
The estimates for v_{i} and w_{i} along the characteristic are the following :
Proposition 2.10. For $c_{i} \neq c_{j}$ and $t_{1}<t_{2}$, we have

$$
\begin{gather*}
\sup _{x \in \mathbf{R}} \int_{t_{1}}^{t_{2}} v_{i}\left(x+c_{j} t, t\right) d t \leqq C_{*} \delta\left(t_{1}, t_{2}\right), \tag{2.31}\\
\sup _{x \in \mathbf{R}} \int_{t_{1}}^{t_{2}} w_{i}\left(x+c_{j} t, t\right) d t \leqq C_{*} \Delta\left(t_{1}, t_{2}\right), \tag{2.32}
\end{gather*}
$$

where these constants C_{*} depend only on the equations.
Proof. The inequality for v_{i} is evident, because $0 \leqq v_{i} \leqq u_{i}$ and the definition of $\delta\left(t_{1}, t_{2}\right)$. For proving the second inequality, we define, like as in $\S 2.1$:

$$
\begin{equation*}
\psi_{w}\left(t ; x_{0}, c_{0}\right)=\sum_{i}\left(c_{i}-c_{0}\right) \int \operatorname{sgn}\left\{x-\left(x_{0}+c_{0} t\right)\right\} w_{i}(x, t) d x \tag{2.33}
\end{equation*}
$$

Now we differentiate it. Then we have

$$
\begin{equation*}
\psi_{w}^{\prime}(t)=2 \sum_{i}\left(c_{i}-c_{0}\right)^{2} w_{i}\left(x_{0}+c_{0} t, t\right)+R-S \tag{2.34}
\end{equation*}
$$

where

$$
\begin{align*}
R & =\sum_{i} \int \operatorname{sgn}\left\{x-\left(x_{0}+c_{0} t\right)\right\} r_{i}(x, t) d x \tag{2.35}\\
S & =\sum_{i} \int \operatorname{sgn}\left\{x-\left(x_{0}+c_{0} t\right)\right\} s_{i}(x, t) d x \tag{2.36}
\end{align*}
$$

On the other hand,

$$
\int_{t_{1}}^{t_{2}} R d t \quad \text { and } \quad \int_{t_{1}}^{t_{2}} S d t \leqq C_{*} \Delta\left(t_{1}, t_{2}\right)
$$

by virtue of Corollary 2.8. Furthermore we have

$$
\begin{align*}
\frac{d}{d t}\left\|\sum_{i} w_{i}\right\|_{L^{1}} & =\left\|\sum_{i}\left(r_{i}-s_{i}\right)\right\|_{L^{1}} \tag{2.37}\\
& \leqq\left\|\sum_{i} r_{i}\right\|_{L^{1}}
\end{align*}
$$

Hence we have, for $t_{1}<t<t_{2}$,

$$
\begin{equation*}
\left\|\sum_{i} w_{i}(\cdot, t)\right\|_{L^{1}} \leqq \int_{t_{1}}^{t_{2}}\left\|\sum_{i} r_{i}\right\|_{L^{1}} d t \leqq C_{*} \Delta\left(t_{1}, t_{2}\right) \tag{2.38}
\end{equation*}
$$

Then we have, for $t_{1}<t<t_{2}$,

$$
\begin{equation*}
\left|\psi_{w}\left(t ; x_{0}, c_{0}\right)\right| \leqq C_{*} \Delta\left(t_{1}, t_{2}\right) \tag{2.39}
\end{equation*}
$$

Therefore we have, by integration,

$$
\begin{align*}
\int_{0}^{T} w_{i}\left(x_{0}+c_{0} t, t\right) d t \leqq & C_{*}\left|\psi_{w}\left(t_{1} ; x_{0}, c_{0}\right)\right|+C_{*}\left|\psi_{w}\left(t_{2} ; x_{0}, c_{0}\right)\right| \\
& +C_{*} \int_{t_{1}}^{t_{2}} R d t+C_{*} \int_{t_{1}}^{t_{2}} S d t \tag{2.40}\\
& \leqq C_{*} \Delta\left(t_{1}, t_{2}\right) . \square
\end{align*}
$$

Now we estimate more closely $M\left(t_{2}\right)$ in terms of $M\left(t_{1}\right)$ for $t_{1}<t_{2}<T^{*}$, where

$$
\begin{equation*}
M(t)=\max _{i \in I} \sup _{s \leq t} \sup _{x \in \mathbf{R}} u_{i}(x, s) \quad \text { for } \quad t<T^{*} \tag{2.41}
\end{equation*}
$$

First, we integrate the equations for w_{i} along a characteristic curve. Then we have

$$
\begin{align*}
w_{i}\left(t_{2}, x_{*}\right) \leqq C_{*} \int_{t_{1}}^{t_{2}} & \left(\sum_{j \neq i} w_{j}+\sum_{k, j \neq i} w_{k} w_{j}+\sum_{k, j \neq i} v_{k} v_{j}\right. \tag{2.42}\\
& \left.+\sum_{k, j \neq i} w_{k} v_{j}+\sum_{k, j \neq i} v_{k} w_{j}\right)\left(x+c_{i} t, t\right) d t
\end{align*}
$$

where $x_{*}=x+c_{i}\left(t_{2}-t_{1}\right)$. Then we have

$$
\begin{align*}
\int_{t_{1}}^{t_{2}} \sum_{j \neq i} w_{j}\left(x+c_{i} t, t\right) d t & \leqq C_{*} \Delta\left(t_{1}, t_{2}\right), \tag{2.43}\\
\int_{t_{1}}^{t_{2}} \sum_{k, j \neq i} w_{k} w_{j}\left(x+c_{i} t, t\right) d t & \leqq C_{*} M\left(t_{2}\right) \Delta\left(t_{1}, t_{2}\right), \tag{2.44}\\
\int_{t_{1}}^{t_{2}} \sum_{k, j \neq i} v_{k} v_{j}\left(x+c_{i} t, t\right) d t & \leqq C_{*} M\left(t_{2}\right) \delta\left(t_{1}, t_{2}\right) \tag{2.45}
\end{align*}
$$

Hence we have

$$
\begin{equation*}
\sup _{x} w_{i}\left(x, t_{2}\right) \leqq C_{*}\left(1+M\left(t_{2}\right)\right) \cdot \Delta\left(t_{1}, t_{2}\right)+C_{*} M\left(t_{2}\right) \delta\left(t_{1}, t_{2}\right) . \tag{2.46}
\end{equation*}
$$

Consequently for $u_{i}(x, t)$, we have

$$
\begin{align*}
\sup _{x} u_{i}\left(x, t_{2}\right) & \leqq \sup _{x} v_{i}\left(x, t_{2}\right)+\sup _{x} w_{i}\left(x, t_{2}\right) \\
& \leqq C_{*} M\left(t_{1}\right)+C_{*}\left(1+M\left(t_{2}\right)\right) \cdot \Delta\left(t_{1}, t_{2}\right) \tag{2.47}\\
& +C_{*} M\left(t_{2}\right) \delta\left(t_{1}, t_{2}\right)
\end{align*}
$$

We take $T<T^{*}$ and thereafter a sequence $0=t_{0}<t_{1}<\cdots<t_{N}=T$ such that $\Delta\left(t_{j}, t_{j+1}\right)<\left(4 C_{*}\right)^{-1}$ and $\delta\left(t_{j}, t_{j+1}\right)<\left(4 C_{*}\right)^{-1}$. Then, seeing
that $\Delta(0, T) \leqq C_{*} \mu^{2}$ and $\delta(0, T) \leqq C_{*} \mu$ by virtue of Lemma 2.1, we have $N=O\left(\mu^{2}+\mu\right)$ and

$$
\begin{align*}
M\left(t_{j+1}\right) & \leqq C_{*} M\left(t_{j}\right)+C_{*} \Delta\left(t_{j}, t_{j+1}\right) \\
& \leqq C_{*} M\left(t_{j}\right)+C_{*} \tag{2.48}
\end{align*}
$$

Therefore we obtain

$$
\begin{equation*}
u_{i}(x, t) \leqq\left(1+\sup _{i, x} u_{i}^{0}\right) \exp \left(a \mu^{2}+b \mu\right) \tag{2.49}
\end{equation*}
$$

2.2 Proof of Theorem 3

We examine in a more detailed way the argument developed in the last section, that is, to decompose the solution u_{i} into the sum of "(quasi-)linear part" v_{i} and "(essential-) nonlinear part w_{i}. Later on, we specify t_{1}, which will be denoted T, and the dependence of v_{i} and w_{i} on a cut time T. Let's write down u_{i} of the form $u_{i}=v_{i}^{T}+w_{i}^{T}$:
$\left(V^{T}\right) \quad\left\{\begin{aligned}\left(\frac{\partial}{\partial t}+c_{i} \frac{\partial}{\partial x}\right) v_{i}^{T} & =L_{i}\left(v^{T}\right)-\sum_{j, k, \ell} A_{k \ell}^{i j} u_{j} \cdot v_{i}^{T}, \\ \left.v_{i}^{T}\right|_{t=T} & =u_{i}(\cdot, T) .\end{aligned}\right.$
$\left(W^{T}\right) \quad\left\{\begin{aligned}\left(\frac{\partial}{\partial t}+c_{i} \frac{\partial}{\partial x}\right) w_{i}^{T} & =L_{i}\left(w^{T}\right)+Q_{i}\left(w^{T}\right)+r_{i}^{T}-s_{i}^{T}, \\ \left.w_{i}^{T}\right|_{t=T} & =0, \\ \text { with } r_{i}^{T} & =\sum_{j, k, \ell} A_{i j}^{k \ell}\left(v_{k}^{T} v_{\ell}^{T}+w_{k}^{T} v_{\ell}^{T}+v_{k}^{T} w_{\ell}^{T}\right),\end{aligned}\right.$

$$
s_{i}^{T}=\sum_{j, k, \ell} A_{k \ell}^{i j} w_{i}^{T} v_{j}^{T}
$$

Proposition 2.11. Assume the same hypotheses as in Theorem 1. Then $v_{i}^{T}(x, t)$ verifies that, for any $\varepsilon>0$, there exists a large T such that for $t>T$, we have

$$
\begin{equation*}
\left\|u_{i}(\cdot, t)-v_{i}^{T}(\cdot, t)\right\|_{L^{p}}<\varepsilon(1 \leqq p \leqq \infty) \quad \text { for all } \quad i \tag{2.50}
\end{equation*}
$$

and

$$
\begin{array}{ll}
\left\|v_{i}^{T}(\cdot, t)\right\|_{L^{p}} & \\
\leqq \begin{cases}m(t) & i \in I_{0} \\
m(t) \exp \left\{-\lambda t\left(1-\frac{1}{p}\right)\right\} & i \notin I_{0}\end{cases} \tag{2.51}
\end{array}
$$

for all i, where $2 \leqq p \leqq \infty, \lambda>0$ and $m(t)$ is a strictly decreasing function.
Proof. Knowing that

$$
\begin{equation*}
u_{i}(x, t) \leqq M \equiv\left(1+\sup _{i, x} u_{i}^{0}\right) \exp \left(a \mu^{2}+b \mu\right) \tag{2.52}
\end{equation*}
$$

we have, for $t>T$,

$$
\begin{align*}
\sup _{x} w_{i}^{T}(x, t) & \leqq C_{*}(1+M(t)) \cdot \Delta(T, t)+C_{*} M(t) \delta(T, t) \tag{2.53}\\
& \leqq C_{*}(1+M)(\Delta(T, t)+\delta(T, t)) \\
& \left\|\sum_{i} w_{i}^{T}(\cdot, t)\right\|_{L^{1}} \leqq C_{*} \Delta(T, t) \tag{2.54}
\end{align*}
$$

Using Lemma 2.1 which says $\Delta(0, \infty) \leqq C_{*} \mu^{2}$ and $\delta(0, \infty) \leqq C_{*} \mu$, we conclude that, for any $\varepsilon>0$, there exists T such that

$$
\begin{equation*}
\Delta(T, \infty)+\delta(T, \infty)<\left[C_{*}(1+M) \times(\sharp\{i \in I\})\right]^{-1} \cdot \varepsilon \tag{2.55}
\end{equation*}
$$

Then we have, for $t>T$,

$$
\begin{equation*}
\left\|\sum_{i} w_{i}^{T}(\cdot, t)\right\|_{L^{1} \cap L^{\infty}}<\varepsilon \tag{2.56}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\sup _{i}\left\|w_{i}^{T}(\cdot, t)\right\|_{L^{p}}<\varepsilon(1 \leqq p \leqq \infty) \tag{2.57}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\sup _{i}\left\|u_{i}(x, t)-v_{i}^{T}(x, t)\right\|_{L^{p}}<\varepsilon(1 \leqq p \leqq \infty) \tag{2.58}
\end{equation*}
$$

save for trivial constants. Consequently we prove the first assertion of Proposition 2.11.

In order to prove the second assertion, we shall estimate v_{i} :
Proposition 2.12. $\quad \sum_{i}\left\|V_{i}(\cdot, t)\right\|_{L^{2}}^{2}$ is also strictly decreasing, where $V_{i}(x, t) \equiv \frac{v_{i}^{T}(x, t)}{\sqrt{f_{i}(t)}}$.

Proof. We have

$$
\begin{align*}
\left(\frac{\partial}{\partial t}+c_{i} \frac{\partial}{\partial x}\right) V_{i}= & \sum_{k}\left\{\alpha_{i}^{k}\left(\frac{f_{k}(t)}{f_{i}(t)}\right)^{\frac{1}{2}} V_{k}-\alpha_{k}^{i} V_{i}\right\} \tag{2.59}\\
& -\sum_{j k \ell} A_{k \ell}^{i j} u_{j} \cdot V_{i}-\frac{L_{i}(f(t))}{2 f_{i}(t)} V_{i}
\end{align*}
$$

Hence we have

$$
\begin{align*}
& \frac{d}{d t} \sum_{i}\left\|V_{i}(\cdot, t)\right\|_{L^{2}}^{2} \\
& =-\sum_{i}\left(\sum_{k} \alpha_{k}^{i}\right)\left\|V_{i}\right\|^{2}-\sum_{i k} \alpha_{k}^{i}\left\|V_{i}\right\|^{2}-\sum_{i} \frac{L_{i}(f)}{f_{i}}\left\|V_{i}\right\|^{2} \\
& \quad+2 \sum_{i k} \alpha_{i}^{k}\left(\frac{f_{k}}{f_{i}}\right)^{\frac{1}{2}}\left(V_{k}, V_{i}\right)-2 \sum_{i j k \ell} A_{k \ell}^{i j}\left(u_{j} V_{i}, V_{i}\right) \tag{2.60}\\
& =-\sum_{i k} \alpha_{i}^{k} f_{k}\left\|\frac{V_{i}}{\sqrt{f_{i}}}-\frac{V_{k}}{\sqrt{f_{k}}}\right\|^{2}-2 \sum_{i j k \ell} A_{k \ell}^{i j}\left(u_{j} V_{i}, V_{i}\right) \\
& <0,
\end{align*}
$$

where we used the positivity of u_{i} and V_{i} and Condition 1 .
We pursue the proof of Proposition 2.11. By Proposition 2.9 and 2.12, we have

$$
\begin{equation*}
\max _{i}\left\|\frac{v_{i}^{T}(\cdot, t)}{f_{i}(t)}\right\|_{L^{\infty}} \quad \text { and } \quad \max _{i}\left\|\frac{v_{i}^{T}(\cdot, t)}{f_{i}(t)}\right\|_{L^{2}} \tag{2.61}
\end{equation*}
$$

are strictly decreasing, where a positive bounded functions $f_{i}(t)$ verifies the following condition :

- for $i \in I_{0}, f_{i}(t)$ is increasing and tends to a limit >0 as $t \rightarrow+\infty$,
- for $i \notin I_{0}, f_{i}(t)$ tends to 0 exponentially as $t \rightarrow+\infty$.

The interpolation between L^{2} and L^{∞} achieves then the proof.
Now we show the theorem. We take a sequence T_{n} which tends to the infinity. We show that $u_{i}\left(x+c_{i} T_{n}, T_{n}\right)$ is a Cauchy sequence for an adequate T_{n}. Owing to Proposition 2.11, $\sum_{i} w_{i}^{T_{n}}\left(x+c_{i} T_{n}, T_{n}\right)$ is a Cauchy sequence. On the other hand, we have

$$
\begin{align*}
& \int_{\mathbf{R}}\left|\sum_{i} v_{i}^{T_{n+1}}\left(x+c_{i} T_{n+1}, T_{n+1}\right)-\sum_{i} v_{i}^{T_{n}}\left(x+c_{i} T_{n}, T_{n}\right)\right|^{2} d x \\
& \leqq C_{*} M^{2}\left(T_{n+1}-T_{n}\right) \sum_{i j} \int_{\mathbf{R}} \int_{T_{n}}^{T_{n+1}} u_{i} u_{j} d t d x \tag{2.62}\\
& \leqq C_{*} M^{2}\left(T_{n+1}-T_{n}\right) \Delta\left(T_{n}, T_{n+1}\right)
\end{align*}
$$

Hence $\sum_{i} v_{i}^{T_{n}}\left(x+c_{i} T_{n}, T_{n}\right)$ is a Cauchy sequence in L^{2}. Furthermore we have

$$
\begin{align*}
& \left|\sum_{i} v_{i}^{T_{n+1}}\left(x+c_{i} T_{n+1}, T_{n+1}\right)-\sum_{i} v_{i}^{T_{n}}\left(x+c_{i} T_{n}, T_{n}\right)\right| \tag{2.63}\\
& \leqq C_{*} M \delta_{x+c_{i} T_{n}}\left(T_{n}, T_{n+1}\right)
\end{align*}
$$

where $\delta_{x}\left(t_{1}, t_{2}\right)=\sup _{c_{i} \neq c_{j}} \int_{t_{1}}^{t_{2}} u_{i}\left(x+c_{j} t, t\right) d t$. Hence $\sum_{i} v_{i}^{T_{n}}\left(x+c_{i} T_{n}, T_{n}\right)$ is a Cauchy sequence also in L^{∞}. Consequently we prove the theorem.

2.2 Proof of Theorem 4

Let's consider the following equations with parameter ε :
$\left(B_{\varepsilon}\right)$

$$
\left\{\begin{aligned}
\frac{\partial u_{i}}{\partial t}+c_{i} \frac{\partial u_{i}}{\partial x} & =\varepsilon Q_{i}(u)+L_{i}(u) \\
\left.u_{i}\right|_{t=0} & =u_{i}^{0}(\cdot)
\end{aligned}\right.
$$

where ε is a positive constant.
For this Cauchy problem, we seek a solution $u_{i}(x, t)$ of type $u_{i}=$ $\sum_{m=0}^{\infty} \varepsilon^{m} u_{i}^{(m)}$.

To prove Theorem 4, it is sufficient to show the following theorem :

Theorem 2.12. Suppose Conditions 4 and 5 are satisfied.
For $\varepsilon \in\left[0, C_{* *}\left(\sum_{k=0}^{s} I_{k}^{2}\right)^{-\frac{1}{2}}\left[\right.\right.$, the series $u_{i}=\sum_{m=0}^{\infty} \varepsilon^{m} u_{i}^{(m)}$ converge in $H^{s}(s=1,2, \cdots)$, so L^{∞}, uniformly with respect to $t \in \mathbf{R}_{+}$and then we have

$$
\begin{align*}
& \left\|u_{i}\right\|_{H^{s}}\left(s o\left\|u_{i}\right\|_{L^{\infty}}\right) \\
& \leqq \begin{cases}C_{*}\left(\sum_{k=0}^{s} I_{k}^{2}\right)^{\frac{1}{2}} & i \in I_{0} \\
C_{*}\left(\sum_{k=0}^{s} I_{k}^{2}\right)^{\frac{1}{2}} e^{-\lambda t} & i \in I_{1}\end{cases} \tag{2.64}
\end{align*}
$$

where $I_{k}=\left(\sum_{i}\left\|D^{k} u_{i}^{0}\right\|_{L^{2}}^{2}\right)^{\frac{1}{2}}$, the constants $C_{*}, C_{* *}$ and $\lambda>0$ depend only on the equations.

As in the preceding section, we use

$$
\left\{\begin{align*}
\frac{d f_{i}}{d t} & =L_{i}(f) \tag{O}\\
\left.f_{i}\right|_{t=0} & =f_{i}^{0}>0
\end{align*}\right.
$$

Condition 5 implies a more precise estimate for f_{i} than Proposition 2.3 :
Proposition 2.13. Suppose Conditions 4 and 5 are satisfied. There exists $f_{i}^{0}>0$ such that, for $i \in I_{1}$, f_{i} tends to 0 with the same order i.e. there is $\lambda>0$ such that $f_{i}(t)=e^{-2 \lambda t} P_{i}(t)$ with P_{i} polynomial in t and that, for $i \in I_{0}, f_{i}(t)$ is increasing and bounded, so tends to a limit >0 as $t \longrightarrow+\infty$.

Proof. Let's put a matrix $\mathcal{L}^{\prime}=\left(\alpha_{i}^{j}-\delta_{i j} \sum_{k} \alpha_{k}^{i}\right)_{i j \in I_{1}}$. Then let n be a positive constant and $\mathcal{M}=\mathcal{L}^{\prime}+n$. The matrix \mathcal{M} is nonnegative for sufficiently large n. We have then

$$
\begin{equation*}
\exp t \mathcal{M}=e^{n t} \exp t \mathcal{L}^{\prime} \quad \text { that is } \quad \exp t \mathcal{L}^{\prime}=e^{-n t} \exp t \mathcal{M} \tag{2.65}
\end{equation*}
$$

Hence $\exp t \mathcal{L}^{\prime}$ is a positive matrix. The Perron-Frobenius theorem for the matrix theory says that $\exp t \mathcal{L}^{\prime}$ has a real and positive eigenvalue which is a simple root of the characteristic equation and exceeds the moduli of all the other eigenvalues and that, to this 'maximal' eigenvalue, there corresponds an eigenvector $z=\left(z_{i}\right)_{i}$ with positive coordinates $z_{i}>0\left(i \in I_{1}\right)$. Let $e^{-2 \lambda}$
be its 'maximal' eigenvalue for $t=1$. Let $f^{0}=\left(f_{i}^{0}\right)_{i \in I_{1}}$ be a corresponding eigenvector with positive coordinates $f_{i}^{0}>0\left(i \in I_{1}\right)$. It implies that

$$
\begin{align*}
f_{i}(t) & =\exp \left(t \mathcal{L}^{\prime}\right) f_{i}^{0} \\
& =e^{-2 t \lambda} f_{i}^{0} \quad \text { for } \quad i \in I_{1} \tag{2.66}
\end{align*}
$$

Moreover using Lemma 2.4 and Condition 5, we easily obtain that each eigenvalue of matrix \mathcal{L}^{\prime} is of real part negative and then we have $\lambda>0$. We prove then the assertion for $i \in I_{1}$. On the other hand, the assertion for $i \in I_{0}$ is clear, because we have

$$
\begin{equation*}
f_{i}(t)=f_{i}^{0}+\int_{0}^{t} \sum_{k \in I_{1}} \alpha_{i}^{k} e^{-2 \lambda \tau} f_{k}^{0} d \tau \tag{2.67}
\end{equation*}
$$

Let put $w_{i}(x, t)=\frac{u_{i}(x, t)}{\sqrt{f_{i}(t)}}$. Now we write down the equation for $w_{i}(x, t)$, and put $w_{i}(x, t)=\sum_{i=0}^{\infty} \varepsilon^{m} w_{i}^{(m)}(x, t)$. Then we have for $m=0,1,2, \cdots$,

$$
\left\{\begin{align*}
\left(\frac{\partial}{\partial t}+c_{i} \frac{\partial}{\partial x}\right) w_{i}^{(m)}= & \sum_{k}\left\{\alpha_{i}^{k}\left(\frac{f_{k}}{f_{i}}\right)^{\frac{1}{2}} w_{k}^{(m)}-\alpha_{k}^{i} w_{i}^{(m)}\right\} \tag{2.68}\\
& -\frac{L_{i}(f)}{2 f_{i}} w_{i}^{(m)}+F_{i}^{(m)}(w) \\
\left.w_{i}^{(m)}\right|_{t=0}= & \begin{cases}u_{i}^{0}(x), & m=0 \\
0, & m=1,2, \cdots\end{cases}
\end{align*}\right.
$$

where

$$
F_{i}^{(m)}(w)= \begin{cases}\sum_{n=0}^{m-1} \sum_{j k} B_{i}^{j k}\left(\frac{f_{j} f_{k}}{f_{i}}\right)^{\frac{1}{2}} w_{j}^{(n)} w_{k}^{(m-n-1)} \tag{2.69}\\ 0 & \text { for } m=1,2, \cdots \\ 0 & \text { for } m=0\end{cases}
$$

The energy estimate leads us :

Proposition 2.14. Suppose Conditions 4 and 5 are satisfied. For $s=0,1,2, \cdots$,

$$
\begin{align*}
\frac{d}{d t} \sum_{i}\left\|D^{s} w_{i}^{(m)}\right\|_{L^{2}}^{2} & =-\sum_{i k} \alpha_{i}^{k} f^{k}\left\|D^{s}\left(\frac{w_{i}^{(m)}}{f_{i}^{\frac{1}{2}}}-\frac{w_{k}^{(m)}}{f_{k}^{\frac{1}{2}}}\right)\right\|_{L^{2}}^{2} \tag{2.70}\\
& +2 \sum_{i}\left\{\left(D^{s} F_{i}^{(m)}(w), D^{s} w_{i}^{(m)}\right)_{L^{2}}\right\}
\end{align*}
$$

and especially for $m=0$,
(2.71) $\frac{d}{d t} \sum_{i}\left\|D^{s} w_{i}^{(0)}\right\|_{L^{2}}^{2}=-\sum_{i k} \alpha_{i}^{k} f^{k}\left\|D^{s}\left(\frac{w_{i}^{(0)}}{f_{i}^{\frac{1}{2}}}-\frac{w_{k}^{(0)}}{f_{k}^{\frac{1}{2}}}\right)\right\|_{L^{2}}^{2} \leqq 0$.

Corollary 2.15. Suppose Conditions 4 and 5 are satisfied. Then we have, for $s=0,1,2, \cdots$,

$$
\begin{equation*}
\left\|D^{s} w_{i}^{(0)}\right\|_{L^{2}} \leqq C_{*} I_{s} \text { for all } i \tag{2.72}
\end{equation*}
$$

where $I_{s}=\left(\sum_{i}\left\|D^{s} u_{i}^{0}\right\|_{L^{2}}^{2}\right)^{\frac{1}{2}}$.
Proposition 2.16. Suppose Conditions 4 and 5 are satisfied. For $s=1,2, \cdots$,

$$
\begin{equation*}
\int_{0}^{\infty} \sum_{i}\left\|F_{i}^{(1)}(w)\right\|_{H^{s}} d t \leqq C_{*} \sum_{k=0}^{s} I_{k}^{2} \tag{2.73}
\end{equation*}
$$

Proof. By the equation, we have

$$
\begin{equation*}
F_{i}^{(1)}(w)=\sum_{j k} B_{i}^{j k}\left(\frac{f_{j} f_{k}}{f_{i}}\right)^{\frac{1}{2}} w_{j}^{(0)} w_{k}^{(0)} \tag{2.74}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
\left\|w_{j}^{(0)} w_{k}^{(0)}\right\|_{H^{s}} & \leqq C_{*}\left(\left\|w_{j}^{(0)}\right\|_{H^{s}}\left\|w_{k}^{(0)}\right\|_{L^{\infty}}+\left\|w_{j}^{(0)}\right\|_{L^{\infty}}\left\|w_{k}^{(0)}\right\|_{H^{s}}\right) \tag{2.75}\\
& \leqq C_{*}\left\|w_{j}^{(0)}\right\|_{H^{s}}\left\|w_{k}^{(0)}\right\|_{H^{s}} \text { for } s=1,2, \cdots
\end{align*}
$$

Condition 4 and Proposition 2.13 give us

$$
\begin{equation*}
B_{i}^{j k}\left(\frac{f_{j} f_{k}}{f_{i}}\right)^{\frac{1}{2}} \leqq C e^{-\lambda t} \tag{2.76}
\end{equation*}
$$

These estimates and Corollary 2.15 imply

$$
\begin{align*}
\int_{0}^{\infty} \sum_{i}\left\|F_{i}^{(1)}(w)\right\|_{H^{s}} d t & \leqq C_{*} \sum_{i j k}\left\|w_{j}^{(0)}\right\|_{H^{s}}\left\|w_{k}^{(0)}\right\|_{H^{s}} \int_{0}^{\infty} e^{-\lambda t} d t \tag{2.77}\\
& \leqq C_{*} \sum_{k=0}^{s} I_{k}^{2} \cdot \square
\end{align*}
$$

Proposition 2.17. Suppose Conditions 4 and 5 are satisfied. Then we have, for $s=1,2, \cdots$,

$$
\begin{equation*}
\left\|w_{i}^{(1)}\right\|_{H^{s}} \leqq C_{*} \sum_{k=0}^{s} I_{k}^{2} \quad \text { for all } \quad i \tag{2.78}
\end{equation*}
$$

Proof. Using Proposition 2.14, we have

$$
\begin{align*}
& 2\left(\sum_{i}\left\|w_{i}^{(1)}\right\|_{H^{s}}\right) \cdot\left(\frac{d}{d t} \sum_{i}\left\|w_{i}^{(1)}\right\|_{H^{s}}\right) \\
= & \frac{d}{d t} \sum_{i}\left\|w_{i}^{(1)}\right\|_{H^{s}}^{2} \tag{2.79}\\
\leqq & C_{*} \sum_{i}\left\|w_{i}^{(1)}\right\|_{H^{s}} \cdot\left\|F_{i}^{(1)}(w)\right\|_{H^{s}} \\
\leqq & C_{*}\left(\sum_{i}\left\|w_{i}^{(1)}\right\|_{H^{s}}\right) \cdot\left(\sum_{i}\left\|F_{i}^{(1)}(w)\right\|_{H^{s}}\right)
\end{align*}
$$

This implies that

$$
\begin{equation*}
\frac{d}{d t} \sum_{i}\left\|w_{i}^{(1)}\right\|_{H^{s}} \leqq C_{*} \sum_{i}\left\|F_{i}^{(1)}(w)\right\|_{H^{s}} \tag{2.80}
\end{equation*}
$$

Hence we have,

$$
\begin{align*}
0 \leqq \sum_{i}\left\|w_{i}^{(1)}\right\|_{H^{s}} & \leqq \sum_{i}\left\|\left.w_{i}^{(1)}\right|_{t=0}\right\|_{H^{s}}+C_{*} \sum_{i} \int_{0}^{t}\left\|F_{i}^{(1)}(w)\right\|_{H^{s}} d t \tag{2.81}\\
& \leqq 0+C_{*} \sum_{k=0}^{s} I_{k}^{2}
\end{align*}
$$

by virtue of the previous proposition.
Now let's put $\left\|w_{i}^{(m)}\right\|_{H^{s}} \leqq a_{s}^{(m)}$ for $s=1,2, \cdots$, then we have, by induction,

$$
\begin{equation*}
a_{s}^{(m+1)} \leqq C_{*} \sum_{n=0}^{m} a_{s}^{(n)} a_{s}^{(m-n)} \tag{2.82}
\end{equation*}
$$

Let's put $f(x)=f_{s}(x)=\sum_{n=0}^{\infty} a_{s}^{(n)} x^{n}$ and $F(x)=F_{s}(x)=\sum_{n=0}^{\infty} A_{s}^{(n)} x^{n}$, where

$$
\left\{\begin{align*}
A_{s}^{(m+1)} & =C_{*} \sum_{n=0}^{m} A_{s}^{(n)} A_{s}^{(m-n)} \tag{2.83}\\
A_{s}^{(0)} & =C_{*}\left(\sum_{k=0}^{s} I_{k}^{2}\right)^{\frac{1}{2}}
\end{align*}\right.
$$

Then the inequality (2.82) means that

$$
\begin{equation*}
a_{s}^{(m)} \leqq A_{s}(m) \text { and } A_{s}^{(m)} \geqq 0 \text { for } m=0,1,2, \cdots \tag{2.84}
\end{equation*}
$$

i.e. $F(x)$ is majorant series of $f(x)$. By the definition, $F(x)$ satisfies

$$
\begin{equation*}
\frac{F(x)-F(0)}{x}=C_{*}\{F(x)\}^{2} \tag{2.85}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
F(x)=\frac{1-\sqrt{1-4 C_{*} x F(0)}}{2 C_{*} x}, \quad F(0)=C_{*}\left(\sum_{k=0}^{s} I_{k}^{2}\right)^{\frac{1}{2}} . \tag{2.86}
\end{equation*}
$$

It is easy to see that the right-hand side can be written in infinite series with a positive convergence radius. Hence the series $F(x)$ and $f(x)$ have a positive convergence radius. Consequently we achieve the proof.

2.4 Proof of Theorem 5

As in the previous section, we consider the following equations with parameter ε :
$\left(M_{\varepsilon}\right)$

$$
\left\{\begin{aligned}
\frac{\partial u_{i}}{\partial t}+c_{i} \frac{\partial u_{i}}{\partial x} & =\varepsilon R_{i}(u)+L_{i}(u) \\
\left.u_{i}\right|_{t=0} & =u_{i}^{0}(\cdot)
\end{aligned}\right.
$$

where ε is a positive constant.
The similar argument shows

$$
\begin{equation*}
\left\|w_{i}^{(m)}\right\|_{H^{s}} \leqq b_{s}^{(m)} \text { for } s=1,2, \cdots \tag{2.85}
\end{equation*}
$$

where

$$
\left\{\begin{align*}
b_{s}^{(m+1)} & \leqq C \sum_{p=2}^{\sigma} \sum_{n_{1}+\cdots n_{p}=m} b_{s}^{\left(n_{1}\right)} \cdots b_{s}^{\left(n_{p}\right)} \tag{2.86}\\
b_{s}^{(0)} & =C\left(\sum_{k=0}^{s} I_{k}^{2}\right)^{\frac{1}{2}}
\end{align*}\right.
$$

In the same way, we complete the proof.

References

[1] Bellomo, N. and S. Kawashima, The discrete Boltzmann equation with multiple collisions :Global existence and stability for the initial value problem, J. Math. Phys. 31 (1990), 245-253.
[2] Bellomo, N. and G. Toscani, On the Cauchy problem for the discrete Boltzmann equation with multiple collisions, existence, uniqueness and stability, Stability and Applied Analysis in Continuous Media 1 (1991), 165-184.
[3] Bony, J. M., Solutions globales bornées pour les modèles discrets de l'équation de Boltzmann, en dimension 1 d'espace, Actes des journées E.D.P. à Saint-Jean-de-Monts, Ecole Polytechnique (1987).
[4] Bony, J. M., Problème de Cauchy et diffusion à données petites pour les modèles discrets de la cinétique des gaz, Actes des journées E.D.P. à Saint-Jean-de-Monts, Ecole Polytechnique (1990).
[5] Cabannes, H., The discrete Boltzmann equation, Lecture Notes, University of California at Berkely (1980).
[6] Cabannes, H., Global solution of the discrete Boltzmann equation with multiple collisions, Eur. J. Mech., B/Fluids 11 (1992), 415-437.
[7] Gatignol, R., Théorie cinétique d'un gaz à répartition discrète de vitesses, Lect. Notes Phys. 36, Springer-Verlag, Heidelberg (1975).
[8] Horn, R. A. and C. R. Johnson, Matrix Analysis, Cambridge University Press (1985).
[9] Nishida, T. and M. Mimura, On the Broadwell's model for a simple discrete velocity gas, Proc. Japan Acad. 50 (1974), 812-817.
[10] Shizuta, Y. and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Mathematical Journal 14 (1985), 249-275.
[11] Tartar, L. and M. G. Crandall, Existence globale pour un système hyperbolique de la théorie des cinétique des gaz, Séminaire Goulaouic-Schwartz $\mathrm{n}^{\circ} 1$ Ecole Polytechnique (1975).
[12] Yamazaki, M., Existence globale pour les modèles discrets de l'équation de Boltzmann dans un tube mince infini, C. R. Acad. Sci., Série I, Paris 313 (1991), 29-32.
[13] Yamazaki, M., Existence globale pour les modèles discrets de l'équation de Boltzmann dans un tube mince infini en dimension 1 d'espace, J. Fac. Sci. Univ. Tokyo, Sec. IA 39 (1992), 43-59.
[14] Yamazaki, M., Etude de l'équation de Boltzmann pour les modèles discrets dans un tube mince infini, Transport Theory and Statistical Physics, Proceedings of the Fourth MAFPD 21 (1992), 465-473.
[15] Yamazaki, M., Sur les modèles discrets pour l'équation cinétique des gaz, Doctor Thesis, Ecole Polytechnique (1993).
(Revised April 5, 1994)
Department of Mathematical Sciences University of Tokyo
Komaba, Meguro-ku, Tokyo
Japan
Present address
Institute of Mathematics
University of Tsukuba Tsukuba 305
Japan

[^0]: 1991 Mathematics Subject Classification. Primary 35Q35; Secondary 82C40, 76P05.

