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Nondegeneracy and Single-point-blowup

for Solution of the Heat Equation

with a Nonlinear Boundary Condition

By Bei Hu

Abstract. This paper studies the nondegeneracy of the blowup
limit and the single-point-blowup for the heat equation ut = ∆u with
the nonlinear boundary condition un = up on ∂Ω×[0, T ). Under certain
blowup rate assumption (which was established recently under some
assumptions on the initial data), we prove that the blowup limit is
nontrivial at the blowup point. We also establish that the single-point-
blowup occurs in two space dimensional radially symmetric domain
with non-radially symmetric initial data with only one “hill” on the
boundary.

1. Introduction

Let us consider the following heat equation with a nonlinear boundary

condition:

∂u

∂t
= ∆u for x ∈ Ω, t > 0,(1.1)

∂u

∂n
= up for x ∈ ∂Ω, t > 0,(1.2)

u(x, 0) = u0(x) for x ∈ Ω (u0(x) ≥ 0),(1.3)

where Ω is a bounded domain in Rn with boundary ∂Ω ∈ C2+α (0 < α < 1),

n is the exterior normal vector on ∂Ω, p > 1 and u0(x) ≥ 0.

It is known for a long time (cf. [19], [20], [22]) that the solution blows

up, for certain u0(x), and in [6] for all u0(x) �≡ 0. If up is replaced by a
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general nonlinear function f(u), a necessary and sufficient condition was

found in [22] for the problem to have a finite time blowup.

In the one space dimensional case as well as a radially symmetric do-

main in Rn, the blowup set, blowup rate and asymptotic blowup limit were

obtained (see [6] [7]) under certain monotonicity assumptions on the initial

data. The blowup rate is also studied in [3] with more general initial data.

Similar questions are also studied in [5] for equation (1.1) with an additional

competing absorption term −cuq with the boundary and initial conditions

(1.2)–(1.3).

The problem for a general domain in several space dimension is more

difficult than the one dimensional case. The local existence theorem for

u0 ∈ Lq (q > n(p−1)/2) for the system (1.1)–(1.3) is obtained in [17]. Using

the integral equation method, partial results on blowup were obtained in

[25]. In our recent papers [15] [16], the blowup rate is established for all

subcritical p’s, namely, for 1 < p < n
n−2 in the case n ≥ 3 and 1 < p <∞ in

the case n = 2, under the assumption ∆u0(x) ≥ 0. The asymptotic blowup

limit is also discussed.

There are a lot of similarities between the system (1.1)–(1.3) and the

equation:

ut − ∆u = up, (p > 1).(1.4)

For this equation, questions like blowup rate, blowup limit, nondegener-

acy, single-point-blowup or finite-point-blowup were studied extensively by

a number of authors (cf. [1], [2], [4], [8], [11]-[13], [21], [23]-[24], etc.). In [8]

various results regarding to the blowup rate and blowup set were obtained.

Later, by introducing self-similarity variables, the authors of [12] eliminated

the monotonicity condition and obtained the rate estimates for subcritical

p’s, namely, for p ∈ (1, n+2
n−2). Moreover, the asymptotic behavior near the

blowup time was obtained in [11]–[13]. Questions like single-point-blowup

or finite-point-blowup were studied in [8], [4], etc..

This work is a continuation of our works [15] [16]. We state the nonde-

generacy result as follows.

Suppose that

max
x∈Ω

u(x, t) ≤ P

(T − t)β , β =
1

2(p− 1)
,(1.5)
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for some positive constant P . If for some K > 0

lim inf
t→T

(T − t)β inf
|y|≤K

u(a+ y
√
T − t, t) = 0,(1.6)

then a is not a blowup point, namely, u(x, t) is uniformly bounded in a

neighborhood of the point a. In another words, the blowup limit cannot

be 0 if a is a blowup point. As mentioned above, the assumption (1.5) is

valid (see [15], [16]) for subcritical p’s with monotonicity assumptions on

the initial data (i. e., ut(x, 0) = ∆u0(x) ≥ 0).

A natural question is whether it is possible to have a single-point-blowup.

For equation (1.4) in one space dimensional case, Chen-Matano [4] studied

the number of blowup points by looking at the sign of the ux (actually, more

general f(u, t) in place of up is studied in [4]). For the system (1.1)–(1.2),

one can also study the one space dimensional problem or the radially sym-

metric data on a radially symmetric domain (which is essentially one space

dimensional). However, such a system must have blowup points everywhere

on the boundary, if blowup ever occurs, owing to the symmetry of the data.

Here, we shall study a two space dimensional problem with radially symmet-

ric domain, but with non-radially symmetric data. Therefore the problem

remains two dimensional. We shall establish the single-point-blowup for

those monotone initial data with only one hill on the boundary. Our result

is as follows.

Let n = 2, Ω = B1(0) = {(x1, x2); x
2
1 + x2

2 < 1} and 1 < p < ∞. We

assume that u0(r, θ) = ũ0(x) (x1 = r cos θ, x2 = r sin θ) is C2 and satisfies:

u0 ≥ 0, ∆xũ0 ≥ 0 for x ∈ B1(0),(1.7)

∂u0

∂r
= up0 for |x| = 1,(1.8)

∂u0

∂θ
(r, θ) < 0 for 0 < r < 1, 0 < θ < π,(1.9)

u0(r, θ) = u0(r, 2π − θ) for 0 ≤ r ≤ 1, 0 ≤ θ ≤ π.(1.10)

Then (r, θ) = (1, 0) is the only blowup point.

In section 2, we shall establish a local estimate, the proof is purely

based on the regularity (Hölder’s estimate, etc.) of parabolic equations.

This local estimate, together with the energy estimates in section 3, gives

us the nondegeneracy result.
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It turns out that the nondegeneracy result is a powerful tool to study

whether single-point-blowup will occur. By the monotonicity of the solu-

tion, all asymptotically self similar solution will have to converge to the one

dimensional solution of the limit equation, if we have more than two blowup

points. This gives us a sharp estimate on the rate of ∂u/∂θ as t → T − 0,

which leads to the single-point-blowup result in section 4.

2. Local estimates

Suppose that u satisfies the equations (1.1)–(1.3) and that

u(x, t) ≤ ε

(T − t)β for (x, t) ∈ Qδ(a) ≡
(
Bδ(a) ∩ Ω

)
× (T − δ2, T ),(2.1)

for some a ∈ ∂Ω and δ > 0. (If a ∈ Ω, then [16, Theorem 4.1] implies that

a is not a blowup point). We want to show that a is not a blowup point if

ε is small enough.

Proposition 2.1. There exists ε0 > 0, depending only on p, n and

C2,α norm of ∂Ω (it is independent of δ), such that if (2.1) is valid for some

ε ≤ ε0, then

u(x, t) ≤ C for x ∈ Bδ/2m(a) ∩ Ω, 0 < t < T,

for some m > 1.

For the application of this proposition later on, it is important to keep

ε0 to be independent of δ. We divide the proof into two lemmas. In the

proof of the following Lemma 2.2, the scaling argument, together with the

parabolic Hölder’s estimates, gives a function inequality which will imply

a better rate estimate than that in (2.1). Similar procedure will then be

iterated in Lemma 2.3 to obtain Proposition 2.1. Therefore, Proposition 2.1

can be viewed as a direct consequence of the regularity theory of parabolic

equations.

Lemma 2.2. There exists ε0 > 0, depending only on p, n and C2,α

norm of ∂Ω, such that if (2.1) is valid for some ε ≤ ε0, then

u(x, t) ≤ C(ε, δ, p, ∂Ω)

(T − t)η for x ∈ Bδ/2(a) ∩ Ω, 0 < t < T,(2.2)
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where η = max
(β

2
, β − 1

2

)
.

Proof. For simplicity, we let a = 0. Take a cutoff function ζ(x) such

that

ζ(x) =

{
1 for |x| ≤ δ/2
0 for |x| ≥ 3δ/4

,
∂ζ

∂n
(x) = 0 on ∂Ω,

0 ≤ ζ(x) ≤ 1, |∇ζ(x)| ≤ C
δ
, |D2ζ(x)| ≤ C

δ2
.

(2.3)

Then the function v = ζu satisfies the equations

∂v

∂t
− ∆v = −2∇ζ · ∇u− u∆ζ ≡ f(x, t) in Ω × (0, T ),(2.4)

∂v

∂n
= up−1v on ∂Ω × [0, T ].(2.5)

For each (x∗, t∗) ∈
(
B3δ/4(0) ∩ Ω

)
× [T − δ2, T ), we set

L(t∗) = max
{x∈Bδ(0)∩Ω, 0≤t≤t∗}

u(x, t)

and introduce the scaling

ϕ(y, s) =
1

L(t∗)
u(λy + x∗, λ2s+ t∗), λ =

1

L(p−1)(t∗)
.

The parabolic Schauder’s estimate (see [9], [18]) then easily leads to

|∇u(x∗, t∗)| ≤ CLp(t∗) ≤ C

(T − t∗)(1/2)+β
for x∗ ∈ B3δ/4 ∩ Ω, 0 < t∗ < T.

Let

M(t) = max
x∈Ω,0≤τ≤t

v(x, τ).(2.6)

For each t̃ ∈ [T − ε2(p−1)δ2, T ) (we assume that ε2(p−1) < 1/4), either

M(t̃ ) ≤M(2t̃− T ),(2.7)

or

M(t̃ ) > M(2t̃− T ).(2.8)
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In the following discussion, we shall assume that (2.8) is valid. It follows

that there exists (x∗, t∗) such that x∗ ∈ Ω ∩ {|x| ≤ 3δ/4}, t∗ ∈ (2t̃ − T, t̃ ]

and M(t̃ ) = v(x∗, t∗).
We shall use the scaling argument analogous as in [10]. Introduce the

rescaled function

ϕλ(y, s) =
1

M(t̃ )
v(λy + x∗, λ2s+ t∗) for y ∈ Ωλ,−

δ2

2λ2
≤ s ≤ 0,(2.9)

where Ωλ = {y; λy + x∗ ∈ Ω}. If we choose

λ =

√
T − t∗
εp−1

,(2.10)

then λ ≤
√

2δ. So the function ϕλ solves

∂ϕλ
∂s

= ∆yϕλ +
λ2

M(t̃ )
f̃(y, s) for y ∈ Ωλ,−

1

4
≤ s ≤ 0,

∂ϕλ
∂n

= b(y, s)ϕλ for y ∈ ∂Ωλ,−
1

4
≤ s ≤ 0,

0 ≤ ϕλ(y, s) ≤ 1, for y ∈ Ωλ,−
1

4
≤ s ≤ 0,

where f̃(y, s) = f(x, t) and b(y, s) = λup−1(x, t). By (2.1),

|b(y, s)ϕλ| ≤ |b(y, s)| ≤ 1

εp−1
εp−1 ≤ 1;

it is clear that for f̃(y, s),

|f̃(y, s)| ≤ C(δ)

(T − t∗)(1/2)+β
+

C(δ)

(T − t∗)β .

Therefore, we can apply the parabolic interior-boundary Hölder’s estimates

(see [18], or one can simply write the solution in terms of the Green’s func-

tion for the Neumann data, and obtain Hölder’s estimate immediately) to

obtain

‖ϕλ‖C2σ,σ(Ωλ×{−1/8≤s≤0}) ≤ C1

(
1 +

λ2

M(t̃ )
‖f̃ ‖L∞

)



Single-point-blowup 257

for some universal constants C1 and σ ∈ (0, 1/2) depending only on n and

∂Ω. It follows that, in terms of v,

v(x∗, t∗) − v(x∗, λ2s+ t∗)

≤ C1M(t̃ )

(
1 +

λ2

M(t̃ )
‖f̃ ‖L∞

)
|s|σ for − 1

8
< s < 0.

Therefore, for −1/8 < s < 0,

M(t̃ ) ≤ C1M(t̃ )|s|σ +M(λ2s+ t∗) +
C(δ, ε)

(T − t∗)β−1/2
|s|σ.(2.11)

We now let

s =
1

λ2

(
2t̃− T − t∗

)
= ε2(p−1) 2t̃− T − t∗

T − t∗ .

Since t∗ ∈ (2t̃− T, t̃ ], we have −ε2(p−1) ≤ s < 0. We assume that ε2(p−1) <

1/8. Then from (2.11),

(1 − C1ε
2(p−1)σ)M(t̃ ) ≤ M(2t̃− T ) +

C(δ, ε)

(T − t∗)β−1/2

≤ M(2t̃− T ) + C(δ, ε)

(
1 +

1

(T − t̃ )β−1/2

)
for T − ε2(p−1)δ2 ≤ t̃ < T with (2.8) holds.

It is obvious that the above inequality is valid when (2.7) holds. Let T−t̃ = τ

and g(τ) =M(T − τ), then

(1 − C1ε
2(p−1)σ)g(τ) ≤ g(2τ) + C(δ, ε)

(
1 +

1

τβ−1/2

)
for 0 < τ ≤ ε2(p−1)δ2.

Recalling that η = max
(β

2
, β − 1

2

)
> 0, (in fact, the proof works for any

η > 0 if β − 1
2 ≤ 0), we have

2η(1 − C1ε
2(p−1)σ)τηg(τ) ≤ (2τ)ηg(2τ) + C(δ, ε, p) for 0 < τ ≤ ε2(p−1)δ2.

We now take ε to be small enough such that

0 < ε ≤ ε0, 2η(1 − C1ε
2(p−1)σ
0 ) ≥ 1 +

2η − 1

2
, ε

2(p−1)
0 <

1

8
.(2.12)
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Then(
1 +

2η − 1

2

)
τηg(τ) ≤ (2τ)ηg(2τ) + C(δ, ε, p) for 0 < τ ≤ ε2(p−1)δ2.

This inequality, together with the continuity of τηg(τ), gives

τηg(τ) ≤ 2

2η − 1
C(δ, ε, p) + max

ε2(p−1)δ2/2≤σ≤ε2(p−1)δ2
σηg(σ),

for 0 < τ ≤ ε2(p−1)δ2. Rewriting this inequality in terms ofM(t), we obtain,

M(t) ≤ C(ε, δ, p)

(T − t)η , 0 < t < T.(2.13)

It is clear that ε0 dependents only on p and C1. Therefore ε0 depends only

on p, n and the C2+α norm of ∂Ω. The lemma is proved. ✷

Next, we prove

Lemma 2.3. If

u(x, t) ≤ C

(T − t)η for x ∈ Bδ(a) ∩ Ω, 0 < t < T,(2.14)

for some η < β and some C > 0, then

u(x, t) ≤ C(δ, p,Ω) for x ∈ Bδ/2m(a) ∩ Ω, 0 < t < T,(2.15)

for some m > 1.

Proof. For each (x∗, t∗) ∈
(
B3δ/4(a) ∩ Ω

)
× [T/2, T ), we let

L(t∗) = max
{x∈Bδ(a)∩Ω, 0≤t≤t∗}

u(x, t).

Similar to Lemma 2.2, the parabolic Schauder’s estimate (see [9], [18]) im-

plies that

|∇u(x∗, t∗)| ≤ CLp(t∗) ≤ C

(T − t∗)pη .(2.16)

Define function ζ as in (2.3), and define v = ζu as before. We apply the

same procedure as in (2.4)–(2.9) except that this time we define

λ = (T − t∗)η(p−1).(2.17)
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The function b(y, s) = λup−1(x, t) then satisfies

|b(y, s)ϕλ| ≤ (T − t∗)η(p−1) C

(T − t∗)η(p−1)
≤ C.

Similarly, f̃(y, s) satisfies

|f̃(y, s)| ≤ C(δ)

(T − t∗)pη .

Similar to (2.11), we now have

M(t̃ ) ≤ C1M(t̃ )|s|σ +M(λ2s+ t∗) +
C(δ, p)

(T − t∗)η(2−p)
|s|σ.(2.18)

Define s the same way as before, namely,

s =
1

λ2

(
2t̃− T − t∗

)
=

2t̃− T − t∗
(T − t∗)2η(p−1)

.

Since η < β, we easily conclude

−1

8
≤ −

(
T − t̃

)1−2η(p−1)
= −

(
T − t̃

)1−η/β
≤ s < 0,

provided T − t̃ is small enough. Substitute this into (2.18), we obtain

M(t̃ ) ≤ C1M(t̃ )|T − t̃|σ(1−η/β)

+M(2t̃− T )

+C(δ, p)

(
1 +

1

(T − t̃ )η−(p−1)η−σ(1−η/β)

)
.

(2.19)

Similar to the proof of Lemma 2.2, we now obtain a better rate estimate as

follows.

u(x, t) ≤M(t) ≤ C(δ, p, η)

(T − t)θ for x ∈ Bδ/2(a) ∩ Ω, 0 < t < T,

where

θ = max

(
1

2(2p− 1)
, η − (p− 1)η − σ(1 − η/β)

)
.

For any η < β, (notice that 0 < σ < 1/2)

(p− 1)η + σ(1 − η/β) = σ + η[(p− 1) − 2σ(p− 1)
]
≥ σ.
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Therefore by repeating this procedure finitely many times (the exponent will

be reduced by at least σ each time we apply the procedure, if the resulting

exponent is still ≥ 1/(4p− 2) ), we obtain

u(x, t) ≤ C

(T − t)1/(4p−2)
for x ∈ Bδ/2m−1(a) ∩ Ω, 0 < t < T,(2.20)

for somem > 1. But then the regularity obtained from the scaling argument

as in (2.16) gives∣∣∣∣∂u∂t (x, t)
∣∣∣∣ ≤ C

(T − t)(2p−1)/(4p−2)

=
C√
T − t

for x ∈ Bδ/2m(a) ∩ Ω, 0 < t < T,

which implies that

u(x, t) ≤ u(x, 0) +

∫ t

0
ut(x, τ)dτ ≤ C for x ∈ Bδ/2m(a) ∩ Ω, 0 < t < T.

The lemma is proved. ✷

3. Nondegeneracy of blowup limit

We will assume throughout this section that

max
x∈Ω

u(x, t) ≤ P

(T − t)β , β =
1

2(p− 1)
,(3.1)

for some positive constant P . This estimate is valid if we assume the fol-

lowing (see [15], [16])

1 < p <∞ for n = 2, 1 < p <
n

n− 2
for n ≥ 3,(3.2)

∂Ω ∈ C2+α for some α ∈ (0, 1),(3.3)

u0 ≥ 0, ∆u0 ≥ 0 for x ∈ Ω,(3.4)

∂u0

∂n
= up0 for x ∈ ∂Ω.(3.5)

As in Giga and Kohn [11]–[13], we introduce the scaled solution:

wa(y, s) = (T − t)βu(x, t),
x− a = y

√
T − t, T − t = e−s,
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where a is a fixed point on ∂Ω. If u solves (1.1), then wa solves

∂

∂s
wa − ∆wa +

1

2
y · ∇ywa + βwa = 0 in W

∂wa

∂n
= wp

a on ∂pW,
(3.6)

where

W =
⋃

s>s0+1

Ωa(s),

and

Ωa(s) = {(y, s); e−s/2y + a ∈ Ω}, s0 = − lnT.

The estimate (3.1) implies the following estimates∣∣∣∣∣ ∂∂xj u(x, t)
∣∣∣∣∣ ≤ C(P, p,Ω) max

x∈Ω
up(x, t) ≤ C(P, p,Ω)

(T − t)pβ ,∣∣∣∣∣ ∂2

∂xj∂xk
u(x, t)

∣∣∣∣∣ ≤ C(P, p,Ω) max
x∈Ω

u2p−1(x, t) ≤ C(P, p,Ω)

(T − t)(2p−1)β
,

(see the proof of [16, Theorem 3.1]). As a consequence,

0 ≤ wa(y, s) ≤ C(P, p,Ω) for (y, s) ∈W,(3.7) ∣∣∣∣∣ ∂∂yjwa(y, s)

∣∣∣∣∣ ≤ C(P, p,Ω) for (y, s) ∈W,(3.8) ∣∣∣∣∣ ∂2

∂yj∂yk
wa(y, s)

∣∣∣∣∣ ≤ C(P, p,Ω) for (y, s) ∈W,(3.9)

where the constants C are independent of the point a. For the following

“energy” functional (as in Giga and Kohn [12])

Ea(s) =
1

2

∫
Ωa(s)

(
ρ|∇ywa|2 + βρw2

a

)
dy − 1

p+ 1

∫
∂Ωa(s)

ρwp+1
a dS,(3.10)

(
where ρ = exp(−y2/4)

)
, it is established in [16, section 5] that

d

ds
Ea(s) ≡ −

∫
Ωa(s)

ρ

∣∣∣∣∂wa

∂s

∣∣∣∣2dy + Ja(s),

Ja(s) ≤ C∗e−s/4,

d

ds

[
Ea(s) + 4C∗e−s/4

]
≤ 0,

(3.11)
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and ∫ ∞

s0

∫
Ωa(s)

ρ

∣∣∣∣∂wa

∂s

∣∣∣∣2dyds <∞.(3.12)

A careful examination of the proof given in [16] indicates that the constant

C∗ in inequality (3.11) is independent of the point a; it dependents only on

n, p, Ω, and P . Notice that (3.11) claims that the “energy Ea(s)” has a

limit “Ea(∞)”. The energy Ea(s) is the difference of two terms:

E1
a(s) =

∫
Ωa(s)

(
ρ|∇ywa|2 + βρw2

a

)
dy,

E2
a(s) =

∫
∂Ω(s)

ρwp+1
a dS.

It is proved in [16] that the limits of both terms exist, and

lim
s→∞

E1
a(s) =

2(p+ 1)

p− 1
Ea(∞), lim

s→∞
E2

a(s) =
2(p+ 1)

p− 1
Ea(∞).(3.13)

Lemma 3.1. Let the assumption (3.1) be in force. If for some K > 0

lim inf
t→T

(T − t)β inf
|y|≤K

u(a+ y
√
T − t, t) = 0,(3.14)

then,

lim sup
t→T

(T − t)β sup
|y|≤K

u(a+ y
√
T − t, t) = 0.(3.15)

Proof. Without loss of generality we may assume that the exterior

normal direction at the point a is (−1, 0, · · · , 0). By (3.14), there exists

(yj , sj) such that

lim
j→∞

yj = ỹ ∈ Rn
+, lim

j→∞
sj = +∞, and lim

j→∞
wa(yj , sj) = 0,(3.16)

where Rn
+ = {(y1, · · · , yn); y1 > 0}. From (3.7)–(3.9), there exists a further

subsequence of sj ’s, still denoted by sj , such that wa(y, s + sj) converges

uniformly on any compact set to a function w∞
a (y, s). The estimate (3.12)

implies that w∞
a is independent of s. Hence

−∆yw
∞
a +

1

2
y · ∇yw

∞
a + βw∞

a = 0 in Rn
+,(3.17)

∂w∞
a

∂n
= (w∞

a )p on y1 = 0.(3.18)
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It is clear that w∞
a (y) ≥ 0 and, by (3.16), w∞

a (ỹ) = 0. If ỹ ∈ Rn
+, then

w∞
a (y) ≡ 0, by strong maximum principle. If ỹ ∈ ∂Rn

+, then by (3.18),

w∞
a (ỹ) = ∂

∂nw
∞
a (ỹ) = 0. Thus w∞

a (y) ≡ 0, by Hopf’s lemma. It follows that

Ea(∞) = Ea[w
∞
a ] = 0. Thus by (3.13),

lim
s→∞

E1
a(s) = lim

s→∞

∫
Ωa(s)

(
ρ|∇ywa|2 + βρw2

a

)
dy = 0.(3.19)

The estimates (3.7)–(3.9) implies that, for any given sequence sj → ∞, there

is a further subsequence {sjk} such that wa(y, sjk) converges uniformly on

any compact set to a limit function as sj → ∞. (3.19) implies that this limit

function has to be identically 0. Thus wa(y, sjk) converges to 0 uniformly

on any compact set. Since the limit function w∞
a ≡ 0 is independent of

the choices of the sequences {sj}, the function wa(y, s) has to converge to 0

uniformly on any compact set, as s → ∞ (not just on subsequences). The

lemma is proved. ✷

We next prove

Lemma 3.2. Let the assumption (3.1) be in force. If

u(x, t) ≤ ε

(T − t)β for (x, t) ∈
(
Bδ(a) ∩ ∂Ω

)
× (T − δ2, T ),(3.20)

then there exists c = c(ε, δ, P, p, n) > 0 such that

u(x, t) ≤ 3ε

(T − t)β for x ∈ Ω, |x− a| ≤
√
εδ√
P
, T − c < t < T.(3.21)

Proof. It is easy to check that (assuming that a = 0)

ε

(T − t)β
(

1 +
P |x|2
εδ2

)
+ L

(
L =

P

(εβδ2/2nP )β
≥ max

{τ=T−εβδ2/2nP}
u(x, τ)

)
is a supersolution for T − εβδ2

2nP < t < T , |x| < δ. Restricting x to |x| ≤
√
εδ√
P

and further restricting t to t ≥ T − (ε/L)2(p−1), we obtain (3.21). ✷

We next derive some inequalities. Multiplying the equation (3.6) with

waρ and integrating over Ωa(s) with respect to y, we obtain

E1
a(s) − E2

a(s) = −
∫
Ωa(s)

ρwa
∂wa

∂s
dy.(3.22)



264 Bei Hu

It follows that

p− 1

2
E1

a(s) = (p+ 1)Ea(s) −
[
E1

a(s) − E2
a(s)

]
= (p+ 1)Ea(s) +

∫
Ωa(s)

ρwa
∂wa

∂s
dy(3.23)

≤ (p+ 1)Ea(s) +
1

8

∫
Ωa(s)

ρw2
ady

+ 2

∫
Ωa(s)

ρ

∣∣∣∣∂wa

∂s

∣∣∣∣2 dy,
which implies that

p− 1

2

∫
Ωa(s)

ρ|∇ywa|2dy +
1

8

∫
Ωa(s)

ρw2
ady

≤ (p+ 1)Ea(s) + 2

∫
Ωa(s)

ρ

∣∣∣∣∂wa

∂s

∣∣∣∣2 dy
= (p+ 1)Ea(s) + 2

(
Ja(s) −

d

ds
Ea(s)

)
.

Integrating this equation from s to s+ 1, we get

p− 1

2

∫ s+1

s

∫
Ωa(s)

ρ|∇ywa|2dyds+
1

8

∫ s+1

s

∫
Ωa(s)

ρw2
adyds

≤ (p+ 5) max
s≤σ≤s+1

Ea(σ) + 2C∗e−s/4.

(3.24)

The estimates (3.7)–(3.9), together with the equation (3.6), imply∣∣∣∣∂wa

∂s
(y, s)

∣∣∣∣ ≤ C(P, p,Ω) for y ∈ Ωa(s), |y| ≤ 1, s > s0 + 1.(3.25)

The boundary ∂Ωa(s) is C2 uniformly as s → ∞; it is certainly uniformly

Lipschitz. Using the elliptic version of the interpolation theorem (the proof

is similar to those in [14]), (3.8) and (3.25), viewing t as another variable,

we obtain

‖wa‖C(B) ≤ C

[
‖wa‖C(B) +

∥∥∥( ∂
∂s
,∇y

)
wa

∥∥∥
C(B)

]n+1
n+3

·
[ ∫∫

B
w2

adydσ

] 1
n+3
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≤ C(P, p,Ω)

[ ∫∫
B
ρw2

adydσ

] 1
n+3

(3.26)

≤ C(P, p,Ω)

[
(p+ 5) max

s≤σ≤s+1
Ea(σ) + 2C∗e−s/4

] 1
n+3

,

where B = {(y, σ); y ∈ Ωa(s), s < σ < s + 1}. (3.22)–(3.26) are valid for

all a ∈ ∂Ω, with constants independent of a.

Our main result of this section is

Proposition 3.3. Let the assumption (3.1) be in force. If for some

K > 0

lim inf
t→T

(T − t)β inf
|y|≤K

u(a+ y
√
T − t, t) = 0,(3.27)

then a is not a blowup point.

Proof. By Lemma 3.1,

lim
s→∞

Ea(s) = 0.

Thus for any η > 0, there exists s∗ large enough such that

4C∗e−s∗/4 ≤ η, Ea(s
∗) ≤ η.(3.28)

For this fixed s∗, it is clear that Eb(s
∗) is a continuous function in the

variable b ∈ ∂Ω. Therefore there exists a neighborhood N of a such that

Eb(s
∗) ≤ 2η for b ∈ ∂Ω ∩N.(3.29)

Now by (3.11), (3.28) and (3.29),

Eb(s) ≤ Eb(s
∗) + 4C∗e−s∗/4 ≤ 3η for any s ≥ s∗, b ∈ ∂Ω ∩N.

Substituting this inequality into (3.26), we obtain

wb(0, s) ≤ C(P, p,Ω)
[
(3p+ 16)η

] 1
n+3(3.30)

for any s ≥ s∗, b ∈ ∂Ω ∩N.

We now take η to be sufficiently small so that the right-hand-side of (3.30)

is less than ε0/3, where ε0 is determined in Proposition 2.1. Since ε0 is in-

dependent of the neighborhood N , the conclusion now follows from Lemma

3.2 and Proposition 2.1. ✷
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4. Single-point-blowup

In this section, we restrict our attention to the case of space dimen-

sion n = 2 and the domain is radially symmetric, say, Ω = B1(0) =

{(x1, x2); x
2
1 + x2

2 < 1}. If the initial data is radially symmetric, then

the solution is also radially symmetric; in this case, the problem is essen-

tially one space dimensional and the solution will blow up everywhere on

the boundary |x| = 1.

Here, we shall consider those initial data which are not radially sym-

metric. We shall establish the single-point-blowup for those nice initial

data with only one hill on the boundary.

We first rewrite the equations (1.1)–(1.3) in polar coordinates

L[u] = 0 for 0 ≤ r < 1, 0 ≤ θ < 2π,(4.1)

∂u

∂r
= up for r = 1, 0 ≤ θ < 2π,(4.2)

u(r, θ, 0) = u0(r, θ) for 0 ≤ r < 1, 0 ≤ θ < 2π, (u0 ≥ 0),(4.3)

where 1 < p <∞ and

L =
∂

∂t
− ∆x =

∂

∂t
−

( ∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂

∂θ

)
.(4.4)

We assume that u0(r, θ) = ũ0(x) (x1 = r cos θ, x2 = r sin θ) is C2 and

satisfies:

u0 ≥ 0, ∆xũ0 ≥ 0 for x ∈ B1(0),(4.5)

∂u0

∂r
= up0 for |x| = 1,(4.6)

∂u0

∂θ
(r, θ) < 0 for 0 < r < 1, 0 < θ < π,(4.7)

u0(r, θ) = u0(r, 2π − θ) for 0 ≤ r ≤ 1, 0 ≤ θ ≤ π.(4.8)

The main result of this section is

Theorem 4.1. Under the assumption (4.5)–(4.8), the point (r, θ) =

(1, 0) is the only blowup point.

Proof. First, by uniqueness of the system and (4.8), we easily obtain

u(r, θ, t) = u(r, 2π − θ, t) for 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 < t < T,(4.9)
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where T is the blowup time. This implies that

∂u

∂θ
= 0 on θ = 0 and θ = π.(4.10)

Using (4.7), (4.10) and applying the maximum principle to
∂u

∂θ
(notice that

the operator L may have a singularity at r = 0, however, there is no problem

since we can apply the maximum principle to
∂u

∂θ
= −x2ũx1 + x1ũx2 in

rectangular coordinates), we obtain

∂u

∂θ
< 0 for 0 < r < 1, 0 < θ < π.(4.11)

The blowup occurs only at the boundary ([16, Corollary 4.2]). Therefore,

if the conclusion is not true, then there exists θ0 ∈ (0, π] such that (r, θ) =

(1, θ0) is a blowup point. But then (4.11) implies that

(r, θ) = (1, θ) (0 ≤ θ ≤ θ0) are all blowup points.(4.12)

Thus by Proposition 3.3 and (4.11),

lim inf
t→T−0

inf
{0≤θ≤θ0}

(T − t)βu(1, θ, t) ≥ lim inf
t→T−0

(T − t)βu(1, θ0, t) > 0.

It turns out that the above estimate is not enough for our proof, for technical

reasons. We need more accurate estimate (see (4.19)–(4.20) below) for the

solution u. We need the following facts:

Claim 1.

lim inf
t→T−0

u(1, θ1, t)

u(1, θ2, t)
= 1 for any 0 < θ2 < θ1 < θ0.(4.13)

If (4.13) is not true (notice that u(1, θ1, t) < u(1, θ2, t)), then there exist

ε > 0 and tj → T − 0 such that

u(1, θ1, tj)

u(1, θ2, tj)
≤ 1 − ε for j = 1, 2, 3, · · · .(4.14)

We now take θ∗ such that θ1 < θ
∗ < θ0. We now go back to the rectangular

coordinate for the solution ũ(x1, x2, t) = u(r, θ, t). Set x∗ = (x∗1, x
∗
2) =
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(cos θ∗, sin θ∗). Let w1(y, s) and w2(y, s) be the solution in similarity variable

at the point (x1, x2) = (1, 0) and the point (x1, x2) = (x∗1, x
∗
2), respectively.

We assume that a rotation (in y) has been made so that (−1, 0) is the

exterior normal direction at the point (y1, y2) = (0, 0). More precisely,

w1(y, s) = (T − t)βũ(x, t), x− (1, 0)√
T − t

= R1y, T − t = e−s,(4.15)

w2(y, s) = (T − t)βũ(x, t), x− x∗√
T − t

= R2y, T − t = e−s,(4.16)

where R1 and R2 are rotation operators. Clearly, (3.7)–(3.9) and (3.12)

are valid for both w1 and w2. Now let sj = − log(T − tj). There exists a

subsequence of sj ’s, still denoted by sj , such that w1(y, s+sj) and w2(y, s+

sj) converge uniformly on any compact set. (3.12) implies that the limits,

denoted by w∞
1 and w∞

2 respectively, are independent of the variable s. It

is also clear that w∞
1 and w∞

2 are C2(R2
+) functions satisfying the equations

(3.17)–(3.18).

Now by (4.9), (4.11) and (4.14),

(T − tj)βu(1, θ∗ + θ, tj) ≤ (T − tj)βu(1, θ1, tj)
≤ (1 − ε)(T − tj)βu(1, θ2, tj)
≤ (1 − ε)(T − tj)βu(1, θ, tj),

for any θ such that |θ| ≤ min [θ2, θ
∗ − θ1]. Therefore by letting sj → ∞, we

easily conclude that

w∞
2 ≤ (1 − ε)w∞

1 on {y1 = 0}.

Thus by the boundary condition (3.18),

∂w∞
2

∂n
= (w∞

2 )p ≤ (1 − ε)p(w∞
1 )p = (1 − ε)p∂w

∞
1

∂n
.

By the comparison principle (see Lemma 4.2 below),

w∞
2 ≤ (1 − ε)pw∞

1 on R2
+.

Continue this iteration process, we obtain w∞
2 ≤ (1− ε)pmw∞

1 for any posi-

tive integer m, and hence w∞
2 ≡ 0. This implies that w2(y, s+sj) converges

to 0 uniformly on any compact set; especially,

lim
j→∞

w2(0, sj) = 0,
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i.e.,

lim
j→∞

(T − tj)βu(1, θ∗, tj) = 0.

Thus Proposition 3.2 implies that (r, θ) = (1, θ∗) is not a blowup point,

which is a contradiction. This proves the Claim 1.

Claim 2. Let ψ(y1) be a positive function of the variable y1 only satis-

fying (3.17)–(3.18) (the one dimensional, strictly positive, bounded solution

of the system (3.17)–(3.18) is unique, see [7, Lemma 3.1]). Let wθ∗ be the

solution in similarity variable in (4.16) at the point (r, θ) = (1, θ∗), then

lim inf
s→∞

wθ∗(y, s) = lim sup
s→∞

wθ∗(y, s) = ψ(y1) for any 0 < θ∗ < θ0,(4.17)

where the limit in the above equality is taken uniformly on any compact

set.

In fact, since the estimates (3.7)–(3.9) and (3.12) are valid for wθ∗ ,

we can always take subsequence sj such that the sequence of the solution

wθ∗(y, s+sj) converges uniformly on any compact set to a function w∞
θ∗ . As

before, (3.12) implies that w∞
θ∗ is independent of the variable s.

Let tj = T − exp(−sj). We take θ1 and θ2 such that 0 < θ2 < θ
∗ < θ1 <

θ0. Then by the monotonicity (4.11) and Claim 1,

(T − tj)βu(1, θ∗ + θ, tj) ≤ (T − tj)βu(1, θ2, tj)
≤ (1 + ε(tj))(T − tj)βu(1, θ1, tj)
≤ (1 + ε(tj))(T − tj)βu(1, θ∗ + θ̂, tj)

( lim
tj→T−0

ε(tj) = 0 by (4.13)),

for any θ and θ̂ such that |θ|, |θ̂| ≤ min (θ∗ − θ2, θ1 − θ∗). Letting sj =

− log(T − tj) → ∞, we easily obtain that the function w∞
θ∗ is independent of

the variable y2 on the boundary {y1 = 0}. Thus w∞
θ∗ ∈ C∞(R2

+) and
∂w∞

θ∗

∂y2
is bounded on R2

+. Differentiating the equation for w∞
θ∗ with respect to y2

and apply the maximum principle (see Lemma 4.2 below), we obtain that
∂w∞

θ∗

∂y2
≡ 0 on R2

+. Thus w∞
θ∗ is a function of the variable y1 only. Since the

one dimensional strictly positive bounded solution ψ of the system (3.17)–

(3.18) is unique, we conclude that w∞
θ∗ ≡ ψ(y1) on R2

+.
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Now for any sequence sj → ∞, there is a further subsequence sjk such

that wθ∗(y, s+sjk) converges uniformly on any compact set. We just proved

that the limit function (on this subsequence sjk) has to be the one dimen-

sional solution ψ(y1), which is unique. Thus the limit lims→∞wθ∗(y, s)

exists (not just on subsequences), and the limit equals ψ(y1). Claim 2 is

proved.

Now let

D = ψ(0).(4.18)

Claim 2 implies that

D − ε(t)
(T − t)β ≤ u(1, 3θ0

4
, t) ≤ u(1, θ, t)

≤ u(1, θ0
4
, t) ≤ D + ε(t)

(T − t)β for
θ0
4

≤ θ ≤ 3θ0
4
,

(4.19)

where

lim
t→T−0

ε(t) = 0.(4.20)

Construction of a comparison function: We now construct an aux-

iliary function with the help of the one dimensional solution ψ(y1) of the

system (3.17)–(3.18).

Recall that ([7, Lemma 3.1])

ψ(ξ) = d0U
(
β,

1

2
,
ξ2

4

)
for ξ ≥ 0,

U(a, b, µ) =
1

Γ(a)

∫ ∞

0
e−µtta−1(1 + t)b−a−1dt,(4.21)

d0 =
1√
π

[
β

Γp(β + 1
2)

Γ(β + 1)

]2β
,

ψ(ξ) = Kξ−2β[1 +O(ξ−2)] (K > 0).

A direct calculation shows that (notice that b− a− 1 = 1
2 − β − 1 < 0)

∂U

∂µ
(a, b, µ)

U(a, b, µ)
=

−
∫ ∞

0
e−µtta(1 + t)b−a−1dt∫ ∞

0
e−µtta−1(1 + t)b−a−1dt
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= − 1

µ

∫ ∞

0
e−t ta(1 + t/µ)b−a−1dt∫ ∞

0
e−t ta−1(1 + t/µ)b−a−1dt

≤ − c1
µ

for µ ≥ 1

(c1 is a positive constant depending only on a and b),

which implies that

dψ

dξ

ψ(ξ)
=

ξ
∂U

∂µ

(
β,

1

2
,
ξ2

4

)
2U

(
β,

1

2
,
ξ2

4

) ≤ − 2c1
ξ

for ξ ≥ 2.(4.22)

Notice that ψ′(ξ) < 0 for all ξ ≥ 0. Therefore (4.22) implies that

ψ′(ξ)

ψ(ξ)
≤ −c2

1 + ξ
for all ξ ≥ 0,(4.23)

where c2 is a positive constant depending only on p and β.

Define

z1(r, t) = z1(r, θ, t) =
1

(T − t)βψ
( 1 − r√
T − t

)
,

(
β =

1

2(p− 1)

)
.(4.24)

By using the equation for ψ, we get

L[z1] =
1

r

1

(T − t)β
1√
T − t

ψ′
( 1 − r√
T − t

)
≤ − c2ψ

r (T − t)β[(1 − r) +
√
T − t]

(4.25)

=
− c2

r [(1 − r) +
√
T − t]

z1 for 0 < r < 1, 0 < t < T,

where the operator L is defined in (4.4). On the boundary,

∂z1
∂r

= zp1 for r = 1, 0 < t < T.(4.26)



272 Bei Hu

Now take a fixed η such that 1 < η < p. Then

L[zη1 ] ≤ ηzη−1
1 L[z1]

≤ − c2η
r [(1 − r) +

√
T − t]

zη1 for 0 < r < 1, 0 < t < T,
(4.27)

∂zη1
∂r

= ηzp−1
1 zη1 =

ηDp−1

√
T − t

zη1 for r = 1, 0 < t < T,(4.28)

where the constant D is defined in (4.18). Define

z2(r, θ, t) = zη1 (r, t) sin
[2π

θ0

(
θ − θ0

4

)]
for
θ0
4

≤ θ ≤ 3θ0
4
.(4.29)

Then by (4.27),

L[z2] =

{
L[zη1 ] +

zη1 (r, t)

r2

(2π

θ0

)2
}

sin
[2π

θ0

(
θ − θ0

4

)]
≤

{ − c2η
[(1 − r) +

√
T − t]

+
1

r

(2π

θ0

)2
}
zη1
r

sin
[2π

θ0

(
θ − θ0

4

)]
(4.30)

< 0 for T − δ20 < t < T, 1 − δ0 < r < 1,
θ0
4
< θ0 <

3θ0
4
,

provided δ0 is small enough (depending only on p and θ0). It is also clear

that

z2 = 0 for θ =
θ0
4

and θ =
3θ0
4
, 0 < t < T, 0 < r < 1,(4.31)

∂z2
∂r

=
ηDp−1

√
T − t

z2 for r = 1,
θ0
4
< θ <

3θ0
4
, 0 < t < T.(4.32)

Completing the proof: The function
∂u

∂θ
satisfies the equations

L
[∂u
∂θ

]
= 0 for 0 ≤ r < 1, 0 ≤ θ < 2π, 0 < t < T,

∂

∂r

(∂u
∂θ

)
= pup−1∂u

∂θ
for r = 1, 0 ≤ θ < 2π, 0 < t < T.

By (4.20), we can take δ (0 < δ ≤ δ0, with the δ0 given in (4.30) ) to be

small enough such that

p
(
D − ε(t)

)p−1
> ηDp−1 for T − δ2 ≤ t < T(4.33)
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(this is possible since η < p); we now fix such an δ. Using (4.19) and (4.33),

we find that −∂u
∂θ

satisfies

L
[
− ∂u
∂θ

]
= 0 for 1 − δ < r < 1,

θ0
4
< θ <

3θ0
4
, T − δ2 < t < T,

∂

∂r

(
− ∂u
∂θ

)
>

ηDp−1

√
T − t

(
− ∂u
∂θ

)
for r = 1,

θ0
4
< θ <

3θ0
4
, T − δ2 ≤ t < T.

By Hopf’s lemma and strong maximum principle,

σ1 = inf
{θ0/4≤θ≤3θ0/4, 1−δ≤r≤1}

[
− ∂u
∂θ

(r, θ, T − δ2)
]
> 0.(4.34)

Since the solution u is uniformly bounded in the region {r ≤ 1−δ/2, T−δ2 ≤
t < T}, the strong maximum principle also implies that

σ2 = inf
{θ0/4≤θ≤3θ0/4, T−δ2≤t<T}

[
− ∂u
∂θ

(1 − δ, θ, t)
]
> 0.(4.35)

Using the fourth equation in (4.21), we know that z2 is uniformly bounded

on {r = 1 − δ, T − δ2 ≤ t < T}. Therefore by comparison principle,

− ∂u
∂θ

≥ γz2 for
θ0
4

≤ θ ≤ 3θ0
4
, 1 − δ ≤ r ≤ 1, T − δ2 ≤ t < T,(4.36)

provided γ is small enough such that

σ1 > γz2(r, θ, T − δ2) for 1 − δ ≤ r ≤ 1,
θ0
4

≤ θ ≤ 3θ0
4
,

σ2 > γz2(1 − δ, θ, t) for T − δ2 ≤ t < T, θ0
4

≤ θ ≤ 3θ0
4
.

If we further restrict θ to [3θ0/8, 5θ0/8], (4.36) implies that

−∂u
∂θ

≥ γ
√

2

2

Dη

(T − t)βη(4.37)

for r = 1,
3θ0
8

≤ θ ≤ 5θ0
8
, T − δ2 ≤ t < T.
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Now by (4.37) and (3.1),

0 ≤ u
(
1,

5θ0
8
, t
)

= u
(
1,

3θ0
8
, t
)

+

∫ 5θ0/8

3θ0/8

∂u

∂θ
(1, θ, t)dθ

≤ P

(T − t)β − θ0
4

γ
√

2

2

Dη

(T − t)βη .

This is a contradiction if T − t is small enough. The Theorem is proved. ✷

To complete this section, we next state the following comparison lemma

used in the proof.

Lemma 4.2. Suppose that wj(y) (j = 1, 2) are two C1(Rn
+) ∩ C2(Rn

+)

functions satisfying

lim sup
|y|→∞

|wj(y)|
exp(αy2)

= 0 (j = 1, 2) for some 0 < α < min
( β
2n
,
1

4

)
,

−∆yw1 +
1

2
y · ∇yw1 + βw1 ≥ −∆yw2 +

1

2
y · ∇yw2 + βw2 in Rn

+,

a(y)
∂w1

∂n
+ b(y)w1 ≥ a(y)∂w2

∂n
+ b(y)w2 on y1 = 0,

( ∂
∂n

= − ∂

∂y1

)
,

where Rn
+ = {(y1, · · · , yn); y1 > 0}, β > 0, a(y) ≥ 0, b(y) ≥ 0 and a(y) +

b(y) > 0. Then

w1(y) ≥ w2(y) on Rn
+.

Proof. Since

−2αn+ β > 0, −4α2 + α > 0,

the function h(y) = exp(αy2) satisfies

−∆yh+
1

2
y · ∇yh+ βh > 0 in Rn

+,

∂h

∂n
= 0 on y1 = 0, h(y) > 0 on Rn

+.

Using maximum principle, we obtain,

w1(y) + εh(y) ≥ w2(y) on Rn
+,
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for any ε > 0 (we use maximum principle on a finite domain since h(y)

dominate when |y| is large). Now the lemma follows by letting ε→ 0+. ✷
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