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Formal solutions with Gevrey type estimates

of nonlinear partial differential equations

By Sunao OUCHI

Abstract. Let L(u) = L(z,0%;|a] < m) be a nonlinear partial
differential operator defined in a neighbourhood € of z = 0 in cntt,
where z = (29,2') € C x C™. L(u) is a polynomial of the unknown and
its derivatives {0%u; |a| < m} with degree M. In this paper we consider
a nonlinear partial differential equation L(u) = g(z). The main purpose
of this paper is to find a formal solution u(z) of L(u) = g(z) with the
form

+oo
u(z) = 2()_un(z)zg")  uo(z) £0,
n=0

where ¢ € Rand 0 = g9 < q1 < ... < ¢ < ... — 400, and to
obtain estimates of coefficients {uy(z');n > 0}. It is shown under some
conditions that we can construct formal solutions with

lun(2)] < ABTD(L 4 1) 0< 4 < +o0,

Y

which we often call the Gevrey type estimate.

0. Contents

In §1 we give notations, the form of L(u) treated in the present paper
and some definitions. We state some of the main results (Theorems 1.6-
1.9), which follow from the results in §2. In §2 we study nonlinear equations
satisfying some assumptions. For such equations we study more precisely
the notions introduced in §1 and give the existence theorem (Theorem 2.4)
and the estimate of formal solutions (Theorem 2.6), which are the core of
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this paper. We apply them to the equations considered in §1 and show
Theorems given in §1. It is also shown that we have the possibility of
the improvement of the estimates of formal solutions (Theorems 2.7, 2.8
and 2.11), which are also main results. All the proofs of the results in §2
except Theorem 2.6 are given there. The proof of Theorem 2.6 requires
some preliminaries. In §3 we prepare majorant functions to estimate the
coefficients of the formal solutions. In §4 we estimate them and complete
the proof of Theorem 2.6.

1. Notations, definitions and some of results

Firstly we give usual notations and definitions: z = (29, 21,... ,2n) =
(20,21, 2") = (20,7') is the coordinates of C"™!. |z| = max{|z]; 0 <i < n}
and 0 = (0o, 01y...,0,) = (00,0"), 0; = 0/0z. The set of all non-
negative integers (integers) is denoted by N (resp. Z). For multi-index
a = (ag,01,...,0p) = (a0, @), o] = g+ a1+ ... +ay, = ag + |d].
0% = 950~ = (98‘08’0/ = [, 07 and z* = z{%2{"...25". Now we in-
troduce notations for products of multi-indices. Let A € (N"T1)s A =
(Al,AQ,.. . ,As),AZ’ = (Ai,OaA;) € NxN" Puts= sa, ka = max{|Ai|;
1< i< sah, Ky o= max{[A1 < i < sa), JA] = 34 A, and
la =>4 |A. Let A, B € (N"*1)%. If some rearrangement of the compo-
nents A;’s coincides with B, we identify A with B. We denote by N the
set of all different elements of (N"™!)%,1 < s < S. For a real number a, [a]
means the integral part of a. For an open set W in C, O(W) is the set of
all holomorphic functions on W. Put Q = {z € C""!; |2| < R}.

In this section firstly we introduce nonlinear operators with formal series
coefficients and some definitions. Secondly we treat formal nonlinear equa-
tions and give results concerning the existence of formal series solutions and
the estimate of their coefficients. We appply them to not formal nonlinear
operators. The results in this section follow from Theorems in §2, which
are more precise concerning the estimates than those in this section.

DEerFINITION 1.1. F is the set of all formal series f(z) =
o0 fu(2)25m, where f,(2') € O(w), w is a neighbourhood of 2’ = 0 in C"
depending on f(z), and 19 <711 < ... <71y <— +00.

DEFINITION 1.2. For f(z) € F, min{ry,; f.(z') # 0} is said to be the
formal evaluation of f(z). If f,(2") = 0 for all n, the formal evaluation of
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f(#) is +o00. Fy is the set of all f(z) € F with the nonnegative evaluation.

Let L(u) be an operator of the form,
L(u) = L(z,0%; |af < m)

(1.1) - Z as(z) l_A[(aAiu)»

AeNM i=1

where
(1.2) as(z) = ng’LbA(z), ba(z) € Fq,

Jja,r is the formal evaluation of a4(z). L(u) is a polynomial of {0%u; |a| <
m} with coefficients in F and degree M, which we call a formal nonlinear
operator. Recalling [A| = > 724 |A;], 1a = > ;4 |A}| and putting da =
la+ja,L, we have

SA
(1.3) Ly =30 2 Ma) [0 05" 0 ).
AeNM i=1

We denote the linear part of L(u) by £ = L(z,0). Let us define the lin-
earization of L(u). Put for v =v(z) € F

(1.4) LY(u) = L(u+v(2)) — L(v(2)).
DEFINITION 1.3. The linear part of LY(u) is called the linearization of
L(u) at v = v(z) and is denoted by Ly, (v; z,0) or shortly LY.
Put forr € R
er.r(r) =min{sar +day — |Al; A€ NM with ka = k}

(1.5) er(r) = min{e 1(r); 0 <k < m}
kr(r) = max{ka; sar +dar — |Al =er(r)},

(1.6) AL(r)={AeNM; sar +dar —|Al =er(r)},
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er,c =min{da — |A]; A€ NM with sx=1and ks = k}
(1.7) e =min{eg c; 0 <k <m}
ke = max{ka; A€ NM with s4 = 1 and dar —|Al =ec}

and

(1.8) AEZ{AGNM with SA:1;dA7L—|A|:€£}.

DEFINITION 1.4. (1) The minimal irregularity ~ymin,z,(7) of L(u) for the
evaluation r is defined by
(1.9)
sar+dar — |Al —er(r)
ka—kr(r)

Ymin, () = min{ c Ae NM with kg > kp(r)}.

(2) The minimal irregularity Ymin,c of £(z,0) is defined by

(1.10)

d AL — |A| — €
ka— ke

Ymin,c = min{ E; Ae NM with sy =1and ka > kr}.

If the set in the right hand side in (1.9) ((1.10)) is void, we put Ymin,z(7)
= 400 (resp. Ymin,c = +00). The minimal irregularities are used in the
following Theorems of this paper to estimate formal solutions of nonlinear
partial differential equations, that is, to show Gevrey type estimates of
them.

We restrict the coefficients of L(u) and study equations. So let us intro-
duce a subclass of F.

DEFINITION 1.5. Let & be a finitely generated additive semi-group,
S={g;1eN}, 0=q <q < - <q <> +0o. Fs is the set of all

formal series f(z) = > fu(2))28" € Fy.

Now suppose that the coefficients ba(z) € Fs in (1.3). So we have
ba(z) = 320 ban(2)28". Consider

L(u) = g(2)

(1.11) =
9(z) =2 Zgn(z’)zg" e F.
n=0
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For given ¢ € R we try to find a formal solution u(z) of (1.11)

+oo
(1.12) u(z) = zg(z un(2)2d"),  uo(z') #0,
n=0

that is, a formal solution with the formal evaluation ¢. For a given q € R,
put as defined in (1.5) and (1.6)

(1.13) qx = er(q) = min{saq +daz — |Al; A € NM},
(1.14) Ar(q) ={Ae NM:saqg+dar —|Al =q*}.

In order to give conditions for the existence of formal solutions which
have a Gevrey type estimate we define some operators. Put for A € N'M

(1.15) £0,4(2", ) = bao(z HM —1)...(u—Aio+ pa

and

(1.16)
£1,.4(2,7 )‘ y Uy Py a/)

=bao(z {ZHM = 1) (= Apo+1)pay)

1=1 h#i
X AN =1)... (A= Aj o+ 1)8%},

where p = (py; o/ € N") and A, p are parameters. £1 (2, A\, i, p,9’) is a
linear partial differential operator with order &'y = max{|A}|;1 <i < sa}
and a polynomial of A\ and 0’ with degree k4 = max{|A;|;1 < i < sa}.
Define

£0(2', 1, p) Z Lo.4(', . p)
AeAr(q)

S N wp )= > LialZ, A pp,d).
AeAr(q)

(1.17)
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£1(Z', A\, i, p, d') is a linear partial differential operator with order & (q) =
max{k';; A € Ar(¢)} and a polynomial of A\ and 0’ with degree kr(q) =
max{ka; A € Ar(q)}.

Now we give several conditions to state results.

CONDITION 0. S D {saq+daz — |Al — ¢;A € NM} and g(z) =
28 S0 g (2) 28", that is, = ¢* in (1.11).

CONDITION 1. There is a solution ug(z") Z 0 of
(1.18) £0(2',q,0"uo(2)) = go(#'),

which is holomorphic in a neighbourhood w of 2’ = 0.

Assume Conditions 0 and 1. Using ug(2’) in Condition 1, define
(1.19) L1(Z 0 0) = £1(2, X\, q,0% up(2), d).

Let mg, be the order of £1(2',\,0’). Let P.S.£1(2/, \,&’) be the principal

o

symbol of £1(2/,A,d') and kg, be its degree as a polynomial of (A, ¢’).
CONDITION 2. P.S.Sll(O,)\,é’), &= (1,0,...,0), is a polynomial of A
with degree kg, —mg, and does not vanish for \=q+qn, n=1,2,....

As for the existence of formal solutions with the formal evaluation ¢, we
have

THEOREM 1.6. Suppose that Conditions 0-2 hold. Then there exists
uniquely u(z) = 20(3. 2 un(2')2d") € F satisfing L(u) = g(2) formally

and O7u(0,2") =0 (n>1) for0<h<mg, — 1.

Conditions 0-1 assure the existence of the non zero initial term ug(z’).
We can determine u,(2") successively by Condition 2. We note that mg, <

Ky (q), P.S.£1(2', A\, ¢&') is a polynomial of A and & with degree kg, < kr.(q)
and homogeneous in & with degree mg,. We give a condition in order that
the constructed formal solution has a Gevrey type estimate.

CONDITION 3. P.S.£,(0,\,€") is a polynomial of \ with degree kr,(q)—
mge,.
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We have
THEOREM 1.7. Put V4« = Ymin,1.(¢). Suppose that Conditions 0-8 and

(1.20) ban(2)], 19n(2)| < BEHT(gn /7. + 1)

hold. Then the coefficients un(2') of the formal solution u(z) in Theorem
1.6 have the estimate

(1.21) lup ()] < ABD(22 4 1)

*
for some constants A and B.

In the preceding of this section we have treated operators with coeffi-
cients in formal series. Hereafter we assume that a4(z) and g(z) are holo-
[¢]

morphic in Q. So L(u) is not a formal operator. Put S(q) = {(saq +
dar —|A]) — g5 Ae NMYU{l,[¢* + 1] — ¢*} and let S(q) be the additive

semigroup generatesd by S(g). Put & = S(g). In this case Condition 0 is
replaced by
CoNDITION 07 0kg(0,2)) =0 for k < q*.

If ¢* < 0, then Condition 0’ has no meaning. Suppose g(z) satisfies
Condition 0. We have g(z) = 2§ Y45, 959(0, )28 Jk). So

—+00
(1.22) 9(2) =28 > ga(Z)A",
n=0

where if ¢, = k — ¢* for k € N, g,(2) = 859(0,2’)z§_q*/k!, and otherwise
gn(2") = 0. We have as an easy consequence of Theorem 1.7

THEOREM 1.8. Assume that the coefficints as(z) of L(u) and g(z) are
holomorphic in ). Put v« = Ymin,.(q) and suppose that Condition 0’ and
Conditions 1-3 hold. Then there exists uniquely u(z) = 23 ("1 un(2)2g")
€ F satisfing L(u) = g(2) formally with 0fu,(0,2") = 0 (n > 1) for
0 < h <mg, —1 and the coefficients have the estimate (1.21).

The constructed solutions are formal. But they converge in some case.
We have
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THEOREM 1.9. Suppose that the conditions in Theorem 1.8 hold. If
kr(q) = m, then the formal series u(z) in Theorem 1.8 converges in {0 <
|20 < r} X w for some r >0 and it is a genuine solution of L(u) = g(z).

REMARK 1.10. (1) The assumption that the operator L(z,0%u) is a
polynomial of 0%u is superfluous, if we consider formal solutions with the
formal evaluation ¢ > qr,, qr, being a constant with ¢z, < m depending on
L.

(2) Theorem 1.9 is a typical case in Ishii [2] and the similar result is also
obtained in Leichtnam [4], where they constructed convergent solutions. In
[2] genuine solutions represented with the series of not only z§ but also
(log 29)® are constructed. In this paper we don’t use (logzg)?, because
it is not easy to give the meaning of formal solutions. In this paper we
treat formal series with respect to one variale zg. In Gérard and Tahara
[1], the similar problem is considered for solutions of formal power series
with respect to multi-variable t € C¢, u(z,t) = Z{keNd;“le} ug(x)tF, of
some class of nonlinear partial differntial equations. wug(x) is determined
by solving linear algebraic equations for the equation studied in [1], that
is, C(z, k)ug(z) = { theterms determined by u;(x) (0 < |i| < k —1)}. They
obtained a Gevrey type estimate for u(z,t) under the Poincaré’s condition
for functions C'(x, k)’s. If ¢ is one variable (d=1), the estimate is coincident
with that in Theorem 1.8.

(3) We investigate in §2 the Gevrey index 7, of the formal solution u(z),
give it more precisely than that in Theorems 1.7 and 1.8 and determine the
best one in some sense (see Theorems 2.7, 2.8 and 2.11).

(4) We construct formal solutions of nonlinear partial differentail equations
in this paper. We will investigate the relations between the formal solutions
and genuine solutions in the forthcomming paper. For this purpose the best
determination of the Gevrey index v, will be available.

2. Constrution of formal solutions and improvement of
estimates

In §1 we have introduced nonlinear operators with formal series coeffi-
cients. Let us write again L(u) considered for the convenience. Let S be
a finitely generated additive semi-group, S = {¢;; i € N}, 0 =qo < q1 <
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o < ¢ <— +00. Let L(u) be a formal nonlinear operator

L(u) = L(z,0%; |af < m)

SA

= Y aalx) [J(0%w)
(2.1) AcNM i=1
SA
= 3 A ) Tz 005 04,
AeNM =1
where
(2.2) as(z) = 2" ba(2), ba(z) = Z ban(2)zl" € Fs
n=0

and ja,r, is the formal evaluation of a4(2).
We treat L(u) under some assumptions. Firstly assume that L(u) sat-
isfies the following Assumption 0.

AssuMPTION 0. er(0) = min{da s —|A]; A€ NM} =0and er = 0.

Assumption 0 means that d4 — |A| = 0 is attained by some of the
linear terms of L(u). We have easily from Assumption 0 and (1.5)-(1.8)

LEMMA 2.1. Suppose that L(u) satisfies Assumption 0. Let r > 0.
Then er(r) =r, Ap(r) = Az and ki(r) = kr.

Hence if » > 0, Ar(r) and kr(r) is independent of r and
(2.3)
(SA — 1)7’ + dA,L - |A’
ka—kg
(54— V) 4+dar —|A]) > Yminr(r)(ka —ke)  forall Ae NM

c Ae NM with ky > k),

Vi, () = min{

holds. We have by (2.3)

PROPOSITION 2.2.  Suppose that L(u) satisfies Assumption 0. Then
0< ’Ymin,L(T) S Ymin, L S +00 fOT’ r >0 and 7min,L(r) S ’Ymin,L(T/) fO?"
0<r<r.

Now let us investigate the minimal irregularities of L(u), its linear
part £(z,0) and L(u). Put v = v(2’)z]. Then L”(u) = L(v(2')z{ + u) —
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L(v(2')2y). Let us calculate it. Let A = (A, Aa, ..., As,) € N T be a
subset of {1,2,...s4} and |Z| be the cardinal number of the set Z. Put

LZ‘(U) _ ZgA,L*‘A|bA(Z) Z Z(()SA—|I|)TX

(2.4) {Z; 1Z]=1}
Hrr—l T—Aho—I—lahv HzloaAiu}
h¢gT i€l
Then we have
(2.5) L(u) = Lh(u)
A

Let Ymin,zv (") be the minimal irregularity for the evaluation 7" of the op-
erator of L'(u) and LY be the linear part of LY(u). Then

PROPOSITION 2.3.  Suppose that L(u) satisfies Assumption 0. Let v =
v(2")zh, T > 0.

(1) erv(0) = epo = 0, that is, LY satisfies Assumption 0 and Ap»(0) =
AL(0).

(2) Letr" > 0. Then epo(r') =71", Apo(r') = Az and kpo (') = ke

(3) Ymin,£.(r) < Ymin Lo (r") for r <7’

(4) Let w = w(2)2f (r <7"). If Ymin,co = Ymin, £.(r), then Vmin, Lo+w =
Ymin, Lv (7"') = Ymin, L

PROOF. Let us note the expression of LY (u) by (2.4). We have (da 1, —
|A]) + (sa — |Z])r > 0 and the equality holds if and only if A € A(0) and
|Z| = sa. Hence (1) is valid. We have, if s4 > 1 in (2.4),

|Z|r" + (dar — |A]) + (sa — |Z))r > (sa — |Z|)r + |Z]r" > 7"
If s4=11in (2.4),
Zlr" + (dar — |A]D) + (sa — [Z])r = dar — [A| +1" > 7'

and the equality holds only for A € A,. Hence we have (2). We have from
(2), if max{|A;|;i € I} > kg,

(1Z1r"+ (daL = |A]) + (sa = |Z])r — es (")) /(max{| Aif; i € T} — k)
>((sar +dar — Al =)+ (1Z] = (" = 7))/ (ka = kz) = Yanin,£(r),
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which implies (3). Let us show (4). We note that (LY)* = L% and
er =erv = ervtw = 0. Put

sA
/Cv;il: gAL ‘A|b )ZZ(()SA—l)T

(2.6) N
Hr (r—1)...(r— Apo+1)04 ho(z N)zg 0%}
h#i
and
(2.7)
sA
£y =2 a2 3o T UL = 1) An + 10 N()
i=1 h#i
Fr () = 1) (1 = Apg + 1)z oM (2)) b 00
=LY + ZA,
where
(2.8) La= sz )(2000)*00"

and the formal evaluation of laa(2) = dap — Al + (sa —1)r +7" —r. We
have £Y = 3", £Y and LVT% =3, L5 = LY + L, where L =Y, L. If
|a] > kg in (2.8), we have from the assumption and ' > r

(dar—|Al+ (sa—1D)r+7r" —7r)/(la| — kz)
>(dar — A+ (sa—1r+ r — r)/(ka — k)
>(dA,L - |A‘ + (SA - 1)T)/(kA - kﬁ) > ’YminL(T) = Ymin L? -
Hence it follows from£V™™ = £V + £ that Ymin,cv+w 1S determined by the

term of £” and Ypin £o+w = Ymin,cv- On the other hand, from Proposition
2.2 and (3), Ymin,cv = Ymin,£v (7") > Ymin,.(r). Thus we have (4). O

Now let us consider the equation

(2.9) L(u) = g(2), g(z) =) gn(z)2l" € Fs n' > 1.
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We try to find u(z) = 3272, u,(2/)2d" € Fs which formally satisfies (2.9).
Put
(2.10)
S N0) =Y baolZ)AA—1)... (A= ag + 1)0*
aEA,
= > La(, 00",
lo/|[<mg

£(2/, A, ") is determined by some terms of the linear part of L(u) and its
order is mg. Let P.S.£(2/, )\, &) = > lo|=me £a/(2/,A)f’a/ be the principal
symbol of £(z', A, d’). It is a polynomial of (A, ¢’) with degree kg < krz. We

further assume the following Assumptions 1 and 2:

AsSSUMPTION 1. 8 D {dar — |Al; A€ NM with as(z) # 0}.

ASSUMPTION 2. P.S.ﬂ(O,A,é’), & = (1,0....,0), is a polynomial of

A with degree kg — mg and does not vanish for all A = ¢,, n > n/.

Assumption 2 means that |£4/(2', \)La/ (2, N)|7! (Jo/| = mg, & = (mg,
0,---,0)) are bounded in a neighbourhood of 2’ = 0 for A = ¢,,n > n'.
We have

THEOREM 2.4. Suppose that Assumptions 0-2 hold. Then there exists
uniquely u(z) = (32720, un(2')28") € Fs satifying L(u) = g(z) formally,

where M, (0,2") =0 (n>n') for 0 < h<mg—1.

Before the proof we give simple formulae for later calculations. We have
for a multi-index o € N*!

. 0" () = (MalX, (),
' Ma(A, ) = A\ —1)--- (A — ag + 1)8°",
So for a formal series u(z) = 372 u, (') 28",

+oo
(2.12) 0%u(z) = Z Mo (gn, 0 Yun (2) g 0.
n=0
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Let A= (Ay, Ay, ---, As) € (N"1)*. We have

5A
[T0*u(z)) = 25
i=1
(2.13) o i
qn;
{H ZMA n;> 0 )un, (2 ) )}
=1 n;=
Expanding a4(z)
(2.14) aa(z) = ZOALbA —zéAL Z ban,(2)20"),
no=0
we have
= d |A|
aa(z) [[(0%u(z) = 2™~ Z bane(2)7")
i=1 no=0
(2.15) .
qn;
{11« ZMA Gnis O )un, (2)29")}-
i=1 n;=
It follows from Assumption 1 that
SA
(2.16) aa(z )H (%iu(z ZLA" u)zi™,
i=1
where
(217)  Lan(u) = > bAno (2 HMA Gng> 0 )t (2)).-

{ Qn0+"'+q'n,5A }
+dA,L_‘A|:CIn

PROOF OF THEOREM 2.4. Now let us return to (2.9). Substituting a
formal series u(z) = >, u, (') 24" into L(u), we have

ZL u)zd",
ZLATL

(2.18)
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Therefore, in order to satisfy L(u) = g(z) formally, we put the coefficients
of 28" in {L(u) — g(2)} equal to 0 and we have, by Lemma 2.1,

(2.19) L(2, qn, Nun(2') + Mp(u;(2');5 < n) =gn(2') (n>n'),

where M,,(u;(2'); 7 < n) is a term determined by u;(2’) (j < n):

Ma(uj(#);j < n) = >

(Gng Gny s-lns,A); , AENM
dng +qn1 +"'+Q'n5 +dA,L_|A‘:qn
n;<n for all i>1

(2.20)

sA
bA,no (Z/)(H Ma, (qniv a/)uni (Z,)>
i=1
So we determine u,(z") (n > n’) so that they satisfy

(221) { ’Q(zlv qn, a/)un(zl) + Mn(u](z’),] < TL) — gn(z'),

My (2)]sy=0 =0 for 0<h<mg—1.

It follows from Assumption 2 and the remark following it that u,(z") (n >
n') are successively determined by Cauchy Kowalevskja’s Theorem, which
are holomorphic in a neighbourhood of w’ of 2/ = 0. Thus we have Theorem
24. O

REMARK 2.5. For the simplicity we put the zero initial conditions to
determine u,(2’) in (2.19), but it is obvious that we can give non-zero ini-
tial conditions. If £(z, \,d’) is degenerate, by imposing suitable solvability
condition on it, we have a formal solution.

Let us proceed to obtain an estimate of the coefficients u,(z’) of u(z)
in Theorem 2.4. In order to do so, in addition to Assumptions 0-2, we put
the following assumption:

ASSUMPTION 3. P.5.£(0,),€') is a polynomial of A with degree kz —
mge.
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Assumption 3 means that P.S.£(0, \,¢’) is a polynomial of (), &) with

degree kg, that is, kg = kg. We assume that the coefficients ba ,(2') of
ba(z) and g,(2") of g(z) have a Gevrey type estimate,

{ ban(2)| < B (ga/y+ 1)

2.22
222 19n(2)] < BE " (g — gu) /v + 1) (n>n'),

where 0 < v < +o00. If v = +00, then by(z) and g(z) converge in {0 <
|z0| < r} for some r > 0.

THEOREM 2.6. Suppose that Assumptions 0-3 hold and ~v =
Ymin,Z(qn') in (2.22). Then for the coefficients u,(z') (n > n') of the formal
solution u(z) € Fg of L(u) = g(z) in Theorem 2.4, it holds similarly to
(2.22) that

qn — qn’

2.23 up (2] < ABI ' (12—
(229 unl=) iz (@)

+1)

for some constants A and B.

The proof of Theorem 2.6 is given in §4. Here we show that the estimate
of u,(2") will be improved. Let u(z) be the solution of L(u) = g(z) given
in Theorem 2.4. By using the coefficients {u,(2'); n > n'} of u(z), define

n'+1—1
v (z) = Z un(2)zd" forl>1, wv(z) =0,
(2.24) ":o’;
wi(z) = Z un(z/)zg”
n=n'+l
and
L(vj;w) = L% (w) = L(w + v(2)) — L(v(2)),
+o00
(2.25) n(z) = 9(z) = L) = S b2
n=n'+l1

Now consider the equation of w

(2.26) L(v;w) = hy(z).
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w(z) = wy(2) is a unique formal solution satisfying du,(0,2") = 0 (n >
n'+1) for 0 < h < mg—1. It is not difficult to show by Propsition 2.3 and
LVt = (LY)™ that

BLUL (O) = eL”l = O
(2.27) Ap=Arn
LN 0) = L(v; 2/, N0,

where £(v;;2/, A\, 0') is that defined by (2.10) for L(v;;- ), and L(v;- )
satisfies Assumptions 0-3. By applying Theorem 2.6 to the equation (2.26),
we have

THEOREM 2.7. Suppose that Assumptions 0-3 hold and ~ =
Ymin, £V (@n/+1) @ (2.22). Then for the coefficients u,(2') (n > n') of the
formal solution u(z) € Fg of L(u) = g(z) in Theorem 2.4, it holds that

— qn — qn’
2.28 un ()| < AB? W' (———2 41
(2.28) |un (2')| ( ot (G ) )

for other constants A and B.
We have from the above Theorem

THEOREM 2.8. Suppose that Assumptions 0-8 hold and v = +00 in
(2.22). Let un(z') (n > n') be the coefficients of the formal solution u(z) €
Fs of L(u) = g(z) in Theorem 2.4.

(1) For each | € N there are A; and By such that

—q,,/ dn — qn/
2.29 w, (2] < A BT p(—dn "Iy,
( ) | 'fl( )| ! (/ymin,L“l (Qn’—H) )

(2) If there is an N € N such that Ymin, Lo~ (¢n/+N) = Ymin,con+1, then
there are A and B such that

(2.30) lup(2)] < AB—awp(- I "9 gy,

Ymin, LN +1

Suppose that the assumption in (2) in Theorem 2.8 holds. Put R =

dn/ 4+ N+1

q,’ .
LN, v = uppn(2)zg" ™Y and w = w1 n1+1(2) 7, . The assumption
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means Ymin R(¢n/+N) = Ymin,Rv- LThen it follows from Propsition 2.3 that
'Vmin,R“(Qn’JrNJrl) = Ymin,Rv*+% = Ymin,RY, which means Ymin,LUN+1 (qn/+N+1)
= Ymin,£'N+2 = Vmin,c'N+1- By the induction we have Yiin ron (qn/4n) =
Ymin,£¥n+1 = Ymin,c?N+1 for n.> N. So the estimate (2.30) may be consid-
ered to be best in some sense.

Let us apply Theorems in this section to show Theorems in §1. Let L(u)
be a nonlinear operator defined by (1.1) and (1.2) in §1. Define

(2.31) P(u) = zaq*{L((u +up)zd) — L(uozd)} = q LY (zlu), v =upzl.

Let us calculate P(u). Let A = (A1, Ag,..., As,) € NM T be a subset of
{1,2,...,sa} and |Z| be the cardinal number of the set Z. Put

(2.32)
PA(’LL) _ ZgA,L*‘A|*q*bA(Z) Z Z(()SA—|ID(1
{T; 17121}
<{([Jata=1) ... (q— Ano + 1)0hug(z HzozoaoloaA’(z u(2))}.
h¢T 1€l
Then we have
(2.33) P(u) =Y Pa(u).
A

P(z,0), the linear part of P(u), is

(2.34)
P(z,@) _ gAL |Al—q*+(sa— 1)qb ( )
A
S (T ata— 1) -0~ Ano + D% un() 20000 % 4 )
i=1 h#i

We note that

(235) Ymin, LV (q + T) = r}/min,P(r)a Ymin,£? = Ymin,P (1) = UO(z/)ZOq)-
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Now suppose that L(u) satisfies Conditions 0-2 in §1 and let ug(z") be
that in Condition 1. Put

(2.36)
Po(z,0) = > 2 %ao(?)
A€eAL(q)
x{z [Tata—1)--- (g~ Ano + D) Muo())zg 05 0% (28 )}
i=1 h#i
and
(2.37)
PN = D bao(z {Zqu—1 (g — Apo + 1)0Mmug(2))
AeAL(q) i=1 h#i

XA+qA+qg—1)--- (A +q— Ao+ 1)0%}.
Let mg be the order of (2, A,0"). We have from (1.16), (1.17) and (1.19)
(2.38) BN = L1, A+ q,0).

So msgg = mg, . Before the proofs of Theorems 1.6 and 1.7 we give Proposi-
tions.

PROPOSITION 2.9. Suppose that L(u) satisfies Conditions 0-2. Then
P(u) satisfies Assumptions 0-2. Moreover if L(u) satisfies Condition 3,
then P(u) satisfies Assumption 3.

ProoOF. Firstly we note that Condition 2 means Py(z,0) # 0. So
P(z,0) # 0. We show Assumption 0. We have ep(0) > 0 by saq+ da,r —
|A] — ¢* > 0 and the above remark implies ep = 0. Condition 0 means
Assumption 1. B(z',\,d’) is nothing but defined by formula (2.10) by
replacing L(u) by P(u). Condition 2 and (2.38) mean Assumption 2. We
have mp = mg, < kp < kr(g). If Condition 3 holds, kp = kr(¢q) and
Assumption 3 holds. [J

PROPOSITION 2.10. Suppose that L(u) satisfies Conditions 0-3. Let
v =wg(z")z¢and r > 0. Then the following holds:

(1) Ymin,£(q) < Ymin,p(7)-
(2) If ’Ymin,L(q) = Ymin, LV, then 'Ymimp(r) = Ymin,P-
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PrROOF. By Lemma 2.1 and the proof of Proposition 2.9 ep(r) = r and
kp =kp(r) =kr(q). If max{|A4;|;i € Z} > kp(r) in (2.32),

(|Z|r + saq+daL — |Al = ¢" — ep(r))/(max{|A;|;i € T} — kp(r))
> (saq+dar — Al —q")/(ka — kL(q)) = Ymin,L(q)-

Hence Ymin,P(7) > Ymin,z.(q). We show (2). By the definition of P(u),
we have Ymin P = Ymin,cv- By Proposition 2.2 Ypin p(7) < Ymin,p. Since
’Ymin,L(Q)

< 'YmimP(T) < Ymin,? = Ymin,L?, W€ have (2) ]

PROOF OF THEOREMS 1.6 AND 1.7. L(u) = g(z) is transformed to
P(w) = f(z), where by Condition 0

+o00
(230)  f(z) =2 (9(z) — Llwo()z) = 3 ful)z
n=1

So consider P(w) = f(z). It follows from Theorem 2.4 that there ex-

ists a formal solution w(z) = .12 w, (/)28 of P(w) = f(z). Hence
u(z) = 28 (uo(2") + w(2)) is a desired solution, which shows Theorem 1.6. If

Condition 3 holds, it follows from Theorem 2.6 that

dn — q1

2.40 up(2')] < ABI O (———
240 i) i)

+1).

Since Ymin,£(¢) < Ymin,p(q1) by Proposition 2.10-(1), we have Theorem
1.7. O

The estimate in Theorem 1.7 is improved by Theorem 2.8. Define for a
formal series u(z) = 2§ (325 un(2')28") with the formal evaluation ¢

(2.41) nolz) = Zu” "
WA 20w = ) + =) 130

THEOREM 2.11. Suppose that Conditions 0-8 in §1 hold and let a(z)
and g(z) be holomorphic in Q. Furthermore assume that there is an N € N
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such that ~y o (g+qn) = Vinin 2N - Then it holds for the coefficients

min,

un(2') (n > 0) of the formal solution u(z) € Fs of L(u) = g(z) in Theorem
1.6 that

an

(2.42) lun ()| < ABIT( +1).

*
’ymin,ﬁuN

PRrROOF. We note that if [ > 0, Yoo LY (¢ + @+1) = Ymin,Pvi (q+1) and

Voo v = YVmin,Pvi- Assume N > 1. Then

Ymin, PN-1(qN) = s (4 +AN) = Vg ek = YminPow -

We apply Thorem 2.8-(2) to P(w) = f(z). By replacing N by N — 1 and
putting n’ = 1, we have

|Un(2:’)| < ABqn—thr(u) — ABq"_‘hI‘(u)'

Ymin,PUN /ymin,ﬁu}k\’
Assume N = 0. Then the assumption means Ymin,r(q) = Vonin. 46 - We
have from Proposition 2.10-(2) Ymin,.(¢) = Vinin,cv$ = Tmin,P = Ynin,P(q1)-
Hence the assertion follows. [

We can say under the conditions of Theorem 2.11 that the class, so
called Gevrey class, to which the formal solution u(z) of L(u) = g(z) be-
longs is determined by v = Vinin, L% which is minimal irregularity of the
linearization of L(u) at ujy(2).

DEFINITION 2.12. Suppose that Condition 0-3 holds. Let u(z) =
q +oo
20(2on=0

formal evaluation q. Put n, = min{l € N; Y i 1 (g+q) ="~

un(2')23") be a formal series of solution of L(u) = g(z) with the

min,ﬁuik }
Then we call g+q,, (+00, if n, = 4+00) the true evalution of formal solution
u(z). If n, > 0, the formal evaluation ¢ is called apparent.

3. Majorant functions

In order to obtain estimates of u,(z')(n > 0) constructed in §2, that
is, to show Theorem 2.6 we prepare majorant functions. For formal se-
ries of s-variables w = (wi,... ,ws) A(w) = Y cns Aqw® and B(w) =
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Y aens Baw®, A(w) < B(w) means |A,| < B, for all « € N* and A(w) >
0 means A, > 0 for all o € N°.
Put

+00
(3.1) o) =S 1"/ (n+1)
n=0

which was used in Lax [3] and Wagschal [5] and the following Lemma 3.1
is stated there.

LEMMA 3.1. There is a positive constant ¢ such that ¢(t)p(t) < ¢(t).

Proor. We have

2 1 n
)=c Z Z (m+1)2)t

n= Ol+mn

and

Z 1 < A for some A >0
Lo (412 (m+1)2 7 (n+1)? '

So if cA < 1, we have ¢(t)o(t) < ¢(t). O
Fix ¢ > 0 so that ¢(t)? < ¢(t). Put ¢g(t) = ¢(t/R) for R > 0. We have

LEMMA 3.2. The following majorant estimates hold:

or(t)? < dr(t),
¢7R1 (t) < ¢R2 (t) fO’I“ 0 < Ry < Ry,
d 1
(3.4) PR < (1),
(35) ﬁ < C(R, R/)¢R(t) fOT' 0<R< R/,
(3.6) %gbR(t) L C(R,r)pp(t) for 0<r<R.

PROOF. The estimates (3.2) and (3.3) are obvious. We show (3.4). We

have
o
ot _EZ
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and N
1 ¢ e 1 "
(R—1) @NW—EZ;ghk+DQ§?
Since

n

Z 1 S 1 " +1

th+U2_"+1 (n+2)?’

we have (3.4). We show (3.5). Since (R’ —¢)~' = (32/25(t/R)")/R' and
(1/R" < C/R"(n+1)? for some C = C(R,R') > 0, we have (3.5). We
have from (3.3), (3.4) and (3.5)

Or(t) _ ¢r(t)
Rt SRt

Son(t) < < C(R.1)0r(16:(1) < CR, )6, (1),

which implies (3.6). O

Now let {ry > 0; —ko < k < 0} and R > 0 such that 0 < r = rg <
r_1 < ...<7r_p <R <1, where kg € N will be concretely chosen in §4
and be fixed. Put

9k(t):¢(i) for —kg<k<O0

(3.7) " )

We have

13 Op(t) < 0,(t) fork <l
(3:8) Or(t)0,(t) < Opi(t) fork, 1 >0
and

ProrosiTiON 3.3.  The following majorant estimates hold:

(3.9) (r—t)8k(t) >0 fork >0,

d
(3.10) kOpi1(t) < aek(t) <L (k+1)0ksa(t) for k>0,
d
(3.11) aek(t) L Clpya(t) for —ko <k <0,

(3.12) 0r(1)0;(t) < 04(t), s = max{k,l,k+1}.
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PrROOF. The estimate (3.9) is obvious. Let us show (3.10). By (3.4)
we have for k > 0

d k 1 d
agk(t) = m%(ﬂ + maébr(t)
L kb1 (t) + (r_tlm%(t)

= (k+1)0k(t)

and

d

We have (3.11) from (3.6). We show (3.12). If k,1 > 0, it follows from
(3.8). Suppose k > 0 > [. Then we have

t) < ﬁfﬁ(;)-

1 t 13 1

BD01(0) = o d()Ol) < ol Dol

e (r —t)k r

When k,1 < 0, we have (3.12) easily from (3.3). O
4. Estimates

The aim of §4 is to show Theorem 2.6, that is, to give estimates of
{un(z'); n > n'} constructed in §2. Put a = max{2, m/q} and —ky =
[—am] in the definition of {0x(t); —ko < k < 400} in (3.7). We assume
Assumptions 0-3 given in §2. So we have Ymin,(¢n) = min{((sa — 1) +
dar—|Al)/(ka—kg); Awith ka > kr} (see (2.3)). Let {e; >0; 1 <i <[}
be the generators of S. Put b = m+1+ 1. In this section we assume b ,(z’)
and g, (2) are holomorphic on {z/; |2/| < R} and have the following bounds
(see (2.22)):

gnt1

B
ban(2")] < ——T(gn/y + 1)
7 (Qn + 1)b
(4.1) e
|gn ()] < WF((% —quw)/y+1) forn>n

where ¥ = Ymin,.(¢n’)-
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THEOREM 4.1. There are positive constants C and B such that

(4.2) un(2') <

CBQn_qn/ Gn — G
(gn + 1)P I v Dblagu—my (&) for n=n

holds in a neighbourhood of w of 2 = 0, where t = pzy + 290 + -+ + 2, for
some p > 1.

Since |0,,(t)] < C™* (n > 0) for |t| < 7/2, the estimate in Theorem 2.6
immediately follows from Theorem 4.1.

In order to show Theorem 4.1, we need some lemmas. In the following
p > 1 is some constant. Put for n > n’

(4.3) On(t) = CBT =% (g, + 1)%(@ + 1)agn—my) (1),

where t = pz; + 29+ -+ + 2.
LEMMA 4.2. The following magjorant estimate holds:
(4.4) Ma(qn, 6’)9[a(qn,m)} (t) < Co(qn + 1)|a|0[a(qn,m)]+‘a|(t),

where Cy depends only on p.
PrROOF. We have, by (2.11) and Proposition 3.3,

M, (Qna 8l)e[a(qnfm)] (t)
=2A-1)...A—a+ 1)3al9[a(qn_m] (1) x=qs
< Coltn + 1) (g -myj+1al (1) O

By Lemma 4.2 we have

LEMMA 4.3. Let A= (Ay,Ag, ..., As,) € NM. Then

(4.5)

SA
[ 24, (40, 864, (1) < (CCo)*ABY
=1

sA sA N
| an — qn’
x I J(gn, + I HF(T + D T Oratan, -m+1a4(1)).
=1 =1 =1
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where ¢ =374 (qn;, — qn’)-

LEMMA 4.4. The following inequalities hold:

(4.6) FNe+1)I'(y+1) <T(z+y+1) forzy>0,
I'(x+1)
(4.7) F(x—y+1)§Km forax >y >0,

where K > 0 is a constant independent of x and y.

Proor. If y = 0, then the inequalities are trivial. We assume that
x >y > 0. It holds that

P+ )l(y+1)=Bz+1Ly+)I'(z+y+2)
=(x+y+1)Bx+1l,y+ DI (z+y+1),

where )
B(x~|—1,y~|—1):/ t*(1 —t)¥dt.
0
We have
Y ! 1 1
Bz +1,y+1 :—/ O ) LA A —
( y+1) z+y+1J, (1-1) S o4yl

from which (4.6) follows. We show (4.7). It follows from Stirling’s formula
that there exists constant K > 0 such that

(+1)°T(x+1) < KT(x4+6+1) for >0 and 0<6<1.
Hence we have

Fez+1l)=z(z—-1)...(x—[y]+ D' (z - [y] + 1)
>Klz(z—1)... (- [yl + Dz —y+ 1)V ¥Ur@—y+1)
>K Yz —y+1)'T(x—y+1).0
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LEMMA 4.5. Suppose that dar, — |A| + Gng + Y121 @n; = Gn- Then

Qno+1 HF an_ n’ )

<C'T((gn — qnf)/v + 1)(qn + 1)keha

(4.8)

for some C' > 0.
PrOOF. It holds that sag, + dar — |A| — g > v(ka — k), v =
). 1

fVmin,L(Qn’) (See ( . )) So qn — 4dn/ — (kA - kﬁ) > Ano + ZzZI(Qni
ka > kr, by Lemma 4.4

QTLO HF an — gn’/ 1) S C//I—\((qn o qn/)/'y o k‘A + k‘L 4 1)
< C’F((qn — qw)/’}/ + 1)((171 4 1)/€L—kA_
If k4 < kg, it is easy to show the assertion. [

LEMMA 4.6. Suppose that da,r, — | Al + qng + D24 @y = Gn and g, >
qn; for all i >0. Put ¢ =52 (qn, — qw). Then

(4.9) ¢ < (Gn = @) = no/2 = (daL — [AD/2 = q1/2.

PROOF. We have ¢ = ¢, — $aqn — (qng + da.z — |A]). Suppose da 1, —
|A| > 0. Thendar—|A| > ¢ and ¢’ < ¢ — G —qng — (da,. —|4A])/2—q1 /2.
Suppose da, — |A] = 0. Then ¢’ = ¢n — SAGw — @ny- 54 =1, Gny > @1
and ¢ < Gn — qu — Gno/2 — /2. M 54 > 2, ¢ < Gn — 2qw — qny <
dn — Qo' — q1/2 — Qny/2. This completes the proof. O

LEMMA 4.7.  Suppose that g, >m, dar — A+ ¢ng + 2121 Gny = Gn
and qn > qn; for all i > 0. Then

(4.10) LT 0latan, —myom () < Glaggu—my) (1)-
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Proor. Put Ny = {i > 0;a(¢gn, — m) +m > 0} and Ny = {i >
0; a(gn, —m)+m < 0}. Put s; = #N; and sp = #No. We have s4 = 51+ s2.
If s1 = 0, since q,, > m, the assertion is obvious. Suppose that s; > 1. Then
by Proposition 3.3

SA
ea n, —M m(t)<< ea n, —mMm m(t)
(4.11) Zl_[l [a(gn; —m)]+ H [a(gn; —m)]+

i€EN1
LO5, oy, (algn;—m)+m) (1)
We have
Z (lalgn, —m)] +m) < Z a(gn, —m) + s1m
1€EN, i€EN1
= agn — a(gny +dar —A]) —a Y gn, +s1m(1 - a).
1€ No
We show
agqn — a(Qno =+ dA,L - ’AD —a Z An; + Slm(l - a)
(4.12) iEN>

< a(g, —m).

If the inequality (4.12) holds, the majorant estimate (4.10) easily follows
from Proposition 3.3. We note a = max{2,m/q;}. The above inequality is
equivalent to

S1m
(81 - 1)m + Gno + dA,L - |A| + ZieNg dn; .

a >

If S1 2 2,

s1m s1m

< <2<a.
(51 - 1)m + ano + dA,L - ‘A’ + ZieNQ an; (51 - 1)m o

If s1 =1, say N1 = {1}, we have Qno‘l'dA,L—\AHzieNz Gn; = Qn—"_Gn, > 0.
Hence ¢n, +dar — |A] + ZiENQ qn; > q1 and

m m

S —

Gno +dar — A+ ien, T ~— @

< a.
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Thus (4.10) is valid. O

LEMMA 4.8. There exists C7 > 0 such that

S

1 7
(413) Z H (Qni +1)b—kA < (d#—lib_kA'

(qnoaqn17~~-7qns) =0
Gngt+dn, ++ans=d

PRrOOF. Let {e; > 0;1 < i <[} be generators of S. Hence ¢, = a1 ne1+
asnez+ ...+ a e for some a;, € N. Wehave b=m+1+1> ks +1+1.
Put e = min{e;;1 < <{} and b’ = b — k4. Firstly we show

“+00

1
e ———y < +oo.
. kzzo (qr +1)°
We have
io v io 1
k=0 (qx + 1)¥ — (a1 ker +agpes + ...+ appe + 1)Y
+oo Y
< )
B =0 (al,k +agp+ ... +a+ 1)b’

400 +o0 +oo

Y 1
R D D S e R e

al =0 a =0 a =0

Now we show this lemma by induction on s. When s = 0, it is obvious.
Suppose s = 1. We have by (4.14)

(qno + 1)bl(qm + 1)b/ N (qr + 1)b/ (d—qr+ 1)bl

Gno+qn, =d 0<qr<d
C
< 41,
(d+1)b
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Assume that the assertion is vaild for 0 < s < S. Then

S+1

1
2 e

qng+dng ++ang, ; =d =0

CS CS+1
S Z bl 1 bl S 1 b/ .
d (qns+1 + 1) (d — Qnsi1 + 1) (d + 1)

0<qng,, <
We have from the preceding Lemmas

PROPOSITION 4.9. Suppose that g, > m, da,r—|A|+qne+D i Gn; =
qn and qn > qp, for all i > 0. Then following estimate holds:

54
bAgn, (') H M4, (gn; 0")On, (1)
=1

(4_15) < B/(CCO)SA2—dA,L+|A\Bqn—qn/—q1/2(qn + 1)1@—/@4
SA
n — qn/ _
X< D= 4+ D L + D7) o, ()
1=0

for a large constant B and some B’.

PrROOF. It follows from the assumption on ba ,(z'), Lemmas 4.3, 4.5
and 4.7 that there is a constant By such that

SA
bA,an (zl> H My, (qni7 8/)@7% (t)
=1

< By (OO BY (g + 1T ( A 1)

SA

(] J(ans + 17" ) 0a(g—my (1),
=0

where ¢ = > (qn, — gn/). Choose B > 4 so large that ByB 1?2 < 1/2. Then,
by Lemma 4.6, it holds that BY < 27(daL=IAD) Ban—an—01/2 apq this lemma
follows. O
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ProrosiTION 4.10. Suppose that q, > m. Then the following majo-
rant estimate holds:

(4.16)
I(n) = > bagug () [T Mai(gni, @)On, (2)
=1

(Qnov%zl seorGng A); AeNM
Qn0+Qn1 +-Fgng
+da,L—|Al=gn, s=sa
Gn>qn; for i>0

< C*Bqnfqn/—q1/2(qn + 1)’61:*@[*(@ + 1) e[a(qn_m)](t)
for some constant C*.

Proor. Put

SA
I(n, A) = Z bA,qn, (") H My, (gn;, 0")On, (t).
(qn07Qn1 7~--7Qn5)§ =1
Inotan++ang
{ =gn—da,L+|A|, s=s4 }
qn>qn; for i>0

Then we have, by Lemma 4.8 and Propsition 4.9,

I(n,A) < B,(CCOCl)SABq"_qn'_ql/Q(qn + 1)k£—kA

qn’

x 2 WA= (g — ;4 Al + DT EI 6 ().

Hence we have, by putting C' = B'(CCyC1)™,

I(n) = > I(n, A)
{4; 0<da, L—|Al|<qn}

< C’BQn—qn'—m/?I‘(M + 1)9[a(qn_m)} ()
Y

X ( 3 g—da r+|A|

{4; 0<da, L—|Al<qn }

- (gn — da.r + |A| + 1)kA_b(qn 4 1)k£—kA)
< éCng"_qn’_‘h/Z(qn + 1)/4:5—1) P(M

+1) Brag 1 ().
5 ) Ola(gn—m)) (t)
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Thus we have the majorant estimate, putting C* = CC3. O

In order to complete the proof of Theorm 4.1 we need an estimate of
solutions of Cauchy Problems of partial differential equations. Let us con-
sider

Aar (20 u(2') + > Ao (20 u(2') = g(2))
(4.17) {a'sla’|<m*, ar<m*}
OMu(0,2Y =0 for 0<h<m*-—1.

where & = (m*,0,---,0), Ay (2') and g(2') are holomorphic in {2’ €
C"; |2/| < R}. We note that 2/ = (z1,2"), o = (aq,d") and t =
pz1+zo+ ...+ 2p.

LEMMA 4.11. Let s be a positive integer. Assume that |Ay(2')] <
Do(1+ 8)¥" =19 for o/ # o/ and |Ag/(2')| > Dyt (14 s)¥" =™, Let u(2') be
a unique solution of (4.17). Then there exists p > 1 such that if

(4.18) g(2) < (14 8)* Osim= (1),
the following estimate for u(z') holds:
(4.19) u(z") < DOs(t),

where constant D > 0 depends on p and Dq, but is independent of s.

Proor. It follows from Propositoin 3.3 that

> Aar(2) T Ag (2)0% 05(t) < Dap™ (1 + 8)™ Ogym=(t),
{a/;]a/|<m*, a1 <m*}
A ()7 g(2") < Da(14 8)™ O (t)
and
P s(s+1) .. (s +mt = 1) (1) < OV 6.
We take p > 1 and D > 0 so that

Dy(14+Dp™ " H(1+s)™ <Dp™ s(s+1)...(s+m* —1).

Since initial values 9f'u(0,2"”) (0 < h < m*—1) are zero, we have u(2') <
Do(t). O
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PROOF OF THEOREM 4.1. Firstly we summerize what we need con-
cerning £(2', \,9'):

(4.20) LN = > Lu(Z N0
la’[<mg
where
(4.21) L2 N) = > bao(ZIAA=1)...(A—ag +1).

{a=(ap,0’)EAL}

It follows from Assumptions 2 and 3 that

(4.22) 180/ (2, 0N)| < C(1+ |A)ee el
and
(4.23) |Lar (2, N)] > C’_l(l + ]M)kﬁ_mﬁ forX=gq, (n>n').

Now fix p > 1 so that Lemma 4.11 can be applied for £(z',\, ") (see
(2.19)). Choose C > 0 so large that for ¢, < ¢, < max{q,,m + 1}

C  — G
F(q q

/

+ ]‘)0[6"((177,7'”7/)] (t)

holds. Suppose that (4.2) is valid for n with n" < n < N such that gy >
max{q, ,m + 1}. Then Proposition 4.10 means that

My (u;(2'); j < N))

<O B g T g ),
We apply Lemma 4.11 to uy(2’), which is determined by (2.19). Put g(2') =
gn(2) = M (uj(2); j < N), k* = kg, m* = mg and s = [a(gny — m)].
Then it follows from the above inequalities that £(2’, ¢n,d’) satisfies the
conditions in Lemma 4.11 and

g(zl) << (C*BQN—qn/—Q1/2 + BiIN_q"/—H)

_ gN — Qqn/
X (qn + 1)]% br(f + 1)9[a(QN*m)]+ms(t)'
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Hence we have by Lemma 4.11,

uN(z’) << D(C*qu—qn/—q1/2 + BtllN—qn/—i-l)

_ qN — Qqy/
x(gn +1) ”F(f + 1)0a(q—my (£)-

By choosing B so large that (DC*B~%/24+ B (B;/B)¥N~%") < C, where C*
is independent of B, we have (4.2) for n = N. Thus the proof of Theorem
4.1 is completed.
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