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Formal solutions with Gevrey type estimates

of nonlinear partial differential equations

By Sunao Ōuchi

Abstract. Let L(u) = L(z, ∂αu; |α| ≤ m) be a nonlinear partial

differential operator defined in a neighbourhood Ω of z = 0 in CCCn+1,
where z = (z0, z

′) ∈ CCC ×CCCn. L(u) is a polynomial of the unknown and
its derivatives {∂αu; |α| ≤ m} with degree M. In this paper we consider
a nonlinear partial differential equation L(u) = g(z). The main purpose
of this paper is to find a formal solution u(z) of L(u) = g(z) with the
form

u(z) = z
q
0(

+∞∑
n=0

un(z′)zqn0 ) u0(z
′) �≡ 0,

where q ∈ RRR and 0 = q0 < q1 < . . . < qn < . . . → +∞, and to
obtain estimates of coefficients {un(z′);n ≥ 0}. It is shown under some
conditions that we can construct formal solutions with

|un(z′)| ≤ ABqnΓ(
qn
γ∗

+ 1) 0 < γ∗ ≤ +∞,

which we often call the Gevrey type estimate.

0. Contents

In §1 we give notations, the form of L(u) treated in the present paper

and some definitions. We state some of the main results (Theorems 1.6-

1.9), which follow from the results in §2. In §2 we study nonlinear equations

satisfying some assumptions. For such equations we study more precisely

the notions introduced in §1 and give the existence theorem (Theorem 2.4)

and the estimate of formal solutions (Theorem 2.6), which are the core of
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this paper. We apply them to the equations considered in §1 and show

Theorems given in §1. It is also shown that we have the possibility of

the improvement of the estimates of formal solutions (Theorems 2.7, 2.8

and 2.11), which are also main results. All the proofs of the results in §2
except Theorem 2.6 are given there. The proof of Theorem 2.6 requires

some preliminaries. In §3 we prepare majorant functions to estimate the

coefficients of the formal solutions. In §4 we estimate them and complete

the proof of Theorem 2.6.

1. Notations, definitions and some of results

Firstly we give usual notations and definitions: z = (z0, z1, . . . , zn) =

(z0, z1, z
′′) = (z0, z

′) is the coordinates of CCCn+1. |z| = max{|zi|; 0 ≤ i ≤ n}
and ∂ = (∂0, ∂1, . . . , ∂n) = (∂0, ∂

′), ∂i = ∂/∂zi. The set of all non-

negative integers (integers) is denoted by NNN (resp. ZZZ). For multi-index

α = (α0, α1, . . . , αn) = (α0, α
′), |α| = α0 + α1 + . . . + αn = α0 + |α′|.

∂α = ∂α0
0 ∂α

′
= ∂α0

0 ∂′α′
=

∏n
i=1 ∂

αi
i and zα = zα0

0 zα1
1 . . . zαn

n . Now we in-

troduce notations for products of multi-indices. Let A ∈ (NNNn+1)s, A =

(A1, A2, . . . , As), Ai = (Ai,0, A
′
i) ∈ NNN ×NNNn. Put s = sA, kA = max{|Ai|;

1 ≤ i ≤ sA}, k′A = max{|A′
i|; 1 ≤ i ≤ sA}, |A| =

∑sA
i=1 |Ai|, and

lA =
∑sA

i=1 |A′
i|. Let A,B ∈ (NNNn+1)s. If some rearrangement of the compo-

nents Ai’s coincides with B, we identify A with B. We denote by N S the

set of all different elements of (NNNn+1)s, 1 ≤ s ≤ S. For a real number a, [a]

means the integral part of a. For an open set W in CCCN , O(W ) is the set of

all holomorphic functions on W . Put Ω = {z ∈ CCCn+1; |z| ≤ R}.
In this section firstly we introduce nonlinear operators with formal series

coefficients and some definitions. Secondly we treat formal nonlinear equa-

tions and give results concerning the existence of formal series solutions and

the estimate of their coefficients. We appply them to not formal nonlinear

operators. The results in this section follow from Theorems in §2, which

are more precise concerning the estimates than those in this section.

Definition 1.1. F is the set of all formal series f(z) =∑+∞
n=0 fn(z

′)zrn0 , where fn(z
′) ∈ O(ω), ω is a neighbourhood of z′ = 0 in CCCn

depending on f(z), and r0 < r1 < . . . < rn <→ +∞.

Definition 1.2. For f(z) ∈ F , min{rn; fn(z′) �≡ 0} is said to be the

formal evaluation of f(z). If fn(z
′) ≡ 0 for all n, the formal evaluation of
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f(z) is +∞. F+ is the set of all f(z) ∈ F with the nonnegative evaluation.

Let L(u) be an operator of the form,

L(u) = L(z, ∂αu; |α| ≤ m)

=
∑

A∈NM

aA(z)

sA∏
i=1

(∂Aiu),
(1.1)

where

(1.2) aA(z) = z
jA,L

0 bA(z), bA(z) ∈ F+,

jA,L is the formal evaluation of aA(z). L(u) is a polynomial of {∂αu; |α| ≤
m} with coefficients in F and degree M , which we call a formal nonlinear

operator. Recalling |A| =
∑sA

i=1 |Ai|, lA =
∑sA

i=1 |A′
i| and putting dA,L =

lA + jA,L, we have

(1.3) L(u) =
∑

A∈NM

z
dA,L−|A|
0 bA(z)

sA∏
i=1

(z
Ai,0

0 ∂
Ai,0

0 ∂A
′
iu).

We denote the linear part of L(u) by L = L(z, ∂). Let us define the lin-

earization of L(u). Put for v = v(z) ∈ F

(1.4) Lv(u) = L(u + v(z)) − L(v(z)).

Definition 1.3. The linear part of Lv(u) is called the linearization of

L(u) at v = v(z) and is denoted by Llin(v; z, ∂) or shortly Lv.

Put for r ∈ RRR

(1.5)




ek,L(r) = min{sAr + dA,L − |A|; A ∈ NM with kA = k}
eL(r) = min{ek,L(r); 0 ≤ k ≤ m}
kL(r) = max{kA; sAr + dA,L − |A| = eL(r)},

(1.6) ∆L(r) = {A ∈ NM ; sAr + dA,L − |A| = eL(r)},
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(1.7)




ek,L = min{dA,L − |A|; A ∈ NM with sA = 1 and kA = k}
eL = min{ek,L; 0 ≤ k ≤ m}
kL = max{kA; A ∈ NM with sA = 1 and dA,L − |A| = eL}

and

(1.8) ∆L = {A ∈ NM with sA = 1 ; dA,L − |A| = eL}.

Definition 1.4. (1) The minimal irregularity γmin,L(r) of L(u) for the

evaluation r is defined by

(1.9)

γmin,L(r) = min{sAr + dA,L − |A| − eL(r)

kA − kL(r)
; A ∈ NM with kA > kL(r)}.

(2) The minimal irregularity γmin,L of L(z, ∂) is defined by

(1.10)

γmin,L = min{dA,L − |A| − eL
kA − kL

; A ∈ NM with sA = 1 and kA > kL}.

If the set in the right hand side in (1.9) ((1.10)) is void, we put γmin,L(r)

= +∞ (resp. γmin,L = +∞). The minimal irregularities are used in the

following Theorems of this paper to estimate formal solutions of nonlinear

partial differential equations, that is, to show Gevrey type estimates of

them.

We restrict the coefficients of L(u) and study equations. So let us intro-

duce a subclass of F .

Definition 1.5. Let S be a finitely generated additive semi-group,

S = {qi; i ∈ NNN}, 0 = q0 < q1 < · · · < qi <→ +∞. FS is the set of all

formal series f(z) =
∑+∞

n=0 fn(z
′)zqn0 ∈ F+.

Now suppose that the coefficients bA(z) ∈ FS in (1.3). So we have

bA(z) =
∑+∞

n=0 bA,n(z
′)zqn0 . Consider

(1.11)




L(u) = g(z)

g(z) =zr0

+∞∑
n=0

gn(z
′)zqn0 ∈ F .
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For given q ∈ RRR we try to find a formal solution u(z) of (1.11)

(1.12) u(z) = zq0(
+∞∑
n=0

un(z
′)zqn0 ), u0(z

′) �≡ 0,

that is, a formal solution with the formal evaluation q. For a given q ∈ RRR,

put as defined in (1.5) and (1.6)

q∗ = eL(q) = min{sAq + dA,L − |A|;A ∈ NM},(1.13)

∆L(q) = {A ∈ NM ; sAq + dA,L − |A| = q∗}.(1.14)

In order to give conditions for the existence of formal solutions which

have a Gevrey type estimate we define some operators. Put for A ∈ NM

(1.15) L0,A(z′, µ, p) = bA,0(z
′)

sA∏
i=1

µ(µ− 1) . . . (µ−Ai,0 + 1)pA′
i

and

L1,A(z′, λ, µ, p, ∂′)

= bA,0(z
′){

sA∑
i=1

(
∏
h 
=i

µ(µ− 1) . . . (µ−Ah,0 + 1)pA′
h
)

× λ(λ− 1) . . . (λ−Ai,0 + 1)∂A
′
i},

(1.16)

where p = (pα′ ; α′ ∈ NNNn) and λ, µ are parameters. L1,A(z′, λ, µ, p, ∂′) is a

linear partial differential operator with order k′A = max{|A′
i|; 1 ≤ i ≤ sA}

and a polynomial of λ and ∂′ with degree kA = max{|Ai|; 1 ≤ i ≤ sA}.
Define

(1.17)




L0(z
′, µ, p) =

∑
A∈∆L(q)

L0,A(z′, µ, p)

L1(z
′, λ, µ, p, ∂′) =

∑
A∈∆L(q)

L1,A(z′, λ, µ, p, ∂′).
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L1(z
′, λ, µ, p, ∂′) is a linear partial differential operator with order k′L(q) =

max{k′A;A ∈ ∆L(q)} and a polynomial of λ and ∂′ with degree kL(q) =

max{kA;A ∈ ∆L(q)}.
Now we give several conditions to state results.

Condition 0. S ⊃ {sAq + dA,L − |A| − q∗;A ∈ NM} and g(z) =

zq∗0
∑+∞

n=0 gn(z
′)zqn0 , that is, r = q∗ in (1.11).

Condition 1. There is a solution u0(z
′) �≡ 0 of

(1.18) L0(z
′, q, ∂α

′
u0(z

′)) = g0(z
′),

which is holomorphic in a neighbourhood ω of z′ = 0.

Assume Conditions 0 and 1. Using u0(z
′) in Condition 1, define

(1.19) L1(z
′, λ, ∂′) = L1(z

′, λ, q, ∂α
′
u0(z

′), ∂′).

Let mL1 be the order of L1(z
′, λ, ∂′). Let P.S.L1(z

′, λ, ξ′) be the principal

symbol of L1(z
′, λ, ∂′) and

◦
kL1 be its degree as a polynomial of (λ, ξ′).

Condition 2. P.S.L1(0, λ, ξ̂′), ξ̂′ = (1, 0, . . . , 0), is a polynomial of λ

with degree
◦
kL1 −mL1 and does not vanish for λ = q + qn, n = 1, 2, . . . .

As for the existence of formal solutions with the formal evaluation q, we

have

Theorem 1.6. Suppose that Conditions 0-2 hold. Then there exists

uniquely u(z) = zq0(
∑+∞

n=0 un(z
′)zqn0 ) ∈ F satisfing L(u) = g(z) formally

and ∂h1u(0, z′′) = 0 (n ≥ 1) for 0 ≤ h ≤ mL1 − 1.

Conditions 0-1 assure the existence of the non zero initial term u0(z
′).

We can determine un(z
′) successively by Condition 2. We note that mL1 ≤

k′L(q), P.S.L1(z
′, λ, ξ′) is a polynomial of λ and ξ′ with degree

◦
kL1 ≤ kL(q)

and homogeneous in ξ′ with degree mL1 . We give a condition in order that

the constructed formal solution has a Gevrey type estimate.

Condition 3. P.S.L1(0, λ, ξ̂′) is a polynomial of λ with degree kL(q)−
mL1.
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We have

Theorem 1.7. Put γ∗ = γmin,L(q). Suppose that Conditions 0–3 and

(1.20) |bA,n(z′)|, |gn(z′)| ≤ Bqn+1
1 Γ(qn/γ∗ + 1)

hold. Then the coefficients un(z
′) of the formal solution u(z) in Theorem

1.6 have the estimate

(1.21) |un(z′)| ≤ ABqnΓ(
qn
γ∗

+ 1)

for some constants A and B.

In the preceding of this section we have treated operators with coeffi-

cients in formal series. Hereafter we assume that aA(z) and g(z) are holo-

morphic in Ω. So L(u) is not a formal operator. Put
◦
S(q) = {(sAq +

dA,L − |A|)− q∗; A ∈ NM} ∪ {1, [q∗ + 1]− q∗} and let S(q) be the additive

semigroup generatesd by
◦
S(q). Put S = S(q). In this case Condition 0 is

replaced by

Condition 0’ ∂k0g(0, z
′) = 0 for k < q∗.

If q∗ < 0, then Condition 0’ has no meaning. Suppose g(z) satisfies

Condition 0’. We have g(z) = zq
∗

0

∑
k≥q∗ ∂

k
0g(0, z

′)zk−q
∗

0 /k!. So

(1.22) g(z) = zq
∗

0

+∞∑
n=0

gn(z
′)zqn0 ,

where if qn = k − q∗ for k ∈ NNN , gn(z
′) = ∂k0g(0, z

′)zk−q
∗

0 /k!, and otherwise

gn(z
′) = 0. We have as an easy consequence of Theorem 1.7

Theorem 1.8. Assume that the coefficints aA(z) of L(u) and g(z) are

holomorphic in Ω. Put γ∗ = γmin,L(q) and suppose that Condition 0’ and

Conditions 1-3 hold. Then there exists uniquely u(z) = zq0(
∑+∞

n=0 un(z
′)zqn0 )

∈ F satisfing L(u) = g(z) formally with ∂h1un(0, z
′′) = 0 (n ≥ 1) for

0 ≤ h ≤ mL1 − 1 and the coefficients have the estimate (1.21).

The constructed solutions are formal. But they converge in some case.

We have
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Theorem 1.9. Suppose that the conditions in Theorem 1.8 hold. If

kL(q) = m, then the formal series u(z) in Theorem 1.8 converges in {0 <

|z0| < r} × ω for some r > 0 and it is a genuine solution of L(u) = g(z).

Remark 1.10. (1) The assumption that the operator L(z, ∂αu) is a

polynomial of ∂αu is superfluous, if we consider formal solutions with the

formal evaluation q > qL, qL being a constant with qL ≤ m depending on

L.

(2) Theorem 1.9 is a typical case in Ishii [2] and the similar result is also

obtained in Leichtnam [4], where they constructed convergent solutions. In

[2] genuine solutions represented with the series of not only za0 but also

(log z0)
b are constructed. In this paper we don’t use (log z0)

b, because

it is not easy to give the meaning of formal solutions. In this paper we

treat formal series with respect to one variale z0. In Gérard and Tahara

[1], the similar problem is considered for solutions of formal power series

with respect to multi-variable t ∈ CCCd, u(x, t) =
∑

{k∈NNNd;|k|≥1} uk(x)tk, of

some class of nonlinear partial differntial equations. uk(x) is determined

by solving linear algebraic equations for the equation studied in [1], that

is, C(x, k)uk(x) = { the terms determined by ui(x) (0 ≤ |i| ≤ k − 1)}. They

obtained a Gevrey type estimate for u(x, t) under the Poincaré’s condition

for functions C(x, k)’s. If t is one variable (d=1), the estimate is coincident

with that in Theorem 1.8.

(3) We investigate in §2 the Gevrey index γ∗ of the formal solution u(z),

give it more precisely than that in Theorems 1.7 and 1.8 and determine the

best one in some sense (see Theorems 2.7, 2.8 and 2.11).

(4) We construct formal solutions of nonlinear partial differentail equations

in this paper. We will investigate the relations between the formal solutions

and genuine solutions in the forthcomming paper. For this purpose the best

determination of the Gevrey index γ∗ will be available.

2. Constrution of formal solutions and improvement of

estimates

In §1 we have introduced nonlinear operators with formal series coeffi-

cients. Let us write again L(u) considered for the convenience. Let S be

a finitely generated additive semi-group, S = {qi; i ∈ NNN}, 0 = q0 < q1 <
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· · · < qi <→ +∞. Let L(u) be a formal nonlinear operator

L(u) = L(z, ∂αu; |α| ≤ m)

=
∑

A∈NM

aA(z)

sA∏
i=1

(∂Aiu)

=
∑

A∈NM

z
dA,L−|A|
0 bA(z)

sA∏
i=1

(z
Ai,0

0 ∂
Ai,0

0 ∂A
′
iu),

(2.1)

where

(2.2) aA(z) = z
jA,L

0 bA(z), bA(z) =
+∞∑
n=0

bA,n(z
′)zqn0 ∈ FS

and jA,L is the formal evaluation of aA(z).

We treat L(u) under some assumptions. Firstly assume that L(u) sat-

isfies the following Assumption 0.

Assumption 0. eL(0) = min{dA,L − |A|; A ∈ NM} = 0 and eL = 0.

Assumption 0 means that dA,L − |A| = 0 is attained by some of the

linear terms of L(u). We have easily from Assumption 0 and (1.5)-(1.8)

Lemma 2.1. Suppose that L(u) satisfies Assumption 0. Let r > 0.

Then eL(r) = r, ∆L(r) = ∆L and kL(r) = kL.

Hence if r > 0, ∆L(r) and kL(r) is independent of r and

(2.3)
 γmin,L(r) = min{(sA − 1)r + dA,L − |A|

kA − kL
; A ∈ NM with kA > kL},

((sA − 1)r + dA,L − |A|) ≥ γmin,L(r)(kA − kL) for all A ∈ NM

holds. We have by (2.3)

Proposition 2.2. Suppose that L(u) satisfies Assumption 0. Then

0 < γmin,L(r) ≤ γmin,L ≤ +∞ for r > 0 and γmin,L(r) ≤ γmin,L(r′) for

0 < r ≤ r′.

Now let us investigate the minimal irregularities of L(u), its linear

part L(z, ∂) and Lv(u). Put v = v(z′)zr0. Then Lv(u) = L(v(z′)zr0 + u) −
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L(v(z′)zr0). Let us calculate it. Let A = (A1, A2, . . . , AsA) ∈ NM , I be a

subset of {1, 2, . . . sA} and |I| be the cardinal number of the set I. Put

Lv
A(u) = z

dA,L−|A|
0 bA(z)

∑
{I; |I|≥1}

z
(sA−|I|)r
0 ×

{(
∏
h 
∈I

r(r − 1) . . . (r −Ah,0 + 1)∂A
′
hv(z′))

∏
i∈I

z
Ai,0

0 ∂Aiu}.
(2.4)

Then we have

(2.5) Lv(u) =
∑
A

Lv
A(u).

Let γmin,Lv(r′) be the minimal irregularity for the evaluation r′ of the op-

erator of Lv(u) and Lv be the linear part of Lv(u). Then

Proposition 2.3. Suppose that L(u) satisfies Assumption 0. Let v =

v(z′)zr0, r > 0.

(1) eLv(0) = eLv = 0, that is, Lv satisfies Assumption 0 and ∆Lv(0) =

∆L(0).

(2) Let r′ > 0. Then eLv(r′) = r′, ∆Lv(r′) = ∆L and kLv(r′) = kL.
(3) γmin,L(r) ≤ γmin,Lv(r′) for r ≤ r′.
(4) Let w = w(z′)zr

′
0 (r < r′). If γmin,Lv = γmin, L(r), then γmin, Lv+w =

γmin, Lv(r′) = γmin,Lv

Proof. Let us note the expression of Lv
A(u) by (2.4). We have (dA,L−

|A|) + (sA − |I|)r ≥ 0 and the equality holds if and only if A ∈ ∆L(0) and

|I| = sA. Hence (1) is valid. We have, if sA > 1 in (2.4),

|I|r′ + (dA,L − |A|) + (sA − |I|)r ≥ (sA − |I|)r + |I|r′ > r′.

If sA = 1 in (2.4),

|I|r′ + (dA,L − |A|) + (sA − |I|)r = dA,L − |A| + r′ ≥ r′

and the equality holds only for A ∈ ∆L. Hence we have (2). We have from

(2), if max{|Ai|; i ∈ I} > kL,

(|I|r′ + (dA,L − |A|) + (sA − |I|)r − eLv(r′))/(max{|Ai|; i ∈ I} − kL)

≥((sAr + dA,L − |A| − r) + (|I| − 1)(r′ − r))/(kA − kL) ≥ γmin,L(r),
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which implies (3). Let us show (4). We note that (Lv)w = Lv+w and

eL = eLv = eLv+w = 0. Put

Lv
A = z

dA,L−|A|
0 bA(z)

sA∑
i=1

z
(sA−1)r
0

× {(
∏
h 
=i

r(r − 1) . . . (r −Ah,0 + 1)∂A
′
hv(z′))z

Ai,0

0 ∂Ai}
(2.6)

and

Lv+w
A =z

dA,L−|A|
0 bA(z)

sA∑
i=1

z
(sA−1)r
0 [{

∏
h 
=i

(r(r − 1) . . . (r −Ah,0 + 1)∂A
′
hv(z′)

+ r′(r′ − 1) . . . (r′ −Ah,0 + 1)zr
′−r

0 ∂A
′
hw(z′))}zAi,0

0 ∂Ai ]

=Lv
A + L̃A,

(2.7)

where

(2.8) L̃A =
∑
α

lA,α(z)(z0∂0)
α0∂′α′

and the formal evaluation of lA,α(z) ≥ dA,L − |A| + (sA − 1)r + r′ − r. We

have Lv =
∑

A Lv
A and Lv+w =

∑
A Lv+w

A = Lv + L̃, where L̃ =
∑

A L̃A. If

|α| > kL in (2.8), we have from the assumption and r′ > r

(dA,L − |A| + (sA − 1)r + r′ − r)/(|α| − kL)

≥(dA,L − |A| + (sA − 1)r + r′ − r)/(kA − kL)

>(dA,L − |A| + (sA − 1)r)/(kA − kL) ≥ γminL(r) = γminLv .

Hence it follows fromLv+w = Lv + L̃ that γmin,Lv+w is determined by the

term of Lv and γmin,Lv+w = γmin,Lv . On the other hand, from Proposition

2.2 and (3), γmin,Lv ≥ γmin,Lv(r′) ≥ γmin,L(r). Thus we have (4). �

Now let us consider the equation

(2.9) L(u) = g(z), g(z) =
+∞∑
n=n′

gn(z
′)zqn0 ∈ FS n′ ≥ 1.
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We try to find u(z) =
∑+∞

n=n′ un(z
′)zqn0 ∈ FS which formally satisfies (2.9).

Put

L(z′, λ, ∂′) =
∑
α∈∆L

bα,0(z
′)λ(λ− 1) . . . (λ− α0 + 1)∂α

′

=
∑

|α′|≤mL

Lα′(z′, λ)∂α
′
.

(2.10)

L(z′, λ, ∂′) is determined by some terms of the linear part of L(u) and its

order is mL. Let P.S.L(z′, λ, ξ′) =
∑

|α′|=mL
Lα′(z′, λ)ξ′α

′
be the principal

symbol of L(z′, λ, ∂′). It is a polynomial of (λ, ξ′) with degree
◦
kL ≤ kL. We

further assume the following Assumptions 1 and 2:

Assumption 1. S ⊃ {dA,L − |A|; A ∈ NM with aA(z) �≡ 0}.

Assumption 2. P.S.L(0, λ, ξ̂′), ξ̂′ = (1, 0. . . . , 0), is a polynomial of

λ with degree
◦
kL −mL and does not vanish for all λ = qn, n ≥ n′.

Assumption 2 means that |Lα′(z′, λ)Lα̂′(z′, λ)|−1 (|α′| = mL, α̂
′ = (mL,

0, · · · , 0)) are bounded in a neighbourhood of z′ = 0 for λ = qn, n ≥ n′.
We have

Theorem 2.4. Suppose that Assumptions 0–2 hold. Then there exists

uniquely u(z) = (
∑+∞

n=n′ un(z
′)zqn0 ) ∈ FS satifying L(u) = g(z) formally,

where ∂h1un(0, z
′′) = 0 (n ≥ n′) for 0 ≤ h ≤ mL − 1.

Before the proof we give simple formulae for later calculations. We have

for a multi-index α ∈ NNNn+1

(2.11)

{
∂α(zλ0w(z′)) = (Mα(λ, ∂′)w(z′))zλ−α0

0 ,

Mα(λ, ∂′) = λ(λ− 1) · · · (λ− α0 + 1)∂α
′
.

So for a formal series u(z) =
∑+∞

n=0 un(z
′)zqn0 ,

(2.12) ∂αu(z) =
+∞∑
n=0

Mα(qn, ∂
′)un(z

′)zqn−α0
0 .
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Let A = (A1, A2, · · · , As) ∈ (NNNn+1)s. We have

sA∏
i=1

(∂Aiu(z)) = z
lA−|A|
0

{
sA∏
i=1

(
+∞∑
ni=0

MAi(qni , ∂
′)uni(z

′)z
qni
0 )}.

(2.13)

Expanding aA(z)

(2.14) aA(z) = z
jA,L

0 bA(z) = z
jA,L

0 (
+∞∑
n0=0

bA,n0(z
′)z

qn0
0 ),

we have

aA(z)

sA∏
i=1

(∂Aiu(z)) = z
dA,L−|A|
0 (

+∞∑
n0=0

bA,n0(z
′)z

qn0
0 )

{
sA∏
i=1

(

+∞∑
ni=0

MAi(qni , ∂
′)uni(z

′)z
qni
0 )}.

(2.15)

It follows from Assumption 1 that

(2.16) aA(z)

sA∏
i=1

(∂Aiu(z)) =
+∞∑
n=0

LA,n(u)zqn0 ,

where

(2.17) LA,n(u) =
∑

{
qn0+···+qnsA
+dA,L−|A|=qn

} bA,n0(z
′)(

sA∏
i=1

MAi(qni , ∂
′)uni(z

′)).

Proof of Theorem 2.4. Now let us return to (2.9). Substituting a

formal series u(z) =
∑+∞

n=n′ un(z
′)zqn0 into L(u), we have

(2.18)




L(u) =
+∞∑
n=0

Ln(u)zqn0 ,

Ln(u) =
∑
A

LA,n(u).
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Therefore, in order to satisfy L(u) = g(z) formally, we put the coefficients

of zqn0 in {L(u) − g(z)} equal to 0 and we have, by Lemma 2.1,

(2.19) L(z′, qn, ∂
′)un(z

′) + Mn(uj(z
′); j < n) = gn(z

′) (n ≥ n′),

where Mn(uj(z
′); j < n) is a term determined by uj(z

′) (j < n):

Mn(uj(z
′); j < n) =

∑



(qn0 ,qn1 ,...,qns ,A); , A∈NM

qn0+qn1+···+qns+dA,L−|A|=qn
ni<n for all i≥1




bA,n0(z
′)(

sA∏
i=1

MAi(qni , ∂
′)uni(z

′)).

(2.20)

So we determine un(z
′) (n ≥ n′) so that they satisfy

(2.21)

{
L(z′, qn, ∂

′)un(z
′) + Mn(uj(z

′); j < n) = gn(z
′),

∂h1un(z
′)|z1=0 = 0 for 0 ≤ h ≤ mL − 1.

It follows from Assumption 2 and the remark following it that un(z
′) (n ≥

n′) are successively determined by Cauchy Kowalevskja’s Theorem, which

are holomorphic in a neighbourhood of ω′ of z′ = 0. Thus we have Theorem

2.4. �

Remark 2.5. For the simplicity we put the zero initial conditions to

determine un(z
′) in (2.19), but it is obvious that we can give non-zero ini-

tial conditions. If L(z, λ, ∂′) is degenerate, by imposing suitable solvability

condition on it, we have a formal solution.

Let us proceed to obtain an estimate of the coefficients un(z
′) of u(z)

in Theorem 2.4. In order to do so, in addition to Assumptions 0-2, we put

the following assumption:

Assumption 3. P.S.L(0, λ, ξ̂′) is a polynomial of λ with degree kL −
mL.
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Assumption 3 means that P.S.L(0, λ, ξ′) is a polynomial of (λ, ξ′) with

degree kL, that is,
◦
kL = kL. We assume that the coefficients bA,n(z

′) of

bA(z) and gn(z
′) of g(z) have a Gevrey type estimate,

(2.22)

{
|bA,n(z′)| ≤ Bqn+1

1 Γ(qn/γ + 1)

|gn(z′)| ≤ B
qn−qn′+1
1 Γ((qn − qn′)/γ + 1) (n ≥ n′),

where 0 < γ ≤ +∞. If γ = +∞, then bA(z) and g(z) converge in {0 <

|z0| < r} for some r > 0.

Theorem 2.6. Suppose that Assumptions 0-3 hold and γ =

γmin,L(qn′) in (2.22). Then for the coefficients un(z
′) (n ≥ n′) of the formal

solution u(z) ∈ FS of L(u) = g(z) in Theorem 2.4, it holds similarly to

(2.22) that

(2.23) |un(z′)| ≤ ABqn−qn′Γ(
qn − qn′

γmin,L(qn′)
+ 1)

for some constants A and B.

The proof of Theorem 2.6 is given in §4. Here we show that the estimate

of un(z
′) will be improved. Let u(z) be the solution of L(u) = g(z) given

in Theorem 2.4. By using the coefficients {un(z′); n ≥ n′} of u(z), define

(2.24)




vl(z) =
n′+l−1∑
n=n′

un(z
′)zqn0 for l ≥ 1, v0(z) = 0,

wl(z) =
+∞∑

n=n′+l

un(z
′)zqn0

and

(2.25)




L(vl;w) = Lvl(w) = L(w + vl(z)) − L(vl(z)),

hl(z) = g(z) − L(vl(z)) =
+∞∑

n=n′+l

hl,n(z
′)zqn0 .

Now consider the equation of w

(2.26) L(vl;w) = hl(z).
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w(z) = wl(z) is a unique formal solution satisfying ∂h1un(0, z
′′) = 0 (n ≥

n′ + l) for 0 ≤ h ≤ mL − 1. It is not difficult to show by Propsition 2.3 and

Lv+w = (Lv)w that

(2.27)




eLvl (0) = eLvl = 0

∆L = ∆Lvl

L(z′, λ, ∂′) = L(vl; z
′, λ, ∂′),

where L(vl; z
′, λ, ∂′) is that defined by (2.10) for L(vl; · ), and L(vl; · )

satisfies Assumptions 0-3. By applying Theorem 2.6 to the equation (2.26),

we have

Theorem 2.7. Suppose that Assumptions 0-3 hold and γ =

γmin,Lvl (qn′+l) in (2.22). Then for the coefficients un(z
′) (n ≥ n′) of the

formal solution u(z) ∈ FS of L(u) = g(z) in Theorem 2.4, it holds that

(2.28) |un(z′)| ≤ ABqn−qn′Γ(
qn − qn′

γmin,Lvl (qn′+l)
+ 1)

for other constants A and B.

We have from the above Theorem

Theorem 2.8. Suppose that Assumptions 0-3 hold and γ = +∞ in

(2.22). Let un(z
′) (n ≥ n′) be the coefficients of the formal solution u(z) ∈

FS of L(u) = g(z) in Theorem 2.4.

(1) For each l ∈ NNN there are Al and Bl such that

(2.29) |un(z′)| ≤ AlB
qn−qn′
l Γ(

qn − qn′

γmin,Lvl (qn′+l)
+ 1).

(2) If there is an N ∈ NNN such that γmin,LvN (qn′+N ) = γmin,LvN+1 , then

there are A and B such that

(2.30) |un(z′)| ≤ ABqn−qn′Γ(
qn − qn′

γmin,LvN+1

+ 1).

Suppose that the assumption in (2) in Theorem 2.8 holds. Put R =

LvN , v = un′+N (z′)z
qn′+N

0 and w = un′+N+1(z
′)z

qn′+N+1

0 . The assumption
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means γmin,R(qn′+N ) = γmin,Rv . Then it follows from Propsition 2.3 that

γmin,Rv(qn′+N+1) = γmin,Rv+w = γmin,Rv , which means γmin,LvN+1 (qn′+N+1)

= γmin,LvN+2 = γmin,LvN+1 . By the induction we have γmin,Lvn (qn′+n) =

γmin,Lvn+1 = γmin,LvN+1 for n ≥ N . So the estimate (2.30) may be consid-

ered to be best in some sense.

Let us apply Theorems in this section to show Theorems in §1. Let L(u)

be a nonlinear operator defined by (1.1) and (1.2) in §1. Define

(2.31) P (u) = z−q
∗

0 {L((u + u0)z
q
0)−L(u0z

q
0)} = z−q

∗

0 Lv(zq0u), v = u0z
q
0.

Let us calculate P (u). Let A = (A1, A2, . . . , AsA) ∈ NM , I be a subset of

{1, 2, . . . , sA} and |I| be the cardinal number of the set I. Put

PA(u) = z
dA,L−|A|−q∗
0 bA(z)

∑
{I; |I|≥1}

z
(sA−|I|)q
0

×{(
∏
h 
∈I

q(q − 1) . . . (q −Ah,0 + 1)∂A
′
hu0(z

′))
∏
i∈I

z
Ai,0

0 ∂
Ai,0

0 ∂A
′
i(zq0u(z))}.

(2.32)

Then we have

(2.33) P (u) =
∑
A

PA(u).

P(z, ∂), the linear part of P (u), is

(2.34)

P(z, ∂) =
∑
A

z
dA,L−|A|−q∗+(sA−1)q
0 bA(z)

× {
sA∑
i=1

(
∏
h 
=i

q(q − 1) . . . (q −Ah,0 + 1)∂A
′
hu0(z

′))z
Ai,0

0 ∂
Ai,0

0 ∂A
′
i(zq0 · )}.

We note that

(2.35) γmin,Lv(q + r) = γmin,P (r), γmin,Lv = γmin,P (v = u0(z
′)z0

q).
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Now suppose that L(u) satisfies Conditions 0-2 in §1 and let u0(z
′) be

that in Condition 1. Put

(2.36)

P0(z, ∂) =
∑

A∈∆L(q)

z−q0 bA,0(z
′)

×{
sA∑
i=1

(
∏
h 
=i

q(q − 1) . . . (q −Ah,0 + 1)∂A
′
hu0(z

′))z
Ai,0

0 ∂
Ai,0

0 ∂A
′
i(zq0 · )}

and

(2.37)

P(z′, λ, ∂′) =
∑

A∈∆L(q)

bA,0(z
′){

sA∑
i=1

(
∏
h 
=i

q(q − 1) . . . (q −Ah,0 + 1)∂A
′
hu0(z

′))

× (λ + q)(λ + q − 1) · · · (λ + q −Ai,0 + 1)∂A
′
i}.

Let mP be the order of P(z′, λ, ∂′). We have from (1.16), (1.17) and (1.19)

(2.38) P(z′, λ, ∂′) = L1(z
′, λ + q, ∂′).

So mP = mL1 . Before the proofs of Theorems 1.6 and 1.7 we give Proposi-

tions.

Proposition 2.9. Suppose that L(u) satisfies Conditions 0-2. Then

P (u) satisfies Assumptions 0-2. Moreover if L(u) satisfies Condition 3,

then P (u) satisfies Assumption 3.

Proof. Firstly we note that Condition 2 means P0(z, ∂) �≡ 0. So

P(z, ∂) �≡ 0. We show Assumption 0. We have eP (0) ≥ 0 by sAq + dA,L −
|A| − q∗ ≥ 0 and the above remark implies eP = 0. Condition 0 means

Assumption 1. P(z′, λ, ∂′) is nothing but defined by formula (2.10) by

replacing L(u) by P (u). Condition 2 and (2.38) mean Assumption 2. We

have mP = mL1 ≤ kP ≤ kL(q). If Condition 3 holds, kP = kL(q) and

Assumption 3 holds. �

Proposition 2.10. Suppose that L(u) satisfies Conditions 0-3. Let

v = u0(z
′)zq0and r > 0. Then the following holds:

(1) γmin,L(q) ≤ γmin,P (r).

(2) If γmin,L(q) = γmin,Lv , then γmin,P (r) = γmin,P .
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Proof. By Lemma 2.1 and the proof of Proposition 2.9 eP (r) = r and

kP = kP (r) = kL(q). If max{|Ai|; i ∈ I} > kP (r) in (2.32),

(|I|r + sAq + dA,L − |A| − q∗ − eP (r))/(max{|Ai|; i ∈ I} − kP (r))

≥ (sAq + dA,L − |A| − q∗)/(kA − kL(q)) ≥ γmin,L(q).

Hence γmin,P (r) ≥ γmin,L(q). We show (2). By the definition of P (u),

we have γmin,P = γmin,Lv . By Proposition 2.2 γmin,P (r) ≤ γmin,P . Since

γmin,L(q)

≤ γmin,P (r) ≤ γmin,P = γmin,Lv , we have (2). �

Proof of Theorems 1.6 and 1.7. L(u) = g(z) is transformed to

P (w) = f(z), where by Condition 0

(2.39) f(z) = z−q
∗

0 (g(z) − L(u0(z
′)zq0)) =

+∞∑
n=1

fn(z
′)zqn0 .

So consider P (w) = f(z). It follows from Theorem 2.4 that there ex-

ists a formal solution w(z) =
∑+∞

n=1 un(z
′)zqn0 of P (w) = f(z). Hence

u(z) = zq0(u0(z
′)+w(z)) is a desired solution, which shows Theorem 1.6. If

Condition 3 holds, it follows from Theorem 2.6 that

(2.40) |un(z′)| ≤ ABqn−q1Γ(
qn − q1

γmin,P (q1)
+ 1).

Since γmin,L(q) ≤ γmin,P (q1) by Proposition 2.10-(1), we have Theorem

1.7. �

The estimate in Theorem 1.7 is improved by Theorem 2.8. Define for a

formal series u(z) = zq0(
∑+∞

n=0 un(z
′)zqn0 ) with the formal evaluation q

(2.41)




v0(z) ≡ 0, vl(z) =
l∑

n=1

un(z
′)zqn0 ,

u∗
−1(z) ≡ 0 u∗

l (z) = zq0(u0(z) + vl(z)) l ≥ 0.

Theorem 2.11. Suppose that Conditions 0-3 in §1 hold and let aA(z)

and g(z) be holomorphic in Ω. Furthermore assume that there is an N ∈ NNN
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such that γ
min,L

u∗N−1
(q + qN ) = γ

min,Lu∗N . Then it holds for the coefficients

un(z
′) (n ≥ 0) of the formal solution u(z) ∈ FS of L(u) = g(z) in Theorem

1.6 that

(2.42) |un(z′)| ≤ ABqnΓ(
qn

γ
min,Lu∗N

+ 1).

Proof. We note that if l ≥ 0, γ
min,Lu∗

l
(q + ql+1) = γmin,P vl (ql+1) and

γ
min,Lu∗

l
= γmin,Pvl . Assume N ≥ 1. Then

γmin,P vN−1 (qN ) = γ
min,L

u∗N−1
(q + qN ) = γ

min,Lu∗N = γmin,PvN .

We apply Thorem 2.8-(2) to P (w) = f(z). By replacing N by N − 1 and

putting n′ = 1, we have

|un(z′)| ≤ ABqn−q1Γ(
qn − q1

γmin,PvN

) = ABqn−q1Γ(
qn − q1

γ
min,Lu∗N

).

Assume N = 0. Then the assumption means γmin,L(q) = γ
min,Lu∗0 . We

have from Proposition 2.10-(2) γmin,L(q) = γ
min,Lu∗0 = γmin,P = γmin,P (q1).

Hence the assertion follows. �

We can say under the conditions of Theorem 2.11 that the class, so

called Gevrey class, to which the formal solution u(z) of L(u) = g(z) be-

longs is determined by γ = γ
min,Lu∗N which is minimal irregularity of the

linearization of L(u) at u∗
N (z).

Definition 2.12. Suppose that Condition 0-3 holds. Let u(z) =

zq0(
∑+∞

n=0 un(z
′)zqn0 ) be a formal series of solution of L(u) = g(z) with the

formal evaluation q. Put n∗ = min{l ∈ NNN ; γ
min,L

u∗
l−1

(q + ql) = γ
min,Lu∗

l
}.

Then we call q+qn∗ (+∞, if n∗ = +∞) the true evalution of formal solution

u(z). If n∗ > 0, the formal evaluation q is called apparent.

3. Majorant functions

In order to obtain estimates of un(z
′)(n ≥ 0) constructed in §2, that

is, to show Theorem 2.6 we prepare majorant functions. For formal se-

ries of s-variables w = (w1, . . . , ws)A(w) =
∑

α∈NNNs Aαw
α and B(w) =
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∑
α∈NNNs Bαw

α, A(w) � B(w) means |Aα| ≤ Bα for all α ∈ NNN s and A(w) �
0 means Aα ≥ 0 for all α ∈ NNN s.

Put

(3.1) φ(t) = c
+∞∑
n=0

tn/(n + 1)2,

which was used in Lax [3] and Wagschal [5] and the following Lemma 3.1

is stated there.

Lemma 3.1. There is a positive constant c such that φ(t)φ(t) � φ(t).

Proof. We have

φ(t)φ(t) = c2
+∞∑
n=0

(
∑

l+m=n

1

(l + 1)2(m + 1)2
)tn

and ∑
l+m=n

1

(l + 1)2(m + 1)2
≤ A

(n + 1)2
for someA > 0.

So if cA ≤ 1, we have φ(t)φ(t) � φ(t). �

Fix c > 0 so that φ(t)2 � φ(t). Put φR(t) = φ(t/R) for R > 0. We have

Lemma 3.2. The following majorant estimates hold:

φR(t)2 � φR(t),(3.2)

φR1(t) � φR2(t) for 0 < R2 < R1,(3.3)

d

dt
φR(t) � 1

R− t
φR(t),(3.4)

1

R′ − t
� C(R,R′)φR(t) for 0 < R < R′,(3.5)

d

dt
φR(t) � C(R, r)φr(t) for 0 < r < R.(3.6)

Proof. The estimates (3.2) and (3.3) are obvious. We show (3.4). We

have
d

dt
φR(t) =

c

R

+∞∑
n=0

(n + 1)

(n + 2)2
tn

Rn
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and

(R− t)−1φR(t) =
c

R

+∞∑
n=0

(
n∑

k=0

1

(k + 1)2
)
tn

Rn
.

Since
n∑

k=0

1

(k + 1)2
≥ 1

n + 1
>

n + 1

(n + 2)2
,

we have (3.4). We show (3.5). Since (R′ − t)−1 = (
∑+∞

n=0(t/R
′)n)/R′ and

(1/R′)n+1 ≤ C/Rn(n + 1)2 for some C = C(R,R′) > 0, we have (3.5). We

have from (3.3), (3.4) and (3.5)

d

dt
φR(t) � φR(t)

R− t
� φr(t)

R− t
� C(R, r)φr(t)φr(t) � C(R, r)φr(t),

which implies (3.6). �

Now let {rk > 0; −k0 ≤ k ≤ 0} and R > 0 such that 0 < r = r0 <

r−1 < . . . < r−k0 < R < 1, where k0 ∈ NNN will be concretely chosen in §4
and be fixed. Put

(3.7)




θk(t) = φ(
t

rk
) for − k0 ≤ k ≤ 0

θk(t) =
1

(r − t)k
φ(

t

r
) for k > 0.

We have

(3.8)

{
θk(t) � θl(t) for k ≤ l

θk(t)θl(t) � θk+l(t) for k, l ≥ 0

and

Proposition 3.3. The following majorant estimates hold:

(r − t)θk(t) � 0 for k > 0,(3.9)

kθk+1(t) �
d

dt
θk(t) � (k + 1)θk+1(t) for k ≥ 0,(3.10)

d

dt
θk(t) � Cθk+1(t) for − k0 ≤ k ≤ 0,(3.11)

θk(t)θl(t) � θs(t), s = max{k, l, k + l}.(3.12)
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Proof. The estimate (3.9) is obvious. Let us show (3.10). By (3.4)

we have for k ≥ 0

d

dt
θk(t) =

k

(r − t)k+1
φr(t) +

1

(r − t)k
d

dt
φr(t)

� kθk+1(t) +
1

(r − t)(k+1)
φr(t)

= (k + 1)θk(t)

and
d

dt
θk(t) � kθk+1(t).

We have (3.11) from (3.6). We show (3.12). If k, l ≥ 0, it follows from

(3.8). Suppose k ≥ 0 > l. Then we have

θk(t)θl(t) =
1

(r − t)k
φ(

t

r
)φ(

t

rl
) � 1

(r − t)k
φ(

t

r
)φ(

t

r
) � 1

(r − t)k
φ(

t

r
).

When k, l < 0, we have (3.12) easily from (3.3). �

4. Estimates

The aim of §4 is to show Theorem 2.6, that is, to give estimates of

{un(z′); n ≥ n′} constructed in §2. Put a = max{2, m/q1} and −k0 =

[−am] in the definition of {θk(t); −k0 ≤ k < +∞} in (3.7). We assume

Assumptions 0-3 given in §2. So we have γmin,L(qn′) = min{((sA − 1)qn′ +

dA,L−|A|)/(kA−kL); A with kA > kL} (see (2.3)). Let {ei > 0; 1 ≤ i ≤ l}
be the generators of S. Put b = m+ l+1. In this section we assume bA,n(z

′)
and gn(z

′) are holomorphic on {z′; |z′| ≤ R} and have the following bounds

(see (2.22)):

(4.1)




|bA,n(z′)| ≤
Bqn+1

1

(qn + 1)b
Γ(qn/γ + 1)

|gn(z′)| ≤
B
qn−qn′+1
1

(qn + 1)b
Γ((qn − qn′)/γ + 1) for n ≥ n′,

where γ = γmin,L(qn′).
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Theorem 4.1. There are positive constants C and B such that

(4.2) un(z
′) � CBqn−qn′

(qn + 1)b
Γ(

qn − qn′

γ
+ 1)θ[a(qn−m)](t) for n ≥ n′

holds in a neighbourhood of ω of z′ = 0, where t = ρz1 + z2 + · · · + zn for

some ρ > 1.

Since |θn(t)| ≤ Cn+1 (n ≥ 0) for |t| ≤ r/2, the estimate in Theorem 2.6

immediately follows from Theorem 4.1.

In order to show Theorem 4.1, we need some lemmas. In the following

ρ > 1 is some constant. Put for n ≥ n′

(4.3) Θn(t) = CBqn−qn′ (qn + 1)−bΓ(
qn − qn′

γ
+ 1)θ[a(qn−m)](t),

where t = ρz1 + z2 + · · · + zn.

Lemma 4.2. The following majorant estimate holds:

(4.4) Mα(qn, ∂
′)θ[a(qn−m)](t) � C0(qn + 1)|α|θ[a(qn−m)]+|α|(t),

where C0 depends only on ρ.

Proof. We have, by (2.11) and Proposition 3.3,

Mα(qn, ∂
′)θ[a(qn−m)](t)

= λ(λ− 1) . . . (λ− α0 + 1)∂α
′
θ[a(qn−m](t)|λ=qn

� C0(qn + 1)|α|θ[a(qn−m)]+|α|(t). �

By Lemma 4.2 we have

Lemma 4.3. Let A = (A1, A2, . . . , AsA) ∈ NM . Then

sA∏
i=1

MAi(qni , ∂
′)Θni(t) � (CC0)

sABq′

×
sA∏
i=1

(qni + 1)|Ai|−b
sA∏
i=1

Γ(
qni − qn′

γ
+ 1)(

sA∏
i=1

θ[a(qni−m)]+|Ai|(t)),

(4.5)
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where q′ =
∑sA

i=1(qni − qn′).

Lemma 4.4. The following inequalities hold:

Γ(x + 1)Γ(y + 1) ≤ Γ(x + y + 1) for x, y ≥ 0,(4.6)

Γ(x− y + 1) ≤ K
Γ(x + 1)

(x− y + 1)y
for x ≥ y ≥ 0,(4.7)

where K > 0 is a constant independent of x and y.

Proof. If y = 0, then the inequalities are trivial. We assume that

x ≥ y > 0. It holds that

Γ(x + 1)Γ(y + 1) = B(x + 1, y + 1)Γ(x + y + 2)

= (x + y + 1)B(x + 1, y + 1)Γ(x + y + 1),

where

B(x + 1, y + 1) =

∫ 1

0
tx(1 − t)ydt.

We have

B(x + 1, y + 1) =
y

x + y + 1

∫ 1

0
tx(1 − t)y−1dt ≤ 1

x + y + 1
,

from which (4.6) follows. We show (4.7). It follows from Stirling’s formula

that there exists constant K > 0 such that

(x + 1)δΓ(x + 1) ≤ KΓ(x + δ + 1) for x ≥ 0 and 0 ≤ δ < 1.

Hence we have

Γ(x + 1) = x(x− 1) . . . (x− [y] + 1)Γ(x− [y] + 1)

≥ K−1x(x− 1) . . . (x− [y] + 1)(x− y + 1)y−[y]Γ(x− y + 1)

≥ K−1(x− y + 1)yΓ(x− y + 1). �
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Lemma 4.5. Suppose that dA,L − |A| + qn0 +
∑sA

i=1 qni = qn. Then

Γ(
qn0

γ
+ 1)

sA∏
i=1

Γ(
qni − qn′

γ
+ 1)

≤C ′Γ((qn − qn′)/γ + 1)(qn + 1)kL−kA

(4.8)

for some C ′ > 0.

Proof. It holds that sAqn′ + dA,L − |A| − qn′ ≥ γ(kA − kL), γ =

γmin,L(qn′) (see (2.3)). So qn − qn′ − γ(kA − kL) ≥ qn0 +
∑sA

i=1(qni − qn′). If

kA ≥ kL, by Lemma 4.4

Γ(
qn0

γ
+ 1)

sA∏
i=1

Γ(
qni − qn′

γ
+ 1) ≤ C ′′Γ((qn − qn′)/γ − kA + kL + 1)

≤ C ′Γ((qn − qn′)/γ + 1)(qn + 1)kL−kA .

If kA < kL, it is easy to show the assertion. �

Lemma 4.6. Suppose that dA,L − |A| + qn0 +
∑sA

i=1 qni = qn and qn >

qni for all i > 0. Put q′ =
∑sA

i=1(qni − qn′). Then

(4.9) q′ ≤ (qn − qn′) − qn0/2 − (dA,L − |A|)/2 − q1/2.

Proof. We have q′ = qn − sAqn′ − (qn0 + dA,L − |A|). Suppose dA,L −
|A| > 0. Then dA,L−|A| ≥ q1 and q′ ≤ qn−qn′ −qn0 −(dA,L−|A|)/2−q1/2.

Suppose dA,L − |A| = 0. Then q′ = qn − sAqn′ − qn0 . If sA = 1, qn0 ≥ q1

and q′ ≤ qn − qn′ − qn0/2 − q1/2. If sA ≥ 2, q′ ≤ qn − 2qn′ − qn0 ≤
qn − qn′ − q1/2 − qn0/2. This completes the proof. �

Lemma 4.7. Suppose that qn > m, dA,L − |A| + qn0 +
∑sA

i=1 qni = qn
and qn > qni for all i > 0. Then

(4.10)

sA∏
i=1

θ[a(qni−m)]+m(t) � θ[a(qn−m)](t).
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Proof. Put N1 = {i > 0; a(qni − m) + m > 0} and N2 = {i >

0; a(qni−m)+m ≤ 0}. Put s1 = #N1 and s2 = #N2. We have sA = s1+s2.

If s1 = 0, since qn > m, the assertion is obvious. Suppose that s1 ≥ 1. Then

by Proposition 3.3

sA∏
i=1

θ[a(qni−m)]+m(t) �
∏
i∈N1

θ[a(qni−m)]+m(t)

� θ∑
i∈N1

([a(qni−m)]+m)(t).

(4.11)

We have ∑
i∈N1

([a(qni −m)] + m) ≤
∑
i∈N1

a(qni −m) + s1m

= aqn − a(qn0 + dA,L − |A|) − a
∑
i∈N2

qni + s1m(1 − a).

We show

aqn − a(qn0 + dA,L − |A|) − a
∑
i∈N2

qni + s1m(1 − a)

≤ a(qn −m).

(4.12)

If the inequality (4.12) holds, the majorant estimate (4.10) easily follows

from Proposition 3.3. We note a = max{2,m/q1}. The above inequality is

equivalent to

a ≥ s1m

(s1 − 1)m + qn0 + dA,L − |A| +
∑

i∈N2
qni

.

If s1 ≥ 2,

s1m

(s1 − 1)m + qn0 + dA,L − |A| +
∑

i∈N2
qni

≤ s1m

(s1 − 1)m
≤ 2 ≤ a.

If s1 = 1, say N1 = {1}, we have qn0+dA,L−|A|+
∑

i∈N2
qni = qn−qn1 > 0.

Hence qn0 + dA,L − |A| +
∑

i∈N2
qni ≥ q1 and

m

qn0 + dA,L − |A| +
∑

i∈N2
qni

≤ m

q1
≤ a.
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Thus (4.10) is valid. �

Lemma 4.8. There exists C1 > 0 such that

(4.13)
∑

{
(qn0 ,qn1 ,...,qns )

qn0+qn1+···+qns=d

}
s∏

i=0

1

(qni + 1)b−kA
≤ Cs

1

(d + 1)b−kA
.

Proof. Let {ei > 0; 1 ≤ i ≤ l} be generators of S. Hence qn = a1,ne1+

a2,ne2 + . . .+ al,nel for some ai,n ∈ NNN. We have b = m+ l + 1 ≥ kA + l + 1.

Put e0 = min{ei; 1 ≤ i ≤ l} and b′ = b− kA. Firstly we show

(4.14)
+∞∑
k=0

1

(qk + 1)b′
< +∞.

We have

+∞∑
k=0

1

(qk + 1)b′
=

+∞∑
k=0

1

(a1,ke1 + a2,ke2 + . . . + al,kel + 1)b′

≤
+∞∑
k=0

e−b
′

0

(a1,k + a2,k + . . . + al,k + 1)b′

≤ e−b
′

0

+∞∑
a1=0

+∞∑
a2=0

. . .
+∞∑
al=0

1

(a1 + a2 + . . . + al + 1)l+1
< +∞.

Now we show this lemma by induction on s. When s = 0, it is obvious.

Suppose s = 1. We have by (4.14)

∑
qn0+qn1=d

1

(qn0 + 1)b′(qn1 + 1)b′
≤

∑
0≤qk≤d

C ′

(qk + 1)b′(d− qk + 1)b′

≤ C1

(d + 1)b′
.
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Assume that the assertion is vaild for 0 ≤ s ≤ S. Then

∑
qn0+qn1+···+qnS+1

=d

S+1∏
i=0

1

(qni + 1)b′

≤
∑

0≤qnS+1
≤d

CS
1

(qnS+1 + 1)b′(d− qnS+1 + 1)b′
≤ CS+1

1

(d + 1)b′
. �

We have from the preceding Lemmas

Proposition 4.9. Suppose that qn > m, dA,L−|A|+qn0 +
∑sA

i=1 qni =

qn and qn > qni for all i > 0. Then following estimate holds:

bA,qn0
(z′)

sA∏
i=1

MAi(qni , ∂
′)Θni(t)

� B′(CC0)
sA2−dA,L+|A|Bqn−qn′−q1/2(qn + 1)kL−kA

× Γ(
qn − qn′

γ
+ 1)(

sA∏
i=0

(qni + 1)−b+kA)θ[a(qn−m)](t)

(4.15)

for a large constant B and some B′.

Proof. It follows from the assumption on bA,n(z
′), Lemmas 4.3, 4.5

and 4.7 that there is a constant B2 such that

bA,qn0
(z′)

sA∏
i=1

MAi(qni , ∂
′)Θni(t)

� B
qn0+1
2 (CC0)

sABq′(qn + 1)kL−kAΓ(
qn − qn′

γ
+ 1)

· (
sA∏
i=0

(qni + 1)−b+kA)θ[a(qn−m)](t),

where q′ =
∑

(qni −qn′). Choose B ≥ 4 so large that B2B
−1/2 ≤ 1/2. Then,

by Lemma 4.6, it holds that Bq′ ≤ 2−(dA,L−|A|)Bqn−qn′−q1/2 and this lemma

follows. �
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Proposition 4.10. Suppose that qn > m. Then the following majo-

rant estimate holds:

I(n) =
∑




(qn0 ,qn1 ,...,qns ,A); A∈NM

qn0+qn1+···+qns

+dA,L−|A|=qn, s=sA
qn>qni for i>0




bA,qn0
(z′)

sA∏
i=1

MAi(qni , ∂
′)Θni(t)

� C∗Bqn−qn′−q1/2(qn + 1)kL−bΓ(
qn − qn′

γ
+ 1) θ[a(qn−m)](t)

(4.16)

for some constant C∗.

Proof. Put

I(n,A) =
∑




(qn0 ,qn1 ,...,qns );
qn0+qn1+···+qns

=qn−dA,L+|A|, s=sA
qn>qni for i>0




bA,qn0
(z′)

sA∏
i=1

MAi(qni , ∂
′)Θni(t).

Then we have, by Lemma 4.8 and Propsition 4.9,

I(n,A) � B′(CC0C1)
sABqn−qn′−q1/2(qn + 1)kL−kA

× 2−(dA,L−|A|)(qn − dA,L + |A| + 1)kA−bΓ(
qn − qn′

γ
+ 1)θ[a(qn−m)](t).

Hence we have, by putting C̃ = B′(CC0C1)
M ,

I(n) =
∑

{A; 0≤dA,L−|A|≤qn}
I(n,A)

� C̃Bqn−qn′−q1/2Γ(
qn − qn′

γ
+ 1)θ[a(qn−m)](t)

× (
∑

{A; 0≤dA,L−|A|≤qn}
2−dA,L+|A|

· (qn − dA,L + |A| + 1)kA−b(qn + 1)kL−kA)

� C̃C3B
qn−qn′−q1/2(qn + 1)kL−b Γ(

qn − qn′

γ
+ 1) θ[a(qn−m)](t).
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Thus we have the majorant estimate, putting C∗ = C̃C3. �

In order to complete the proof of Theorm 4.1 we need an estimate of

solutions of Cauchy Problems of partial differential equations. Let us con-

sider

(4.17)




Aα̂′(z′)∂m∗
1 u(z′) +

∑
{α′;|α′|≤m∗, α1<m∗}

Aα′(z′)∂α
′
u(z′) = g(z′)

∂h1u(0, z′′) = 0 for 0 ≤ h ≤ m∗ − 1.

where α̂′ = (m∗, 0, · · · , 0), Aα′(z′) and g(z′) are holomorphic in {z′ ∈
CCCn; |z′| ≤ R}. We note that z′ = (z1, z

′′), α′ = (α1, α
′′) and t =

ρz1 + z2 + . . . + zn.

Lemma 4.11. Let s be a positive integer. Assume that |Aα′(z′)| ≤
D0(1 + s)k

∗−|α′| for α′ �= α̂′ and |Aα̂′(z′)| ≥ D−1
0 (1 + s)k

∗−m∗
. Let u(z′) be

a unique solution of (4.17). Then there exists ρ > 1 such that if

(4.18) g(z′) � (1 + s)k
∗
θs+m∗(t),

the following estimate for u(z′) holds:

(4.19) u(z′) � Dθs(t),

where constant D > 0 depends on ρ and D0, but is independent of s.

Proof. It follows from Propositoin 3.3 that∑
{α′;|α′|≤m∗, α1<m∗}

Aα̂′(z′)−1Aα′(z′)∂α
′
θs(t) � D2ρ

m∗−1(1 + s)m
∗
θs+m∗(t),

Aα̂′(z′)−1g(z′) � D2(1 + s)m
∗
θs+m∗(t)

and

ρm
∗
s(s + 1) . . . (s + m∗ − 1)θs+m∗(t) � ∂m

∗
1 θs.

We take ρ > 1 and D > 0 so that

D2(1 + Dρm
∗−1)(1 + s)m

∗ ≤ Dρm
∗
s(s + 1) . . . (s + m∗ − 1).

Since initial values ∂h1u(0, z′′) (0 ≤ h ≤ m∗ − 1) are zero, we have u(z′) �
Dθs(t). �
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Proof of Theorem 4.1. Firstly we summerize what we need con-

cerning L(z′, λ, ∂′):

(4.20) L(z′, λ, ∂′) =
∑

|α′|≤mL

Lα′(z′, λ)∂α
′
,

where

(4.21) Lα′(z′, λ) =
∑

{α=(α0,α′)∈∆L}
bα,0(z

′)λ(λ− 1) . . . (λ− α0 + 1).

It follows from Assumptions 2 and 3 that

(4.22) |Lα′(z′, λ)| ≤ C(1 + |λ|)kL−|α′|

and

(4.23) |Lα̂′(z′, λ)| ≥ C−1(1 + |λ|)kL−mL for λ = qn (n ≥ n′).

Now fix ρ > 1 so that Lemma 4.11 can be applied for L(z′, λ, ∂′) (see

(2.19)). Choose C > 0 so large that for qn′ ≤ qn ≤ max{qn′ ,m + 1}

un(z
′) � C

(qn + 1)b
Γ(

qn − qn′

γ
+ 1)θ[a(qn−m)](t)

holds. Suppose that (4.2) is valid for n with n′ ≤ n < N such that qN ≥
max{qn′ ,m + 1}. Then Proposition 4.10 means that

MN (uj(z
′); j < N))

<<C∗BqN−qn′−q1/2(qN + 1)kL−bΓ(
qN − qn′

γ
+ 1)θ[a(qN−m)](t).

We apply Lemma 4.11 to uN (z′), which is determined by (2.19). Put g(z′) =

gN (z′) − MN (uj(z
′); j < N), k∗ = kL, m∗ = mL and s = [a(qN − m)].

Then it follows from the above inequalities that L(z′, qn, ∂′) satisfies the

conditions in Lemma 4.11 and

g(z′) << (C∗BqN−qn′−q1/2 + B
qN−qn′+1
1 )

×(qN + 1)kL−bΓ(
qN − qn′

γ
+ 1)θ[a(qN−m)]+mL

(t).
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Hence we have by Lemma 4.11,

uN (z′) << D(C∗BqN−qn′−q1/2 + B
qN−qn′+1
1 )

×(qN + 1)−bΓ(
qN − qn′

γ
+ 1)θ[a(qN−m)](t).

By choosing B so large that (DC∗B−q1/2+B1(B1/B)qN−qn′ ) < C, where C∗

is independent of B, we have (4.2) for n = N . Thus the proof of Theorem

4.1 is completed.

References
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