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Transformations and contiguity relations for

Gelfand’s hypergeometric functions

By Eiji Horikawa

Abstract. The contiguity relations and transformation fromulae
are studied for the hypergeometric functions on the Grassmannian.
They are clarified by the action of Lie algebra of GL(n) and generalize
the classical results for Gauss’ hypergeometric function.

§1. Introduction

I.M.Gelfand et al. [2, 3] (see also papers in Gelfand’s collected works

vol. 3) introduced a generalization of hypergeometric function which is es-

sentially defined on the Grassmannian Gk,n of k planes in an n space. We

take k × n independent variables v = (vip)i=1,2,...,k, j=1,2,...,n (real or com-

plex) and define the differential operators

Zij =
n∑

p=1

vip
∂

∂vjp
, i, j = 1, 2, . . . , k,

Lp =
k∑

i=1

vip
∂

∂vip
, p = 1, 2, . . . , n,

�ip,jq =
∂2

∂vip∂vjq
− ∂2

∂viq∂vjp
,

i, j = 1, 2, . . . , k, p, q = 1, 2, . . . , n.

Then consider the following system of differential equations for an unknown
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function Φ(v):

ZijΦ = −δijΦ,(1)

LpΦ = (αp − 1)Φ,(2)

�ip,jqΦ = 0,(3)

where the αp are the constants satisfying

n∑
p=1

αp = n− k,

which are supposed to be in general position, and δ denotes Kronecker’s

delta.

The equations (1) mean that if we take h ∈ GL(k) then

(4) Φ(h · v) = det(h)−1Φ(v),

while the equations (2) determine an action of (R∗)n (or (C∗)n) on Φ by

(5) Φ((tjvij)) =


∏

j

t
αj−1
j


Φ(v).

This system is holonomic, and its solution sheaf at a general point is of

rank

(
n− 2

k − 1

)
[3].

In this paper, we study transformation formulae and contiguity rela-

tions for these equations, which generalize the classical results for Gauss’

hypergeometric function, and Appell’s F1. We can, in particular, derive

very explicit formulae for Lauricella’s FD. These symmetries are very clear

from the viewpoint of Gelfand’s equation and we can translate the result

to the case of the classical functions. In §§2 and 3 we state some general

aspects on these equations. §4 is devoted to the transformation formulae

for FD. In §§5, 6, we study contiguity relations, which is applied to FD in

§7. In Appendix A, we prove the equivalence of some reduction, of which

we could not find an appropriate reference. In Appendix B, we show that

Lauricella’s FA and FB are birationally equivalent to each other. Although
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this fact was known to Lauricella himself [6, pp.133–134], we include it here

to show the naturality of the present point of view.

There are many works on contiguity of hypergeometric functions, start-

ing with Gauss. Miller [7, 8, 9] studied such operators for various hypergeo-

metric functions. More recently, Sasaki [11] studied the contiguity relations

from a viewpoint which is close to ours. In particular, our infinitesimal

operators π(Eij) in §3 are noted in [11]. We hope the present paper is still

worth being published because of the following points: 1. We clarify more

direct connection with Lie algebras, and prove the invariance of the sys-

tem of differential equaitons; 2. We can explain transformation formulae in

terms of the Weyl group as well. We refer the reader to [13, 14] for related

results.

The author would like to thank Professor Israel M. Gelfand for intro-

ducing him to this rich area of study at the occasion of his visits to Japan

in 1989. He also thanks A. V. Zelevinsky, K. Okamoto and M. Yoshida for

valuable discussion.

§2. Reduction of the number of variables

By the homogeneity (4) and (5), we can reduce the number of variables

of the equation. We suppose that the first k × k minor det(vip)i,p=1,2,...,k

does not vanish. Then, by (4), we may assume vip = δip for 1 ≤ i, p ≤ k.

To be precise, let w = (wip)1≤i≤k,k+1≤p≤n, and define ϕ(w) to be Φ((1kw)),

where 1k is the identity matrix of size k. By (1), Φ and ϕ are related by

the formula

det(h)Φ(v) = ϕ(w),

where h = (vip)1≤i,p≤k and w = h−1v, and ϕ(w) satisfies

∑
i

wip
∂

∂wip
ϕ = (αp − 1)ϕ, p = k + 1, . . . , n,(6)

∑
p

wip
∂

∂wip
ϕ = (−αi)ϕ, i = 1, . . . , k,(7)

(
∂2

∂wip∂wjq
− ∂2

∂wiq∂wjp

)
ϕ = 0,(8)

i, j = 1, . . . , k, p, q = k + 1, . . . , n.
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Proposition 1. The system of equations (1)–(3) for Φ is equivalent

to (6)–(8) for ϕ.

For the sake of completeness we give a proof in Appendix A.

We set l = n − k. We also set βk+p = 1 − αk+p for p = 1, . . . , l. By

the homogeneity (6) and (7), we can normalize w1,k+1, w1,k+2, . . . , w1,k+l,

w2,k+1, . . . , wl,k+1 to 1. In fact, in view of

ϕ((sitpwi,k+p)) =

(∏
i

s−αi
i

∏
p

t
−βk+p
p

)
ϕ(w),

we set

si = 1/wi,k+1, i = 1, . . . , k,

tp = w1,k+1/w1,k+p, p = 1, . . . , l,(9)

xi,k+p = w1,k+1wi,k+p/wi,k+1w1,k+p,

i = 2, . . . , k, p = 2, . . . , l.

Then

ϕ((wi,k+p)) = ρΨ((xi,k+p)), ρ = wγ0

1,k+1

∏
i≥2

w−αi
i,k+1

∏
p≥2

w
−βk+p

1,k+p ,

where γ0 = −α1 +
∑

p≥2 βk+p =
∑

i≥2 αi−βk+1, and Ψ denotes the restric-

tion of ϕ to the subset defined by wi,k+1 = w1,k+p = 1 for i = 1, . . . , k, p =

1, . . . , l. By virtue of (6) and (7), we have

∂

∂w1,k+1
ϕ =

ρ

w1,k+1


∑

j,q≥2

xj,k+q
∂

∂xj,k+q
+ γ0


Ψ,

∂

∂wi,k+1
ϕ =

ρ

wi,k+1


−

∑
q≥2

xi,k+q
∂

∂xi,k+q
− αi


Ψ, i ≥ 2,

∂

∂w1,k+p
ϕ =

ρ

w1,k+p


−

∑
j≥2

xj,k+p
∂

∂xj,k+p
− βk+p


Ψ, p ≥ 2,

∂

∂wi,k+p
ϕ =

ρ

wi,k+p
xi,k+p

∂

∂xi,k+p
Ψ, i, p ≥ 2.
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Then the equations (8) imply

∂i,k+p


∑

j,q

θj,k+q + γ0


Ψ =

(∑
q

θi,k+q + αi

)∑
j

θj,k+p + βk+p


Ψ

(10)

i, p ≥ 2,

∂i,k+p∂i′,k+p′Ψ = ∂i′,k+p∂i,k+p′Ψ, i, i′, p, p′ ≥ 2,(11)

where

∂i,k+p =
∂

∂xi,k+p
, θi,k+p = xi,k+p

∂

∂xi,k+p
.

More precisely, let Dip be the differntial operator such that
∂ϕ

∂wi,k+p
=

(ρ/wi,k+p)DipΨ, then the equations (8) are expressed as

1

wi,k+pwi′,k+p′
DipDi′p′Ψ =

1

wi,k+p′wi′,k+p
Dip′Di′pΨ,

for i, i′ = 1, . . . , k, p = 1, . . . , l.

The equations (10) and (11) are special case of these, and other equations

can be derived from (10) and (11) as integrability conditions. This is similar

to the case of 2 × 2 minors of a usual matrix. We note that, although the
∂

∂wi,k+p
are commutative to each other, the Dip are not. From (10), it

easily follows that we have a formal power series solution

(12)
∑

mip≥0

∏
i(αi;

∑
q miq)

∏
p(βk+p;

∑
j mjp)

(γ0 + 1;
∑

j,q mjp)

∏
i,p x

mip

i,k+p∏
i,p mip!

,

where (α;m) = α(α + 1) . . . (α + m − 1) =
Γ (α + m)

Γ (α)
. This power series

converges for |xi,k+p| sufficiently small, and (11) automatically holds.
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§3. General structure of symmetry

Let g be an element of GL(n), which maps v to ṽ = vg, i.e., ṽip̄ =∑
p vipgpp̄. We consider the function Φg(v) = Φ(vg). Then

∂Φg

∂vip
(v) =

∑
p̄

∂Φ

∂vip̄
(vg)gpp̄

and
∂2Φg

∂vip̄∂vjq̄
(v) =

∑
p̄,q̄

∂2Φ

∂vip∂vjq
(vg)gpp̄gqq̄.

It follows that, if Φ satisfies (3), then Φg also satisfies (3). On the other

hand, Φg satisfies the equations (1), because one has

Φg(hv) = Φ(hvg) = det(h)−1Φ(vg) = det(h)−1Φg(v).

Equations (2) are equivalent to

Φ(vt) = χ(t)Φ(v),

χ(t) =
∏
p

t
αp−1
p for t = diag. [t1, . . . , tn].

Note that

Φg(vt) = Φ(vtg) = Φ(vg · g−1tg).

Therefore, if g normalizes the diagonal group, then we have

Φg(vt) = χ(g−1tg)Φg(v).

This explains how the Weyl group, i.e., the symmetric group Sn, acts on

the space of solutions. In paricular, for k = 2, this gives the transformation

formulae for Lauricella’s FD in n− 3 variables (see §4).

To obtain contiguity relations, we consider 1-parameter family g(λ) of

elememts of GL(n) with g(0) = 1. For simplicity of notation, we introduce

the following symbol:

Dλf =
∂f

∂λ

∣∣∣∣
λ=0

.
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We set

X = Dλg(λ),

and define the action π(X) : Φ 	→ π(X)Φ by

π(X)Φ(v) = Dλ(Φ
g(λ)(v)),

which depends on k. It is easily checked that the right hand side depends

only on X, and that π(X)Φ(v) satisfies equations (1) and (3). As to (2),

we have

π(X)Φ(vt) = DλΦ(vtg(λ))(13)

= χ(t)DλΦ(vtg(λ)t−1)

= χ(t)π(ad(t)X)Φ(v),

where ad(t)X = tXt−1.

In particular, let X = Eij be the matrix element i.e., its (i, j)-component

is 1, while the others are 0. Then ad(t)Eij = tit
−1
j Eij , and hence

π(Eij)Φ(vt) = χ(t)tit
−1
j π(Eij)Φ(v).

That is, π(Eij)Φ(v) satisfies the same type of equations with αi and αj

being replaced by αi + 1 and αj − 1, respectively. This generalizes the

so-called contiguity relations for Gauss’ hypergeometric function.

Theorem 1. We have [π(X), π(Y )] = π([X,Y ]) for any X,Y ∈ gl(n).

Proof. This follows from a standard calculation of exponential maps

on Lie algebras. �

§4. Transformations of FD

In this section, we write down the transformations of FD from the view

point of generalized hypergeometric functions. We set k = 2, and let

Φ(α1, . . . , αn; (vip)) = Φα((vip))
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be a solution of (1)–(3). Then (10) becomes

(14)
[
∂p(
∑

q θq + γ0) − (
∑

q θq + α2)(θp + βp)
]
Ψ = 0 p = 2, . . . , l,

and the power series (12) is

(15)
∑

m2≥0,...,ml≥0

(α2;
∑

mq)
∏

p(βp;mp)

(γ0 + 1;
∑

mq)

xm2
2 . . . xml

l

m2! . . .ml!
.

Therefore

Ψ(x4, x5, . . . , xn) = Φα

((
1 0 1 1 1 . . . 1

0 1 1 x4 x5 . . . xn

))

satisfies the same differential equations as

FD(α2; 1−α4, . . . , 1−αn;α2+α3;x4, . . . , xn)

(see [5, 3.3.1]). Conversely, Φ is reconstructed from Ψ as

Φα(v) = ρΨ(x4, . . . , xn),

where

ρ = (21)α1+α2−1(31)−α2(23)α2+α3−1
∏
j≥4

(2j)αj−1,

xj =
(1j)(23)

(2j)(13)
, j ≥ 4,

(ij) = v1iv2j − v1jv2i.

It is clear that, for any permuation σ,

Φ(ασ(1), . . . , ασ(n); v
σ), vσ = (viσ(p))

satisfies the same type of equations. This proves the following theorem.

Theorem 2. For any permutaion σ of 1, 2, . . . , n,

ρσFD(ασ(2); 1−ασ(4), . . . , 1−ασ(n);ασ(2)+ασ(3);x
σ
4 , . . . , x

σ
n)
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satisfies the same differential equations as

FD(α2; 1−α4, . . . , 1−αn;α2+α3;x4, . . . , xn),

where

ρσ = (xσ(1)−xσ(2))
ασ(1)+ασ(2)−1(xσ(1)−xσ(3))

−ασ(2)

· (xσ(2)−xσ(3))
ασ(2)+ασ(3)−1

∏
j≥4

(xσ(j)−xσ(2))
ασ(j)−1,

xσj =
xσ(j)−xσ(1)

xσ(j)−xσ(2)

/
xσ(3)−xσ(1)

xσ(3)−xσ(2)
j ≥ 4,

with the following conventions:

x1 = 0, x2 = ∞, x3 = 1,

x2 − xj = 1

(
= det

(
1 0

xj 1

))
.

In the case of n = 4, these transformations are the famous 24 trans-

formations of Kummer for Gauss hypergeometric functions (see [1, p.6],

[12,pp.284–285]). In the case of n = 5, Appell-Kampé de Fériet described

60(=5!/2) transformations for F1 ([1, pp.62–64]). They ignore the transpo-

sition of the variables x, y i.e., x4, x5 in our notation.

We want to discuss the transformations of Lauricella’s FC in a future

paper.

§5. Explicit formulae for the action of Lie algebra

In this section, we give explicit form of the contiguity relations described

in §3. Recall that ϕ is related to Φ by

ϕ(w) = Φ((1w)),

where w = (wip)1≤i≤k,k+1≤p≤n is a k × (n−k)-matrix, and 1 denotes the

identity matrix of size k. For g ∈ GL(n), we define

ϕg(w) = Φg((1w)) = Φ((1w)g).
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In other words, let us divide the matrix g as

g =

(
A C

B D

)

where A consists of the first k rows and k columns. Then, the above equa-

tion can be written as

ϕg(w) = det(A + wB)−1ϕ((A + wB)−1(C + wD)).

Next we suppose that g = g(λ) depends on a parameter λ with g(0) = 1,

and let X = Dλg be the corresponding element of the Lie algebra gl(n). We

set

π(X)ϕ(w) = π(X)Φ((1w)).

By direct calculations, we obtain the following formulae. We fix the

indexing as

i, j ∈ [1, k], p, q ∈ [k + 1, n].

The action of gl(n) on the space of functions ϕ is given as follows.

π(Eip)ϕ =
∂ϕ

∂wip
,

π(Epi)ϕ = −


wip +

∑
j,q

wjpwiq
∂

∂wjq


ϕ,

π(Eij)ϕ = −δijϕ−
∑
p

wjp
∂ϕ

∂wip
,

π(Epq)ϕ =
∑
i

wip
∂ϕ

∂wiq
.

In particular,

π(Eii)ϕ = (αi − 1)ϕ, π(Epp)ϕ = (αp − 1)ϕ.
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As an example, we shall carry out the calculation for Epi. We set g(λ) =

1 + λEpi. Then

(1w)g(λ) =




1 . . . λw1p . . . 0 w1 k+1 . . . w1n
...

. . .
...

...
...

...

0 . . . 1 + λwip . . . 0 wi k+1 . . . win
...

...
. . .

...
...

...

0 . . . λwkp . . . 1 wk k+1 . . . wkn,




which we write (w0w). It follows

w−1
0 ≡




1 −λw1p

. . .
...

1 − λwip
...

. . .

−λwkp 1


 mod λ2.

Hence

w−1
0 w1 ≡




w1,k+1−λw1pwi,k+1 . . . w1n−λw1pwin
...

. . .
...

wi,k+1−λwipwi,k+1 . . . win−λwipwin
...

. . .
...

wk,k+1−λwkpwi,k+1 . . . wkn−λwkpwin


 mod λ2.

Since det(w0) ≡ 1 + λwip, we obtain

Φ((w0w1)) ≡ (1−λwip)Φ((1 w̃1)) mod λ2,

w̃1 = w−1
0 w1

Our formula follows from this.
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§6. Relation with classical hypergeometric functions

We introduce (k − 1)(n− 1) variables (xip)2≤i≤k,k+2≤p≤n. We set

x̃ =




1 1 . . . 1

1 x2,k+2 . . . x2n

. . . . . .

1 xk,k+2 . . . xkn


 ,

and define

Ψ(x) = ϕ(x̃).

Then, by the homogeneity (4) (5), we have

ϕ((wip)) = ρΨ((xip)), ρ = wγ0

1,k+1

∏
i≥2

w−αi
i,k+1

∏
p≥k+2

w
αp−1
1p ,

where

γ0 = −α1 +
n∑

p=k+2

(1 − αp) =
k+1∑
i=2

αi − 1,

xip =
w1,k+1wip

wi,k+1w1p
, i = 2, . . . , k, p = k + 2, . . . , n.

We define

π(X)Ψ(x) = π(X)ϕ(x̃).

By direct caluculations, we obtain the following expressions, where the

summations are all extended over j, l ∈ [2, k] or q ∈ [k + 2, n], and i, j ∈
[1, k], p, q ∈ [k + 1, n] as before:

π(Eip)Ψ =
∂Ψ

∂xip
, i 
= 1, p 
= k+1,

π(Ei,k+1)Ψ = −
(∑

q

xiq
∂

∂xiq
+ αi

)
Ψ, i 
= 1,

π(E1p)Ψ = −


∑

j

xjp
∂

∂xjp
+ 1 − αp


Ψ, p 
= k+1,
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π(E1,k+1)Ψ =


∑

j,q

xjq
∂

∂xjq
+ γ0


Ψ,

π(Epi)Ψ = −
[
xip +

∑
j,q

(xjpxiq + xjq(1 − xjp − xiq))
∂

∂xjq

−
∑
q

(1 − αq)xiq −
∑
j

αjxjp + γ0

]
Ψ, i 
= 1, p 
= k+1,

π(Ek+1,i)Ψ = −
[
1 +

∑
j,q

xiq(1 − xjq)
∂

∂xjq

−
∑
q

(1 − αq)xiq −
∑
j

αj + γ0

]
Ψ, i 
= 1,

π(Ep1)Ψ = −
[∑

j,q

(xjp(1 − xjq))
∂

∂xjq

−
∑
q

(1 − αq) −
∑
j

αjxjp + γ0 + 1

]
Ψ, p 
= k+1,

π(Ek+1,1)Ψ = −
[∑

j,q

(1 − xjq)
∂

∂xjq

−
∑
q

(1 − αq) −
∑
j

αj + γ0 + 1

]
Ψ,

π(Eij)Ψ =

[∑
q

(xiq − xjq)
∂

∂xiq
+ αi − δij

]
Ψ, i 
= 1, j 
= 1,

π(Ei1)Ψ =

[∑
q

(xiq − 1)
∂

∂xiq
+ αi

]
Ψ, i 
= 1,

π(E1j)Ψ =


∑

q,l

xlq(xjq − 1)
∂

∂xlq
+
∑
q

(1 − αq)xjq − γ0


Ψ,

j 
= 1

π(E11)Ψ = (α1 − 1)Ψ,
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π(Epq)Ψ =


∑

j

(xjp − xjq)
∂

∂xjq
− (1 − αq)


Ψ,

p 
= k+1, q 
= k+1,

π(Ek+1,q)Ψ =


∑

j

(1 − xjq)
∂

∂xjq
− (1 − αq)


Ψ, q 
= k+1,

π(Ep,k+1)Ψ =


∑

j,q

xjq(1 − xjp)
∂

∂xjq
−
∑
j

αjxjp + γ0


Ψ,

p 
= k+1,

π(Ek+1,k+1)Ψ = (αk+1 − 1)Ψ.

§7. Contiguity for Lauricella’s FD

In this section we give the formulae of the contiguity relations for Lauri-

cella’s FD. This is a special case of the result of §6 where k = 2. The function

ϕ with parameters α1, α2, . . . , αn corresponds to F = FD(α;β4, . . . , βn; γ;

x4, . . . xn) in the classical notation. Here

xj = x2 j (j ≥ 4),

and the parameters are related as

(16)

α = α2,

γ = α2 + α3 = 2 − α1 +
∑
j

βj = γ0 + 1,

βj = 1 − αj (j ≥ 4).

The action of gl(n) on F is given by the following formulae.

π(E2p)F =
∂F

∂xp
(p ≥ 4),

π(E23)F = −


∑

j

xj
∂

∂xj
+ α


F,
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π(E1p)F = −
(
xp

∂

∂xp
+ βp

)
F (p ≥ 4),

π(E13)F =

(∑
p

xp
∂

∂xp
+ γ − 1

)
F,

π(Ep2)F =

[
xp +

∑
q

xq(1 − xq)
∂

∂xq

−
∑
q

βqxq − αxp + γ − 1

]
F (p ≥ 4),

π(E32)F =

[∑
q

xq(1 − xq)
∂

∂xq
−
∑
q

βqxq − α + γ

]
F,

π(Ep1)F = −
[∑

q

xp(1 − xq)
∂

∂xq
−
∑
q

βq − αxp + γ

]
F (p ≥ 4),

π(E31)F = −
[∑

q

(1 − xq)
∂

∂xq
−
∑
q

βq − α + γ

]
F,

π(E21)F =

[∑
q

(xq − 1)
∂

∂xq
+ α

]
F,

π(E22)F = (α− 1)F,

π(E11)F = (1 +
∑
j

βj − γ)F,

π(E12)F =

[∑
q

xq(xq − 1)
∂

∂xq
+
∑
q

βqxq − γ + 1

]
F,

π(Epq)F =

[
(xp − xq)

∂

∂xq
− βq

]
F (p, q ≥ 4),

π(E3q)F =

[
(1 − xq)

∂

∂xq
− βq

]
F,

π(Ep3)F =

[∑
q

xq(1 − xp)
∂

∂xq
− αxp + γ − 1

]
F (p ≥ 4),

π(E33)F = −β3F.

In the notation of Miller [7], our operators are in the following corre-
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spondence.

π(E2p) ↔ Eαβpγ , π(E23) ↔ −Eα, π(E1p) ↔ −Eβp ,

π(E13) ↔ E−γ , π(E32) ↔ −E−α, π(Ep1) ↔ −E−βp , etc.

Here, for example, Eαβpγ is an operator which raises α, βp, γ and E−α lowers

α. These unevenness reflects the change of parameters (16).

Appendix A. Proof of Proposition 1

We write v = (v v′), where v is a k × k-matrix and v′ is a k × (n − k)-

matrix. We further introduce the new variables u = (uij), 1 ≤ i, j ≤ k by

uij = vij . Then we have

(v v′) = u · (1w),

i.e.,

(17)

{
vij = uij ,

v′ip =
∑
j
uijwjp.

By definition, Φ and ϕ are related to each other by the formula

Φ(v v′) = det(u)−1ϕ(w).

Lemma 1. Set h(u) = det(u)−1. Then

(18)
∂2h

∂uij∂uīj̄

=
∂2h

∂uij̄∂uīj

.

Proof. Let ∆ij be the cofactor of uij in det(u). Then

∂h

∂uij
= −h(u)2∆ij .

It follows that

∂2h

∂uij∂uīj̄

= h(u)3{2∆ij∆īj̄ − det(u)∆ij,̄ij̄},
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where ∆ij,̄ij̄ denotes the coefficient for uijuīj̄ in det(u). Since ∆ij,̄ij̄ =

−∆ij̄,ij̄ , the equation (18) is equivalent to

det(u)∆ij,̄ij̄ = ∆ij∆īj̄ −∆ij̄∆īj .

This is known as Jacobi’s formula (see e.g. [10], p.78). �

We regard (17) as a coordinate change from (u,w) to (v, v′). We easily

obtain

∂

∂uij
=

∂

∂vij
+
∑
q

wjq
∂

∂v′iq
,

∂

∂wjp
=
∑
ī

vīj
∂

∂v′
īp

.

We also have ∑
j

uij
∂wjp

∂v′kp
= δik.

It follows that

∑
j

uīj

∂h

∂uij
· ϕ =

∑
j

vīj
∂Φ

∂vij
+
∑
p

v′īp
∂Φ

∂v′ip
,

h
∑
j

wjp
∂ϕ

∂wjp
=
∑
ī

v′īp
∂Φ

∂v′
īp

,

h
∑
p

wjp
∂ϕ

∂wjp
=
∑
ī,p

uījwjp
∂Φ

∂v′
īp

=
∑
ī

uīj(
∂

∂uīj

− ∂

∂vīj
)Φ

= −Φ−
∑
ī

vīj
∂Φ

∂vīj
.

These prove the equivalence of (2) and (6)(7).

Next we have

h
∂2ϕ

∂wip∂wjq
=
∑
ī,j̄

uīiuj̄j

∂2Φ

∂v′
īp
∂v′

j̄q

.
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This implies that (3) for p, q ≥ k+1 is equivalent to (8). It remains to show

that (6)–(8) imply (3) for the cases p ≤ k or q ≤ k. For this, note that

∑
j

(
∂

∂wjp

)(
∂

∂uij

)
Φ =

∑
ī,j

vīj

(
∂

∂vij

)(
∂

∂v′
īp

)
Φ

+
∑
q,j

vījwjq

(
∂

∂v′iq

)(
∂

∂v′
īp

)
Φ +

∑
ī,j,q

uīj

∂wjq

∂v′
īp

∂Φ

∂v′iq

=
∑
ī

∂

∂v′
īp


∑

j

vīj
∂

∂vij
+
∑
q

v′īq
∂

∂v′iq


Φ

= − ∂Φ

∂v′ip
.

Then we obtain, for j ≤ k, p ≥ k + 1,

∂2Φ

∂v′ip∂vīj
= − ∂

∂vīj

∑
l

(
∂

∂uil

)(
∂

∂wlp

)
Φ

= −
∑
l

(
∂

∂uīj

−
∑
q

wjq
∂

∂v′
īq

)(
∂

∂uil

)(
∂

∂wlp

)
Φ

= −
∑
l


 ∂

∂uīj

+
∑
q

wjq

∑
l̄

(
∂

∂uīl̄

)(
∂

∂wl̄q

)( ∂

∂uil

)(
∂

∂wlp

)
Φ

= −
[∑

l

(
∂

∂uīj

)(
∂

∂uil

)(
∂

∂wlp

)

+
∑
l,l̄,q

wjq

(
∂

∂uil

)(
∂

∂uīl̄

)(
∂2

∂wlp∂wl̄q

)Φ.

By Lemma 1 the last expression is invariant under i ↔ ī.

Finally, from

∂Φ

∂vij
=


 ∂

∂uij
−
∑
q,l

wjq

(
∂

∂uil

)(
∂

∂wlq

)Φ,
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we obtain

∂2Φ

∂vij∂vīj̄
=


 ∂2

∂uij∂uīj̄

−
∑
q̄,l̄

wj̄q̄

(
∂

∂uij

)(
∂

∂uīl̄

)(
∂

∂wl̄q̄

)

−
∑
q,l

wjq

(
∂

∂uil

)(
∂

∂uīj̄

)(
∂

∂wlq

)

−
∑
q,q̄,l,l̄

wjqwj̄q̄

(
∂

∂uil

)(
∂

∂uīl̄

)(
∂

∂wlq

)(
∂

∂wl̄q̄

)

−
∑
q,l̄

wjq

(
∂

∂uij̄

)(
∂

∂uīl̄

)(
∂

∂wl̄q

)Φ.

On the right hand side, the 1st, 3rd and 4th terms are invariant under i ↔ ī

by Lemma 1 and (8), while the 2nd and 5th terms are interchanged. Hence

the equation (3) for Φ is established. Proposition 1 is proved.

Appendix B. Lauricella’s functions FA and FB

In this appendix, we study the restrictions of the generalized hyperge-

ometric functions to some strata and another normalization. We see how

FA and FB appear in our context. We also show that these two functions

are birationally transformed to each other.

Suppose that n = 2k, and xi,k+p = 0 for i 
= p. We set xi = xi,k+i and

use the notation ∂i =
∂

∂xi
and θi = xi

∂

∂xi
and write βi in place of βk+i.

Then the power series (12) is reduced to

∑
mp≥0

∏
i(αi;mi)

∏
i(βi;mi)

(γ0 + 1;
∑

i mi)

xm2
2 . . . xml

l

m2! . . .ml!
,

which satisfies the equations

(19) [∂i(
∑

θj + γ0) − (θi + αi)(θi + βi)]Ψ = 0, i = 2, . . . , l.

These are nothing but Lauricella’s FB and its differential equations.
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To obtain FA, we assume n = 2k and consider another normalization:

wi,k+1 = 1, i = 1, . . . , k, wi,k+i = 1, i = 2, . . . , k.

This is done by choosing

si = w−1
i,k+1, i = 1, . . . , k, tp = wp,k+1/wp,k+p, p = 2, . . . , k.

The new coordinates are

yi,k+p = wi,k+pwp,k+1/wi,k+1wp,k+p, i 
= p, p 
= 1.

By a calculation similar to the above, we obtain the following equations:

(20)

[
∂1,k+p(−

∑
q �=1,p θp,k+q +

∑
j �=p θj,k+p + δp)

−(
∑

q �=1 θ1,k+q + δ1)(
∑

j �=p θj,k+p + γp)
]
Ψ = 0, p 
= 1,[

∂i,k+p(−
∑

q �=1,p θp,k+q +
∑

j �=p θj,k+p + δp)

−(
∑

q �=1,i θi,k+q −
∑

j �=i θj,k+i − δi)(
∑

j �=p θj,k+p + γp)
]
Ψ = 0

i 
= p, i ≥ 2,

where

γ1 = −α1, γp = βk+p (p ≥ 2),

δi = αi + βk+i (i ≥ 2).

We obtain a power series solution

∑ (γ1;
∑

q �=1 m1q)
∏

p≥2(γp;
∑

j �=p mjp)∏
p≥2(δp + 1;

∑
j �=p mjp −

∑
q �=1,p mpq)

∏
y
mip

i,k+p∏
mip!

.

If we set yi,k+p = 0 for i 
= 1, then we obtain

∑
mp≥0

(γ1;
∑

mp)
∏

(γp;mp)∏
(δp + 1;mp)

ym2
2 . . . yml

l

m2! . . .ml!
,
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where we set yp = y1,k+p = w1,k+pwp,k+1/w1,k+1wp,k+p. This is Lauricella’s

FA. The equations for FA is obtained from (20) as follows:

(21)
[∂p(θp + δp) − (

∑
θq + γ1)(θp + γp)]Ψ = 0,

p = 2, . . . , l,

where ∂i =
∂

∂yi
etc.

From these facts we readily infer that FA and FB are transformed to

each other. To be more precise, we let

ΨB(α2, . . . , αl;β2, . . . , βl; γ0;x2, . . . , xl)

denote a solution of (19), and introduce new variables

yp = 1/xp, p = 2, . . . , l.

Let

ϕ(y2, . . . , yl) = ρΨB(1/y2, . . . , 1/yl),

where

ρ =
∏
p

y
−βp
p .

Then
∂

∂xp
ΨB = ρ−1

(
−yp

∂

∂yp
− βp

)
ϕ.

It follows that (19) can be written as

[
y−1
i (−ϑi − βi)(−

∑
ϑj −

∑
βj + γ0) − (−ϑi − βi + αi)(−ϑi)

]
ϕ = 0,

where,

ϑi = yi
∂

∂yi
.

Changing the order, and cancelling y−1
i , we obtain

[
∂

∂yi
(ϑi − αi + βi) − (ϑi + βi)(

∑
ϑj +

∑
βj − γ0)

]
ϕ = 0.
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This coincides with (21), provided that we take

δi = βi − αi,

γ1 =
∑

βj − γ0, γi = βi (i ≥ 2).

This type of relation between Appell’s F2(= FA of 2 variables) and F3(=

FB of 2 variables) is noted in [4, 5.2]. The general case was already known

to Lauricella.
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