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On Hölder’s transformation

By Stefan Hildebrandt

Abstract. This paper investigates the main properties of Hölder’s
transformation HF of the contact space M̂ , generated by some function
F : M̂ → �, and its relation to Legendre’s transformation LH . The
commuting diagram LH ◦HF = HW ◦LF and the related global proper-
ties of H and L are of particular interest. Hölder’s transformation can
be used to transform Hamiltonian systems into Lie systems and Euler-
Lagrange equations into Herglotz equations, this way establishing four
equivalent pictures of the one-dimensional calculus of variations.

1. Introduction

In [8] E. Hölder gave another and quite geometric proof of Boerner’s em-

bedding theorem for extremals of multiple variational integrals into geodesic

fields as defined by Carathéodory [1]. Hölder simplified Boerner’s somewhat

tedious computations considerably by using a suitable coordinate transfor-

mation suggested by the theory of contact transformations. Thereby he

developed transformation formulas relating the variational calculus and the

Hamilton–Jacobi formalism to Lie’s theory of contact transformations. As

Hölder’s beautiful paper is at times somewhat brief1, I have tried in [7] to

elaborate his ideas and to develop them to their full extent. The underlying

transformation theory needed for this purpose is described in the present

paper. Some of the identities presented here can already be found either

in the footnotes of [8] or in the first part of [1], but I thought it better to

develop the whole formalism independently and ab ovo.

The main goal of this paper consists in obtaining results about the global

invertibility of Hölder’s and Haar’s transformations HF and RF . The key to

the invertibility theorems 3.1 and 3.2 lies in the factorization RF = LH ◦HF

and in formula (2.26).

The definitions of HF and RF used in this paper are slightly different

from those in [5] and [8] in as much as different signs are used. It should

1991 Mathematics Subject Classification. 49L, 70G, 70H.
1see the comments by Carathéodory given in [2]
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also be mentioned that Haar’s transformation RF can more or less explicitly

be found in Lie’s work, and it is certainly contained in Douglas’s paper [3],

while Hölder’s transformation HF is part of the beautiful transformation

theory developed by Carathéodory [1]. Yet our terminology seems justified,

as both Haar and Hölder realized the importance of RF and HF and gave

relevant applications.

The last section describes the connection of the preceding discussion with

the theory of contact transformations. The pertinent results are in principle

well known; nevertheless the reader might possibly find our explanations

useful. I should like to thank U. Dierkes, M. Giaquinta and C. Hamburger

for several discussions concerning this paper. Moreover, I am very grateful

to Tokyo University for giving me the possibility to complete this work; in

particular I want to thank Professors T. Ochiai and H. Matano for their

hospitality and support.

2. Hölder’s transformation

Let M = �n × � be the configuration space of points Q = (x, z), x =

(x1, . . . , xn) ∈ �n, z ∈ �, and let M̂ = M × �n. We interpret the points p

in the fibre �n either as vectors or covectors on the base space M = �n;

since the following formalism will be the same in both cases, we assume

p = (p1, · · · , pn) to be covectors on M . Consider a domain G in M̂ of the

kind

G = {(x, z, p) : (x, z) ∈ U, p ∈ B(x, z)}
where U is a domain in M , and B(x, z) are domains in �n. We say that

G is a normal domain of type B,C, or S respectively if B(x, z) contains

the origin 0 ∈ �n and if B(x, z) is a ball of radius R(x, z) centered at 0,

0 < R(x, z) ≤ ∞, a convex set, or a star–shaped set with respect to p = 0.

Suppose that F (x, z, p) is a function of class C2(G), and let Φ(x, z, p)

be its adjoint defined by

Φ(x, z, p) := p · Fp(x, z, p) − F (x, z, p)(2.1)

Then we define Hölder’s transformation HF , generated by F , as a mapping

HF : M̂ → M̂ given by

HF (x, z, p) := (x, z,y(x, z, p)),

y(x, z, p) :=
p

F (x, y, z)
(2.2)
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First we want to investigate when HF is a local diffeomorphism on M̂ .

To this end we introduce the momentum tensor T = (T i
k) of F by

T := p⊗ Fp − FI(2.3)

where I is the identity, i.e. the components of T are given by

T i
k = pkFpi − Fδik.

Lemma 2.1. We have

det T = (−1)n−1Fn−1Φ.(2.4)

Proof. Let e1, · · · , en be the canonical base of �n, and write e1, · · · en,
and Fp as columns. Then we obtain

det T = (−1)nD

where

D := [ Fe1 − p1Fp, . . . , F en − pnFp ]

If p1 �= 0, we can write

D = [ Fe1 − p1Fp , F (e2 −
p2

p1
e1) , . . . , F (en − pn

p1
) ] = D1 +D2

where

D1 := [ Fe1, Fe2 −
p2

p1
e1, · · · , F en − pn

p1
e1 ] = Fn,

D2 := [−p1Fp , F (e2 −
p2

p1
e1), · · · , F (en − pn

p1
) ]

= −Fn−1[ p1Fp , e2 −
p2

p1
e1, · · · , en − pn

p1
e1 ]

= −Fn−1p · Fp.

Therefore

D = Fn − Fn−1 p · Fp = −Fn−1Φ

if p1 �= 0, and more generally if p �= 0. However, this formula is trivially

correct if p = 0, and (2.4) is proved. ✷
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Lemma 2.2. The Jacobi matrix yp of the mapping p �→ y(x, z, p) de-

fined by (2.2) is given by
∂yk

∂pi
= −F−2T i

k,(2.5)

and its Jacobian is given by

det yp = −ΦF−(n+1).(2.6)

Proof. Formula (2.5) follows by a straight–forward computation

whence

det yp = (−1)nF−2n det T,

and by virtue of (2.4) we obtain (2.6). ✷

An immediate consequence of this result is

Proposition 2.1. If F and Φ are nowhere zero on G, then

HF : G → M̂ is a local C2–diffeomorphism.

In order to have a clear–cut situation we formulate the following as-

sumption to be required throughout the rest of this section if nothing else

is said.

Assumption (A). Suppose that

F (x, z, p) �= 0 and Φ(x, z, p) �= 0,

and that Hölder’s transformation yields a diffeomorphism of G onto G∗ :=

HF (G).

Now we introduce the Hölder transform H(x, z, y) of F (x, z, p) by

H :=
1

F ◦ H−1
F

(2.7)

Since HF is of class C2, we have H ∈ C2(G∗). If we assume that (x, z, p)

and (x, z, y) are corresponding points in G and G∗ respectively under HF ,

we can write (2.2) and (2.7) as

y =
p

F (x, z, p)
, H(x, z, y) =

1

F (x, z, p)
;(2.8)
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these formulas are clearly equivalent to

p =
y

H(x, z, y)
, F (x, z, p) =

1

H(x, z, y)
.(2.9)

Therefore

HH = H−1
F and F = 1/H ◦ H−1

H ,(2.10)

and we realize at once the involutory character of Hölder’s transformation.

Let Ψ(x, z, y) be the adjoint of H(x, z, y), that is

Ψ(x, z, y) := y ·Hy(x, z, y) −H(x, z, y).(2.11)

We claim that

Ψ = 1/Φ ◦ H−1
F .(2.12)

More generally, we have

Proposition 2.2. If (x, y, z) = HF (x, z, p), then

Hx(x, z, y) =
Fx(x, z, p)

F (x, z, p)Φ(x, z, p)
, Hy(x, z, y) =

Fp(x, z, p)

Φ(x, z, p)

Hz(x, z, y) =
Fz(x, z, p)

F (x, z, p)Φ(x, z, p)
, Ψ(x, z, y) =

1

Φ(x, z, p)

(2.13)

Proof. Let us write HH in the form

HH(x, z, y) = (x, z,p(x, z, y)) , p(x, z, y) =
y

H(x, z, y)
,

and set F̂ := F ◦ HH , i.e. F̂ (x, z, y) = F (x, z,p(x, z, y)), etc. In order to

prove Hy = F̂p/Φ̂, we fix x and z, i.e. we set dxi = 0 and dz = 0 in the

following differential forms. From pk = yk/H we infer that

dpk = H−1 dyk −H−2 yk Hyl
dyl.

Since F̂H = 1, we also have

F̂Hyi dyi +HF̂pk dpk = 0 , F̂pk := Fpk ◦ HH .
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Then we infer that

0 = F̂{Hyi dyi + F̂pk [Hdyk − yk Hyl dyl]}.

Since F̂ �= 0, we obtain

Hyi +HF̂pi − ylF̂plHyi = 0

and therefore

HF̂pi = (ylF̂pl − 1)Hyi

which is just

F̂pi = HyiΦ̂ , i.e. Hy = F̂p/Φ̂.

This implies

Ψ = y ·Hy −H =
p · F̂p

F̂ Φ̂
− 1

F̂
=

1

Φ̂
.

Finally we infer from p = y/H that

pz = −(Hz/H)p , px = −(Hx/H)p.

From H = 1/F̂ it follows that

Hz = −F̂−2(F̂z + F̂p · pz) = −F̂zF̂
−2 + (p · F̂p) HzF̂

−1

whence

(F̂ − p · F̂p)Hz = −F̂zF̂
−1.

On account of

H = F̂−1 , Ψ = (p · F̂p − F )−1 = Φ̂−1

we obtain

Hz = HΨF̂z = F̂z/(F̂ Φ̂),

and similarly

Hx = HΨF̂x = F̂x/(F̂ Φ̂)

is proved. This completes the proof of Proposition 2.2. ✷

Very sloppily, but quite instructively we write formulas (2.8) and (2.13)

as

H =
1

F
, Ψ =

1

Φ
, Hy =

Fp

Φ
, Hx =

Fx

FΦ
, Hz =

Fz

FΦ
.(2.14)
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These identities are equivalent to

F =
1

H
, Φ =

1

Ψ
, Fp =

Hy

Ψ
, Fx =

Hx

HΨ
, Fz =

Hz

HΨ
.(2.14’)

Now we want to determine Hyy. The computations are considerably

simplified if we use Legendre’s transformation LF generated by F .

Assumption (B). Legendre’s transformation LF of G onto G∗ :=

LF (G), defined by

LF (x, z, p) := (x, z,g(x, z, p)) , g(x, z, p) := Fp(x, z, p),(2.15)

is a diffeomorphism; in particular we have

det Fpp(x, z, p) �= 0 on G.(2.16)

Then we can define the Legendre transform W (x, z, ξ) of F (x, z, p) by

W := Φ ◦ L−1
F .(2.17)

If (x, z, p) and (x, z, ξ) are related by (x, z, ξ) = LF (x, z, p), we have the

following well-known formulas:

F (x, z, p) +W (x, z, ξ) = p · ξ ,

ξ = Fp(x, z, p) , p = Wξ(x, z, ξ) ,(2.18)

Fx(x, z, p) +Wx(x, z, ξ) = 0 , Fz(x, z, p) +Wz(x, z, ξ) = 0 .

In the spirit of (2.14) we write these relations in short-hand as

F +W = p · ξ , ξ = Fp , p = Wξ ,

Fx +Wx = 0 , Fz +Wz = 0.
(2.19)

Let us introduce the adjoint M and the momentum tensor Γ of W by

M := ξ ·Wξ −W , Γ := ξ ⊗Wξ −WI.(2.20)

We immediately infer from (2.18), F ∈ C2 and L−1
F ∈ C1 that W ∈ C2 and,

moreover, that

LW = L−1
F , F = M ◦ LF .(2.21)
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The following result is well-known and easy to prove.

Proposition 2.3. Suppose that G is a normal domain of type C, and

that Fpp(x, z, p) > 0 (or < 0) on G. Then LF : G → G∗ is a diffeomorphism.

Global invertibility of HF will be discussed in Section 4. Let us also intro-

duce the momentum tensor P of H by

P := y ⊗Hy −HI(2.22)

and the mapping AF : G∗ → G∗ by

AF := LF ◦ H−1
F(2.23)

Lemma 2.3. Suppose that assumptions (A) and (B) are satisfied.

Then Fpp and Hyy are related by

Hyiyk = [(−W−2Γi
l) ◦ AF ](Fplpj ◦ H−1

F )[−H−2Pk
j ].(2.24)

Proof. Let us express the mapping AF by

AF (x, z, y) = (x, z,x(x, z, y)),

x(x, z, y) = Fp(x, z,p(x, z, y)),(2.25)

p(x, z, y) =
y

H(x, z, y)
.

Moreover, we have

Hy = (Fp/Φ) ◦ H−1
F = (ξ/W ) ◦ AF ,

and therefore

Hy = x/W ( · , · , x).

It follows that

Hyiyk =
∂

∂yk

xi

W ( · , · ,x)
= (

∂

∂ξl
ξi

W
) ◦ AF

∂xl

∂yk
.

Moreover
∂

∂ξl
ξi

W
= −W−2 Γi

l
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and
∂xl

∂yk
= Fplpj ( · , · , p)

∂pj

∂yk

Finally Lemma 2.2 yields

∂pj

∂yk
= −H−2 Pk

j .

Combining these formulas we obtain (2.24).

In our usual short-hand (2.24) reads

Hyiyk = W−2 Γi
l Fplpj H−2 Pk

j(2.26)

Moreover, we also have

M = F = 1/H , W = Φ = 1/Ψ ,(2.27)

(which means that

M(x, z, ξ) = F (x, z, p) = 1/H(x, z, y),W (x, z, ξ) = Φ(x, z, p) = 1/Ψ(x, z, y)

if (x, z, ξ) ↔ (x, z, p) ↔ (x, z, y)), and thus (2.26) can be rewritten into

Hyiyk = (F/Φ)2 Γi
l Fplpj Pk

j .(2.28)

✷

Lemma 2.4. Let a = (a1, . . . , an), b = (b1, . . . , bn) be two vectors in

�n, λ ∈ �, and µ := a · b− λ. Then the matrix T = (tik) defined by

tik = aibk − λδik , 1 ≤ i, k ≤ n,

is invertible of both λ �= 0 and µ �= 0, and its inverse S = (sik) is given by

sik =
1

λµ
(aibk − µδik)

Proof. A straight-forward computation shows that siktkl = δil if λ �=
0 and µ �= 0. ✷
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Lemma 2.5. If assumptions (A) and (B) are satisfied, then

P = T−1 and P = (FΦ)−1 ΓT .(2.29)

Proof. From

py = y−1
p , yp = −F−2T , py = −H−2P

we infer that

H−2P = F 2T−1

and FH = 1 yields P = T−1.

Now let S = (Si
k) := T−1. By Lemma 2.4 we have

Si
k =

1

FΦ
(pkFpi − Φδik).

Since pk = Wξk, Fpi = ξi, and Φ = W , it follows that

T−1 = (FΦ)−1(Wξ ⊗ ξ −WI) = (FΦ)−1 ΓT ,

and, finally, P = T−1 yields P = (FΦ)−1 ΓT . This completes the proof of

Lemma 2.5. ✷

Proposition 2.4. Suppose that assumptions (A) and (B) are satis-

fied. Then we have

Hyy = (F 3/Φ)PTFpp P.(2.30)

Proof. Relation (2.28) can be written as

Hyy = (F/Φ)2 Γ Fpp P.

By (2.29) it follows that

Hyy = F Φ−3 Γ Fpp ΓT ,

and Γ = F Φ PT implies (2.30). ✷

Corollary 2.1. Let ε = ±1 be the sign of FΦ. Then Fpp > 0 (< 0)

implies that εHyy > 0 (< 0) and Wξξ > 0 (< 0).
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Proof. The first assertion follows from (2.30), the second is a conse-

quence of Wξξ = (Fpp)
−1. ✷

Let us now add some remarks on the global invertibility of Hölder’s

transformation. For this purpose we assume that G ⊂ M̂ is a normal

domain of type S, i.e., G = {(x, z, p) : (x, z) ∈ U, p ∈ B(x, z)}, where

B(x, z) is a domain in �n which is star-shaped with respect to p = 0, and

U is a domain in M . We also assume that

F (x, z, p) �= 0 and Φ(x, z, p) �= 0 on G.(2.31)

Fix (x, z) ∈ U and consider the mapping y(x, z, ·) : B(x, z) → �n defined

by

y(x, z, p) := p/F (x, z, p).

Clearly we have y(x, z, 0) = 0. Now fix some unit vector e in �n and choose

I as the largest interval in �n such that λe ∈ B(x, z) for λ ∈ I. We consider

the function ϕ : I → � defined by

ϕ(λ) = λ/F (x, z, λe).

Because of

ϕ′(λ) = −Φ(x, z, λe)/F 2(x, z, λe)

we have ϕ′(λ) �= 0 on I. Therefore y(x, z, ·) maps the segment Σ = {λe : λ ∈
I} bijectively onto the segment Σ∗ = {λ∗e : λ∗ ∈ ϕ(I)} We then conclude

that y(x, z, ·) maps B(x, z) bijectively onto a domain B∗(x, z) of �n which

is also star-shaped with respect to the origin, and so we obtain

Proposition 2.5. If F ∈ C2(G) satisfies (2.31) on a normal domain

G of type S, then HF yields a C2–diffeomorphism of G onto G∗ := HF (G),

and G∗ is also a normal domain of type S.

3. The commuting diagram

Suppose that F ∈ C2(G) satisfies assumptions (A) and (B); i.e. HF and

LF are diffeomorphisms of G onto G∗ and G∗ respectively. Then H,Ψ and

W, M are well-defined and non-vanishing; thus we can define the mappings

HW and LH .
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Proposition 3.1. If F ∈ C2(G) satisfies assumptions (A) and (B),

and if HF and LH are diffeomorphisms, then we have

LH ◦ HF = HW ◦ LF(3.1)

and

Ψ ◦ L−1
H =

1

W ◦ H−1
W

(3.2)

Proof. (i) The mappings LF and HF are described by

p �→ ξ = Fp(x, z, p) and ξ �→ v =
ξ

W (x, z, ξ)

respectively. Since W (x, z, ξ) = Φ(x, z, p), the composition HW ◦LF is given

by

p �→ v =
Fp(x, z, p)

p · Fp(x, z, p) − F (x, z, p)
(3.3)

(ii) On the other hand, HF and LH are given by p �→ y =
p

F (x, z, p)
and y �→ v = Hy(x, z, y) respectively.

By Proposition 2.2 we have

Hy(x, z, y) =
Fp(x, z, p)

Φ(x, z, p)
,

and therefore also LH ◦ HF is described by (3.3). This proves (3.1).

(iii) On account of (3.1) and of

Ψ = (1/Φ) ◦ H−1
F , W = Φ ◦ L−1

F

we infer that

Ψ ◦ L−1
H = (1/Φ) ◦ H−1

F ◦ L−1
F = (1/Φ) ◦ (LH ◦ HF )−1

= (1/Φ) ◦ (HW ◦ LF )−1 = (1/Φ) ◦ L−1
F ◦ H−1

W = (1/W ) ◦ H−1
W ,

and thus the Proposition is proved. ✷

This result has the following consequences.
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1. Suppose that the assumptions of Proposition 3.1 are satisfied. Then

we can define Haar’s transformation RF by

RF := LH ◦ HF = HW ◦ LF .(3.4)

In coordinates the mapping RF : (x, z, p) �→ (x, z, v) is given by (3.3); it

describes a diffeomorphism of G onto G := RF (G).

Let us now introduce the Haar transform L of F by setting

L :=
1

Φ ◦ R−1
F

.(3.5)

In coordinates F (x, z, p) and its Haar transform L(x, z, v) are related by

L(x, z, v) =
1

p · Fp(x, z, p) − F (x, z, p)
.(3.6)

By (3.1) we have

(LH ◦ HF )−1 = L−1
F ◦ H−1

W = LW ◦ HL,

that is,

R−1
F = RL.(3.7)

In other words, Haar’s transformation is in the same sense an involution as

the transformations of Legendre and Hölder. Moreover we infer from (2.23)

that

RF = AH = A−1
W .(3.8)
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All these results are described by the following commuting diagram:

✲

❄

✲

❄

❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅❅❘

I III

IVII

HF

LH

HW

LF

RF

x, z, p; F

G

x, z, y; H

G∗

x, z, v; L

G
x, z, ξ; W

G∗

(3.9)

One can freely move from one corner to the other, thereby obtaining the

corresponding functions F,H,W,L as results of the marked transformations,

each of which is on involution in the sense described above.

2. Suppose that F satisfies

F (x, z, p) �= 0 , Φ(x, z, p) �= 0 , det Fpp(x, z, p) �= 0.(3.10)

Then LF and HF are local diffeomorphisms according to Proposition 2.1

and (2.15), and thus the Legendre transform W = Φ ◦ L−1
F and the Hölder

transform H = (1/F ) ◦ H−1
F are locally well-defined. By (2.27) we have

W (x, z, ξ) �= 0 , M(x, z, ξ) �= 0,(3.11)

and (2.26) implies

det Hyy = (F/Φ)n+2 det Fpp(3.12)
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whence

det Hyy �= 0.(3.13)

Thus also HW and LH are local diffeomorphisms, and consequently the

commuting diagram (3.9) is locally valid provided that assumption (3.10) is

satisfied.

It remains the question to formulate conditions on F such that dia-

gram (3.9) is globally valid. It will turn out that, essentially, the following

assumption is sufficient for this purpose:

F (x, z, p) �= 0 , Φ(x, z, p) �= 0 , Fpp(x, z, p) > 0 (or < 0).(3.14)

In fact, if G and G∗ are normal domains of type C, then the definiteness of

Fpp and Hyy respectively is sufficient for LF and LH to be globally invertible,

and, according to Corollary 2.1, the definiteness of Fpp implies that of Hyy.

Note that G∗ is of type S (cf. Proposition 2.5); however, if G is of type C,

then G∗ is in general only of type S and not of type C.

If we assume that both G and G∗ = HF (G) are normal domains of

type C and that F satisfies (3.14), then LF ,HF ,LH , and RF = LH ◦ HF

are (globally) invertible. Since we can operate locally with the commuting

diagram, we infer that also HW = RH ◦ L−1
F is invertible, and so we are in

the situation of Proposition 3.1. Similarly we can argue if G∗ = LF (G) is

of type C. Thus we obtain

Theorem 3.1. If F ∈ C2(G) satisfies (3.14), and if both G and G∗ =

HF (G) (or G∗ = LF (G) respectively) are normal domains of type C, then

HF ,LH ,LF ,HW are diffeomorphisms satisfying

LH ◦ HF = HW ◦ LF and Ψ ◦ L−1
H = (1/W ) ◦ H−1

W .

The next result is an obvious but possibly useful modification of the

preceding theorem.

Theorem 3.2. Let G be a normal domain of type C, and suppose

that F ∈ C2(G). Moreover, let G′
∗ be a normal domain of type C contained

in G∗ = HF (G) and G′ := H−1
F (G′

∗). Then F |G′ generates a commuting

diagram as described in Proposition 3.1.
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Example. Consider the function

F (x, z, p) = − 1

ω(x, z)

√
1 + |p|2 , ω(x, z) > 0

defined on G = �n × � × �n. Its adjoint is given by

Φ(x, z, p) =
1

ω(x, z)

1√
1 + |p|2

.

The transforms H,L,W are found to be

H(x, z, y) = −
√
ω2(x, z) − |y|2 , W (x, z, ξ) =

√
ω−2(x, z) − |ξ|2,

L(x, z, v) = ω(x, z)
√

1 + |v|2.

Moreover, we have G := RF (G) = �n × � × �n, while

G∗ := LF (G) = {(x, z, ξ) : (x, z) ∈ �n × �, |ξ| < 1/ω(x, z)},
G∗ := HF (G) = {(x, z, y) : (x, z) ∈ �n × �, |y| < ω(x, z)}.

Haar’s transformation RF is given by v = −p, while the other four trans-

formations of the diagram are described by

y =
−σp√
1 + |p|2

, v =
y√

σ2 − |y|2
, ξ =

−σp√
1 + |p|2

, v =
ξ√

σ2 − |ξ|2
.

Here we have σ := 1/ω(x, z).

4. Relations to contact transformations

It might be useful to remind the reader of the connection of the preceding

discussion with Lie’s theory of contact transformations. To simplify matters

we drop the variables x, z and consider only p = (p1, . . . , pn). To obtain a

higher point of view it is, however, useful to introduce n+1 further variables

ϕ and π = (π1, . . . , πn) and to operate in the contact space M of points

e = (p, ϕ, π) ∈ �n × � × �n equipped with the contact from

ω = dϕ− π · dp,(4.1)
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that is,

ω = dϕ− πi dpi

(summation with the respect to i from 1 to n). According to Lie a smooth

mapping T : G → M of a domain G in M is said to be a contact transfor-

mation if there is a nonvanishing function ρ : G → � such that

T ∗ω = ρω.(4.2)

If T is given by

p̄ = A(p, ϕ, π) , ϕ̄ = Z(p, ϕ, π) , π̄ = B(p, ϕ, π) ,

(4.2) means that

dZ −Bi dAi = ρ[dϕ− πidpi] , ρ �= 0.

It is well known that every contact transformation is an immersion. In the

sequel we shall only consider contact transformations which are diffeomor-

phisms.

Consider now a smooth function F (p), p ∈ P ⊂ �n. We interpret its

graph as a hypersurface SF in �n+1,

SF = {(p, ϕ) : ϕ = F (p) , p ∈ P}.(4.3)

With SF we associate the n–strip EF : P → M of its surface elements

EF (p) := (p, F (p), Fp(p)) satisfying E∗
Fω = 0. (In Lie’s terminology immer-

sions E : P → M of n–dimensional domains P into M satisfying E∗ω = 0

are denoted as n–dimensionale Elementvereine.) Then, for any contact

transformation T : G → M defined on a domain G containing EF (P), we

can define a new n–strip T ◦ EF which is given by

(T ◦ EF )(p) = (A(EF (p)), Z(E(p)), B(EF (p)))(4.4)

Set

f(p) := A(EF (p))(4.5)

and suppose that the mapping p �→ p̄ = f(p) yields a diffeomorphism of P
onto P̄ = f(P) ⊂ �n. Then we can reparametrize T ◦ EF by means of f ,

thus obtaining a new n–strip ĒF defined as

ĒF := T ◦ EF ◦ f−1(4.6)
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The strip condition (implied by the fact that T is a contact transformation)

means that

Ē∗
F ω = 0.(4.7)

Let us introduce the T -adjoint of F, Φ : P → �n , by

Φ := Z ◦ EF , i.e. Φ(p) = Z(p, F (p), Fp(p)),(4.8)

and set

F̄ := Φ ◦ f−1.(4.9)

Then (4.5) and (4.7) imply

ĒF (p̄) = (p̄, F̄ (p̄), F̄p̄(p̄)) , p̄ ∈ P̄,(4.10)

i.e. we have found that

ĒF = EF̄(4.11)

To see the analogy between these formulas and those of Sections 2 and 3,

we write TF for f , i.e.

TF := A ◦ EF(4.12)

and we call TF the T –transformation generated by F , and F̄ : P̄ → � is

said to be the T –transform of F . If T : M → M is an involution, i.e.

T ◦T = id, then the mappings TF : P → P̄ are involutions in the sense that

T −1
F = TF̄ , provided that TF is invertible, and

=

F = F , i.e. the T -transform

of F̄ is F .

For example, Legendre’s contact transformation L is the involutory con-

tact transformation L : M → M defined by

p̄ = π̄ , ϕ̄ = p · π − ϕ , π̄ = p.

The directrix equation of L is p · p̄−ϕ− ϕ̄ = 0, which is the polar equation

of a paraboloid |p|2 − 2ϕ = 0. Given a function F (p), LF is the classical

Legendre transformation considered in Section 2. Moreover, the L–adjoint

Φ(p) is just Φ = p · Fp − F , and the L–transform of F is the Legendre

transform W .

Secondly, consider the contact transformation R defined by

p̄ =
π

p · π − ϕ
, ϕ̄ =

1

p · π − ϕ
, p̄ =

p

ϕ
.
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Except for an additional reflection p̄ = p, ϕ̄ = −ϕ, π̄ = −π, this trans-

formation is derived from the directrix equation p · p̄ + ϕϕ̄ − 1, the polar

equation of the unit sphere |p|2 + ϕ2 − 1 = 0. Note that R is just the clas-

sical transformation by reciprocal polars, and RF is Haar’s transformation

generated by F . As R is an involution, we obtain that RF is an involution

in the sense that R−1
F = RL where L = F̄ is the Haar transform of F , and

L̄ = F .

Thirdly we consider the contact transformation H introduced by

Carathéodory (see [1], p. 403), which is given by

p̄ =
p

ϕ
, ϕ̄ =

1

ϕ
, π̄ =

π

p · π − ϕ
.

This transformation is also an involution, and HF is just Hölder’s transfor-

mation of Section 2, and F̄ is the Hölder transform H of F . Moreover, one

easily checks that

H ◦ L = L ◦ H

and that

R = L ◦ H.

The geometric interpretation of the “derived transformations” HF ,LF ,HF ,

LH yields now without computation the commuting diagram of Section 3,

RF = HW ◦ LF = LH ◦ HF .

Another useful commuting diagram is derived from the apsidal transfor-

mation A which commutes with the polar reciprocity R in the sense that

R◦A = −A ◦R. Following Herglotz [6], an elegant formulation of A is ob-

tained if we introduce for e = (p, ϕ, π) homogeneous coordinates E = (Q,N)

defined by

Q = (p, ϕ) , N = (
π

p · π − ϕ
, − 1

p · π − ϕ
).

Note that the points (Q,N) lie on the quadric N · Q = 1. In the new

coordinates E the polar reciprocity R is expressed by

R(Q,N) = (N,Q).
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The apsidal transformation A(Q,N) = (Q̄, N̄) is defined by

σQ̄ = Q− |Q|2N , σN̄ = |N |2Q−N , σ := ±
√
|Q|2|N |2 − 1.

Since A provides a 1-to-2 correspondence in M, we can sloppily write

R◦A = A◦R. This fact can be used to show that R maps Fresnel surfaces

into Fresnel surfaces (cf. [6]). Just as we have in [7] used the commuting

diagram (3.9) to obtain a fourfold picture of the calculus of variations, one

might use transformations TF derived from any other contact transforma-

tion T to obtain further interesting pictures, but A might be particularly

useful.
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