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A Tropical Characterization of Algebraic Subvarieties

of Toric Varieties over Non-Archimedean Fields

By Ryota Mikami

Abstract. We study the tropicalizations of analytic subvarieties
of normal toric varieties over complete non-archimedean valuation
fields. We show that a Zariski closed analytic subvariety of a nor-
mal toric variety is algebraic if its tropicalization is a finite union of
polyhedra. Previously, the converse direction was known by the theo-
rem of Bieri and Groves. Over the field of complex numbers, Madani,
L. Nisse, and M. Nisse proved similar results for analytic subvarieties
of tori.

1. Introduction

We study the tropicalizations of analytic subvarieties of normal toric

varieties over complete non-archimedean valuation fields. We shall give a

characterization of algebraic subvarieties of normal toric varieties in terms

of their tropicalizations.

First, we recall the definition of the tropicalization of Zariski closed

analytic subvarieties of normal toric varieties; see [Pay09-1, Section 2 and

Section 3] for details. Let K be a complete non-archimedean valuation field

with non-trivial absolute value | · |. Let M be a free Z-module of finite rank.

Let YΣ be the normal toric variety over K associated to a fan Σ in NR :=

HomZ(M,R). For each cone σ ∈ Σ, the torus orbit O(σ) corresponding to

σ is isomorphic to the torus Spec(K[σ⊥ ∩M ]). The tropicalization map

Trop: O(σ)an → (Nσ)R := HomZ(σ⊥ ∩M,R)

is the proper surjective continuous map given by

Trop(| · |x) := − log | · |x : σ⊥ ∩M → R
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for | · |x ∈ O(σ)an. We define the tropicalization map

Trop: Y an
Σ =

⊔
σ∈Σ

O(σ)an →
⊔
σ∈Σ

(Nσ)R

by gluing the tropicalization maps Trop: O(σ)an → (Nσ)R together; see

Section 2 for details. Here, for an algebraic variety Z over K, we denote

by Zan the Berkovich analytic space associated to Z; see [Ber90, Theorem

3.4.1]. For an irreducible Zariski closed analytic subvariety X ⊂ Y an
Σ , the

image Trop(X) of X is called the tropicalization of X.

Gubler showed that for any cone σ ∈ Σ, the intersection Trop(X) ∩
(Nσ)R is a locally finite union of polyhedra [Gub07, Theorem 1.1]. Here,

we identify (Nσ)R with RdimO(σ) by taking a Z-basis of HomZ(σ⊥ ∩M,Z).

On the other hand, if X ⊂ Y an
Σ is the analytification of a Zariski closed

algebraic subvariety of YΣ, Bieri and Groves showed that the intersection

Trop(X) ∩ (Nσ)R is a finite union of polyhedra for any cone σ ∈ Σ [BG84,

Theorem A]. (See also [EKL06, Theorem 2.2.3].)

For an irreducible Zariski closed analytic subvariety X ⊂ Y an
Σ , there is a

unique cone σX ∈ Σ such that X ∩O(σX)an is a dense Zariski open analytic

subvariety of X.

The main theorem of this paper is as follows:

Theorem 1.1. Let YΣ, X ⊂ Y an
Σ , and σX ∈ Σ be as above. Assume

that Trop(X) ∩ (NσX )R is a finite union of polyhedra. Then X is the ana-

lytification of a Zariski closed algebraic subvariety of YΣ.

Conversely, if X is algebraic then Trop(X) ∩ (Nσ)R is a finite union of

polyhedra in (Nσ)R for any cone σ ∈ Σ by the theorem of Bieri-Groves

[BG84, Theorem A]. Hence, we get the following:

Corollary 1.2. Let YΣ and X ⊂ Y an
Σ be as above. Then X is the

analytification of a Zariski closed algebraic subvariety of YΣ if and only if

Trop(X) ∩ (Nσ)R is a finite union of polyhedra in (Nσ)R for any cone σ ∈
Σ.

Chow’s theorem over nonarchimedean fields follows from Theorem 1.1

as follows. When YΣ is the projective space, the analytic subvariety X

is compact. By [Mar15, Theorem 1], one can see that the tropicalization
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Trop(X) is a finite union of polyhedra. Hence, by Theorem 1.1, the analytic

subvariety X is the analytification of a Zariski closed algebraic subvariety

of YΣ.

In [MNN14], Madani, L. Nisse, and M. Nisse proved similar results for

analytic subvarieties of tori over the field of complex numbers.

This paper is organized as follows. In Section 2, we recall basic notions

of Berkovich analytic geometry. In Section 3, we recall basic notions of toric

geometry and tropical geometry. We also recall that the tropicalizations of

Zariski closed analytic subvarieties of tori can be calculated using initial

forms. In Section 4, we prove Theorem 1.1 for analytic hypersurfaces in

tori by calculating their tropicalizations explicitly in terms of initial forms

of analytic functions. In Section 5, we prove Theorem 1.1 by using Payne’s

idea in [Pay09-2]. We use surjective homomorphisms of tori to reduce to

the case of hypersurfaces. Finally, in Section 6, we give examples of the

tropicalizations of analytic and algebraic hypersurfaces in the 2-dimensional

torus.

2. Preliminaries on Berkovich Spaces

In this paper, we use the language of Berkovich analytic geometry. We

refer to [Ber90] and [Ber93] for basic notations on Berkovich analytic geom-

etry.

Let K be a complete non-archimedean valuation field with non-trivial

absolute value | · |, and K◦ (resp. k) its valuation ring (resp. residue field).

Let · : K◦ → k be the projection. We fix an algebraic closure Kalg of K.

We also denote the extension of the absolute value | · | on K to Kalg by the

same symbol. We put val(a) := − log |a| for a ∈ (Kalg)×, val(0) := ∞, and

Γ := val((Kalg)×). There exists a group homomorphism ϕ : Γ → (Kalg)×

such that val ◦ϕ = idΓ, where idΓ is the identity map on Γ [MS15, Lemma

2.1.15]. We fix such ϕ : Γ → (Kalg)× in this paper.

In this paper, analytic spaces mean Berkovich analytic spaces; see

[Ber90] and [Ber93]. For a K-analytic space Z and a coherent ideal sheaf

I ⊂ OZ , the Zariski closed K-analytic subspace corresponding to I is de-

noted by V (I) ⊂ Z; see [Ber90, Proposition 3.1.4].

For each scheme Z locally of finite type over K, the K-analytic space

associated to Z is denoted by Zan; see [Ber90, Theorem 3.4.1]. The scheme

Z is reduced, pure d-dimensional, irreducible, or separated if and only if
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Zan has the same property; see [Duc17, Proposition 2.7.16] for irreducibility,

[Ber90, Proposition 3.4.6] for separatedness, and [Ber90, Proposition 3.4.3]

for the others.

In this paper, an algebraic variety over K means a reduced separated

scheme of finite type over K. For an algebraic variety Z over K, a Zariski

closed analytic subvariety of Zan means a reduced Zariski closed K-analytic

subspace of Zan. We say that a Zariski closed analytic subvariety of W ⊂
Zan is algebraic if W is the analytification of a Zariski closed algebraic

subvariety of Z.

We recall basic properties of separatedness and relative boundaries of

morphisms of Berkovich analytic spaces; see [Ber90, Definition 2.5.7 and

Section 3.1] for the definition of relative boundaries.

Lemma 2.1. Let W be a Zariski closed analytic subvariety of the ana-

lytification Zan of an algebraic variety Z over K. Then for any K-analytic

space U , a morphism φ : W → U of K-analytic spaces is separated, and the

relative boundary of φ is empty.

Proof. First, we show that φ is separated. Since Z is separated, the

analytification Zan is separated by [Ber90, Proposition 3.4.6]. The Zariski

closed analytic subvariety W ⊂ Zan is separated by [Ber90, Proposition

3.1.5]. Hence, φ is separated by [Ber90, Proposition 3.1.5].

Second, we show that the relative boundary of φ is empty. The boundary

of Zan is empty by [Ber90, Theorem 3.4.1]. (We note that, in [Ber90], a K-

analytic space is said to be closed if its boundary is empty; see [Ber90,

Section 3.1, p.49].) Since the closed immersion W ↪→ Zan has no boundary

by [Ber90, Corollary 2.5.13 (i) and Proposition 3.1.4 (i)], the boundary of

W is empty by [Ber90, Proposition 3.1.3 (ii)]. Hence the relative boundary

of φ is empty by [Ber90, Proposition 3.1.3 (ii)]. �

3. Tropicalizations of Analytic Varieties and Initial Forms

We recall some properties of normal toric varieties and their tropical-

izations; see [CLS11, Chapter 3] for toric varieties and [Pay09-1, Section

2 and Section 3] for tropicalization. Let M be a free Z-module of finite

rank, and YΣ the normal toric variety over K associated to a fan Σ in

NR := HomZ(M,R). There is a natural bijection between the cones σ in Σ
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and the torus orbits O(σ) in YΣ. For each cone σ ∈ Σ, the torus orbit O(σ)

is isomorphic to the torus Spec(K[σ⊥ ∩M ]). Its Zariski closure O(σ) in YΣ

is a normal toric variety over K containing it as the open dense torus orbit.

The tropicalization map

Trop: O(σ)an → (Nσ)R := HomZ(σ⊥ ∩M,R)

is the map given by

Trop(| · |x) := − log | · |x : σ⊥ ∩M → R

for | · |x ∈ O(σ)an. It is proper, surjective, and continuous; see [Pay09-1,

Section 2]. We define the tropicalization map

Trop: Y an
Σ =

⊔
σ∈Σ

O(σ)an →
⊔
σ∈Σ

(Nσ)R

by gluing the tropicalization maps Trop: O(σ)an → (Nσ)R together. We

define a topology on the disjoint union
⊔

σ∈Σ(Nσ)R as follows. We extend

the canonical topology on R to that on R ∪ {∞} so that (a,∞] for a ∈ R

are a basis of neighborhoods of ∞. We also extend the addition on R to

that on R∪ {∞} by a+∞ = ∞ for a ∈ R∪ {∞}. For each cone σ ∈ Σ, we

put Sσ := σ∨ ∩M , where

σ∨ := {m ∈M ⊗Z R | n(m) ≥ 0 for all n ∈ σ}.

Then R ∪ {∞} and Sσ are monoids. We consider the set of monoid homo-

morphisms Hom(Sσ,R ∪ {∞}) as a topological subspace of (R ∪ {∞})Sσ .

We define a topology on
⊔

τ∈Σ
τ�σ

(Nτ )R by the canonical bijection

Hom(Sσ,R ∪ {∞}) ∼=
⊔
τ∈Σ
τ�σ

(Nτ )R.

Then we define a topology on
⊔

σ∈Σ(Nσ)R by gluing the topological spaces⊔
τ∈Σ
τ�σ

(Nτ )R together. The definition of this topology on
⊔

σ∈Σ(Nσ)R makes

sense since for any face ρ � σ, the canonical embedding of the monoid

homomorphism Hom(Sρ,R∪{∞}) into Hom(Sσ,R∪{∞}) induces a home-

omorphism from Hom(Sρ,R∪ {∞}) onto its image. We note that the trop-

icalization map

Trop: Y an
Σ →

⊔
σ∈Σ

(Nσ)R



134 Ryota Mikami

is proper, surjective, and continuous; see [Pay09-1, Section 3]. For an irre-

ducible Zariski closed analytic subvariety X ⊂ Y an
Σ , the image Trop(X) of

X is called the tropicalization of X.

In [Gub07], Gubler showed that for any cone σ ∈ Σ, the subset Trop(X)∩
(Nσ)R of (Nσ)R is a locally finite union of Γ-rational polyhedra. Here,

Γ = val((Kalg)×). (See [MS15, Definition 2.3.2] for the definition of Γ-

rational polyhedra.) Moreover, he showed that for a unique cone σX ∈ Σ

such that X ∩O(σX)an is a dense Zariski open analytic subvariety of X, the

subset Trop(X)∩(NσX )R of (NσX )R is a locally finite union of d-dimensional

polyhedra, where d is the dimension of X [Gub07, Theorem 1.1]. Here, we

identify (Nσ)R with RdimO(σ) by taking a Z-basis of HomZ(σ⊥ ∩ M,Z).

When X = Zan ⊂ Y an
Σ for a Zariski closed algebraic subvariety Z ⊂ YΣ, we

have Trop(X) = Trop(Z), and Trop(Z)∩(Nσ)R is a finite union of polyhedra

for any cone σ ∈ Σ; see [MS15, Theorem 3.3.5]. (See also [BG84, Theorem

A] and [EKL06, Theorem 2.2.3]. See [MS15, Definition 3.2.1 and Section

6.2] for the definition of the tropicalizations of algebraic subvarieties of tori

and toric varieties.)

Let M1,M2 be free Z-modules of finite rank, and φ : Spec(K[M1]) →
Spec(K[M2]) the homomorphism of algebraic tori over K induced by a ho-

momorphism M2 →M1. We denote by

Trop(φan) : HomZ(M1,R) → HomZ(M2,R)

the R-linear map such that

Trop(φan) ◦ Trop = Trop ◦φan;

see [Pay09-1, Section 1].

We shall introduce the initial forms of analytic functions on the analyti-

fication (Gr
m)an of the r-dimensional torus

Gr
m := Spec(K[T±1

1 , . . . , T±1
r ])

over K as follows. (See [MS15, Section 2.4] for the case of Laurent poly-

nomials.) Let M ′ be the free abelian group generated by Ti (1 ≤ i ≤
r). We identify HomZ(M ′,R) with Rr by sending φ ∈ HomZ(M ′,R) to

(φ(T1), . . . , φ(Tr)) ∈ Rr. For u = (u1, . . . , ur) ∈ Zr, we put T u :=

T u1
1 · · ·T ur

r .
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For a non-zero analytic function

f =
∑
u∈Zr

auT
u ∈ Γ((Gr

m)an,O) \ {0} (au ∈ K),

let

Trop(f) : Rr → R

be the piecewise linear function given by

Trop(f)(w) := min{ val(au) + 〈w, u〉 | u ∈ Zr, au �= 0 } (w ∈ Rr),

where 〈, 〉 is the standard inner product on Rr.

We note that a formal power series

f =
∑
u∈Zr

auT
u ∈ K[[T±1

1 , . . . , T±1
r ]]

is an analytic function on (Gr
m)an if and only if for any w ∈ Rr, we have

lim
|u|→∞

val(au) + 〈w, u〉 = ∞, where we put |u| :=
∑r

i=1|ui|. Hence the

function Trop(f) is well-defined.

Definition 3.1. The initial form of f with respect to w ∈ Rr is the

Laurent polynomial over the residue field k defined by

inw(f) :=
∑

u∈Zr, au �=0
val(au)+〈w,u〉=Trop(f)(w)

auϕ(− val(au))T
u ∈ k[T±1

1 , . . . , T±1
r ].

Here, ϕ : Γ → (Kalg)× is the map fixed in Section 2.

Since lim
|u|→∞

val(au)+〈w, u〉 = ∞, the Laurent polynomial inw(f) is well-

defined.

We also note that the initial form inw(f) depends on the choice of ϕ : Γ →
(Kalg)×, but, in this paper, we focus only on whether the initial form inw(f)

is a monomial or not for each w ∈ Rr. This does not depend on the choice

of ϕ : Γ → (Kalg)×.

Proposition 3.2. For the Zariski closed analytic subvariety Z =

V (I) ⊂ (Gr
m)an corresponding to a coherent ideal sheaf I ⊂ O(Gr

m)an, we
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have

Trop(Z) = {w ∈ Rr | inw(f) is not a monomial for any

f ∈ Γ((Gr
m)an, I) \ {0} }.

Moreover, when I is generated by a non-zero analytic function f ∈
Γ((Gr

m)an,O) \ {0}, we have

Trop(V (f)) = {w ∈ Rr | inw(f) is not a monomial }.

Proof. For each affinoid domain U of (Gr
m)an, w ∈ Trop(U), and

f ∈ Γ(U, I) with Trop−1(w) ⊂ U , when the initial form inw(f) is not a

monomial, the initial form inw(g) is not a monomial for a function g ∈
Γ(U, I) which is sufficiently close to f in Γ(U, I). By [Van75, Theorem

3.1.1 and Example 3.1.3], the image of Γ((Gr
m)an, I) in Γ(U, I) is dense.

Hence the first assertion follows from [Rab12, Theorem 7.8]. One can show

that

inw(fg) = inw(f) inw(g)

for any g ∈ Γ((Gr
m)an,O) \ {0} and any w ∈ Rr in the same way as [MS15,

Lemma 2.6.2 (3)], where the equality is proved for Laurent polynomials.

Hence the second assertion holds. �

4. Tropicalization of Analytic Hypersurfaces in Tori

In this section, we prove Theorem 1.1 for analytic hypersurfaces in the

r-dimensional torus (Gr
m)an.

First, we show that the tropicalization of an analytic hypersurface in

(Gr
m)an is the (r− 1)-skeleton (i.e., the union of cells of dimension less than

or equal to r − 1) of the polyhedral complex associated to the analytic

function defining the analytic hypersurface. (See [MS15, Proposition 3.1.6

and Remark 3.1.7] for the case of algebraic hypersurfaces.) See [MS15,

Section 2.3] for the terminology of polyhedral geometry used in this paper.

For a non-zero analytic function

f =
∑
u∈Zr

auT
u ∈ Γ((Gr

m)an,O) \ {0} (au ∈ K),
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we write ΣTrop(f) for the coarsest polyhedral complex in Rr containing

σu := {w ∈ Rr | Trop(f)(w) = val(au) + 〈w, u〉 }

for every u ∈ Zr satisfying au �= 0, where 〈, 〉 is the standard inner product

on Rr; see [MS15, Definition 2.5.5]. The polyhedral complex ΣTrop(f) is pure

r-dimensional and its support is Rr.

Lemma 4.1. For a non-zero analytic function

f =
∑
u∈Zr

auT
u ∈ Γ((Gr

m)an,O) \ {0} (au ∈ K),

let V (f) ⊂ (Gr
m)an be the analytic hypersurface defined by f . Then the

tropicalization Trop(V (f)) is the (r−1)-skeleton of ΣTrop(f), i.e., the union

of cells of ΣTrop(f) of dimension less than or equal to r − 1.

Proof. One can prove this lemma in the same way as in the case of

Laurent polynomials; see [MS15, Proposition 3.1.6 and Remark 3.1.7]. �

We shall now prove Theorem 1.1 for analytic hypersurfaces in (Gr
m)an.

Theorem 4.2. Let f ∈ Γ((Gr
m)an,O)\{0} be a non-zero analytic func-

tion. Assume that Trop(V (f)) is a finite union of polyhedra. Then f is a

Laurent polynomial. In particular, the Zariski closed analytic subvariety

V (f) ⊂ (Gr
m)an is the analytification of the algebraic hypersurface of Gr

m

defined by f .

Proof. We put

f =
∑
u∈Zr

auT
u ∈ Γ((Gr

m)an,O) \ {0}.

By Lemma 4.1, the (r−1)-skeleton of ΣTrop(f) is a finite union of polyhedra.

Since the polyhedral complex ΣTrop(f) is pure r-dimensional and its support

is Rr, there are only finitely many maximal cells of ΣTrop(f). We take a finite

subset Λ ⊂ Zr such that for each maximal cell σ ∈ ΣTrop(f), there exists

u ∈ Λ satisfying σu = σ. Then we have
⋃

u∈Λ σu = Rr; in other words, for

any w ∈ Rr, there exists u ∈ Λ such that

Trop(f)(w) = val(au) + 〈w, u〉.
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We shall show that there are only finitely many u ∈ Zr satisfying au �= 0.

Assume that there exist infinitely many u ∈ Zr with au �= 0. Then there

exist v = (v1, . . . , vr) ∈ Zr \Λ and 1 ≤ i ≤ r such that av �= 0 and |vi|> |ui|
for any u = (u1, . . . , ur) ∈ Λ. Take a real number xi ∈ R such that

val(av) + xivi < val(au) + xiui

for any u = (u1, . . . , ur) ∈ Λ. Let x := (0, . . . , 0, xi, 0, . . . , 0) ∈ Rr be the

element such that the i-th entry is xi and the j-th entry is 0 for j �= i. Then

we have

val(av) + 〈x, v〉 < val(au) + 〈x, u〉

for any u ∈ Λ. Hence x ∈ Rr is not contained in
⋃

u∈Λ σu, which contradicts⋃
u∈Λ σu = Rr.

Consequently, there are only finitely many u ∈ Zr satisfying au �= 0. In

other words, f is a Laurent polynomial. �

Remark 4.3. For an irreducible Zariski closed analytic subvariety Z ⊂
(Gr

m)an of codimension 1, there exists a non-zero analytic function f ∈
Γ((Gr

m)an,O) \ {0} such that Z = V (f). This easily follows from the fact

that Z ⊂ (Gr
m)an is a Cartier divisor, and the line bundle on (Gr

m)an corre-

sponding to Z is trivial; see [Lut16, Lemma 2.7.4].

5. Proof of the Main Theorem

In this section, we shall prove Theorem 1.1 by using surjective homo-

morphisms of tori to reduce to the case of hypersurfaces.

Let M be a free Z-module of finite rank. Let YΣ be the normal toric

variety over K associated to a fan Σ in NR := HomZ(M,R), and X an

irreducible Zariski closed analytic subvariety of Y an
Σ . Take a unique cone

σX ∈ Σ such that X ∩O(σX)an is a dense Zariski open analytic subvariety

of X. We fix a Z-basis m1, . . . ,mn of (σX)⊥ ∩M . By using this Z-basis, we

identify (NσX )R := HomZ((σX)⊥ ∩M,R) with Rn.

Assume that Trop(X) ∩ (NσX )R is a finite union of polyhedra.

Lemma 5.1. Assume that the Zariski closed analytic subvariety X ∩
O(σX)an ⊂ O(σX)an is algebraic. Then the analytic subvariety X ⊂ Y an

Σ is

algebraic.
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Proof. Let X ′ ⊂ O(σX) be the algebraic subvariety such that X ′an =

X ∩O(σX)an. By [Ber90, Proposition 3.4.4], we have (X ′)an = (X ′an) = X,

where X ′ is the algebraic Zariski closure of X ′ in YΣ. Hence the analytic

subvariety X ⊂ Y an
Σ is algebraic. �

By Lemma 5.1, it suffices to show that X ∩ O(σX)an ⊂ O(σX)an is

algebraic.

We put X ′ := X ∩ O(σX)an. Since X ′ ⊂ X is Zariski open and X is

irreducible, X ′ is irreducible. We put d := dimX ′ = dimX. By the Z-basis

m1, . . . ,mn of (σX)⊥ ∩M , we identify O(σX) with Gn
m. Let I ⊂ O(Gn

m)an

be the coherent ideal sheaf such that V (I) = X ′ ⊂ (Gn
m)an.

Let Gr(n − d − 1, n) be the Grassmannian of (n − d − 1)-dimensional

subspaces of Qn, which is an integral variety over Q; see [LB15, Section

5.3.2]. Let S be the set of surjective homomorphisms

φ : Gn
m → Gd+1

m

such that Trop(φan) : Rn → Rd+1 is injective on every d-dimensional poly-

hedron contained in Trop(X ′).

Lemma 5.2. The subset

{ ker(Trop(φan)) ∩ Qn ∈ Gr(n− d− 1, n)(Q) | φ ∈ S }

is a dense Zariski open subset in Gr(n− d− 1, n)(Q).

Proof. For a d-dimensional Γ-rational polyhedron P ⊂ Rn, we put

L(P ) := {α(b− a) ∈ Rn | a, b ∈ P, α ∈ R}.

It is a linear subspace of Rn of dimension d. Since the polyhedron P is

Γ-rational, the linear space L(P ) has a R-basis {xi ∈ Qn}di=1. (See [MS15,

Definition 2.3.2] for the definition of Γ-rational polyhedra.)

Hence we have

{A ∈ Gr(n− d− 1, n)(Q) | the projection Rn → Rn/(A⊗ R)

is injective on P }
={A ∈ Gr(n− d− 1, n)(Q) | A ∩ L(P ) = {0} }
=p−1({B ∈ P(∧n−d−1Qn) | B ∧ ∧dL(P ) �= {0} }),
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where

p : Gr(n− d− 1, n)(Q) � U �→ ∧n−d−1U ∈ P(∧n−d−1Qn)

is the Plücker embedding. Since

{B ∈ P(∧n−d−1Qn) | B ∧ ∧dL(P ) �= {0} }

is a nonempty Zariski open subset of P(∧n−d−1Qn), the subset

{A ∈ Gr(n− d− 1, n)(Q) | the projection Rn → Rn/(A⊗ R)

is injective on P }

is a nonempty Zariski open subset of Gr(n−d−1, n)(Q). (Remind that the

algebraic variety structure of the Grassmannian Gr(n−d−1, n) is defined by

the Plücker embedding p : Gr(n−d−1, n) → P(∧n−d−1Qn) [LB15, Theorem

5.2.1 and Theorem 5.2.3].) Since the Grassmannian Gr(n − d − 1, n) is

irreducible, the subset

{A ∈ Gr(n− d− 1, n)(Q) | the projection Rn → Rn/(A⊗ R)

is injective on P }

is dense in Gr(n− d− 1, n)(Q).

Since for any A ∈ Gr(n − d − 1, n)(Q), there exists a surjective group

homomorphism φ : Gn
m → Gd+1

m such that ker(Trop(φan)) ∩ Qn = A, the

subset{
ker(Trop(φan)) ∩ Qn ∈ Gr(n− d− 1, n)(Q)

∣∣∣∣∣∣∣∣ a surjective group homomorphism φ : Gn
m → Gd+1

m

Trop(φan) : Rn → Rd+1 is injective on P

}

={A ∈ Gr(n− d− 1, n)(Q) | the projection Rn → Rn/(A⊗ R)

is injective on P }

is a dense Zariski open subset in Gr(n − d − 1, n)(Q). (We note that

for a surjective group homomorphism φ : Gn
m → Gd+1

m , the linear

map Trop(φan) : Rn → Rd+1 conincides with the projection Rn →
Rn/ ker(Trop(φan)). )
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Since Trop(X ′) is a finite union of d-dimensional Γ-rational polyhedra,

the assertion follows. �

Lemma 5.3. For any homomorphism φ ∈ S, the image φan(X ′) ⊂
(Gd+1

m )an is a Zariski closed analytic subvariety.

Proof. For each d-dimensional polyhedron P contained in Trop(X ′),
the R-linear map

Trop(φan)|P : P → Rd+1

is injective. Hence Trop(φan)|P induces a homeomorphism from P onto

Trop(φan)(P ).

For any affinoid domain U of (Gd+1
m )an, since Trop(U) is bounded, the

intersection

Trop(U) ∩ Trop(φan)(P )

is bounded. Hence the intersection

Trop(φan)−1(Trop(U)) ∩ P

is bounded. Since Trop(X ′) is a finite union of d-dimensional polyhedra,

the intersection

Trop(φan)−1(Trop(U)) ∩ Trop(X ′)

is bounded. Hence

Trop((φan)−1(U) ∩X ′) ⊂ Trop((φan)−1(U)) ∩ Trop(X ′)

⊂ Trop(φan)−1(Trop(U)) ∩ Trop(X ′)

is bounded. Thus Trop((φan)−1(U) ∩X ′) is compact.

By [Pay09-1, Lemma 2.1], the tropicalization map

Trop: (Gn
m)an → Rn

is proper. Hence the closed subset

(φan)−1(U) ∩X ′ ⊂ Trop−1(Trop((φan)−1(U) ∩X ′))

is compact. It follows that for any compact subset C ⊂ (Gd+1
m )an, the subset

(φan)−1(C) ∩ X ′ is compact. By Lemma 2.1, the morphism φan|X′ : X ′ →
(Gd+1

m )an is separated. Hence the map of underlying topological spaces
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|X ′| → |(Gd+1
m )an| induced by φan|X′ is proper; see [Ber90, Section 3.1,

p.50]. Moreover, the relative boundary of φan|X′ is empty by Lemma 2.1.

Hence φan|X′ is a proper morphism of Berkovich analytic spaces; see [Ber90,

Section 3.1, p.50] for the definition of proper morphisms. By [Ber90, Propo-

sition 3.3.6], the image φan(X ′) ⊂ (Gd+1
m )an is a Zariski closed analytic sub-

variety. �

By Lemma 5.3, for each φ ∈ S, we consider φan(X ′) as a Zariski closed

analytic subvariety of (Gd+1
m )an. Since X ′ is irreducible, its image φan(X ′)

is also irreducible. Since

Trop(φan(X ′)) = Trop(φan)(Trop(X ′))

and φ ∈ S, the tropicalization Trop(φan(X ′)) is a finite union of d-dimen-

sional polyhedra. By [Gub07, Theorem 1.1], the irreducible Zariski closed

analytic subvariety φan(X ′) ⊂ (Gd+1
m )an is d-dimensional. By Remark 4.3,

it is an analytic hypersurface in (Gd+1
m )an. Hence, by Theorem 4.2, it is the

analytification of an algebraic subvariety of Gd+1
m .

Therefore, for each φ ∈ S, the Zariski closed analytic subvariety

Wφ := (φan)−1(φan(X ′)) ⊂ (Gn
m)an

is algebraic. We put

W :=
⋂
φ∈S

Wφ.

Then W contains X ′. Since Wφ ⊂ (Gn
m)an is algebraic for every φ ∈ S, the

intersection W is algebraic. One can deduce that X ′ ⊂ (Gn
m)an is algebraic

from the following:

Lemma 5.4. The dimension ofW is less than or equal to d = dimX ′ =

dimX.

Proof. Assume that there exists an irreducible component V of W

of dimension greater than d. By [Gub07, Theorem 1.1], the tropicalization

Trop(V ) is a locally finite union of polyhedra of dimension greater than d.

We take a polyhedron P of dimension d+ 1 contained in Trop(V ).

Let S′ be the set of surjective homomorphisms

φ : Gn
m → Gd+1

m
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such that the R-linear map Trop(φan) : Rn → Rd+1 is injective on P . By

[LB15, Theorem 5.2.3], the subset

{ ker(Trop(φan)) ∩ Qn | φ ∈ S′ }

is dense Zariski open in Gr(n − d − 1, n)(Q). Since S is also Zariski open

dense in Gr(n− d− 1, n)(Q), the intersection S ∩ S′ is non-empty.

We take an element φ ∈ S ∩ S′. Since φan(Wφ) = φan(X ′), we have

Trop(φan)(Trop(Wφ)) = Trop(φan(Wφ))

= Trop(φan(X ′)) = Trop(φan)(Trop(X ′)).

Since φ ∈ S, the image Trop(φan)(Trop(Wφ)) is a finite union of d-dimen-

sional polyhedra. Since φ ∈ S′, the polyhedron Trop(φan)(P ) is (d + 1)-

dimensional. Hence we have

Trop(φan)(P ) �⊂ Trop(φan)(Trop(Wφ)).

Since P ⊂ Trop(V ), we have

Trop(φan)(Trop(V )) �⊂ Trop(φan)(Trop(Wφ)),

which contradicts V ⊂W ⊂Wφ.

Consequently, the dimension of W is less than or equal to d. �

Proof of Theorem 1.1. Recall that X ′ := X ∩ O(σX)an and d :=

dimX ′ = dimX. By Lemma 5.4, the dimension ofW is less than or equal to

d. Since X ′ ⊂W , the analytic subvariety X ′ is an irreducible component of

W . Since W is algebraic, by [Duc17, Proposition 2.7.16], the Zariski closed

analytic subvariety X ′ ⊂ O(σX)an is algebraic. Therefore, by Lemma 5.1,

the analytic subvariety X ⊂ Y an
Σ is algebraic.

The proof of Theorem 1.1 is complete. �

6. Examples of the Tropicalizations of Algebraic and Analytic

Hypersurfaces

In this section, we give two examples of the tropicalizations of hyper-

surfaces in the 2-dimensional torus (G2
m)an. The first example is analytic

and not algebraic. It is a locally finite union of polyhedra, but the number
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of polyhedra is infinite. The second example is algebraic, and it is a finite

union of polyhedra.

Let

f =
∑

(i,j)∈Z2
≥0

ai,jX
iY j ∈ O((G2

m)an) \ {0} (ai,j ∈ K)

be a non-zero analytic function on (G2
m)an = (SpecK[X±, Y ±])an satisfying

val(ai,j) = i2 + j2 + ij − i− j

Fig. 1. The tropicalization of the analytic hypersurface V (f) ⊂ (G2
m)an.
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for any (i, j) ∈ Z2
≥0. For each (s, t) ∈ Z2

≥0, we put

fs,t :=
∑

0≤i≤s
0≤j≤t

ai,jX
iY j ∈ K[X,Y ] \ {0}.

First, we consider the tropicalization Trop(V (f)) ⊂ R2. Since f has

infinitely many non-zero terms, the analytic hypersurface V (f) ⊂ (G2
m)an

is not algebraic. The tropicalization Trop(V (f)) ⊂ R2 is not a finite union

of polyhedra; see Figure 1.

Fig. 2. The tropicalization of the algebraic hypersurface V (fs,t) ⊂ (G2
m)an.
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Next, we consider the tropicalization Trop(V (fs,t)) ⊂ R2 for each (s, t) ∈
Z2
≥0. Since fs,t is a polynomial, the analytic hypersurface V (fs,t) ⊂ (G2

m)an

is algebraic. The tropicalization Trop(V (fs,t)) ⊂ R2 is a finite union of

polyhedra; see Figure 2.
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