# Dehn Twists, Hypertwists, and Uniformization of Twined Singularities 

By Kenjiro Sasaki and Shigeru Takamura


#### Abstract

There are two kinds of homeomorphisms of an annulus that appear as local monodromies of degenerations of Riemann surfaces: fractional Dehn twist and Nielsen twist. In this paper, they are "in a unified way" generalized to higher dimensions as a hypertwist, which is the monodromy of a twined singularity (a quotient of a multiplicative $A$-singularity). We moreover establish the uniformization theorem of this quotient, which generalizes the uniformization theorem in our previous paper.


## Contents

1. Introduction 36
2. Twining Automorphisms 42
3. Lifting and Descent 47
4. Determination of $\tilde{\Gamma}$ and $H \quad 50$
5. Simple Pseudo-Reflections 56
6. The Pseudo-Reflection Subgroup of $H$ 58
7. Numerical Criterion of Smallness 65
8. Uniformization of Twined Singularities 67
8.1. Uniformization theorem 67
9. Explicit Forms of Elements of $\tilde{\Gamma}, H, G$
9.1. Generators of $\tilde{\Gamma}, \bar{\Gamma}(=H)$ and $\overline{\bar{\Gamma}}(=G) \quad 73$
9.2. Preparation to deduce relations 78
9.3. Relations between generators 81
10. When $G$ is Abelian? 84

2010 Mathematics Subject Classification. Primary 32Q30; Secondary 14D05.
Key words: Uniformization of singularity, cyclic quotient, group action, multiplicative $A$-singularity, monodromy, fractional Dehn twist, small group, lifting and descent.

## 1. Introduction

Let $a$ and $m(0<a<m)$ and $b$ and $n(0<b<n)$ be two pairs of relatively prime integers. An $\left(\frac{a}{m}, \frac{b}{n}\right)$-fractional Dehn twist is a selfhomeomorphism of an annulus $[0,1] \times S^{1}$ given by $\left(t, e^{\mathrm{i} \theta}\right) \mapsto$ $\left(t, e^{2 \pi \mathrm{i}\{-(1-t) a / m+t b / n\}} e^{\mathrm{i} \theta}\right)$. More generally, where $\kappa$ is an integer, an $\left(\frac{a}{m}, \frac{b}{n}, \kappa\right)$-fractional Dehn twist is defined as the composite map of a $\kappa$ Dehn twist and an $\left(\frac{a}{m}, \frac{b}{n}\right)$-fractional Dehn twist (Figure 1.1). We next introduce a Nielsen twist. First let $H:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R}$ be an affine transformation given by $H(t, y)=\left(1-t,(2 t-1) \frac{a}{2 m}-y\right)$. Then $H$ and $H^{2}$ transform $[0,1] \times \mathbb{R}$ as illustrated in Figure 1.2; note that $H^{2}(t, y)=$ $\left(t,(1-2 t) \frac{a}{m}+y\right)$. Under the covering map $f:[0,1] \times \mathbb{R} \rightarrow[0,1] \times S^{1}$, $f(t, y)=\left(t, e^{2 \pi \mathrm{i} y}\right), H$ descends to an $\frac{a}{2 m}$-Nielsen twist $h:[0,1] \times S^{1} \rightarrow$ $[0,1] \times S^{1}, h\left(t, e^{\mathrm{i} \theta}\right)=\left(1-t, e^{2 \pi \mathrm{i}(2 t-1) a / 2 m} e^{-\mathrm{i} \theta}\right)$. Note that $h^{2}$ is a $-\left(\frac{a}{m}, \frac{a}{m}\right)-$ fractional Dehn twist.

More generally, an $\left(\frac{a}{2 m}, \kappa\right)$-Nielsen twist of $h$ and a $(-\kappa)$-Dehn twist (not $(+\kappa)$-Dehn twist), explicitly given by

$$
\left(t, e^{\mathrm{i} \theta}\right) \in[0,1] \times S^{1} \longmapsto\left(1-t, e^{2 \pi \mathrm{i}\{(2 t-1) a / 2 m+t \kappa\}} e^{-\mathrm{i} \theta}\right) \in[0,1] \times S^{1}
$$

Note that its square is a $-\left(\frac{a}{m}, \frac{a}{m}, 2 \kappa\right)$-fractional Dehn twist.
A fractional Dehn twist appears as the topological monodromy of a degeneration: Set $c:=\operatorname{gcd}(m, n), m^{\prime}:=m / c, n^{\prime}:=n / c$, and let $\gamma: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be an automorphism defined by

$$
\begin{equation*}
\gamma:(z, w, t) \longmapsto\left(e^{2 \pi \mathrm{i} a / m} z, e^{2 \pi \mathrm{i} b / n} w, e^{2 \pi \mathrm{i} / m^{\prime} n^{\prime} c} t\right) \tag{1.1}
\end{equation*}
$$

Suppose that $\gamma$ preserves $A_{d-1}:=\left\{(z, w, t) \in \mathbb{C}^{3}: z w=t^{d}\right\}$; this is the case precisely when $e^{2 \pi \mathrm{i} a / m} e^{2 \pi \mathrm{i} b / n}=e^{2 \pi \mathrm{i} d / m^{\prime} n^{\prime} c}$, that is, $\frac{a}{m}+\frac{b}{n} \equiv \frac{d}{m^{\prime} n^{\prime} c} \bmod \mathbb{Z}$. Write $d=m^{\prime} n^{\prime} c\left(\frac{a}{m}+\frac{b}{n}+\kappa\right)$ for some integer $\kappa$ such that $\frac{a}{m}+\frac{b}{n}+\kappa>0$. Let $\Gamma$ the cyclic group generated by $\gamma$. Define a holomorphic map $\Phi$ : $A_{d-1} \rightarrow \mathbb{C}$ by $\Phi(z, w, t)=t^{m^{\prime} n^{\prime} c}$. Then $\Phi$ is $\Gamma$-invariant, so descends to a holomorphic map $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$, which is a degeneration of annuli whose topological monodromy is a $-\left(\frac{a}{m}, \frac{b}{n}, \kappa\right)$-fractional Dehn twist.


Fig. 1.1. An $\left(\frac{a}{m}, \frac{b}{n}, \kappa\right)$-fractional Dehn twist.


Fig. 1.2.

A Nielsen twist also appears as the topological monodromy of a degeneration: Let $\gamma^{\prime}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be an automorphism defined by

$$
\begin{equation*}
\gamma^{\prime}:(z, w, t) \longmapsto\left(e^{2 \pi \mathrm{i} a / 2 m} w, e^{2 \pi \mathrm{i} a / 2 m} z, e^{2 \pi \mathrm{i} / 2 m} t\right) \tag{1.2}
\end{equation*}
$$

Suppose that $\gamma^{\prime}$ preserves $A_{d-1}$; this is the case precisely when $e^{2 \pi \mathrm{i} a / m}=$ $e^{2 \pi \mathrm{i} d / 2 m}$, that is, $\frac{a}{m} \equiv \frac{d}{2 m} \bmod \mathbb{Z}$. Write $d=2 a+2 m \kappa$ for some integer $\kappa \geq 0$. Let $\Gamma^{\prime}$ be the cyclic group generated by $\gamma^{\prime}$. Define a holomorphic map $\Phi^{\prime}: A_{d-1} \rightarrow \mathbb{C}$ by $\Phi^{\prime}(z, w, t)=t^{2 m}$. Then $\Phi^{\prime}$ is $\Gamma^{\prime}$-invariant, so descends to a holomorphic map $\bar{\Phi}^{\prime}: A_{d-1} / \Gamma^{\prime} \rightarrow \mathbb{C}$, which is a degeneration of annuli whose topological monodromy is an $\left(\frac{a}{2 m}, \kappa\right)$-Nielsen twist.


Fig. 1.3. An $\frac{a}{2 m}$-Nielsen twist $h$.

## Main results

We generalize the above notions/results to higher dimensions. Fix a positive integer $d$ and consider a complex variety (a multiplicative $A$-singularity)

$$
A_{d-1}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \in \mathbb{C}^{n+1}: x_{1} x_{2} \cdots x_{n}=t^{d}\right\}
$$

If $n \geq 3$, the singular locus of $A_{d-1}$ is not isolated - the union of ${ }_{n} C_{2}$ hyperplanes $H_{i j}=\left\{x_{i}=x_{j}=t=0\right\}(1 \leq i<j \leq n)$. In contrast, the additive $A$-singularity $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=t^{d}$ has only an isolated singularity at the origin. In particular if $n \geq 3$, this is not biholomorphic to $A_{d-1}$. (If $n=2$, they are biholomorphic: Via $x_{1}^{\prime}=x_{1}+\mathrm{i} x_{2}$ and $x_{2}^{\prime}=x_{1}-\mathrm{i} x_{2}$, $x_{1}^{2}+x_{2}^{2}=t^{d}$ is transformed to $x_{1}^{\prime} x_{2}^{\prime}=t^{d}$.)

Now take $\sigma \in \mathfrak{S}_{n}$ (a permutation of $n$ elements) and nonzero complex numbers $\alpha_{1}, \ldots, \alpha_{n}, \delta$ such that $\alpha_{1} \alpha_{2} \cdots \alpha_{n}=\delta^{d}$, and define an automorphism $\gamma: A_{d-1} \rightarrow A_{d-1}$ by

$$
\gamma:\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \longmapsto\left(\alpha_{1} x_{\sigma(1)}, \alpha_{2} x_{\sigma(2)}, \ldots, \alpha_{n} x_{\sigma(n)}, \delta t\right)
$$

Simple Case. We first consider the case that $\sigma$ is cyclic of full length $n$. Take an (arbitrary) $n$th root $\beta$ of $\alpha_{1} \alpha_{2} \cdots \alpha_{n}$ and define another automorphism $\gamma^{\prime}: A_{d-1} \rightarrow A_{d-1}$ by

$$
(*) \quad \gamma^{\prime}:\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \mapsto\left(\beta x_{\sigma(1)}, \beta x_{\sigma(2)}, \ldots, \beta x_{\sigma(n)}, \delta t\right) .
$$

Then irrespective of the choice of $\beta, \gamma^{\prime}$ is conjugate to $\gamma$ in $\operatorname{Aut}\left(A_{d-1}\right)$ (Lemma $2.3(3))$. Say $\gamma^{\prime}=f^{-1} \circ \gamma \circ f$, then under a coordinate change via $f$
of $A_{d-1}, \gamma^{\prime}$ may be regarded as $\gamma$. We thus only consider an automorphism of the form $(*)$.

In what follows, suppose that $\alpha_{1} \alpha_{2} \cdots \alpha_{n}$ is a root of unity (this is equivalent to the finiteness of the order of $\gamma$ (Corollary 2.2)). Say $\alpha_{1} \alpha_{2} \cdots \alpha_{n}$ is an $m$ th root of unity, and consider an automorphism

$$
\begin{align*}
& \gamma:\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \in A_{d-1} \longmapsto \\
& \quad\left(e^{2 \pi \mathrm{i} a / m n} x_{\sigma(1)}, e^{2 \pi \mathrm{i} a / m n} x_{\sigma(2)}, \ldots, e^{2 \pi \mathrm{i} a / m n} x_{\sigma(n)}, e^{2 \pi \mathrm{i} / m n} t\right) \in A_{d-1}
\end{align*}
$$

where $\sigma$ is a cyclic permutation of full length $n$ and $d=a n+m n \kappa$ for some integer $\kappa \geq 0$. This generalizes the automorphism in (1.2) given by

$$
\gamma:(z, w, t) \in A_{d-1} \longmapsto\left(e^{2 \pi \mathrm{i} a / 2 m} w, e^{2 \pi \mathrm{i} a / 2 m} z, e^{2 \pi \mathrm{i} / 2 m} t\right) \in A_{d-1}
$$

where $d=2 a+2 m \kappa$ for some integer $\kappa \geq 0$.
Before stating our results, we recall some terminology: A pseudo-reflection is a linear transformation conjugate to $\left(z_{1}, \ldots, z_{i}, \ldots, z_{n}\right) \mapsto\left(z_{1}, \ldots\right.$, $\left.\zeta z_{i}, \ldots, z_{n}\right)$, where $\zeta \neq 1$ is a root of unity. By abuse of terminology, a matrix conjugate to the diagonal matrix $\operatorname{diag}(1, \ldots, \zeta, \ldots, 1)$ is also called a pseudo-reflection. A subgroup of $G L_{n}(\mathbb{C})$ is small if it contains no pseudoreflections.

Result 1 (Corollary 9.9) Uniformization. Let $\Gamma$ be the cyclic group generated by the automorphism $\gamma$ of $A_{d-1}$ given by ( $\sharp$ ). Then $A_{d-1} / \Gamma$ is isomorphic to $\mathbb{C}^{n} / G$, where $G$ is a small finite group generated by the automorphisms $f, g_{1}, g_{2}, \ldots, g_{n-1}$ of $\mathbb{C}^{n}$ given by

$$
\begin{aligned}
& f:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(e^{2 \pi \mathrm{i} a / m n d} z_{\sigma(1)}, \ldots\right. \\
&\left.e^{2 \pi \mathrm{i} a / m n d} z_{\sigma(n-1)}, e^{2 \pi \mathrm{i}(a+m n \kappa) / m n d} z_{\sigma(n)}\right) \\
& g_{i}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(z_{1}, \ldots, z_{i-1}, e^{2 \pi \mathrm{i} / d} z_{i}, z_{i+1}, \ldots, z_{n-1}, e^{-2 \pi \mathrm{i} / d} z_{n}\right)
\end{aligned}
$$

We remark that $G$ is abelian only when $n=2$ and $d=2$ (Theorem 10.6 (2)).

Now define a holomorphic map $\Phi: A_{d-1} \rightarrow \mathbb{C}$ by $\Phi\left(x_{1}, \ldots, x_{n}, t\right)=t^{m n}$. Then $\Phi$ is $\Gamma$-invariant, so descends to a holomorphic map $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$.

Result 2 (Lemma 8.2) Correspondence of maps. Under the isomorphism $A_{d-1} / \Gamma \cong \mathbb{C}^{n} / G, \bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$ corresponds to the holomorphic map $\bar{\phi}: \mathbb{C}^{n} / G \rightarrow \mathbb{C}$ induced by the $G$-invariant holomorphic map $\phi: \mathbb{C}^{n} \rightarrow \mathbb{C}, \phi\left(v_{1}, v_{2}, \ldots v_{n}\right)=\left(v_{1} v_{2} \cdots v_{n}\right)^{m n}$.

In the case that $\sigma \in \mathfrak{S}_{n}$ is arbitrary, decompose it into disjoint cyclic permutations: $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{l}$, say the length of $\sigma_{i}$ is $n_{i}$. Renumbering the indices, assume that $\sigma_{1}$ permutes $\left\{1,2, \ldots, n_{1}\right\}, \sigma_{2}$ permutes $\left\{n_{1}+1, n_{1}+\right.$ $\left.2, \ldots, n_{1}+n_{2}\right\}, \sigma_{3}$ permutes $\left\{n_{1}+n_{2}+1, \ldots, n_{1}+n_{2}+n_{3}\right\}$ and so on. Write $\mathbb{C}^{n}=\mathbb{C}^{n_{1}} \times \mathbb{C}^{n_{2}} \times \cdots \times \mathbb{C}^{n_{l}} ;$ then $\sigma_{i}$ acts on $\mathbb{C}^{n_{i}}$ as $\boldsymbol{x}_{i}:=\left(x_{1}^{(i)}, \ldots, x_{n_{i}}^{(i)}\right) \mapsto$ $\boldsymbol{x}_{i}^{\sigma_{i}}:=\left(x_{\sigma_{i}(1)}^{(i)}, \ldots, x_{\sigma_{i}\left(n_{i}\right)}^{(i)}\right)$. As in Simple Case, the following holds (Lemma 2.6): $\gamma$ is via an element of $\operatorname{Aut}\left(A_{d-1}\right)$ conjugate to an automorphism $\gamma^{\prime}$ : $A_{d-1} \rightarrow A_{d-1}$ of the form

$$
\gamma^{\prime}:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \longmapsto\left(\beta_{1} \boldsymbol{x}_{1}^{\sigma_{1}}, \ldots, \beta_{l} \boldsymbol{x}_{l}^{\sigma_{l}}, \delta t\right), \quad \beta_{i} \in \mathbb{C}^{\times}
$$

It thus suffices to consider automorphisms of this form. Note that the condition that $\gamma$ preserves $A_{d-1}$ is given by

$$
\begin{equation*}
\beta_{1}^{n_{1}} \beta_{2}^{n_{2}} \cdots \beta_{l}^{n_{l}}=\delta^{d} . \tag{1.3}
\end{equation*}
$$

In what follows, we consider the following automorphism of $A_{d-1}$ generalizing ( $\sharp$ ) in Simple Case:
(1.4) $\gamma:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1}} \boldsymbol{x}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l}} \boldsymbol{x}_{l}^{\sigma_{l}}, e^{2 \pi \mathrm{i} / N} t\right)$,
where
(i) $n_{i}$ is the length of $\sigma_{i}$, and $a_{i}, m_{i}$ are positive integers such that $a_{i}$ is relatively prime to $n_{i} m_{i}$.
(ii) $N:=\left(m_{1}^{\prime}\right)^{n_{1}} \cdots\left(m_{l}^{\prime}\right)^{n_{l}} c$, where $c:=\operatorname{gcd}\left(n_{1} m_{1}, \ldots, n_{l} m_{l}\right)$ and $m_{i}^{\prime}:=$ $\frac{n_{i} m_{i}}{c}$.
(iii) $\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1}}\right)^{n_{1}}\left(e^{2 \pi \mathrm{i} a_{2} / n_{2} m_{2}}\right)^{n_{2}} \cdots\left(e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l}}\right)^{n_{l}}=e^{2 \pi \mathrm{i} d / N}$ (see (1.3)), that is, $\frac{a_{1}}{m_{1}}+\frac{a_{2}}{m_{2}}+\cdots+\frac{a_{l}}{m_{l}}+\kappa=\frac{d}{N}$ for some integer $\kappa$.

We say that $\Gamma$ is a twining automorphism group, $\gamma$ is a twining automorphism, and the quotient $A_{d-1} / \Gamma$ is a twined singularity. Here in case $\sigma$ is
the identity, $\Gamma$ (and $\gamma$ ) is said to be neat. We will prove the following (if $\Gamma$ is neat, this reduces to the uniformization theorem in $[\mathrm{SaTa}])$ :

Result 3 (Theorems 8.1, 9.6) Uniformization of twined singularity. Let $\Gamma$ be the cyclic group generated by the automorphism $\gamma$ of $A_{d-1}$ given by (1.4). Then there exists a small finite subgroup $G$ of $G L_{n}(\mathbb{C})$ such that $A_{d-1} / \Gamma \cong \mathbb{C}^{n} / G$. Here $G=\left\langle f, g_{1}, g_{2}, \ldots, g_{n-1}\right\rangle$ and
(i) $f$ is given as the composition $f=\varphi \psi$, where (below, $\ell_{k}$ is given in Remark 1.1)

$$
\left\{\begin{array}{l}
\varphi:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} \ell_{1} / c d} \boldsymbol{X}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} l_{l} \ell_{l} / c d} \boldsymbol{X}_{l}^{\sigma_{l}}\right) \\
\psi:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, X_{2}, \ldots, e^{2 \pi \mathrm{i} m_{l}^{\prime} \ell_{l} \kappa / d} X_{\sigma(n)}, \ldots, X_{n}\right)
\end{array}\right.
$$

(ii) $g_{i}$ is given as follows: Say $X_{i} \in \boldsymbol{X}_{k}$, then

$$
g_{i}:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, X_{2}, \ldots, e^{2 \pi \mathrm{i} m_{k}^{\prime} \ell_{k} / d} X_{i}, \ldots, e^{-2 \pi \mathrm{i} m_{l}^{\prime} \ell_{l} / d} X_{n}\right)
$$

Note: $f, g_{i}$ denote $\overline{\bar{\gamma}}, \overline{\overline{\mathrm{i}}}_{i}$ in Theorem 9.6 and $\varphi, \psi$ denote $\overline{\bar{\alpha}}, \overline{\bar{\beta}}_{1, \boldsymbol{q}}$ therein.

Remark 1.1. In Result $3, \ell_{k}$ is the positive integer given in Lemma 7.4, that is, $\ell_{k}:=N c / n_{k} m_{k} L_{k}$, where $n_{k}=\operatorname{length}\left(\boldsymbol{X}_{k}\right)$ and $L_{k}$ is given by (below, $n_{k} m_{k}$ means the omission of $n_{k} m_{k}$ )

$$
L_{k}:= \begin{cases}\operatorname{lcm}\left(n_{1} m_{1}, n_{2} m_{2}, \ldots, n_{k} m_{k}, \ldots, n_{l} m_{l}\right) & \text { if length }\left(\boldsymbol{X}_{k}\right)=1 \\ \operatorname{lcm}\left(n_{1} m_{1}, n_{2} m_{2}, \ldots, n_{l} m_{l}\right) & \text { if length }\left(\boldsymbol{X}_{k}\right) \geq 2\end{cases}
$$

Whether $G$ in Result 3 is abelian depends on $\sigma, n, d$. In fact:

## Result 4 (Theorem 10.6).

(1) If $\sigma=\mathrm{id}$, then $G$ is always abelian. (If moreover $n=2, G$ is cyclic ([SaTa] Theorem 2.1, p. 682 - originally proved in [Tak])).
(2) If $\sigma \neq \mathrm{id}$, then $G$ is rarely abelian - in fact only when $n=2$ and $d=2$ (and in which case $G$ is cyclic generated by $f$ in Result 3).

Result 3 is further enriched. Define a holomorphic map $\Phi: A_{d-1} \rightarrow \mathbb{C}$ by $\Phi\left(x_{1}, \cdots, x_{n}, t\right)=t^{N}$. Then $\Phi$ is $\Gamma$-invariant, so descends to a holomorphic $\operatorname{map} \bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$.

Result 5 (Theorem 8.3) Correspondence of maps. As above, let $\Gamma$ be the cyclic group generated by

$$
\gamma:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1}} \boldsymbol{x}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l}} \boldsymbol{x}_{l}^{\sigma_{l}}, e^{2 \pi \mathrm{i} / N_{1}} t\right)
$$

For each $\sigma_{k}$, let $J_{k}$ be its cycle, that is, $J_{k}=\left\{i: x_{i} \in \boldsymbol{x}_{k}\right\}$. Then:
(1) A holomorphic map $\phi: \mathbb{C}^{n} \rightarrow \mathbb{C}$ given by $\phi\left(x_{1}, \ldots, x_{n}\right)=$ $\prod_{k=1}^{l}\left(\prod_{i \in J_{k}} x_{i}\right)^{L_{k}}$ is $G$-invariant.
(2) Under the isomorphism $A_{d-1} / \Gamma \cong \mathbb{C}^{n} / G, \bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$ corresponds to the descent $\bar{\phi}: \mathbb{C}^{n} / G \rightarrow \mathbb{C}$.

The topological monodromy of $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$ generalizes both a fractional Dehn twist and a Nielsen twist - in a unified way! We call it a hypertwist (more precisely, $\left(\frac{a_{1}}{n_{1} m_{1}}, \frac{a_{2}}{n_{2} m_{2}}, \cdots, \frac{a_{l}}{n_{l} m_{l}}, \kappa, \sigma\right)$-hypertwist). Its action on a smooth fiber of $\bar{\Phi}$ will be described in our subsequent paper.

Acknowledgments. We would like to thank Professor Tadashi Ashikaga for useful discussions.

## 2. Twining Automorphisms

Let $d$ be a positive integer and consider the multiplicative $A$-singularity:

$$
A_{d-1}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \in \mathbb{C}^{n+1}: x_{1} x_{2} \cdots x_{n}=t^{d}\right\}
$$

The automorphism group $\operatorname{Aut}\left(A_{d-1}\right)$ of $A_{d-1}$ is the subgroup of $G L_{n+1}(\mathbb{C})$ consisting of elements that map $A_{d-1}$ to itself. Now take a cyclic permutation $\sigma \in \mathfrak{S}_{n}$ of length $n$ and nonzero complex numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \delta$ such that $\alpha_{1} \alpha_{2} \cdots \alpha_{n}=\delta^{d}$. Define then an automorphism $\gamma$ of $A_{d-1}$ by

$$
\begin{equation*}
\gamma:\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \longmapsto\left(\alpha_{1} x_{\sigma(1)}, \alpha_{2} x_{\sigma(2)}, \ldots, \alpha_{n} x_{\sigma(n)}, \delta t\right) \tag{2.1}
\end{equation*}
$$

Lemma 2.1. Let $k$ be an integer. Then $\gamma^{k}=1$ if and only if $k$ is a multiple of $n$ and $\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right)^{k / n}=1$ and $\delta^{k}=1$.

Proof. Note that $\gamma^{k}:\left(x_{1}, \ldots, x_{n}, t\right) \mapsto\left(\mu_{1} x_{\sigma^{k}(1)}, \ldots, \mu_{n} x_{\sigma^{k}(n)}, \nu t\right)$ for some nonzero complex numbers $\mu_{1}, \ldots, \mu_{n}, \nu$. If $\gamma^{k}=1$, then it is necessary that $\sigma^{k}=1$. Since $\sigma$ is cyclic of length $n$, this implies that $k$ is a multiple of $n$. Write $k=n l$, then $\gamma^{n l}=1$. Here $\gamma^{n}:\left(x_{1}, \ldots, x_{n}, t\right) \mapsto$ $\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n} x_{1}, \ldots, \alpha_{1} \alpha_{2} \cdots \alpha_{n} x_{n}, \delta^{n} t\right)$, thus $\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right)^{l}=1$ and $\delta^{n l}=1$ (that is, $\delta^{k}=1$ ). Conversely, if $k$ is a multiple of $n$ and $\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right)^{k / n}=1$ and $\delta^{k}=1$, then $\gamma^{k}=1$, indeed

$$
\begin{gathered}
\gamma^{k}:\left(x_{1}, \ldots, x_{n}, t\right) \longmapsto\left(\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right)^{k / n} x_{1}, \ldots,\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right)^{k / n} x_{n}, \delta^{k} t\right) \\
=\left(x_{1}, \ldots, x_{n}, t\right) .
\end{gathered}
$$

Corollary 2.2. The order of $\gamma$ is finite if and only if $\alpha_{1} \alpha_{2} \cdots \alpha_{n}$ is a root of unity.

Proof. $\Longrightarrow$ : Say that the order of $\gamma$ is $k$. Then from Lemma 2.1, $k$ is a multiple of $n$ and $\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right)^{k / n}=1$; so $\alpha_{1} \alpha_{2} \cdots \alpha_{n}$ is a $k / n$th root of unity.
$\Longleftarrow$ : Say that $\alpha_{1} \alpha_{2} \cdots \alpha_{n}$ is an $l$ th root of unity: $\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right)^{l}=1$. This and $\alpha_{1} \alpha_{2} \cdots \alpha_{n}=\delta^{d}$ yield $1=\delta^{l d}$. Set $k:=n l d$, then $k$ is a multiple of $n$ and $\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right)^{k / n}=1$ and $\delta^{k}=1$, so by Lemma $2.1, \gamma^{k}=1$.

Note next the following:
Lemma 2.3. Let $\gamma$ be the automorphism of $A_{d-1}$ given by (2.1). Then:
(1) For an arbitrary $n$th root $\beta$ of $\alpha_{1} \alpha_{2} \cdots \alpha_{n}, \gamma^{\prime}:\left(x_{1}, \ldots, x_{n}, t\right) \mapsto$ $\left(\beta x_{\sigma(1)}, \ldots, \beta x_{\sigma(n)}, \delta t\right)$ is an automorphism of $A_{d-1}$.
(2) Let $b_{1}, b_{2}, \ldots, b_{n}, c$ be nonzero complex numbers such that $b_{1} b_{2} \cdots b_{n}=$ $c^{d}$. Define $f \in \operatorname{Aut}\left(A_{d-1}\right)$ by $f:\left(x_{1}, \ldots, x_{n}, t\right) \mapsto\left(b_{1} x_{1}, \ldots, b_{n} x_{n}, c t\right)$. Then

$$
f^{-1} \circ \gamma \circ f:\left(x_{1}, \ldots, x_{n}, t\right) \longmapsto\left(\frac{\alpha_{1} b_{\sigma(1)}}{b_{1}} x_{\sigma(1)}, \ldots, \frac{\alpha_{n} b_{\sigma(n)}}{b_{n}} x_{\sigma(n)}, \delta t\right)
$$

(3) $\gamma$ is conjugate to $\gamma^{\prime}$ in $\operatorname{Aut}\left(A_{d-1}\right)$.

Proof. (1): It suffices to show that $\gamma^{\prime}$ preserves $A_{d-1}$, that is, $\left(\beta x_{\sigma(1)}\right)\left(\beta x_{\sigma(2)}\right) \cdots\left(\beta x_{\sigma(n)}\right)=\delta^{d} t^{d}$. This is seen as follows:

$$
\begin{aligned}
\left(\beta x_{\sigma(1)}\right)\left(\beta x_{\sigma(2)}\right) \cdots\left(\beta x_{\sigma(n)}\right) & =\beta^{n} x_{1} x_{2} \cdots x_{n} & & \\
& =\delta^{d} x_{1} x_{2} \cdots x_{n} & & \text { by } \beta^{n}=\alpha_{1} \alpha_{2} \cdots \alpha_{n}=\delta^{d} \\
& =\delta^{d} t^{d} & & \text { by } x_{1} x_{2} \cdots x_{n}=t^{d}
\end{aligned}
$$

(2): This is confirmed as follows:

$$
\begin{aligned}
f^{-1} \circ \gamma \circ f\left(x_{1}, \ldots, x_{n}, t\right) & =f^{-1} \circ \gamma\left(b_{1} x_{1}, \ldots, b_{n} x_{n}, c t\right) \\
& =f^{-1}\left(\alpha_{1} b_{\sigma(1)} x_{\sigma(1)}, \ldots, \alpha_{n} b_{\sigma(n)} x_{\sigma(n)}, \delta c t\right) \\
& =\left(\frac{\alpha_{1} b_{\sigma(1)}}{b_{1}} x_{\sigma(1)}, \ldots, \frac{\alpha_{n} b_{\sigma(n)}}{b_{n}} x_{\sigma(n)}, \delta t\right)
\end{aligned}
$$

(3): In terms of (2), it suffices to show that there exist nonzero complex numbers $b_{1}, b_{2}, \ldots, b_{n}, c$ satisfying
(i) $b_{1} b_{2} \cdots b_{n}=c^{d}$,
(ii) $\beta=\frac{\alpha_{i} b_{\sigma(i)}}{b_{i}}(i=1,2, \ldots, n)$, that is, $b_{\sigma(i)}=\frac{\beta b_{i}}{\alpha_{i}}(i=1,2, \ldots, n)$.

Note that once we show the existence of $b_{1}, b_{2}, \ldots, b_{n}$ satisfying (ii), it suffices to take $c$ as $d$ th root of $b_{1} b_{2} \cdots b_{n}$.

Since $\sigma$ is cyclic of length $n$, we have $\{1,2, \ldots, n\}=\{1, \sigma(1), \ldots$, $\left.\sigma^{n-1}(1)\right\}$, so (ii) is restated as $b_{\sigma^{j}(1)}=\frac{\beta b_{\sigma^{j-1}(1)}}{\alpha_{\sigma^{j-1}(1)}}(j=1,2, \ldots, n)$. Set $b_{1}=1$ and inductively define $b_{\sigma^{j}(1)}(j=1,2, \ldots, n-1)$ by $b_{\sigma^{j}(1)}:=\frac{\beta b_{\sigma^{j-1}(1)}}{\alpha_{\sigma^{j-1}(1)}}$. It then suffices to show that $b_{1}=\frac{\beta b_{\sigma^{n-1}(1)}}{\alpha_{\sigma^{n-1}(1)}}$. Since $\beta=\frac{\alpha_{\sigma^{j-1}(1)} b_{\sigma^{j}(1)}}{b_{\sigma^{j-1}(1)}}(j=$ $1,2, \ldots, n-1)$, we have $\beta^{n-1}=\prod_{j=1}^{n-1} \frac{\alpha_{\sigma^{j-1}(1)} b_{\sigma^{j}(1)}}{b_{\sigma^{j-1}(1)}}$. Here $\prod_{j=1}^{n} \frac{\alpha_{\sigma^{j-1}(1)} b_{\sigma^{j}(1)}}{b_{\sigma^{j-1}(1)}}=$ $\alpha_{1} \alpha_{2} \cdots \alpha_{n}=\beta^{n}$, so $\prod_{j=1}^{n-1} \frac{\alpha_{\sigma^{j-1}(1)} b_{\sigma^{j}(1)}}{b_{\sigma^{j-1}(1)}}=\beta^{n} \frac{b_{\sigma^{n-1}(1)}}{\alpha_{\sigma^{n-1}(1)} b_{1}}$. Thus $\beta^{n-1}=$ $\beta^{n} \frac{b_{\sigma^{n-1}(1)}}{\alpha_{\sigma^{n-1}(1)} b_{1}}$, implying that $b_{1}=\frac{\beta b_{\sigma^{n-1}(1)}}{\alpha_{\sigma^{n-1}(1)}}$.

LEMmA 2.4. If $\alpha_{1} \alpha_{2} \cdots \alpha_{n}$ is an mth root of unity, then (1) $\delta$ is a root of unity and (2) the order of $\gamma^{\prime}$ (also, of $\gamma$ ) is the least common multiple of $n m$ and the order of $\delta$. (For a $k$ th root of unity, $k$ is called its order.)

Proof. (1): By $\alpha_{1} \alpha_{2} \cdots \alpha_{n}=\delta^{d}$. (2): Since $\gamma^{\prime}$ is a linear transformation, it is expressed as $\gamma^{\prime}:(\boldsymbol{x}, t) \mapsto(B \boldsymbol{x}, \delta t)$, where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $B$ is an invertible $n \times n$ matrix of order $n m$. Then $\left(\gamma^{\prime}\right)^{k}:(\boldsymbol{x}, t) \mapsto\left(B^{k} \boldsymbol{x}, \delta^{k} t\right)$, so the order of $\gamma^{\prime}$ is the least common multiple of the orders of $B$ and $\delta$, confirming the assertion.

General Case. We have discussed the case that $\sigma \in \mathfrak{S}_{n}$ is a cyclic permutation of length $n$. In the sequel, $\sigma \in \mathfrak{S}_{n}$ is arbitrary, for which consider the automorphism of $A_{d-1}$ given by

$$
\begin{equation*}
\gamma:\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \longmapsto\left(\alpha_{1} x_{\sigma(1)}, \alpha_{2} x_{\sigma(2)}, \ldots, \alpha_{n} x_{\sigma(n)}, \delta t\right) \tag{2.2}
\end{equation*}
$$

Decompose $\sigma$ into disjoint cyclic permutations: $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{l}$, say the length of $\sigma_{i}$ is $n_{i}$. Without loss of generality, we assume that $\sigma_{1}$ permutes $\left\{1,2, \ldots, n_{1}\right\}, \sigma_{2}$ permutes $\left\{n_{1}+1, n_{1}+2, \ldots, n_{1}+n_{2}\right\}, \sigma_{3}$ permutes $\left\{n_{1}+\right.$ $\left.n_{2}+1, \ldots, n_{1}+n_{2}+n_{3}\right\}$ and so on; these sets are cycles of $\sigma$. Write $\mathbb{C}^{n+1}$ as $\mathbb{C}^{n_{1}} \times \mathbb{C}^{n_{2}} \times \cdots \times \mathbb{C}^{n_{l}} \times \mathbb{C}$ and $\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \in \mathbb{C}^{n+1}$ as $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{l}, t\right)$, where $\boldsymbol{x}_{i} \in \mathbb{C}^{n_{i}}$. Then $\sigma_{i}$ acts on $\mathbb{C}^{n_{i}}$ as a cyclic permutation, and the restriction of $\gamma$ to $\mathbb{C}^{n_{i}}$ is of the form:

$$
\gamma_{i}: \boldsymbol{x}_{i}=\left(x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{n_{i}}}\right) \longmapsto\left(\alpha_{j_{1}} x_{\sigma_{i}\left(j_{1}\right)}, \alpha_{j_{2}} x_{\sigma_{i}\left(j_{2}\right)}, \ldots, \alpha_{j_{n_{i}}} x_{\sigma_{i}\left(j_{n_{i}}\right)}\right) .
$$

The order of $\gamma$ is finite if and only if the orders of all $\gamma_{i}$ are finite. As in Corollary 2.2, this is restated as follows:

Lemma 2.5. The order of $\gamma$ is finite if and only if for every $i, \prod_{j \in J_{i}} \alpha_{j}$ is a root of unity, where $J_{i}$ denotes the cycle of $\sigma_{i}$.

Note next the following:
Lemma 2.6. Let $\gamma$ be the automorphism of $A_{d-1}$ given by (2.2). For each $i$, let $\beta_{i}$ be an arbitrary $n_{i}$ th root of $\prod_{j \in J_{i}} \alpha_{j}$, where $J_{i}$ denotes the cycle of $\sigma_{i}$. Write $J_{i}$ as $\left\{j_{1}, j_{2}, \ldots, j_{n_{i}}\right\}$ and for $\boldsymbol{x}_{i}=\left(x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{n_{i}}}\right)$, set $\boldsymbol{x}_{i}^{\sigma_{i}}:=\left(x_{\sigma_{i}\left(j_{1}\right)}, x_{\sigma_{i}\left(j_{2}\right)}, \ldots, x_{\sigma_{i}\left(j_{n_{i}}\right)}\right)$, then:
(1) Irrespective of the choice of $\beta_{i}, \beta_{1}^{n_{1}} \beta_{2}^{n_{2}} \cdots \beta_{l}^{n_{l}}$ is constant. In fact $\beta_{1}^{n_{1}} \beta_{2}^{n_{2}} \cdots \beta_{l}^{n_{l}}=\delta^{d}$.
(2) $\gamma^{\prime}:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \mapsto\left(\beta_{1} \boldsymbol{x}_{1}^{\sigma_{1}}, \ldots, \beta_{l} \boldsymbol{x}_{l}^{\sigma_{l}}, \delta t\right)$ is an automorphism of $A_{d-1}$.
(3) $\gamma$ is conjugate to $\gamma^{\prime}$ in $\operatorname{Aut}\left(A_{d-1}\right)$.

Proof. (1): $\beta_{1}^{n_{1}} \beta_{2}^{n_{2}} \cdots \beta_{l}^{n_{l}}=\prod_{i=1}^{l}\left(\prod_{j \in J_{i}} \alpha_{j}\right)=\alpha_{1} \alpha_{2} \cdots \alpha_{n}=\delta^{d}$.
(2): It suffices to show that $\gamma^{\prime}$ preserves $A_{d-1}$. Temporarily write $\boldsymbol{x}_{i}$ as $\left(x_{1}^{(i)}, x_{2}^{(i)}, \ldots, x_{n_{i}}^{(i)}\right)$. By $\boldsymbol{x}_{1} \cdot \boldsymbol{x}_{2} \cdots \boldsymbol{x}_{l}=t^{d}$, we mean $\left(x_{1}^{(1)} \cdots x_{n_{1}}^{(1)}\right)\left(x_{1}^{(2)} \cdots\right.$ $\left.x_{n_{2}}^{(2)}\right) \cdots\left(x_{1}^{(l)} \cdots x_{n_{l}}^{(l)}\right)=t^{d}$. We then have to show that $\beta_{1} \boldsymbol{x}_{1}^{\sigma_{1}} \cdot \beta_{2} \boldsymbol{x}_{2}^{\sigma_{2}} \cdots$ $\beta_{l} \boldsymbol{x}_{l}^{\sigma_{l}}=(\delta t)^{d}$, that is, $\left(\beta_{1} x_{\sigma_{1}(1)}^{(1)} \cdots \beta_{1} x_{\sigma_{1}\left(n_{1}\right)}^{(1)}\right)\left(\beta_{2} x_{\sigma_{2}(1)}^{(2)} \cdots \beta_{2} x_{\sigma_{2}\left(n_{2}\right)}^{(2)}\right) \cdots$ $\left(\beta_{l} x_{\sigma_{l}(1)}^{(l)} \cdots \beta_{l} x_{\sigma_{l}\left(n_{l}\right)}^{(l)}\right)=(\delta t)^{d}$, or (after reordering),

$$
\beta_{1}^{n_{1}} \beta_{2}^{n_{2}} \cdots \beta_{l}^{n_{l}}\left(x_{1}^{(1)} \cdots x_{n_{1}}^{(1)}\right)\left(x_{1}^{(2)} \cdots x_{n_{2}}^{(2)}\right) \cdots\left(x_{1}^{(l)} \cdots x_{n_{l}}^{(l)}\right)=\delta^{d} t^{d}
$$

This is equivalent to $\beta_{1}^{n_{1}} \beta_{2}^{n_{2}} \cdots \beta_{l}^{n_{l}}=\delta^{d}$, which is already shown in (1).
(3): The proof is similar to that of Lemma 2.3 (3). Construct first an automorphism $f_{i}: \mathbb{C}^{n_{i}} \rightarrow \mathbb{C}^{n_{i}}, f_{i}: \boldsymbol{x}_{i}=\left(x_{1}^{(i)}, \ldots, x_{n_{i}}^{(i)}\right) \mapsto\left(b_{1}^{(i)} x_{1}^{(i)}, \ldots, b_{n_{i}}^{(i)} x_{n_{i}}^{(i)}\right)$ such that $f_{i}^{-1} \circ \gamma_{i} \circ f_{i}: \boldsymbol{x}_{i} \mapsto \beta_{i} \boldsymbol{x}_{i}^{\sigma_{i}}$. Set $\boldsymbol{b}^{(i)}:=\prod_{j=1}^{n_{i}} b_{j}^{(i)}$ and take a complex number $c$ satisfying $\boldsymbol{b}^{(1)} \boldsymbol{b}^{(2)} \cdots \boldsymbol{b}^{(l)}=c^{d}$. Then $f:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \mapsto$ $\left(f_{1}\left(\boldsymbol{x}_{1}\right), \ldots, f_{l}\left(\boldsymbol{x}_{l}\right), c t\right)$ is an automorphism of $A_{d-1}$ such that $\gamma^{\prime}=f^{-1} \circ \gamma \circ$ $f$.

LEMMA 2.7. In Lemma 2.6, if for each $i, \boldsymbol{\alpha}_{i}:=\prod_{j \in J_{i}} \alpha_{j}$ is an $m_{i}$ th root of unity, then:
(1) $\delta$ is a root of unity.
(2) The order of $\gamma^{\prime}$ (and so, $\gamma$ ) is finite, in fact it is the least common multiple of $\operatorname{lcm}\left(n_{1} m_{1}, n_{2} m_{2}, \ldots, n_{l} m_{l}\right)$ and the order of $\delta$.

Proof. (1) follows from $\boldsymbol{\alpha}_{1} \boldsymbol{\alpha}_{2} \cdots \boldsymbol{\alpha}_{l}=\delta^{d}$. (2):

For simplicity, express $\gamma^{\prime}:\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{l}, t\right) \mapsto\left(\beta_{1} \boldsymbol{x}_{1}^{\sigma_{1}}, \beta_{2} \boldsymbol{x}_{2}^{\sigma_{2}}, \ldots\right.$, $\left.\beta_{l} \boldsymbol{x}_{l}^{\sigma_{l}}, \delta t\right)$ as $(\boldsymbol{x}, t) \mapsto(B \boldsymbol{x}, \delta t)$, where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $B$ is an invertible $n \times n$ matrix of the form

$$
B=\left(\begin{array}{cccc}
B_{1} & & & O \\
& B_{2} & & \\
& & \ddots & \\
O & & & B_{l}
\end{array}\right) \quad\left(B_{i} \text { is an invertible } n_{i} \times n_{i} \text { matrix }\right)
$$

Since the order of $B_{i}$ is $n_{i} m_{i}$, the order of $B$ is $\operatorname{lcm}\left(n_{1} m_{1}, n_{2} m_{2}, \ldots, n_{l} m_{l}\right)$. Noting that $\left(\gamma^{\prime}\right)^{k}:(\boldsymbol{x}, t) \mapsto\left(B^{k} \boldsymbol{x}, \delta^{k} t\right)$, the order of $\gamma^{\prime}$ is the least common multiple of the orders of $B$ and $\delta$, so the assertion holds.

Corollary 2.8. If the order of $\delta$ is a multiple of $\operatorname{lcm}\left(n_{1} m_{1}, n_{2} m_{2}, \ldots\right.$, $\left.n_{l} m_{l}\right)$, then the order of $\gamma$ is that of $\delta$.

Definition 2.9. Let $\sigma \in \mathfrak{S}_{n}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \delta$ be nonzero complex numbers such that $\alpha_{1} \alpha_{2} \cdots \alpha_{n}=\delta^{d}$. The automorphism of $\gamma: A_{d-1} \rightarrow$ $A_{d-1}$ given by $\left(x_{1}, \ldots, x_{n}, t\right) \mapsto\left(\alpha_{1} x_{\sigma(1)}, \ldots, \alpha_{n} x_{\sigma(n)}, \delta t\right)$ is called a twining automorphism (a twiner) if its order is finite.

## 3. Lifting and Descent

Let $p: X \rightarrow Y$ be a covering. For $f \in \operatorname{Aut}(Y), g \in \operatorname{Aut}(X)$ is called a lift of $f$ if the following diagram commutes:


In this case, $f$ is called the descent of $g$. For a subgroup $\Gamma$ of $\operatorname{Aut}(Y)$, its lift $\widetilde{\Gamma}$ is a subgroup of $\operatorname{Aut}(X)$ consisting of all lifts of elements of $\Gamma$. In this case, $\Gamma$ is called the descent of $\widetilde{\Gamma}$.

We now return to twining automorphism. Let $\sigma \in \mathfrak{S}_{n}$ and decompose it into disjoint cyclic permutations: $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{l}$. Say that the length of $\sigma_{i}$ is $n_{i}$. Without loss of generality, we may assume that the cycle of $\sigma_{1}$ is $\left\{1,2, \ldots, n_{1}\right\}$, the cycle of $\sigma_{2}$ is $\left\{n_{1}+1, \ldots, n_{1}+n_{2}\right\}$, the cycle of $\sigma_{3}$ is
$\left\{n_{1}+n_{2}+1, \ldots, n_{1}+n_{2}+n_{3}\right\}$ and so on. Write $\mathbb{C}^{n}$ as $\mathbb{C}^{n_{1}} \times \mathbb{C}^{n_{2}} \times \cdots \times \mathbb{C}^{n_{l}}$ and $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ as $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{l}\right)$. Let $\sigma_{i}$ act on $\mathbb{C}^{n_{i}}$ as

$$
\sigma_{i}: \boldsymbol{x}_{i}=\left(x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{n_{i}}}\right) \longmapsto \boldsymbol{x}_{i}^{\sigma_{i}}:=\left(x_{\sigma_{i}\left(j_{1}\right)}, x_{\sigma_{i}\left(j_{2}\right)}, \ldots, x_{\sigma_{i}\left(j_{n_{i}}\right.}\right) .
$$

Consider the following automorphism of $\mathbb{C}^{n+1}$ given by
(3.1) $\gamma:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1}} \boldsymbol{x}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l}} \boldsymbol{x}_{l}^{\sigma_{l}}, e^{2 \pi \mathrm{i} / N} t\right)$,
where
(I) $a_{i}, m_{i}$ are positive integers such that $a_{i}$ is relatively prime to $n_{i} m_{i}$ (where $n_{i}$ is the length of $\sigma_{i}$ ).
(II) $N:=\left(m_{1}^{\prime}\right)^{n_{1}} \cdots\left(m_{l}^{\prime}\right)^{n_{l}} c$, where $c:=\operatorname{gcd}\left(n_{1} m_{1}, \ldots, n_{l} m_{l}\right)$ and $m_{i}^{\prime}:=$ $\frac{n_{i} m_{i}}{c}$.

Note that $\gamma$ preserves $A_{d-1}=\left\{\left(x_{1}, \ldots, x_{n}, t\right) \in \mathbb{C}^{n+1}: x_{1} \cdots x_{n}=t^{d}\right\}$ precisely when $d=N\left(\frac{a_{1}}{m_{1}}+\cdots+\frac{a_{l}}{m_{l}}+\kappa\right)$ for some integer $\kappa$ (see (iii) subsequent to (1.4)). In what follows, we assume this. Then:

## Lemma 3.1.

(1) The order of $\gamma$ is $N$.
(2) Let $\Gamma$ be the cyclic group generated by $\gamma$. Then the holomorphic map $\Phi: A_{d-1} \rightarrow \mathbb{C}$ given by $\Phi\left(x_{1}, \cdots, x_{n}, t\right)=t^{N}$ is $\Gamma$-invariant. Consequently $\Phi$ descends to $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$.

Proof. (1): Since the order $N$ of $\delta$ is a multiple of $\operatorname{lcm}\left(n_{1} m_{1}, \ldots\right.$, $n_{l} m_{l}$ ) (see (II)), this follows from Corollary 2.8.
(2): For any $\left(x_{1}, \ldots, x_{n}, t\right) \in A_{d-1}, \Phi \circ \gamma\left(x_{1}, \cdots, x_{n}, t\right)=(\delta t)^{N}=$ $\delta^{N} t^{N}=t^{N}$, so $\Phi \circ \gamma=\Phi$.

Since the order of $\gamma$ is finite, $\gamma$ is a twining automorphism and $\Gamma$ is a twining automorphism group. If the permutation $\sigma$ is the identity, $\Gamma$ (and $\gamma)$ is said to be neat, in which case $\boldsymbol{x}_{i}=x_{i}$, so $\gamma$ is of the form

$$
\left(x_{1}, \ldots, x_{n}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / m_{1}} x_{1}, \ldots, e^{2 \pi \mathrm{i} a_{n} / m_{n}} x_{n}, e^{2 \pi \mathrm{i} / N} t\right)
$$

For such $\gamma,[\mathrm{SaTa}]$ showed that there exists a small finite subgroup $G \subset$ $G L_{n}(\mathbb{C})$ such that $A_{d-1} / \Gamma \cong \mathbb{C}^{n} / G$; moreover the holomorphic map $\mathbb{C}^{n} / G \rightarrow \mathbb{C}$ corresponding to $\bar{\Phi}$ (in Lemma 3.1) under this isomorphism is explicitly given. We will generalize these results (and more) to arbitrary $\gamma$. The construction of $G$ is outlined as follows:
(i) Let $p: \widetilde{A}_{d-1}\left(=\mathbb{C}^{n}\right) \rightarrow A_{d-1}$ be the universal covering, and lift $\Gamma$ to a group $\widetilde{\Gamma}$ acting on $\widetilde{A}_{d-1}$. Then $A_{d-1} / \Gamma \cong \widetilde{A}_{d-1} / \widetilde{\Gamma}$. If $m_{1}^{\prime}=m_{2}^{\prime}=$ $\cdots=m_{l}^{\prime}=1$ (e.g. $n=2$ and $\Gamma$ is not neat), then $\widetilde{\Gamma}$ is small. Thus $\widetilde{\Gamma}$ is the desired $G$.
(ii) If the condition in (i) is not satisfied, let $q: \widetilde{A}_{d-1} \rightarrow \mathbb{C}^{n}$ be the covering map given by $q\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right)=\left(\boldsymbol{X}_{1}^{m_{1}^{\prime}}, \boldsymbol{X}_{2}^{m_{2}^{\prime}}, \ldots, \boldsymbol{X}_{l}^{m_{l}^{\prime}}\right)$, where $\boldsymbol{X}_{i}^{m_{i}^{\prime}}:=\left(X_{j_{1}}^{m_{i}^{\prime}}, \ldots, X_{j_{n_{i}}}^{m_{i}^{\prime}}\right)$, and descend $\widetilde{\Gamma}$ to a group $H$ acting on $\mathbb{C}^{n}$.
Then $A_{d-1} / \Gamma \cong \widetilde{A}_{d-1} / \widetilde{\Gamma} \cong \mathbb{C}^{n} / H$. If $n=2$ and $\Gamma$ is neat, then $H$ is a small finite group,
(iii) In (ii), if $n \geq 3$ then $H$ is generally not small, in which case take the pseudo-reflection subgroup $P$ of $H$ (i.e. the subgroup generated by all pseudo-reflections in $H$ ). It is normal in $H$ and the quotient group $H / P$ is small and $A_{d-1} / \Gamma \cong \widetilde{A}_{d-1} / \widetilde{\Gamma} \cong \mathbb{C}^{n} / H \cong\left(\mathbb{C}^{n} / P\right) /(H / P) \cong$ $\mathbb{C}^{n} /(H / P)$ (because $\mathbb{C}^{n} / P \cong \mathbb{C}^{n}$ by Chevalley-Shephard-Todd theorem). Thus $H / P$ is the desired $G$.

We give some comments on the above construction:
(a) In (ii), whether $H$ is small is numerically determined (Theorem 7.2).
(b) In (iii), the quotient $\operatorname{map} H \rightarrow H / P$ is the descent of $H$ with respect to an explicitly-given covering map $r: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ whose covering transformation group is $P$. See Lemma 7.1.
(c) $\widetilde{\Gamma}$ and $H$ are generally not abelian, which makes the above construction much more involved than that of [ SaTa ].

The construction of $G$ is systematically described in terms of lifting and
descent with respect to the following diagram:


## 4. Determination of $\widetilde{\Gamma}$ and $H$

Consider a twining automorphism $\gamma: A_{d-1} \rightarrow A_{d-1}$ of order $N$ :

$$
\gamma:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1}} \boldsymbol{x}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l}} \boldsymbol{x}_{l}^{\sigma_{l}}, e^{2 \pi \mathrm{i} / N^{\prime}} t\right)
$$

where $\sigma_{i}$ is a cyclic permutation of length $n_{i}\left(n_{1}+n_{2}+\cdots+n_{l}=n\right)$ and

$$
\begin{equation*}
\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{l}\right) \in \mathbb{C}^{n_{1}} \times \mathbb{C}^{n_{2}} \times \cdots \times \mathbb{C}^{n_{l}} \tag{4.1}
\end{equation*}
$$

For each $\gamma^{j}(j=1,2, \ldots, N)$, we determine its lifts with respect to $p$ : $\widetilde{A}_{d-1} \rightarrow A_{d-1}$, first for $j=1$. To that end, express $\gamma$ as the product of the $x$-part and the $t$-part: $\gamma=\gamma_{x} \gamma_{t}\left(=\gamma_{t} \gamma_{x}\right)$, where
$\gamma_{x}:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1}} \boldsymbol{x}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l}} \boldsymbol{x}_{l}^{\sigma_{l}}, e^{2 \pi \mathrm{i}(1 / N-\kappa / d)} t\right)$, $\gamma_{t}:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \longmapsto\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, e^{2 \pi \mathrm{i} \kappa / d} t\right)$.

The lifts of $\gamma_{x}$ and $\gamma_{t}$ are easy to describe. In what follows, to be consistent with the notation $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{l}, t\right) \in A_{d-1}$, write $\left(X_{1}, X_{2}, \ldots, X_{n}\right) \in$ $\widetilde{A}_{d-1}\left(=\mathbb{C}^{n}\right)$ as $\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right)$, where $\boldsymbol{X}_{i} \in \mathbb{C}^{n_{i}}$.

Lemma 4.1. A lift of $\gamma_{x}$ is given by an automorphism $\widetilde{\gamma}_{x}: \widetilde{A}_{d-1} \rightarrow$ $\widetilde{A}_{d-1}$ defined by

$$
\begin{aligned}
& \left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right) \\
& \quad \mapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1} d} \boldsymbol{X}_{1}^{\sigma_{1}}, e^{2 \pi \mathrm{i} a_{2} / n_{2} m_{2} d} \boldsymbol{X}_{2}^{\sigma_{2}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l} d} \boldsymbol{X}_{l}^{\sigma_{l}}\right)
\end{aligned}
$$

Proof. Since $p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left(X_{1}^{d}, X_{2}^{d}, \ldots, X_{n}^{d}, X_{1} X_{2} \cdots X_{n}\right), \widetilde{\gamma}_{x}$ descends to an automorphism of $A_{d-1}$ that maps $\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right)$ to

$$
\begin{aligned}
& \left(\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1} d}\right)^{d} \boldsymbol{x}_{1}^{\sigma_{1}}, \ldots,\left(e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l} d}\right)^{d} \boldsymbol{x}_{l}^{\sigma_{l}},\right. \\
& \\
& \left.\quad\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1} d}\right)^{n_{1}} \cdots\left(e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l} d}\right)^{n_{l}} t\right)
\end{aligned}
$$

that is, to $\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1}} \boldsymbol{x}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l}} \boldsymbol{x}_{l}^{\sigma_{l}}, e^{2 \pi \mathrm{i}\left(a_{1} / m_{1}+\cdots+a_{l} / m_{l}\right) / d} t\right)$. Here since $\frac{a_{1}}{m_{1}}+\cdots+\frac{a_{l}}{m_{l}}=\frac{d}{N}-\kappa, e^{2 \pi \mathrm{i}\left(a_{1} / m_{1}+\cdots+a_{l} / m_{l}\right) / d}=e^{2 \pi \mathrm{i}(1 / N-\kappa / d)}$. Thus $\widetilde{\gamma}_{x}$ descends to $\gamma_{x}$.

Consider the set $\Lambda$ of $\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \mathbb{Z}^{n}$ satisfying $0 \leq p_{i}<d(i=$ $1,2, \ldots, n)$ and

$$
\begin{equation*}
\frac{p_{1}+p_{2}+\cdots+p_{n}}{d} \equiv \frac{\kappa}{d} \bmod \mathbb{Z} \tag{4.2}
\end{equation*}
$$

Observe that the number of elements of $\Lambda$ is $d^{n-1}$, as $p_{n}$ is determined from $\left(p_{1}, p_{2}, \ldots, p_{n-1}\right)\left(0 \leq p_{i}<d\right)$ by (4.2).

We determine the lifts of $\gamma_{t}$. To be consistent with the notation $\left(\boldsymbol{X}_{1}\right.$, $\left.\boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right) \in \mathbb{C}^{n}$, write $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ as $\boldsymbol{p}=\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{l}\right)$, where $\boldsymbol{p}_{i} \in \mathbb{Z}^{n_{i}}$.

Lemma 4.2. Define an automorphism of $\widetilde{A}_{d-1}$ by
$\widetilde{\gamma}_{t, \boldsymbol{p}}:\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(\widetilde{\gamma}_{t, \boldsymbol{p}_{1}}\left(\boldsymbol{X}_{1}\right), \widetilde{\gamma}_{t, \boldsymbol{p}_{2}}\left(\boldsymbol{X}_{2}\right), \ldots, \widetilde{\gamma}_{t, \boldsymbol{p}_{l}}\left(\boldsymbol{X}_{l}\right)\right)$, where $\widetilde{\gamma}_{t, \boldsymbol{p}_{i}}: \boldsymbol{X}_{i}=\left(X_{j_{1}}, \ldots, X_{j_{n_{i}}}\right) \mapsto\left(e^{2 \pi \mathrm{i} p_{j_{1}} / d} X_{j_{1}}, \ldots, e^{2 \pi \mathrm{i} p_{j_{n_{i}}} / d} X_{j_{n_{i}}}\right)$. Then $\widetilde{\gamma}_{t, \boldsymbol{p}}$ is a lift of $\gamma_{t}$. Moreover $\left\{\widetilde{\gamma}_{t, \boldsymbol{p}}: \boldsymbol{p} \in \Lambda\right\}$ exhausts all lifts of $\gamma_{t}$.

Proof. Since $p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left(X_{1}^{d}, X_{2}^{d}, \ldots, X_{n}^{d}, X_{1} X_{2} \cdots X_{n}\right), \widetilde{\gamma}_{t, p}$ descends to an automorphism of $A_{d-1}$ that maps $\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right)$ to

$$
\left(\left(\widetilde{\gamma}_{t, \boldsymbol{p}_{1}}\right)^{d}\left(\boldsymbol{x}_{1}\right), \ldots,\left(\widetilde{\gamma}_{t, \boldsymbol{p}_{l}}\right)^{d}\left(\boldsymbol{x}_{l}\right),\left(e^{2 \pi \mathrm{i} p_{1} / d}\right)\left(e^{2 \pi \mathrm{i} p_{2} / d}\right) \cdots\left(e^{2 \pi \mathrm{i} p_{n} / d}\right) t\right)
$$

that is, to $\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, e^{2 \pi \mathrm{i}\left(p_{1}+p_{2}+\cdots+p_{n}\right) / d} t\right)$. Here by (4.2), $e^{2 \pi \mathrm{i}\left(p_{1}+p_{2}+\cdots+p_{n}\right) / d}=e^{2 \pi \mathrm{i} \kappa / d}$. Thus $\widetilde{\gamma}_{t, \boldsymbol{p}}$ descends to $\gamma_{t}$. We next show that $\left\{\widetilde{\gamma}_{t, \boldsymbol{p}}: \boldsymbol{p} \in \Lambda\right\}$ exhausts all lifts of $\gamma_{t}$. As $p$ is $d^{n-1}$-fold, it suffices to show that the cardinality of this set is $d^{n-1}$. This is clear, as $\Lambda$ consists of $d^{n-1}$ elements and $\widetilde{\gamma}_{t, \boldsymbol{p}} \neq \widetilde{\gamma}_{t, \boldsymbol{p}^{\prime}}$ for $\boldsymbol{p} \neq \boldsymbol{p}^{\prime}$.

Corollary 4.3. $\widetilde{\gamma}_{x} \widetilde{\gamma}_{t, \boldsymbol{p}}$ is a lift of $\gamma$. Moreover $\left\{\widetilde{\gamma}_{x} \widetilde{\gamma}_{t, \boldsymbol{p}}: \boldsymbol{p} \in \Lambda\right\}$ exhausts all lifts of $\gamma$.

Proof. $\widetilde{\gamma}_{x} \widetilde{\gamma}_{t, \boldsymbol{p}}$ descends to $\gamma_{x} \gamma_{t}$, i.e. $\gamma$. We show that $\left\{\widetilde{\gamma}_{x} \widetilde{\gamma}_{t, \boldsymbol{p}}: \boldsymbol{p} \in \Lambda\right\}$ exhausts all lifts of $\gamma$. As $p: \widetilde{A}_{d-1} \rightarrow A_{d-1}$ is $d^{n-1}$-fold, it suffices to show
that the cardinality of this set is $d^{n-1}$. This is clear, as $\Lambda$ consists of $d^{n-1}$ elements and $\widetilde{\gamma}_{t, \boldsymbol{p}} \neq \widetilde{\gamma}_{t, \boldsymbol{p}^{\prime}}$ for $\boldsymbol{p} \neq \boldsymbol{p}^{\prime}$.

We next determine all lifts of $\gamma^{j}$ by replacing $\gamma_{x}, \gamma_{t}$ with $\gamma_{x}^{j}, \gamma_{t}^{j}$ in the above argument. First from $\gamma=\gamma_{x} \gamma_{t}$, we have $\gamma^{j}=\gamma_{x}^{j} \gamma_{t}^{j}$. Here since $\widetilde{\gamma}_{x}$ is a lift of $\gamma_{x}$ (Lemma 4.1),

Lemma 4.4. $\widetilde{\gamma}_{x}^{j}$ is a lift of $\gamma_{x}^{j}$.
We next determine lifts of $\gamma_{t}^{j}$. First for each $j=1,2, \ldots, N(=\operatorname{ord}(\gamma))$, set

$$
\begin{equation*}
\Lambda^{(j)}=\left\{\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \mathbb{Z}^{n}: 0 \leq p_{i}<d, \sum_{i=1}^{n} \frac{p_{i}}{d} \equiv \frac{j \kappa}{d} \bmod \mathbb{Z}\right\} \tag{4.4}
\end{equation*}
$$

We write $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ as $\boldsymbol{p}=\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2} \ldots, \boldsymbol{p}_{l}\right) \in \mathbb{Z}^{n_{1}} \times \mathbb{Z}^{n_{2}} \times \cdots \times \mathbb{Z}^{n_{l}} ;$ note $n_{1}+n_{2}+\cdots+n_{l}=n$. As for Lemma 4.2, we can show:

LEMMA 4.5. For $\boldsymbol{p}=\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2} \ldots, \boldsymbol{p}_{l}\right) \in \Lambda^{(j)}$, let $\widetilde{\gamma}_{t, \boldsymbol{p}_{i}}$ be the automorphism of $\mathbb{C}^{n_{i}}$ in Lemma 4.2 and define an automorphism of $\widetilde{A}_{d-1}$ by

$$
\begin{equation*}
\widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)}:\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(\widetilde{\gamma}_{t, \boldsymbol{p}_{1}}\left(\boldsymbol{X}_{1}\right), \widetilde{\gamma}_{t, \boldsymbol{p}_{2}}\left(\boldsymbol{X}_{2}\right), \ldots, \widetilde{\gamma}_{t, \boldsymbol{p}_{l}}\left(\boldsymbol{X}_{l}\right)\right) \tag{4.5}
\end{equation*}
$$

Then $\widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)}$ is a lift of $\gamma_{t}^{j}$. Moreover $\left\{\widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)}: \boldsymbol{p} \in \Lambda^{(j)}\right\}$ exhausts all lifts of $\gamma_{t}^{j}$.

As for Corollary 4.3, we can show:
Corollary 4.6. For $\boldsymbol{p} \in \Lambda^{(j)}$, let $\widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)}: \widetilde{A}_{d-1} \rightarrow \widetilde{A}_{d-1}$ be the lift of $\gamma_{t}^{j}$ given by (4.5). Then $\widetilde{\gamma}_{x}^{j} \widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)}$ is a lift of $\gamma^{j}$. Moreover $\left\{\widetilde{\gamma}_{x}^{j} \widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)}: \boldsymbol{p} \in \Lambda^{(j)}\right\}$ exhausts all lifts of $\gamma^{j}$.

Let $\Gamma$ be the cyclic group of order $N$ generated by $\gamma$ and $\widetilde{\Gamma}$ be the lift of $\Gamma$ with respect to $p: \widetilde{A}_{d-1} \rightarrow A_{d-1}$. By Corollary 4.6, the set of lifts of $\gamma^{j} \in \Gamma$ is given by $\operatorname{Lift}{ }^{(j)}:=\left\{\widetilde{\gamma}_{x}^{j} \widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)}: \boldsymbol{p} \in \Lambda^{(j)}\right\}$. Since $\widetilde{\Gamma}=\bigcup_{i=1}^{N} \operatorname{Lift}^{(j)}$, we obtain the following:

Proposition 4.7. The lift $\widetilde{\Gamma}$ of $\Gamma$ with respect to $p$ is given by

$$
\begin{equation*}
\left\{\widetilde{\gamma}_{x}^{j} \widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)}: \boldsymbol{p} \in \Lambda^{(j)}, j=1,2, \ldots, N\right\} \tag{4.6}
\end{equation*}
$$

For $\boldsymbol{p}=\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{l}\right) \in \mathbb{Z}^{n_{1}} \times \mathbb{Z}^{n_{2}} \times \cdots \times \mathbb{Z}^{n_{l}}$ and $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{l} \in$ $\mathfrak{S}_{n_{1}} \times \mathfrak{S}_{n_{2}} \times \cdots \times \mathfrak{S}_{n_{l}}$, set $\sigma(\boldsymbol{p}):=\left(\sigma_{1}\left(\boldsymbol{p}_{1}\right), \sigma_{2}\left(\boldsymbol{p}_{2}\right), \ldots, \sigma_{l}\left(\boldsymbol{p}_{l}\right)\right)$.

Lemma 4.8. Let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{l}$ be the permutation appearing in the definition of $\gamma$. For $\boldsymbol{p} \in \Lambda^{(j)}$, set $\boldsymbol{q}:=\sigma^{-j}(\boldsymbol{p})$. Then $\boldsymbol{q} \in \Lambda^{(j)}$ and $\widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)} \widetilde{\gamma}_{x}^{j}=$ $\widetilde{\gamma}_{x}^{j} \widetilde{\gamma}_{t, \boldsymbol{q}}^{(j)}$.

Proof. Since $\boldsymbol{q}$ is a permutation of $\boldsymbol{p},\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}=\left\{p_{1}, p_{2}, \ldots\right.$, $\left.p_{n}\right\}$ as sets, so $q_{1}+q_{2}+\cdots+q_{n}=p_{1}+p_{2}+\cdots+p_{n}$. In particular

$$
\begin{aligned}
\frac{q_{1}+q_{2}+\cdots+q_{n}}{d} & =\frac{p_{1}+p_{2}+\cdots+p_{n}}{d} \\
& \equiv \frac{j \kappa}{d} \bmod \mathbb{Z}
\end{aligned}
$$

Hence $\boldsymbol{q} \in \Lambda^{(j)}$. We next show $\widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)} \widetilde{\gamma}_{x}^{j}=\widetilde{\gamma}_{x}^{j} \widetilde{\gamma}_{t, \boldsymbol{q}}^{(j)}$. Note that

$$
\begin{aligned}
\left(\left(\widetilde{\gamma}_{t, \boldsymbol{q}_{i}}\right)\left(\boldsymbol{X}_{i}\right)\right)^{\sigma_{i}^{j}} & =\left(e^{2 \pi \mathrm{i} q_{j_{1}} / d} X_{j_{1}}, \ldots, e^{2 \pi \mathrm{i} \mathrm{q}_{j_{n_{i}}} / d} X_{j_{n_{i}}}\right)^{\sigma_{i}^{j}} \\
& =\left(e^{2 \pi \mathrm{i} p_{j_{1}} / d} X_{\sigma_{i}^{j}\left(j_{1}\right)}, \ldots, e^{2 \pi \mathrm{i} p_{j_{n_{i}}} / d} X_{\sigma_{i}^{j}\left(j_{n_{i}}\right)}\right) \quad \text { as } \sigma_{i}^{j}\left(\boldsymbol{q}_{i}\right)=\boldsymbol{p}_{i} \\
& =\widetilde{\gamma}_{t, \boldsymbol{p}_{i}}\left(X_{\sigma_{i}^{j}\left(j_{1}\right)}, \ldots X_{\sigma_{i}^{j}\left(j_{n_{i}}\right)}\right)=\widetilde{\gamma}_{t, \boldsymbol{p}_{i}}\left(\boldsymbol{X}_{i}^{\sigma_{i}^{j}}\right)
\end{aligned}
$$

Then for any $\boldsymbol{X}:=\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \in \widetilde{A}_{d-1}$,

$$
\begin{aligned}
\widetilde{\gamma}_{x}^{j} \widetilde{\gamma}_{t, \boldsymbol{q}}^{(j)}(\boldsymbol{X}) & =\left(e^{2 \pi \mathrm{i} j a_{1} / n_{1} m_{1}}\left(\left(\widetilde{\gamma}_{t, \boldsymbol{q}_{1}}\right)\left(\boldsymbol{X}_{1}\right)\right)^{\sigma_{1}^{j}}, \ldots, e^{2 \pi \mathrm{i} j a_{l} / n_{l} m_{l}}\left(\left(\widetilde{\gamma}_{t, \boldsymbol{q}_{l}}\right)\left(\boldsymbol{X}_{1}\right)\right)^{\sigma_{l}^{j}}\right) \\
& =\left(e^{2 \pi \mathrm{i} j a_{1} / n_{1} m_{1}} \widetilde{\gamma}_{t, \boldsymbol{p}_{1}}\left(\boldsymbol{X}_{1}^{\sigma_{1}^{j}}\right), \ldots, e^{2 \pi \mathrm{i} j a_{l} / n_{l} m_{l}} \widetilde{\gamma}_{t, \boldsymbol{p}_{l}}\left(\boldsymbol{X}_{l}^{\sigma_{l}^{j}}\right)\right) \\
& =\left(\widetilde{\gamma}_{t, \boldsymbol{p}_{1}}\left(e^{2 \pi \mathrm{i} j a_{1} / n_{1} m_{1}} \boldsymbol{X}_{1}^{\sigma_{1}^{j}}\right), \ldots, \widetilde{\gamma}_{t, \boldsymbol{p}_{l}}\left(e^{2 \pi \mathrm{i} j a_{l} / n_{l} m_{l}} \boldsymbol{X}_{l}^{\sigma_{l}^{j}}\right)\right) \\
& =\widetilde{\gamma}_{t, \boldsymbol{p}}(j) \widetilde{\gamma}_{x}^{j}(\boldsymbol{X}) . \square
\end{aligned}
$$

We will give a necessary condition for $\widetilde{\Gamma}$ to be abelian. Recall first that for $\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right) \in \Lambda^{(j)}$, the automorphism $\widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)}$ is given by

$$
\widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)}:\left(X_{1}, \ldots, X_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i} p_{1} / d} X_{1}, \ldots, e^{2 \pi \mathrm{i} p_{n} / d} X_{n}\right)
$$

Thus the following holds:

$$
\left\{\begin{array}{l}
(*) \widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)} \widetilde{\gamma}_{t, \boldsymbol{p}^{\prime}}^{\left(j^{\prime}\right)}=\widetilde{\gamma}_{t, \boldsymbol{p}^{\prime}}^{\left(j^{\prime}\right)} \widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)} \text { for any } \boldsymbol{p} \in \Lambda^{(j)}, \boldsymbol{p}^{\prime} \in \Lambda^{\left(j^{\prime}\right)},  \tag{4.7}\\
(* *) \widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)}=\widetilde{\gamma}_{t, \boldsymbol{p}^{\prime}}^{\left(j^{\prime}\right)} \Longleftrightarrow \boldsymbol{p}=\boldsymbol{p}^{\prime}
\end{array}\right.
$$

Lemma 4.9. If $\widetilde{\Gamma}$ is abelian, then $\sigma(\boldsymbol{p})=\boldsymbol{p}$ for any $\boldsymbol{p} \in \Lambda^{(N)}$. (Actually the converse holds (Proposition 10.9).)

Proof. Taking auxiliary $\boldsymbol{q} \in \Lambda^{(1)}$, set $\eta_{1}:=\widetilde{\gamma}_{x}^{N} \widetilde{\gamma}_{t, \boldsymbol{p}}^{(N)}, \eta_{2}:=\widetilde{\gamma}_{x} \widetilde{\gamma}_{t, \boldsymbol{q}}^{(1)} \in \widetilde{\Gamma}$. If $\widetilde{\Gamma}$ is abelian, then $\eta_{1} \eta_{2}=\eta_{2} \eta_{1}$. Here

$$
\begin{cases}\eta_{1} \eta_{2}=\widetilde{\gamma}_{x}^{N}\left(\widetilde{\gamma}_{t, \boldsymbol{p}}^{(N)} \widetilde{\gamma}_{x}\right) \widetilde{\gamma}_{t, \boldsymbol{q}}^{(1)}=\widetilde{\gamma}_{x}^{N}\left(\widetilde{\gamma}_{x} \widetilde{\gamma}_{t, \sigma^{-1}(\boldsymbol{p})}^{(N)}\right) \widetilde{\gamma}_{t, \boldsymbol{q}}^{(1)} & \text { by Lemma } 4.8 \\ \eta_{2} \eta_{1}=\widetilde{\gamma}_{x}\left(\widetilde{\gamma}_{t, \boldsymbol{q}}^{(1)} \widetilde{\gamma}_{x}^{N}\right) \widetilde{\gamma}_{t, \boldsymbol{p}}^{(N)}=\widetilde{\gamma}_{x}\left(\widetilde{\gamma}_{x}^{N} \widetilde{\gamma}_{t, \sigma^{-N}(\boldsymbol{q})}^{(1)}\right) \widetilde{\gamma}_{t, \boldsymbol{p}}^{(N)} & \text { by Lemma 4.8. }\end{cases}
$$

Thus:

$$
\begin{aligned}
\eta_{1} \eta_{2}=\eta_{2} \eta_{1} & \Longleftrightarrow \widetilde{\gamma}_{x}^{N+1} \widetilde{\gamma}_{t, \sigma^{-1}(\boldsymbol{p})}^{(N)} \widetilde{\gamma}_{t, \boldsymbol{q}}^{(1)}=\widetilde{\gamma}_{x}^{N+1} \widetilde{\gamma}_{t, \sigma^{-N}(\boldsymbol{q})}^{(1)} \widetilde{\gamma}_{t, \boldsymbol{p}}^{(N)} \\
& \Longleftrightarrow \widetilde{\gamma}_{t, \sigma^{-1}(\boldsymbol{p})}^{(N)} \widetilde{\gamma}_{t, \boldsymbol{q}}^{(1)}=\widetilde{\gamma}_{t, \sigma^{-N}(\boldsymbol{q})}^{(1)} \widetilde{\gamma}_{t, \boldsymbol{p}}^{(N)} \\
& \Longleftrightarrow \widetilde{\gamma}_{t, \sigma^{-1}(\boldsymbol{p})}^{(N)} \widetilde{\gamma}_{t, \boldsymbol{q}}^{(1)}=\widetilde{\gamma}_{t, \boldsymbol{q}}^{(1)} \widetilde{\gamma}_{t, \boldsymbol{p}}^{(N)} \quad \text { as } \sigma^{-N}=\mathrm{id} \\
& \Longleftrightarrow \widetilde{\gamma}_{t, \sigma^{-1}(\boldsymbol{p})}^{(N)} \widetilde{\gamma}_{t, \boldsymbol{q}}^{(1)}=\widetilde{\gamma}_{t, \boldsymbol{p}}^{(N)} \widetilde{\gamma}_{t, \boldsymbol{q}}^{(1)} \quad \text { by }(*) \text { of }(4.7) \\
& \Longleftrightarrow \widetilde{\gamma}_{t, \sigma^{-1}(\boldsymbol{p})}^{(N)}=\widetilde{\gamma}_{t, \boldsymbol{p}}^{(N)} \\
& \Longleftrightarrow \sigma^{-1}(\boldsymbol{p})=\boldsymbol{p} \quad \text { by }(* *) \text { of }(4.7) . \square
\end{aligned}
$$

We next determine the descent $H$ of $\widetilde{\Gamma}$ with respect to the covering $q: \widetilde{A}_{d-1} \rightarrow \mathbb{C}^{n}$ given by $q\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right)=\left(\boldsymbol{X}_{1}^{m_{1}^{\prime}}, \boldsymbol{X}_{2}^{m_{2}^{\prime}}, \ldots, \boldsymbol{X}_{l}^{m_{l}^{\prime}}\right)$. For simplicity, set $\alpha:=\gamma_{x}, \beta:=\gamma_{t}$ and $\widetilde{\alpha}:=\widetilde{\gamma}_{x}, \widetilde{\beta}_{j, p}:=\widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)}$, where $\boldsymbol{p}=$
$\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{l}\right)$. The latter pair is explicitly given by (see Lemma 4.1 and (4.5)):

$$
\begin{gather*}
\widetilde{\alpha}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1} d} \boldsymbol{X}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l} d} \boldsymbol{X}_{l}^{\sigma_{l}}\right) \\
\widetilde{\beta}_{j, p}:\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right)  \tag{4.8}\\
\longmapsto\left(\widetilde{\beta}_{j, p_{1}}\left(\boldsymbol{X}_{1}\right), \widetilde{\beta}_{j, p_{2}}\left(\boldsymbol{X}_{2}\right), \ldots, \widetilde{\beta}_{j, \boldsymbol{p}_{l}}\left(\boldsymbol{X}_{l}\right)\right)
\end{gather*}
$$

where we set $\widetilde{\beta}_{j, \boldsymbol{p}_{k}}:=\widetilde{\gamma}_{t, \boldsymbol{p}_{k}}$. Since $q\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right)=\left(\boldsymbol{X}_{1}^{m_{1}^{\prime}}, \boldsymbol{X}_{2}^{m_{2}^{\prime}}, \ldots\right.$, $\left.\boldsymbol{X}_{l}^{m_{l}^{\prime}}\right)$, the following holds:

Lemma 4.10. The descents $\bar{\alpha}, \bar{\beta}_{j, p}$ of $\widetilde{\alpha}, \widetilde{\beta}_{j, p}$ with respect to $q$ are explicitly given by

$$
\begin{aligned}
& \bar{\alpha}:\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{l}\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / c d} \boldsymbol{u}_{1}^{\sigma_{1}}, e^{2 \pi \mathrm{i} a_{2} / c d} \boldsymbol{u}_{2}^{\sigma_{2}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / c d} \boldsymbol{u}_{l}^{\sigma_{l}}\right) \\
& \bar{\beta}_{j, p}:\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{l}\right) \\
& \longmapsto\left(\left(\widetilde{\beta}_{j, \boldsymbol{p}_{1}}\right)^{m_{1}^{\prime}}\left(\boldsymbol{u}_{1}\right),\left(\widetilde{\beta}_{j, \boldsymbol{p}_{2}}\right)^{m_{2}^{\prime}}\left(\boldsymbol{u}_{2}\right), \ldots,\left(\widetilde{\beta}_{j, \boldsymbol{p}_{l}}\right)^{m_{l}^{\prime}}\left(\boldsymbol{u}_{l}\right)\right)
\end{aligned}
$$

Lemma 4.11.
(1) $\widetilde{\Gamma}=\left\{\alpha^{j} \beta_{j, \boldsymbol{p}}: \boldsymbol{p} \in \Lambda^{(j)}, j=1,2, \ldots, N\right\}$.
(2) $H=\left\{\bar{\alpha}^{j} \bar{\beta}_{j, \boldsymbol{p}}: \boldsymbol{p} \in \Lambda^{(j)}, j=1,2, \ldots, N\right\}$.

Proof. (1): Proposition 4.7. (2) follows from (1) as the induced homomorphism $q_{*}: \widetilde{\Gamma} \rightarrow H$ from $q: \widetilde{A}_{d-1} \rightarrow \mathbb{C}^{n}$ is surjective,

Remark 4.12. If $\sigma \neq \mathrm{id}, \widetilde{\Gamma}$ is generally not abelian (see Lemma 4.9). Accordingly $H$ is generally not abelian.

Lemma 4.11 (2) implies the following:
Lemma 4.13. Each element of $H$ is of the form

$$
\left(u_{1}, u_{2}, \ldots, u_{n}\right) \longmapsto\left(\zeta_{1} u_{\sigma^{j}(1)}, \zeta_{2} u_{\sigma^{j}(2)}, \ldots, \zeta_{n} u_{\sigma^{j}(n)}\right),
$$

where $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}$ are roots of unity, $\sigma$ is the permutation appearing in the definition of $\gamma$, and $j \in \mathbb{Z}$.

## 5. Simple Pseudo-Reflections

To determine the pseudo-reflection subgroup of $H$, some technical preparation is needed. A pseudo-reflection is simple if it is of the following form (and a general pseudo-reflection is conjugate to such):

$$
\left(u_{1}, \ldots, u_{n}\right) \longmapsto\left(u_{1}, \ldots, \zeta u_{i}, \ldots, u_{n}\right) \quad(\zeta \neq 1 \text { is a root of unity }) .
$$

This is denoted by $h_{i, \zeta}$. In the particular case $\zeta=-1$, it is a simple reflection. Note that the order of a pseudo-reflection is finite (if $\zeta$ is a $k$ th root of unity, its order is $k$ ) and its fixed point set is an $(n-1)$-dimensional subspace (for $h_{i, \zeta}$, this is defined by $u_{i}=0$ ).

An example of a non-simple pseudo-reflection is

$$
k_{i j, \alpha}:\left(u_{1}, \ldots, u_{i}, \ldots, u_{j}, \ldots, u_{n}\right) \longmapsto\left(u_{1}, \ldots, \alpha u_{j}, \ldots, \alpha^{-1} u_{i}, \ldots, u_{n}\right)
$$

where $\alpha \neq 0$. This is called an $(i, j)$-switching. Note $k_{i j, \alpha}$ is conjugate to $h_{i,-1}$, for instance if $n=3$ and $(i, j)=(1,2)$, then via $A=\left(\begin{array}{ccc}-\alpha & \alpha & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ :

$$
A^{-1}\left(\begin{array}{ccc}
0 & \alpha & 0 \\
\alpha^{-1} & 0 & 0 \\
0 & 0 & 1
\end{array}\right) A=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

LEmma 5.1. A linear automorphism of $\mathbb{C}^{n}$ is a pseudo-reflection if and only if its order is finite and the dimension of its fixed point set is $n-1$.

Proof. It suffices to show "if". Suppose that a linear automorphism $f(\boldsymbol{z})=A \boldsymbol{z}$ satisfies the condition. Then $A^{k}=E$ for some positive integer $k$. The minimal polynomial of $A$ thus divides $x^{k}-1$, so its roots are distinct $k$ th roots of unity. Hence $A$ is diagonalizable to a matrix of the form $\left(\begin{array}{llll}\zeta_{1} & & & O \\ & \zeta_{2} & & \\ & & \ddots & \\ O & & & \zeta_{n}\end{array}\right)$, where $\zeta_{i}$ is a $k$ th root of unity. Here by assumption the dimension of the fixed point set of $f$ is $n-1$, so only one of $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}$ is not 1 and the others are 1 , implying that $f$ is a pseudo-reflection.

Lemma 5.2. Let $h:\left(u_{1}, \ldots, u_{n}\right) \mapsto\left(\zeta_{1} u_{\tau(1)}, \ldots, \zeta_{n} u_{\tau(n)}\right)$ be an automorphism of $\mathbb{C}^{n}(n \geq 2)$, where $\zeta_{1}, \ldots, \zeta_{n}$ are roots of unity and $\tau \in \mathfrak{S}_{n}$ is a cyclic permutation of length $n$.
(1) Let $\operatorname{Fix}(h)$ be the fixed point set of $h$, then

$$
\operatorname{dim} \operatorname{Fix}(h)= \begin{cases}1 & \text { if } \zeta_{1} \zeta_{2} \cdots \zeta_{n}=1 \\ 0 & \text { otherwise }\end{cases}
$$

(2) If $h$ is a pseudo-reflection, $n$ must be 2 (so $\tau$ is necessarily a transposition) and $h:\left(u_{1}, u_{2}\right) \mapsto\left(\zeta_{1} u_{2}, \zeta_{1}^{-1} u_{1}\right)(a(1,2)$-switching $)$.

Proof. (1): First
$\operatorname{Fix}(h)=\left\{\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{C}^{n}: u_{1}=\zeta_{1} u_{\tau(1)}, u_{2}=\zeta_{2} u_{\tau(2)}, \ldots, u_{n}=\zeta_{n} u_{\tau(n)}\right\}$.
Without loss of generality, we assume $\tau=\left(\begin{array}{llll}1 & 2 & \cdots & n\end{array}\right)$. Then $\operatorname{Fix}(h)$ is defined by $u_{1}=\zeta_{1} u_{2}, u_{2}=\zeta_{2} u_{3}, \ldots, u_{n}=\zeta_{n} u_{1}$; this is equivalent to
$(*) \quad u_{1}=\zeta_{1} u_{2}=\zeta_{1} \zeta_{2} u_{3}=\cdots=\zeta_{1} \zeta_{2} \cdots \zeta_{n-1} u_{n}=\zeta_{1} \zeta_{2} \cdots \zeta_{n} u_{1}$.
We claim that setting $\boldsymbol{v}:=\left(1, \zeta_{1}^{-1}, \zeta_{1}^{-1} \zeta_{2}^{-1}, \ldots, \zeta_{1}^{-1} \zeta_{2}^{-1} \cdots \zeta_{n-1}^{-1}\right) \in \mathbb{C}^{n}$, then $\operatorname{Fix}(h)$ is $\{c \boldsymbol{v}: c \in \mathbb{C}\}$ if $\zeta_{1} \zeta_{2} \cdots \zeta_{n}=1$, and $\{0\}$ otherwise. Note that from $(*)$, in particular $u_{1}=\zeta_{1} \zeta_{2} \cdots \zeta_{n} u_{1}$, whose solution is, if $\zeta_{1} \zeta_{2} \cdots \zeta_{n} \neq 1$, unique $u_{1}=0$, accordingly the solution of $(*)$ is unique $u_{1}=u_{2}=u_{3}=$ $\cdots=u_{n}=0$, so $\operatorname{Fix}(h)=\{0\}$. If $\zeta_{1} \zeta_{2} \cdots \zeta_{n}=1$, solving $(*)$ with respect to $u_{1}$ yields $u_{2}=\zeta_{1}^{-1} u_{1}, u_{3}=\zeta_{1}^{-1} \zeta_{2}^{-1} u_{1}, \ldots, u_{n}=\zeta_{1}^{-1} \zeta_{2}^{-1} \cdots \zeta_{n-1}^{-1} u_{1}$. Thus set$\operatorname{ting} c:=u_{1}$, then $\left(u_{1}, u_{2}, \ldots, u_{n}\right)=c\left(1, \zeta_{1}^{-1}, \zeta_{1}^{-1} \zeta_{2}^{-1}, \ldots, \zeta_{1}^{-1} \zeta_{2}^{-1} \cdots \zeta_{n-1}^{-1}\right)$, hence $\operatorname{Fix}(h)=\{c \boldsymbol{v}: c \in \mathbb{C}\}$.
(2): If $h$ is a pseudo-reflection of $\mathbb{C}^{n}(n \geq 2)$, then by Lemma 5.1, $\operatorname{dim} \operatorname{Fix}(h)=n-1 \geq 1$. This combined with (1) implies $n-1=1$ and $\zeta_{1} \zeta_{2} \cdots \zeta_{n}=1$, that is, $n=2$ and $\zeta_{1} \zeta_{2}=1$. Thus $h:\left(u_{1}, u_{2}\right) \mapsto$ $\left(\zeta_{1} u_{2}, \zeta_{1}^{-1} u_{1}\right)$.

Lemma 5.2 (2) is generalized to:
LEMMA 5.3. Let $h:\left(u_{1}, \ldots, u_{n}\right) \mapsto\left(\zeta_{1} u_{\tau(1)}, \ldots, \zeta_{n} u_{\tau(n)}\right)$ be an automorphism of $\mathbb{C}^{n}(n \geq 2)$, where $\zeta_{1}, \ldots, \zeta_{n}$ are roots of unity and $\tau \in \mathfrak{S}_{n}$. If $h$ is a pseudo-reflection, then it is either simple or switching.

Proof. Decompose $\tau$ into disjoint cyclic permutations: $\tau=\tau_{1} \tau_{2} \cdots \tau_{l}$. Without loss of generality, we assume that $\tau_{1}$ permutes $\left\{1,2, \ldots, n_{1}\right\}, \tau_{2}$ permutes $\left\{n_{1}+1, n_{1}+2, \ldots, n_{1}+n_{2}\right\}$ and so on. Write $\mathbb{C}^{n}$ as $\mathbb{C}^{n_{1}} \times \mathbb{C}^{n_{2}} \times$ $\cdots \times \mathbb{C}^{n_{l}}$ and $\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in \mathbb{C}^{n}$ as $\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{l}\right)$, where $\boldsymbol{u}_{i} \in \mathbb{C}^{n_{i}}$. Express then $h$ as

$$
h:\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{l}\right) \longmapsto\left(h_{1}\left(\boldsymbol{u}_{1}\right), h_{2}\left(\boldsymbol{u}_{2}\right), \ldots, h_{l}\left(\boldsymbol{u}_{l}\right)\right),
$$

where $h_{i}: \mathbb{C}^{n_{i}} \rightarrow \mathbb{C}^{n_{i}}$ is a linear automorphism of finite order (as $h$ is). Then $\operatorname{Fix}(h)$ is expressed as $\operatorname{Fix}\left(h_{1}\right) \times \operatorname{Fix}\left(h_{2}\right) \times \cdots \times \operatorname{Fix}\left(h_{l}\right)$, so

$$
\operatorname{dim} \operatorname{Fix}(h)=\operatorname{dim} \operatorname{Fix}\left(h_{1}\right)+\operatorname{dim} \operatorname{Fix}\left(h_{2}\right)+\cdots+\operatorname{dim} \operatorname{Fix}\left(h_{l}\right) .
$$

Here if $h$ is a pseudo-reflection, then by Lemma 5.1, $\operatorname{dim} \operatorname{Fix}(h)=n-1=$ $n_{1}+n_{2}+\cdots+n_{l}-1$, thus

$$
\operatorname{dim} \operatorname{Fix}\left(h_{1}\right)+\operatorname{dim} \operatorname{Fix}\left(h_{2}\right)+\cdots+\operatorname{dim} \operatorname{Fix}\left(h_{l}\right)=n_{1}+n_{2}+\cdots+n_{l}-1
$$

Noting $\operatorname{dim} \operatorname{Fix}\left(h_{i}\right) \leq n_{i}$, we have: For some $h_{k}, \operatorname{dim} \operatorname{Fix}\left(h_{k}\right)=n_{k}-1$ (so $h_{k}$ is a pseudo-reflection by Lemma 5.1) and for any other $h_{i}, \operatorname{dim} \operatorname{Fix}\left(h_{i}\right)=n_{i}$ (so $h_{i}$ is the identity). Thus $h\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{l}\right)=\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, h_{k}\left(\boldsymbol{u}_{k}\right), \ldots, \boldsymbol{u}_{l}\right)$ such that $h_{k}$ is a pseudo-reflection. Here if $n_{k} \geq 2, h$ is switching and if $n_{k}=1$, simple, because: in the former case, by Lemma 5.2 (2), $n_{k}$ must be 2 and $h_{k}$ is switching and in the latter case, $h_{k}: \mathbb{C} \rightarrow \mathbb{C}$ is of the form $u \mapsto \zeta u(\zeta \neq 1$ is a root of unity).

## 6. The Pseudo-Reflection Subgroup of $H$

Lemma 6.1. Let $G$ be a finite subgroup of $G L_{n}(\mathbb{C})$ and $Q$ be the pseudoreflection subgroup of $G$ (i.e. the subgroup generated by all pseudo-reflections of $G$ ). Then $Q$ is normal in $G$.

Proof. By definition, any element conjugate to a pseudo-reflection is also a pseudo-reflection, so $Q$ is normal in $G$.

The $G$-action on $\mathbb{C}^{n}$ naturally descends to a $G / Q$-action on $\mathbb{C}^{n} / Q$. Here:

Theorem 6.2 (Chevalley-Shephard-Todd). $\mathbb{C}^{n} / Q \cong \mathbb{C}^{n}$ and under this isomorphism, $G / Q$ acts on $\mathbb{C}^{n}$ linearly. So $G / Q$ may be regarded as a
subgroup of $G L_{n}(\mathbb{C})$. (Note $G / Q$ is a small group, as the pseudo-reflection subgroup of $G / Q$ is trivial.)

We return to the cyclic group $\Gamma$ generated by a twining automorphism $\gamma: A_{d-1} \rightarrow A_{d-1}$ given by

$$
\begin{equation*}
\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \mapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1}} \boldsymbol{x}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l}} \boldsymbol{x}_{l}^{\sigma_{l}}, e^{2 \pi \mathrm{i} / N} t\right) \tag{6.1}
\end{equation*}
$$

Recall that $\widetilde{\Gamma}$ is the lift of $\Gamma$ with respect to the universal covering $p$ : $\widetilde{A}_{d-1}\left(=\mathbb{C}^{n}\right) \rightarrow A_{d-1}$ and $H$ is the descent of $\widetilde{\Gamma}$ with respect to the covering $q: \widetilde{A}_{d-1} \rightarrow \mathbb{C}^{n}$. We apply to $H$ the above results, to determine its pseudoreflection subgroup - the subgroup generated by all pseudo-reflections in $H$. Note first that:

Lemma 6.3.
(1) The cyclic group $\Gamma$ contains no switching that leaves $t$ fixed.
(2) Any pseudo-reflection in $H$ is simple.

Proof. (1): We only show that $\Gamma$ contains no (1, 2)-switching (other cases are similarly shown). Note first that from (6.1), $\gamma^{k} \in \Gamma$ maps $t$ to $e^{2 \pi \mathrm{i} k / N} t$. If $\gamma^{k}$ is a $(1,2)$-switching, then $e^{2 \pi \mathrm{i} k / N}$ must be 1 ; so $k$ is a multiple of $N$. Since the order of $\gamma$ is $N$, this implies that $\gamma^{k}$ is the identity, which contradicts that $\gamma^{k}$ is a $(1,2)$-switching.
(2): Let $h \in H$ be a pseudo-reflection. By Lemma 4.13, $h$ is of the form:

$$
\begin{equation*}
h:\left(u_{1}, u_{2}, \ldots, u_{n}\right) \mapsto\left(\zeta_{1} u_{\sigma^{j}(1)}, \zeta_{2} u_{\sigma^{j}(2)}, \ldots, \zeta_{n} u_{\sigma^{j}(n)}\right) \tag{6.2}
\end{equation*}
$$

for some $j$ and some roots $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}$ of unity. Then by Lemma 5.3, $h$ is either simple or switching. The assertion is thus confirmed by showing the latter does not occur. We only show that $h$ cannot be a (1, 2)-switching (other cases are similarly shown). Otherwise
$h:\left(u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right) \longmapsto\left(\alpha u_{2}, \alpha^{-1} u_{1}, u_{3}, \ldots, u_{n}\right) \quad(\alpha:$ a root of unity $)$.
Comparing this with (6.2) yields $\sigma^{j}=\binom{1}{2}$.
Recall that $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{l}$, where $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}$ are the cyclic permutations appearing in (6.1) and $n_{i}$ is the length of $\sigma_{i}$. From $\sigma^{j}=(12)$, we
have $\sigma_{1}^{j}=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $\sigma_{2}^{j}=\sigma_{3}^{j}=\cdots=\sigma_{l}^{j}=\mathrm{id}$. Note that $\sigma_{1}^{j}=\left(\begin{array}{ll}1 & 2\end{array}\right)$ implies $\sigma_{1}=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $n_{1}=2$ (see Remark 6.4 (2) below); from the latter, $\boldsymbol{X}_{1}=\left(X_{1}, X_{2}\right)$, so the covering $q: \widetilde{A}_{d-1} \rightarrow \mathbb{C}^{n}$ is given by

$$
q:\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}\right) \longmapsto\left(X_{1}^{m_{1}^{\prime}}, X_{2}^{m_{1}^{\prime}}, X_{3}^{m_{2}^{\prime}}, \ldots, X_{n}^{m_{l}^{\prime}}\right)
$$

Define a lift $\widetilde{h} \in \widetilde{\Gamma}$ of $h$ with respect to $q$ by

$$
\widetilde{h}:\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}\right) \longmapsto\left(\alpha^{1 / m_{1}^{\prime}} X_{2}, \alpha^{-1 / m_{1}^{\prime}} X_{1}, X_{3}, \ldots, X_{n}\right)
$$

The descent $\bar{h} \in \Gamma$ of $\widetilde{h}$ with respect to $p: \widetilde{A}_{d-1} \rightarrow A_{d-1}$ is then

$$
\bar{h}:\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, t\right) \longmapsto\left(\alpha^{d / m_{1}^{\prime}} x_{2}, \alpha^{-d / m_{1}^{\prime}} x_{1}, x_{3}, \ldots, x_{n}, t\right) .
$$

This is a (1,2)-switching, which contradicts that $\Gamma$ contains no switching (as shown in (1)).

REmARK 6.4. For a cyclic permutation $\tau, \tau^{j}$ is generally decomposable: Say the length of $\tau$ is $l$ and set $k:=\operatorname{gcd}(j, l)$, then $\tau^{j}$ is a product of $k$ cyclic permutations of the same length $l / k$ (note $k$ divides $l$ ).
(1) In case $k=1, \tau^{j}$ is indecomposable, and the length $l / 1$ of $\tau^{j}$ is the same as that of $\tau$.
(2) If $l=2$ (i.e. $\tau$ is a transposition), then necessarily $k=1$ or 2 . In the former case, by (1) the length of $\tau^{j}$ is also 2 , so $\tau^{j}$ is a transposition necessarily $\tau^{j}=\tau$ and $j$ is odd.

We turn to determine the pseudo-reflection subgroup of $H$.
Proposition 6.5. The pseudo-reflection subgroup $P$ of $H$ is a direct product $P_{1} \times P_{2} \times \cdots \times P_{n}$, where $P_{i}$ is the subgroup of $H$ generated by $i$ th simple pseudo-reflections, that is, of the form

$$
\left(u_{1}, u_{2}, \ldots, u_{n}\right) \longmapsto\left(u_{1}, u_{2}, \ldots, \zeta u_{i}, \ldots, u_{n}\right), \quad \zeta \text { is a root of unity. }
$$

Proof. Clearly $P_{1} P_{2} \cdots P_{n} \subset P$. Since any pseudo-reflection in $H$ is contained in some $P_{i}$ (from Lemma $6.3(2)$ ), $P=P_{1} P_{2} \cdots P_{n}$. Here by definition, $P_{i} \cap P_{j}=\{1\}(i \neq j)$, thus $P=P_{1} \times P_{2} \times \cdots \times P_{n}$.

We next determine $P_{i}$ explicitly. Recall first the following diagram with group actions:


Here $\Gamma$ is the cyclic group generated by a twining automorphism

$$
\gamma:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1}} \boldsymbol{x}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l}} \boldsymbol{x}_{l}^{\sigma_{l}}, e^{2 \pi \mathrm{i} / N_{1}} t\right)
$$

and $\widetilde{\Gamma}$ is the lift of $\Gamma$ with respect to $p$, and $H$ is the descent of $\widetilde{\Gamma}$ with respect to $q$.

Notation 6.6. The subsequent discussion involves the following groups:

- $\widetilde{\Gamma}_{i} \subset \widetilde{\Gamma}$ : the subgroup generated by $i$ th simple pseudo-reflections, that is, of the form $\left(X_{1}, X_{2}, \ldots, X_{n}\right) \mapsto\left(X_{1}, X_{2}, \ldots, \zeta X_{i}, \ldots, X_{n}\right)$, where $\zeta$ is a root of unity.
- $\Gamma_{i} \subset \Gamma$ : the subgroup generated by automorphisms of the form $\left(x_{1}, \ldots, x_{n}, t\right) \mapsto\left(x_{1}, \ldots, \mu^{d} x_{i}, \ldots, x_{n}, \mu t\right)$, where $\mu$ is a root of unity.
- $P_{i} \subset H$ : the subgroup generated by $i$ th simple pseudo-reflections.

Definition 6.7. The surjective homomorphism $p_{*}: \widetilde{\Gamma} \rightarrow \Gamma$ (resp. $q_{*}$ : $\widetilde{\Gamma} \rightarrow H)$ induced by $p($ resp. $q)$ is called a descent homomorphism.

Lemma 6.8.
(1) $\Gamma_{i}$ is the descent of $\widetilde{\Gamma}_{i}$ with respect to $p$, that is, $p_{*}\left(\widetilde{\Gamma}_{i}\right)=\Gamma_{i}$. In fact $p_{*}: \widetilde{\Gamma}_{i} \rightarrow \Gamma_{i}$ is an isomorphism.
(2) $P_{i}$ is the descent of $\widetilde{\Gamma}_{i}$ with respect to $q$, that is, $q_{*}\left(\widetilde{\Gamma}_{i}\right)=P_{i}$.

Proof. (1): Since

$$
p:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto\left(X_{1}^{d}, X_{2}^{d}, \ldots, X_{n}^{d}, X_{1} X_{2} \cdots X_{n}\right)
$$

an $i$ th pseudo-reflection $\left(X_{1}, \ldots, X_{n}\right) \mapsto\left(X_{1}, \ldots, \zeta X_{i}, \ldots, X_{n}\right)$ descends to $\left(x_{1}, \ldots, x_{n}, t\right) \mapsto\left(x_{1}, \ldots, \zeta^{d} x_{i}, \ldots, x_{n}, \zeta t\right)$. This correspondence is clearly
surjective, so $p_{*}\left(\widetilde{\Gamma}_{i}\right)=\Gamma_{i}$. Moreover this is injective: Distinct automorphisms $\left\{\begin{aligned}\left(X_{1}, \ldots, X_{n}\right) & \mapsto\left(X_{1}, \ldots, \zeta X_{i}, \ldots, X_{n}\right) \\ \left(X_{1}, \ldots, X_{n}\right) & \mapsto\left(X_{1}, \ldots, \zeta^{\prime} X_{i}, \ldots, X_{n}\right)\end{aligned}\right.$ descend to distinct automorphisms $\left\{\begin{aligned}\left(x_{1}, \ldots, x_{n}, t\right) & \mapsto\left(x_{1}, \ldots, \zeta^{d} x_{i}, \ldots, x_{n}, \zeta t\right) \\ \left(x_{1}, \ldots, x_{n}, t\right) & \mapsto\left(x_{1}, \ldots,\left(\zeta^{\prime}\right)^{d} x_{i}, \ldots, x_{n}, \zeta^{\prime} t\right) .\end{aligned}\right.$
(2): Write $\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}^{n}$ as $\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right) \in \mathbb{C}^{n_{1}} \times \mathbb{C}^{n_{2}} \times \cdots \times \mathbb{C}^{n_{l}}$ $\left(n=n_{1}+n_{2}+\cdots+n_{l}\right)$, then

$$
\begin{equation*}
q:\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(\boldsymbol{X}_{1}^{m_{1}^{\prime}}, \boldsymbol{X}_{2}^{m_{2}^{\prime}}, \ldots, \boldsymbol{X}_{l}^{m_{l}^{\prime}}\right) \tag{6.4}
\end{equation*}
$$

Say $X_{i} \in \boldsymbol{X}_{k}$, then under $q,\left(X_{1}, \ldots, X_{n}\right) \mapsto\left(X_{1}, \ldots, \zeta X_{i}, \ldots, X_{n}\right)$ descends to $\left(u_{1}, \ldots, u_{n}\right) \mapsto\left(u_{1}, \ldots, \zeta^{m_{k}^{\prime}} u_{i}, \ldots, u_{n}\right)$. This correspondence is clearly surjective.

Recall that $\Gamma$ is the cyclic group of order $N$ generated by

$$
\begin{equation*}
\gamma:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1}} \boldsymbol{x}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l}} \boldsymbol{x}_{l}^{\sigma_{l}}, e^{2 \pi \mathrm{i} / N_{1}} t\right) \tag{6.5}
\end{equation*}
$$

Thus

$$
\begin{align*}
\gamma^{j}:\left(\boldsymbol{x}_{1}, \ldots,\right. & \left.\boldsymbol{x}_{l}, t\right)  \tag{6.6}\\
& \longmapsto\left(e^{2 \pi \mathrm{i} j a_{1} / n_{1} m_{1}} \boldsymbol{x}_{1}^{\sigma_{1}^{j}}, \ldots, e^{2 \pi \mathrm{i} j a_{l} / n_{l} m_{l}} \boldsymbol{x}_{l}^{\sigma_{l}^{j}}, e^{2 \pi \mathrm{i} j / N_{1}} t\right) .
\end{align*}
$$

We investigate when $\gamma^{j} \in \Gamma_{i}$, that is, $\gamma^{j}$ is of the form $\left(x_{1}, \ldots, x_{n}, t\right) \mapsto$ $\left(x_{1}, \ldots, \zeta^{d} x_{i}, \ldots, x_{n}, \zeta t\right)$ for some root $\zeta$ of unity. Say $x_{i} \in \boldsymbol{x}_{k}$, then

$$
\begin{equation*}
\gamma^{j}:\left(x_{1}, \ldots, x_{n}, t\right) \longmapsto(\underbrace{x_{1}, \ldots}_{\boldsymbol{x}_{1}} \cdots \underbrace{\ldots, \zeta^{d} x_{i}, \ldots}_{\boldsymbol{x}_{k}} \cdots \underbrace{\ldots, x_{n}}_{\boldsymbol{x}_{l}}, \zeta t) . \tag{6.7}
\end{equation*}
$$

Comparing (6.6) and (6.7) yields $\sigma_{1}^{j}=1, \sigma_{2}^{j}=1, \ldots, \sigma_{l}^{j}=1$, accordingly (6.6) reduces to
(6.8) $\gamma^{j}:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} j a_{1} / n_{1} m_{1}} \boldsymbol{x}_{1}, \ldots, e^{2 \pi \mathrm{i} j a_{l} / n_{l} m_{l}} \boldsymbol{x}_{l}, e^{2 \pi \mathrm{i} j / N} t\right)$.

We then compare the coefficients in (6.7) and (6.8):

- Comparison for $\boldsymbol{x}_{s}(s=1, \ldots, \check{k}, \ldots, l)$ gives $e^{2 \pi \mathrm{i} j a_{s} / n_{s} m_{s}}=1$, where $\check{k}$ means the omission of $k$.
- Comparison for $\boldsymbol{x}_{k}$ gives $e^{2 \pi \mathrm{i} j a_{k} / n_{k} m_{k}} \boldsymbol{x}_{k}=(\underbrace{\ldots, x_{i-1}, \zeta^{d} x_{i}, \ldots}_{\boldsymbol{x}_{k}})$, that is,

$$
\left(\ldots, e^{2 \pi \mathrm{i} j a_{k} / n_{k} m_{k}} x_{i-1}, e^{2 \pi \mathrm{i} j a_{k} / n_{k} m_{k}} x_{i}, \ldots\right)=\left(\ldots, x_{i-1}, \zeta^{d} x_{i}, \ldots\right)
$$

If length $\left(\boldsymbol{x}_{k}\right)=1$, this reduces to $\left(e^{2 \pi \mathrm{i} j a_{k} / n_{k} m_{k}} x_{i}\right)=\left(\zeta^{d} x_{i}\right)$, so $e^{2 \pi \mathrm{i} j a_{k} / n_{k} m_{k}}=\zeta^{d}$. If length $\left(\boldsymbol{x}_{k}\right) \geq 2$, then $e^{2 \pi \mathrm{i} j a_{k} / n_{k} m_{k}}=1$ and $\zeta^{d}=1$.

- Comparison for $t$ gives $e^{2 \pi \mathrm{i} j / N}=\zeta$.

Note. If length $\left(\boldsymbol{x}_{k}\right)=1$ (resp. $\left.\geq 2\right)$, then $\left(\zeta, \zeta^{d}\right)=\left(e^{2 \pi \mathrm{i} j / N}\right.$, $\left.e^{2 \pi \mathrm{i} j a_{k} / n_{k} m_{k}}\right)\left(\operatorname{resp} . \quad\left(\zeta, \zeta^{d}\right)=\left(e^{2 \pi \mathrm{i} j / N}, 1\right)\right)$. Accordingly $\left(e^{2 \pi \mathrm{i} j / N}\right)^{d}=$ $e^{2 \pi \mathrm{i} j a_{k} / n_{k} m_{k}}$ (resp. $\left(e^{2 \pi \mathrm{i} j / N}\right)^{d}=1$ ), which also follows from the fact that $\gamma^{j}$ preserves $A_{d-1}$, that is, $x_{1} x_{2} \cdots x_{n}=t$.

We summarize the above results as follows:
Lemma 6.9. Let $\Gamma_{i}$ be the subgroup of $\Gamma$ defined in Notation 6.6. Then $\gamma^{j} \in \Gamma_{i}$ if and only if $\gamma^{j}$ is of the form $\left(\operatorname{say} x_{i} \in \boldsymbol{x}_{k}\right)$ :
$\begin{cases}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \mapsto\left(\boldsymbol{x}_{1}, \ldots, e^{2 \pi \mathrm{i} d j / N} \boldsymbol{x}_{k}, \ldots, \boldsymbol{x}_{l}, e^{2 \pi \mathrm{i} j / N} t\right) & \\ \text { if length }\left(\boldsymbol{x}_{k}\right)=1, \\ \left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \mapsto\left(\boldsymbol{x}_{1} \ldots, \boldsymbol{x}_{l}, e^{2 \pi \mathrm{i} j / N} t\right) & \text { if length }\left(\boldsymbol{x}_{k}\right) \geq 2 .\end{cases}$
This condition is 'more explicitly' given by: $\sigma_{1}^{j}=1, \sigma_{2}^{j}=1, \ldots, \sigma_{l}^{j}=1$ and (below, $\check{k}$ is the omission of $k$ )
$(*) \quad\left\{\begin{array}{ll}e^{2 \pi \mathrm{i} j a_{s} / n_{s} m_{s}}=1 \text { for } s=1,2, \ldots, \check{k}, \ldots, l & \\ e^{2 \pi \mathrm{i} j a_{s} / n_{s} m_{s}}=1 \text { length }\left(\boldsymbol{x}_{k}\right)=1, \\ & =1,2, \ldots, l\end{array} r\right.$ if $\operatorname{length}\left(\boldsymbol{x}_{k}\right) \geq 2 . ~ \$$

Here $a_{s}$ and $n_{s} m_{s}(s=1,2, \ldots, l)$ are relatively prime, so $(*)$ is restated as: $j$ is a multiple of $L_{k}$, where (below, $n_{k}{ }^{2} m_{k}$ is the omission of $n_{k} m_{k}$ )
(6.9) $L_{k}:= \begin{cases}\operatorname{lcm}\left(n_{1} m_{1}, n_{2} m_{2}, \ldots, n_{k} m_{k}, \ldots, n_{l} m_{l}\right) & \text { if length }\left(\boldsymbol{x}_{k}\right)=1, \\ \operatorname{lcm}\left(n_{1} m_{1}, n_{2} m_{2}, \ldots, n_{l} m_{l}\right) & \text { if length }\left(\boldsymbol{x}_{k}\right) \geq 2,\end{cases}$

Here $n_{s}=$ length $\left(\boldsymbol{x}_{s}\right)$ (the order of $\sigma_{s}$ ). Hence $\gamma^{j} \in \Gamma_{i}$ if and only if $j$ is a common multiple of $L_{k}$ and the orders of $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}$, that is, $j$ is a multiple of $\operatorname{lcm}\left(L_{k}, n_{1}, n_{2}, \ldots, n_{l}\right)=L_{k}$. The following is thus obtained:

Corollary 6.10. In Lemma 6.9, $\gamma^{j} \in \Gamma_{i}$ if and only if $j$ is a multiple of $L_{k}$ given by (6.9).

We explicitly determine $\Gamma_{i}$ and $\widetilde{\Gamma}_{i}$ :
Lemma 6.11.
(1) The group $\Gamma_{i}$ (in Notation 6.6) is cyclic: Say $x_{i} \in \boldsymbol{x}_{k}$, then $\Gamma_{i}$ is generated by the following automorphism:

$$
\gamma^{L_{k}}:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \longmapsto\left(\boldsymbol{x}_{1}, \ldots, e^{2 \pi \mathrm{i} L_{k} d / N} \boldsymbol{x}_{k}, \ldots, \boldsymbol{x}_{l}, e^{2 \pi \mathrm{i} L_{k} / N} t\right)
$$

(Note: If $n_{k} \geq 2$, then $e^{2 \pi \mathrm{i} L_{k} d / N}=1$.)
(2) The subgroup $\widetilde{\Gamma}_{i}$ of $\widetilde{\Gamma}$ (in Notation 6.6) is cyclic: Say $X_{i} \in \boldsymbol{X}_{k}$, then $\widetilde{\Gamma}_{i}$ is generated by the following automorphism

$$
\begin{equation*}
\xi_{i}:\left(X_{1}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, \ldots, e^{2 \pi \mathrm{i} L_{k} / N} X_{i}, \ldots, X_{n}\right) \tag{6.10}
\end{equation*}
$$

Proof. (1): $\Gamma_{i}$ is cyclic, because it is a subgroup of the cyclic group $\Gamma$. Say now $x_{i} \in \boldsymbol{x}_{k}$, then since $\gamma^{j} \in \Gamma_{i}$ if and only if $j$ is a multiple of $L_{k}$ (Corollary 6.10), $\Gamma_{i}$ is generated by $\gamma^{L_{k}}$.
(2): $\widetilde{\Gamma}_{i}$ is cyclic, because $\widetilde{\Gamma}_{i}$ is isomorphic to the cyclic group $\Gamma_{i}$ (Lemma 6.8 (1)). Say $X_{i} \in \boldsymbol{X}_{k}$. We then show that $\widetilde{\Gamma}_{i}$ is generated by the $\xi_{i}$ given by (6.10). Since $X_{i} \in \boldsymbol{X}_{k}, x_{i} \in \boldsymbol{x}_{k}$, and thus by (1), $\Gamma_{i}$ is generated by $\gamma^{L_{k}}$. Since $p_{*}: \widetilde{\Gamma}_{i} \rightarrow \Gamma_{i}$ is isomorphic (Lemma $\left.6.8(1)\right)$ and $p_{*}\left(\xi_{i}\right)=\gamma^{L_{k}}, \widetilde{\Gamma}_{i}$ is generated by $p_{*}^{-1}\left(\gamma^{L_{k}}\right)=\xi_{i}$.

Recall that $H$ is the descent of $\widetilde{\Gamma}$ with respect to $q$.
Corollary 6.12. The subgroup $P_{i}$ of $H$ generated by ith pseudo-reflections is actually cyclic: Say $u_{i} \in \boldsymbol{u}_{k}$, when we write $\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{C}^{n}$ as $\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{l}\right) \in \mathbb{C}^{n_{1}} \times \cdots \times \mathbb{C}^{n_{l}}$. Then $P_{i}$ is generated by

$$
\begin{equation*}
h_{i}:\left(u_{1}, \ldots, u_{n}\right) \longmapsto\left(u_{1}, \ldots, e^{2 \pi \mathrm{i} n_{k} m_{k} L_{k} / N c} u_{i}, \ldots, u_{n}\right) . \tag{6.11}
\end{equation*}
$$

Proof. Since $q_{*}\left(\widetilde{\Gamma}_{i}\right)=P_{i}$ (Lemma $\left.6.8(2)\right)$ and $\widetilde{\Gamma}_{i}$ is generated by $\xi_{i}$ (Lemma $6.11(2)), P_{i}$ is generated by $q_{*}\left(\xi_{i}\right)$. Here $q_{*}\left(\xi_{i}\right)=h_{i}$, confirming the assertion.

Let $P$ be the pseudo-reflection subgroup of $H$. Then $P=P_{1} \times P_{2} \times$ $\cdots \times P_{n}$ (Lemma 6.5), thus from Corollary 6.12 the following holds:

Proposition 6.13. The pseudo-reflection subgroup $P$ of $H$ is generated by the automorphisms $h_{1}, h_{2}, \ldots, h_{n}$ in Corollary 6.12.

## 7. Numerical Criterion of Smallness

That is, its pseudo-reflection subgroup $P$ is nontrivial. Consider the quotient map $r: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} / P$. By Chevalley-Shephard-Todd theorem, $\mathbb{C}^{n} / P \cong \mathbb{C}^{n}$ and under this isomorphism, $H / P$ acts on $\mathbb{C}^{n}$ linearly. So $H / P$ may be regarded as a subgroup of $G L_{n}(\mathbb{C})$ and $r$ as a map $r: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$. Since the covering transformation group of $r$ is $P$, the following is obvious:

$$
\begin{align*}
r: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \text { is the identity map } & \Longleftrightarrow P=\{1\} \\
& \Longleftrightarrow H \text { is small. } \tag{7.1}
\end{align*}
$$

We explicitly give $r$. We begin with observation. Let $\mathbb{Z}_{\ell}:=\left\langle e^{2 \pi \mathrm{i} / \ell}\right\rangle$ act on $\mathbb{C}$ by multiplication, then the quotient map $\mathbb{C} \rightarrow \mathbb{C} \mathbb{Z}_{\ell} \cong \mathbb{C}$ is given by $z \mapsto z^{\ell}$. More generally let $\mathbb{Z}_{\ell_{1}} \times \cdots \times \mathbb{Z}_{\ell_{n}}=\left\langle e^{2 \pi \mathrm{i} / \ell_{1}}\right\rangle \times \cdots \times\left\langle e^{2 \pi \mathrm{i} / \ell_{n}}\right\rangle$ act on $\mathbb{C}^{n}=\mathbb{C} \times \cdots \times \mathbb{C}$ by multiplication, then the quotient map $\mathbb{C}^{n} \rightarrow$ $\mathbb{C}^{n} /\left(\mathbb{Z}_{\ell_{1}} \times \cdots \times \mathbb{Z}_{\ell_{n}}\right) \cong \mathbb{C}^{n}$ is given by

$$
\begin{equation*}
\left(z_{1}, \ldots, z_{n}\right) \longmapsto\left(z_{1}^{\ell_{1}}, \ldots, z_{n}^{\ell_{n}}\right) \tag{7.2}
\end{equation*}
$$

Similarly the quotient map $r: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} / P \cong \mathbb{C}^{n}$ may be explicitly given. Recall first that $P=\left\langle h_{1}\right\rangle \times\left\langle h_{2}\right\rangle \times \cdots \times\left\langle h_{n}\right\rangle$ (Proposition 6.13), where $h_{i}$ is an automorphism of $\mathbb{C}^{n}$ given by (6.11): Set $\ell_{k}:=N c / n_{k} m_{k} L_{k}$, where $L_{k}$ is the positive integer given by (6.9) and $N:=\left(m_{1}^{\prime}\right)^{n_{1}} \cdots\left(m_{l}^{\prime}\right)^{n_{l}} c$ and $c:=\operatorname{gcd}\left(n_{1} m_{1}, \ldots, n_{l} m_{l}\right)$ and $m_{k}^{\prime}=\frac{n_{k} m_{k}}{c}\left(\ell_{k}\right.$ is an integer by Lemma 7.4 below), then explicitly

$$
h_{i}:\left(u_{1}, \ldots, u_{n}\right) \longmapsto\left(u_{1}, \ldots, e^{2 \pi \mathrm{i} / \ell_{k}} u_{i}, \ldots, u_{n}\right),
$$

As for (7.2), $r: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} / P \cong \mathbb{C}^{n}$ is then given by

$$
\left(u_{1}, \ldots, u_{n}\right) \mapsto(\underbrace{u_{1}^{\ell_{1}}, \ldots}_{\boldsymbol{u}_{1}} \ldots \underbrace{\ldots, u_{i}^{\ell_{k}}, \ldots}_{\boldsymbol{u}_{k}} \ldots \underbrace{\ldots, u_{n}^{\ell_{l}}}_{\boldsymbol{u}_{l}}) .
$$

We formalize this result as follows:
Lemma 7.1. Write $\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in \mathbb{C}^{n}$ as $\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{l}\right) \in \mathbb{C}^{n_{1}} \times$ $\mathbb{C}^{n_{2}} \times \cdots \times \mathbb{C}^{n_{l}}$, where $\boldsymbol{u}_{k}:=\left(u_{j_{1}}, \ldots, u_{j_{n_{k}}}\right)$. Then the covering map $r:$ $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is explicitly given by $r\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{l}\right)=\left(\boldsymbol{u}_{1}^{\ell_{1}}, \boldsymbol{u}_{2}^{\ell_{2}}, \ldots, \boldsymbol{u}_{l}^{\ell_{l}}\right)$, where $\boldsymbol{u}_{k}^{\ell_{k}}:=\left(u_{j_{1}}^{\ell_{k}}, \ldots, u_{j_{n_{k}}}^{\ell_{k}}\right)$.

The following is immediate from Lemma 7.1:
$r$ is the identity map $\Longleftrightarrow \ell_{1}=\ell_{2}=\cdots=\ell_{l}=1$

$$
\begin{aligned}
& \left(\text { i.e. } N c / n_{1} m_{1} L_{1}=\cdots=N c / n_{l} m_{l} L_{l}=1\right) \\
\Longleftrightarrow & m_{1}^{\prime} L_{1}=\cdots=m_{l}^{\prime} L_{l}=N
\end{aligned}
$$

This combined with (7.1) yields the following:
Theorem 7.2. The following are equivalent:
(1) $H$ is small.
(2) The covering $r: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is the identity map.
(3) $m_{1}^{\prime} L_{1}=m_{2}^{\prime} L_{2}=\cdots=m_{l}^{\prime} L_{l}=N$.

Corollary 7.3. If $n=2$, then $H$ is small.
Proof. From Theorem 7.2, it suffices to show $m_{1}^{\prime} L_{1}=m_{2}^{\prime} L_{2}=\cdots=$ $m_{l}^{\prime} L_{l}=1$. Note first that the permutation $\sigma \in \mathfrak{S}_{n}$ appearing in the definition of $\gamma$ is, if $n=2$, either the identity or a transposition (12). We separate into two cases:
(i) If $\sigma$ is the identity, then $n_{1}=n_{2}=1, c=\operatorname{gcd}\left(m_{1}, m_{2}\right), m_{1}^{\prime}=\frac{m_{1}}{c}, m_{2}^{\prime}=$ $\frac{m_{2}}{c}, N=m_{1}^{\prime} m_{2}^{\prime} c, L_{1}=m_{2}^{\prime} c$, and $L_{2}=m_{1}^{\prime} c$. Thus $m_{1}^{\prime} L_{1}=m_{2}^{\prime} L_{2}=N$.
(ii) If $\sigma$ is the transposition (12), then $n_{1}=2, c=2 m_{1}, m_{1}^{\prime}=\frac{2 m_{1}}{c}=1$, $N=\left(m_{1}^{\prime}\right)^{2} c=2 m_{1}$, and $L_{1}=n_{1} m_{1}=2 m_{1}$. Thus $m_{1}^{\prime} L_{1}=N$.

Supplement. We show that $\ell_{k}:=N c / n_{k} m_{k} L_{k}$ is an integer. Recall that $N:=\left(m_{1}^{\prime}\right)^{n_{1}} \cdots\left(m_{l}^{\prime}\right)^{n_{l}} c$, where $c:=\operatorname{gcd}\left(n_{1} m_{1}, \ldots, n_{l} m_{l}\right)$ and $m_{k}^{\prime}=$
$\frac{n_{k} m_{k}}{c}$ and $L_{k}$ is given by (6.9):

$$
L_{k}= \begin{cases}\operatorname{lcm}\left(n_{1} m_{1}, n_{2} m_{2}, \ldots, n_{k} \widetilde{m}_{k}, \ldots, n_{l} m_{l}\right) & \text { if } n_{k}=1 \\ \operatorname{lcm}\left(n_{1} m_{1}, n_{2} m_{2}, \ldots, n_{l} m_{l}\right) & \text { if } n_{k} \geq 2\end{cases}
$$

Lemma 7.4. $\quad \ell_{k}:=N c / n_{k} m_{k} L_{k}$ is an integer.
Proof. Rewrite $L_{k}$ as

$$
L_{k}= \begin{cases}\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime} \ldots, \check{m}_{k}^{\prime}, \ldots, m_{l}^{\prime}\right) c & \text { if } n_{k}=1 \\ \operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{l}^{\prime}\right) c & \text { if } n_{k} \geq 2\end{cases}
$$

Here

$$
\left\{\begin{array}{l}
\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime} \ldots, \check{m}_{k}^{\prime}, \ldots, m_{l}^{\prime}\right) \text { divides } m_{1}^{\prime} m_{2}^{\prime} \cdots \check{m}_{k}^{\prime} \cdots m_{l}^{\prime} \\
\operatorname{lcm}\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{l}^{\prime}\right) \text { divides } m_{1}^{\prime} m_{2}^{\prime} \cdots m_{l}^{\prime}
\end{array}\right.
$$

In either case $L_{k}$ divides $m_{1}^{\prime} \cdots\left(m_{k}^{\prime}\right)^{n_{k}-1} \cdots m_{l}^{\prime} c$, so $n_{k} m_{k} L_{k}\left(=m_{k}^{\prime} L_{k} c\right)$ divides $m_{1}^{\prime} \cdots\left(m_{k}^{\prime}\right)^{n_{k}} \cdots m_{l}^{\prime} c^{2}$, in particular, divides $N c=\left(m_{1}^{\prime}\right)^{n_{1}} \cdots$ $\left(m_{l}^{\prime}\right)^{n_{l}} c^{2}$.

## 8. Uniformization of Twined Singularities

### 8.1. Uniformization theorem

In what follows, set $G:=H / P$. Consider the diagram expanding (6.3):


Then

$$
\begin{equation*}
A_{d-1} / \Gamma \cong \widetilde{A}_{d-1} / \widetilde{\Gamma} \cong \mathbb{C}^{n} / H \cong \mathbb{C}^{n} / G \tag{8.2}
\end{equation*}
$$

Here $G$ is a small finite subgroup of $G L_{n}(\mathbb{C})$ (Theorem 6.2). We thus proved (1) of the following:

TheOrem 8.1 (Uniformization theorem). Let $\Gamma$ be the cyclic group generated by a twining automorphism $\gamma: A_{d-1} \rightarrow A_{d-1}$ given by

$$
\gamma:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1}} \boldsymbol{x}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l}} \boldsymbol{x}_{l}^{\sigma_{l}}, e^{2 \pi \mathrm{i} / N} t\right)
$$

Then:
(1) There exists a small finite group $G \subset G L_{n}(\mathbb{C})$ such that $A_{d-1} / \Gamma \cong$ $\mathbb{C}^{n} / G$; this isomorphism is the composition $\bar{r} \circ \bar{q} \circ \bar{p}^{-1}$, where $\bar{p}: \widetilde{A}_{d-1} / \widetilde{\Gamma} \cong A_{d-1} / \Gamma, \bar{q}: \widetilde{A}_{d-1} / \widetilde{\Gamma} \cong \mathbb{C}^{n} / H, \bar{r}: \mathbb{C}^{n} / H \xrightarrow{\cong} \mathbb{C}^{n} / G$ are induced from $p, q, r$.
(2) The isomorphism $\Psi:=\bar{r} \circ \bar{q} \circ \bar{p}^{-1}: A_{d-1} / \Gamma \xrightarrow{\cong} \mathbb{C}^{n} / G$ in (1) is explicitly given by

$$
\Psi\left(\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right]\right)=\left[\boldsymbol{x}_{1}^{\ell_{1} m_{1}^{\prime} / d}, \ldots, \boldsymbol{x}_{l}^{\ell_{l} m_{l}^{\prime} / d}\right]
$$

where $\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right] \in A_{d-1} / \Gamma$ and $\left[\boldsymbol{x}_{1}^{\ell_{1} m_{1}^{\prime} / d}, \ldots, \boldsymbol{x}_{l}^{\ell_{l} m_{l}^{\prime} / d}\right] \in \mathbb{C}^{n} / G$ denote the images of $\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \in A_{d-1}$ and $\left(\boldsymbol{x}_{1}^{\ell_{1} m_{1}^{\prime} / d}, \ldots, \boldsymbol{x}_{l}^{\ell_{l} m_{l}^{\prime} / d}\right) \in$ $\mathbb{C}^{n}$ respectively.

Proof. It remains to show (2). Since

$$
\bar{p}\left(\left[\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right]\right)=\left[\boldsymbol{X}_{1}^{d}, \boldsymbol{X}_{2}^{d}, \ldots, \boldsymbol{X}_{l}^{d}, \boldsymbol{X}_{1} \boldsymbol{X}_{2} \cdots \boldsymbol{X}_{l}\right]
$$

we have $\bar{p}^{-1}\left(\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{l}, t\right]\right)=\left[\boldsymbol{x}_{1}^{1 / d}, \boldsymbol{x}_{2}^{1 / d}, \ldots, \boldsymbol{x}_{l}^{1 / d}\right]$. Thus

$$
\begin{aligned}
& \Psi\left(\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{l}, t\right]\right)=\bar{r} \circ \bar{q} \circ \bar{p}^{-1}\left(\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{l}, t\right]\right) \\
& \quad=\bar{r} \circ \bar{q}\left(\left[\boldsymbol{x}_{1}^{1 / d}, \boldsymbol{x}_{2}^{1 / d}, \ldots, \boldsymbol{x}_{l}^{1 / d}\right]\right)=\bar{r}\left(\left[\boldsymbol{x}_{1}^{m_{1}^{\prime} / d}, \boldsymbol{x}_{2}^{m_{2}^{\prime} / d}, \ldots, \boldsymbol{x}_{l}^{m_{l}^{\prime} / d}\right]\right) \\
& \quad=\left[\boldsymbol{x}_{1}^{\ell_{1} m_{1}^{\prime} / d}, \boldsymbol{x}_{2}^{\ell_{2} m_{2}^{\prime} / d}, \ldots, \boldsymbol{x}_{l}^{\ell_{l} m_{l}^{\prime} / d}\right] . \square
\end{aligned}
$$

## Correspondence between maps

We keep the notation above: $\Gamma$ is the cyclic group of order $N$ generated by the automorphism of $A_{d-1}$ given by

$$
\gamma:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1}} \boldsymbol{x}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l}} \boldsymbol{x}_{l}^{\sigma_{l}}, e^{2 \pi \mathrm{i} / N_{1}} t\right)
$$

Define a holomorphic map $\Phi: A_{d-1} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
\Phi\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)=t^{N} \tag{8.3}
\end{equation*}
$$

This, being $\Gamma$-invariant, descends to a holomorphic map $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow \mathbb{C}$ (which is a local model of a degeneration of compact complex manifolds). We shall explicitly give the corresponding map $\mathbb{C}^{n} / G \rightarrow \mathbb{C}$ under the isomorphism $A_{d-1} / \Gamma \cong \mathbb{C}^{n} / G$ in Theorem 8.1.

Consider first the case $l=1$, that is, $\gamma:\left(\boldsymbol{x}_{1}, t\right) \mapsto\left(e^{2 \pi \mathrm{i} a_{1} / n m_{1}} \boldsymbol{x}_{1}, e^{2 \pi \mathrm{i} / N_{t}} t\right)$. Explicitly $\gamma$ is of the form (below, write $a_{1}, m_{1}, L_{1}$ as $a, m, L$ etc):

$$
\gamma:\left(x_{1}, \ldots, x_{n}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a / n m} x_{\sigma(1)}, \ldots, e^{2 \pi \mathrm{i} a / n m} x_{\sigma(n)}, e^{2 \pi \mathrm{i} / N} t\right)
$$

where $\sigma \in \mathfrak{S}_{n}$ is a cyclic permutation of length $n$. In this case, $c=n m$, $m^{\prime}=1, L=n m, N=\left(m^{\prime}\right)^{n} c=n m$. Accordingly $\ell:=N c / n m L=1$ and $d=N\left(\frac{a}{m}+\kappa\right)=n a+n m \kappa$. The following then hold:

## Lemma 8.2.

(i) Let $G \subset G L_{n}(\mathbb{C})$ be the small finite group in Theorem 8.1. Then the holomorphic map $\phi: \mathbb{C}^{n} \rightarrow \mathbb{C}$ given by $\phi\left(v_{1}, \ldots, v_{n}\right)=\left(v_{1} \cdots v_{n}\right)^{n m}$ is $G$-invariant. (So $\phi$ descends to a holomorphic map $\bar{\phi}: \mathbb{C}^{n} / G \rightarrow \mathbb{C}$.)
(ii) Let $\Phi: A_{d-1} \rightarrow \mathbb{C}$ be the $\Gamma$-invariant map given by (8.3). Under the isomorphism $\Psi: A_{d-1} / \Gamma \xrightarrow{\cong} \mathbb{C}^{n} / G$ in Theorem 8.1, $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow$ $\mathbb{C}$ corresponds to $\bar{\phi}$, that is, $\bar{\Phi}=\bar{\phi} \circ \Psi$.

Proof. (i): As seen in Theorem 9.1 (3) below, $G=\left\{g_{j, p}: \boldsymbol{p} \in\right.$ $\left.\Lambda^{(j)}, j=1,2, \ldots, N\right\}$, where $g_{j, p}$ is $\overline{\bar{\alpha}}^{j} \overline{\bar{\beta}}_{j, p}$ therein. Explicitly

$$
g_{j, p}:\left(v_{1}, \ldots, v_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i}\left(j a+n m p_{1}\right) / n m d} v_{\sigma(1)}, \ldots, e^{2 \pi \mathrm{i}\left(j a+n m p_{n}\right) / n m d} v_{\sigma(n)}\right)
$$

For simplicity, set $\zeta_{i}:=e^{2 \pi \mathrm{i}\left(j a+n m p_{i}\right) / n m d}$, then

$$
g_{j, p}:\left(v_{1}, v_{2}, \ldots, v_{n}\right) \longmapsto\left(\zeta_{1} v_{\sigma(1)}, \zeta_{2} v_{\sigma(2)}, \ldots, \zeta_{n} v_{\sigma(n)}\right)
$$

It suffices to show $\phi \circ g_{j, p}\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\phi\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Note first that $\left(\zeta_{1} \zeta_{2} \cdots \zeta_{n}\right)^{n m}=1$, indeed

$$
\begin{aligned}
\left(\zeta_{1} \zeta_{2} \cdots \zeta_{n}\right)^{n m} & =e^{2 \pi \mathrm{i}\left\{j n a+n m\left(p_{1}+\cdots+p_{n}\right)\right\} / d} \\
& =e^{2 \pi \mathrm{i}(j n a+n m j \kappa) / d} \quad \text { as }\left(p_{1}, \ldots, p_{n}\right) \in \Lambda^{(j)} \\
& =e^{2 \pi \mathrm{i} j}=1 .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \phi \circ g_{j,}\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\phi\left(\zeta_{1} v_{\sigma(1)}, \zeta_{2} v_{\sigma(2)}, \ldots, \zeta_{n} v_{\sigma(n)}\right) \\
& \quad=\left(\zeta_{1} \zeta_{2} \cdots \zeta_{n}\right)^{n m}\left(v_{\sigma(1)} v_{\sigma(2)} \cdots v_{\sigma(n)}\right)^{n m} \\
& \quad=\left(v_{\sigma(1)} v_{\sigma(2)} \cdots v_{\sigma(n)}\right)^{n m} \quad \text { as }\left(\zeta_{1} \zeta_{2} \cdots \zeta_{n}\right)^{n m}=1 \\
& \quad=\left(v_{1} v_{2} \cdots v_{n}\right)^{n m}=\phi\left(v_{1}, v_{2}, \ldots, v_{n}\right)
\end{aligned}
$$

(ii): From Theorem $8.1(2), \Psi\left(\left[x_{1}, \ldots, x_{n}, t\right]\right)=\left[x_{1}^{1 / d}, \ldots, x_{n}^{1 / d}\right]$. Thus

$$
\begin{aligned}
\bar{\phi} \circ \Psi\left(\left[x_{1}, \ldots, x_{n}, t\right]\right) & =\bar{\phi}\left(\left[x_{1}^{1 / d}, \ldots, x_{n}^{1 / d}\right]\right)=\left(x_{1} \cdots x_{n}\right)^{n m / d} \\
& =t^{n m} \quad \text { as } x_{1} \cdots x_{n}=t^{d} \\
& =t^{N} \quad \text { as } N=n m \\
& =\bar{\Phi}\left(\left[x_{1}, \ldots, x_{n}, t\right]\right) \quad \text { by definition. } \square
\end{aligned}
$$

We turn to the general case:
$(*) \quad \gamma:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1}} \boldsymbol{x}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l}} \boldsymbol{x}_{l}^{\sigma_{l}}, e^{2 \pi \mathrm{i} / N} t\right)$.
As for Lemma 8.2, we can show the following:
THEOREM 8.3. Write $\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{C}^{n}$ as $\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{l}\right) \in \mathbb{C}^{n}=\mathbb{C}^{n_{1}} \times$ $\cdots \times \mathbb{C}^{n_{l}}$. For each permutation $\sigma_{k}$ appearing in $(*)$, let $J_{k}$ be its cycle, that $i s, J_{k}=\left\{i: v_{i} \in \boldsymbol{v}_{k}\right\}$. Then:
(1) Let $G \subset G L_{n}(\mathbb{C})$ be the small finite group in Theorem 8.1 and $\phi: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a holomorphic map given by $\phi\left(v_{1}, \ldots, v_{n}\right)=$ $\prod_{k=1}^{l}\left(\prod_{i \in J_{k}} v_{i}\right)^{L_{k}}$, where $L_{k}$ is the integer given by (6.9). Then $\phi$ is G-invariant.
(2) Let $\Phi: A_{d-1} \rightarrow \mathbb{C}$ be the $\Gamma$-invariant map given by (8.3). Under the isomorphism $\Psi: A_{d-1} / \Gamma \xrightarrow{\cong} \mathbb{C}^{n} / G$ in Theorem 8.1, $\bar{\Phi}: A_{d-1} / \Gamma \rightarrow$ $\mathbb{C}$ corresponds to the descent $\bar{\phi}: \mathbb{C}^{n} / G \rightarrow \mathbb{C}$.
9. Explicit Forms of Elements of $\widetilde{\Gamma}, H, G$

We subsequently deal with many notations - to reduce the burden of memorizing them, $H, G$ are denoted by $\bar{\Gamma}, \overline{\bar{\Gamma}}$. Recall:

- Express $\gamma=\alpha \beta$, where

$$
\left\{\begin{aligned}
& \alpha:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \\
& \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1}} \boldsymbol{x}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l}} \boldsymbol{x}_{l}^{\sigma_{l}}, e^{2 \pi \mathrm{i}(1 / N-\kappa / d)} t\right), \\
& \beta:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, t\right) \longmapsto\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{l}, e^{2 \pi \mathrm{i} \kappa / d} t\right) .
\end{aligned}\right.
$$

- Set $\Lambda^{(j)}:=\left\{\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{Z}^{n}: 0 \leq p_{i} \leq d, \sum_{i=1}^{n} \frac{p_{i}}{d} \equiv \frac{j \kappa}{d} \bmod \mathbb{Z}\right\}$ (see (4.4)).
- For $\boldsymbol{p} \in \Lambda^{(j)}$, let $\widetilde{\alpha}, \widetilde{\beta}_{j, p}$ be the lifts of $\alpha, \beta$ given by (4.8), and $\bar{\alpha}, \bar{\beta}_{j, p}$ be their descents with respect to $q$. Let $\overline{\bar{\alpha}}, \overline{\bar{\beta}}_{j, p}$ be the descents of $\bar{\alpha}, \bar{\beta}_{j, p}$ with respect to $r$.

The following then holds:

Theorem 9.1.
(1) $\widetilde{\Gamma}=\left\{\widetilde{\alpha}^{j} \widetilde{\beta}_{j, p}: \boldsymbol{p} \in \Lambda^{(j)}, j=1,2, \ldots, N\right\}$, where

$$
\left\{\begin{array}{l}
\widetilde{\alpha}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1} d} \boldsymbol{X}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l} d} \boldsymbol{X}_{l}^{\sigma_{l}}\right), \\
\widetilde{\beta}_{j, \boldsymbol{p}}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(\widetilde{\beta}_{j, \boldsymbol{p}_{1}}\left(\boldsymbol{X}_{1}\right), \ldots, \widetilde{\beta}_{j, \boldsymbol{p}_{l}}\left(\boldsymbol{X}_{l}\right)\right) .
\end{array}\right.
$$

(2) $\bar{\Gamma}=\left\{\bar{\alpha}^{j} \bar{\beta}_{j, \boldsymbol{p}}: \boldsymbol{p} \in \Lambda^{(j)}, j=1,2, \ldots, N\right\}$, where

$$
\left\{\begin{array}{l}
\bar{\alpha}:\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{l}\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / c d} \boldsymbol{u}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / c d} \boldsymbol{u}_{l}^{\sigma_{l}}\right) \\
\bar{\beta}_{j, \boldsymbol{p}}:\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{l}\right) \longmapsto\left(\left(\widetilde{\beta}_{j, \boldsymbol{p}_{1}}\right)^{m_{1}^{\prime}}\left(\boldsymbol{u}_{1}\right), \ldots,\left(\widetilde{\beta}_{j, \boldsymbol{p}_{l}}\right)^{m_{l}^{\prime}}\left(\boldsymbol{u}_{l}\right)\right) .
\end{array}\right.
$$

(3) $\overline{\bar{\Gamma}}=\left\{\overline{\bar{\alpha}}^{j} \overline{\bar{\beta}}_{j, \boldsymbol{p}}: \boldsymbol{p} \in \Lambda^{(j)}, j=1,2, \ldots, N\right\}$, where

$$
\left\{\begin{array}{l}
\overline{\bar{\alpha}}:\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{l}\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} \ell_{1} / c d} \boldsymbol{v}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} \ell_{l} / c d} \boldsymbol{v}_{l}^{\sigma_{l}}\right) \\
\overline{\bar{\beta}}_{j, \boldsymbol{p}}:\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{l}\right) \longmapsto\left(\left(\widetilde{\beta}_{j, \boldsymbol{p}_{1}}\right)^{m_{1}^{\prime} \ell_{1}}\left(\boldsymbol{v}_{1}\right), \ldots,\left(\widetilde{\beta}_{j, \boldsymbol{p}_{l}}\right)^{m_{l}^{\prime} \ell_{l}}\left(\boldsymbol{v}_{l}\right)\right) .
\end{array}\right.
$$

Namely

$$
\begin{equation*}
\underbrace{\underbrace{q_{*}}_{\sim} \tilde{\Gamma}=\left\{\widetilde{\alpha}^{j} \widetilde{\beta}_{j, p}\right\}}_{\overline{\bar{\Gamma}}=\left\{\bar{\alpha}^{j} \overline{\bar{\beta}}_{j, p}\right\}} \underbrace{p_{*}}=\left\{\gamma^{j}=\alpha^{j} \beta^{j}\right\} . \tag{9.1}
\end{equation*}
$$

Proof. (1) and (2) are already shown in Lemma 4.11. (3) follows from (2), as the descent homomorphism $r_{*}: \bar{\Gamma} \rightarrow \overline{\bar{\Gamma}}$ is surjective and the covering $r: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is given by $r:\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{l}\right) \mapsto\left(\boldsymbol{u}_{1}^{\ell_{1}}, \boldsymbol{u}_{2}^{\ell_{2}}, \ldots, \boldsymbol{u}_{l}^{\ell_{l}}\right)$ (see Lemma 7.1).

Note:

$$
\begin{array}{r|c|c|c}
\alpha, \beta \notin \Gamma & \widetilde{\alpha}, \widetilde{\beta}_{j, p} \notin \widetilde{\Gamma} & \bar{\alpha}, \bar{\beta}_{j, \boldsymbol{p}} \notin \bar{\Gamma} & \overline{\bar{\alpha}}, \overline{\bar{\beta}}_{j, \boldsymbol{p}} \notin \overline{\bar{\Gamma}} \\
\hline \alpha \beta \in \Gamma & \widetilde{\alpha}^{j} \widetilde{\beta}_{j, p} \in \widetilde{\Gamma} & \bar{\alpha}^{j} \bar{\beta}_{j, p} \in \bar{\Gamma} & \overline{\bar{\alpha}}^{j} \overline{\bar{\beta}}_{j, p} \in \overline{\bar{\Gamma}}
\end{array}
$$

Here explicitly:
Lemma 9.2. Setting $\zeta_{k}:=e^{2 \pi \mathrm{i} m_{k}^{\prime} / d}$, then for $\boldsymbol{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in$ $\Lambda^{(j)}$,
(1) $\widetilde{\beta}_{j, p}:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i} p_{1} / d} X_{1}, e^{2 \pi \mathrm{i} p_{2} / d} X_{2}, \ldots, e^{2 \pi \mathrm{i} p_{n} / d} X_{n}\right)$.
(2) $\bar{\beta}_{j, p}:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto\left(Y_{1}, Y_{2}, \ldots, Y_{l}\right)$, where

$$
\begin{aligned}
& Y_{1}=(\underbrace{\zeta_{1}^{p_{1}} X_{1}, \zeta_{1}^{p_{2}} X_{2}, \ldots, \zeta_{1}^{p_{n_{1}}} X_{n_{1}}}_{n_{1}}) \\
& Y_{2}=(\underbrace{\zeta_{2}^{p_{n_{1}+1}} X_{n_{1}+1}, \zeta_{2}^{p_{n_{1}+2}} X_{n_{1}+2}, \ldots, \zeta_{2}^{p_{n_{1}+n_{2}}} X_{n_{1}+n_{2}}}_{n_{2}}) \\
& Y_{3}=(\underbrace{\zeta_{3}^{p_{n_{1}+n_{2}+1}} X_{n_{1}+n_{2}+1}, \zeta_{3}^{p_{n_{1}+n_{2}+2}} X_{n_{1}+n_{2}+2}, \ldots, \zeta_{3}^{p_{n_{1}+n_{2}+n_{3}}} X_{n_{1}+n_{2}+n_{3}}}_{n_{3}})
\end{aligned}
$$

(3) $\overline{\bar{\beta}}_{j, p}:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto\left(Z_{1}, Z_{2}, \ldots, Z_{l}\right)$, where

$$
\begin{aligned}
& Z_{1}=(\underbrace{\zeta_{1}^{\ell_{1} p_{1}} X_{1}, \zeta_{1}^{\ell_{1} p_{2}} X_{2}, \ldots, \zeta_{1}^{\ell_{1} p_{n_{1}}} X_{n_{1}}}_{n_{1}}) \\
& Z_{2}=(\underbrace{\zeta_{2}^{\ell_{2} p_{n_{1}+1}} X_{n_{1}+1}, \zeta_{2}^{\ell_{2} p_{n_{1}+2}} X_{n_{1}+2}, \ldots, \zeta_{2}^{\ell_{2} p_{n_{1}+n_{2}}} X_{n_{1}+n_{2}}}_{n_{2}}) \\
& Z_{3}=(\underbrace{\zeta_{3}^{\ell_{3} p_{n_{1}+n_{2}+1}} X_{n_{1}+n_{2}+1}, \zeta_{3}^{\ell_{3} p_{n_{1}+n_{2}+2}} X_{n_{1}+n_{2}+2}, \ldots, \zeta_{3}^{\ell_{3} p_{n_{1}+n_{2}+n_{3}}} X_{n_{1}+n_{2}+n_{3}}}_{n_{3}})
\end{aligned}
$$

Proof. (1): Write $\boldsymbol{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ as $\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{l}\right) \in \mathbb{Z}^{n_{1}} \times \mathbb{Z}^{n_{2}} \times$ $\cdots \times \mathbb{Z}^{n_{l}}$. Note that (see Theorem 9.1 (1))

$$
\widetilde{\beta}_{j, p}:\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(\widetilde{\beta}_{j, \boldsymbol{p}_{1}}\left(\boldsymbol{X}_{1}\right), \widetilde{\beta}_{j, \boldsymbol{p}_{2}}\left(\boldsymbol{X}_{2}\right), \ldots, \widetilde{\beta}_{j, \boldsymbol{p}_{l}}\left(\boldsymbol{X}_{l}\right)\right)
$$

where $\widetilde{\beta}_{j, \boldsymbol{p}_{i}}: \boldsymbol{X}_{i}=\left(X_{j_{1}}, \ldots, X_{j_{n_{i}}}\right) \mapsto\left(e^{2 \pi \mathrm{i} p_{j_{1}} / d} X_{j_{1}}, \ldots, e^{2 \pi \mathrm{i} p_{j_{n_{i}}} / d} X_{j_{n_{i}}}\right)$. In the cooridinates $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$,

$$
\widetilde{\beta}_{j, p}:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i} p_{1} / d} X_{1}, e^{2 \pi \mathrm{i} p_{2} / d} X_{2}, \ldots, e^{2 \pi \mathrm{i} p_{n} / d} X_{n}\right)
$$

(2): Note that (see Theorem 9.1 (2))

$$
\bar{\beta}_{j, p}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(\left(\widetilde{\beta}_{j, \boldsymbol{p}_{1}}\right)^{m_{1}^{\prime}}\left(\boldsymbol{X}_{1}\right), \ldots,\left(\widetilde{\beta}_{j, \boldsymbol{p}_{l}}\right)^{m_{l}^{\prime}}\left(\boldsymbol{X}_{l}\right)\right)
$$

Writing this in the cooridinates $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ yields the assertion.
(3): Note that (see Theorem 9.1 (3))

$$
\overline{\bar{\beta}}_{j, p}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(\left(\widetilde{\beta}_{j, p_{1}}\right)^{m_{1}^{\prime} \ell_{1}}\left(\boldsymbol{X}_{1}\right), \ldots,\left(\widetilde{\beta}_{j, \boldsymbol{p}_{l}}\right)^{m_{l}^{\prime} \ell_{l}}\left(\boldsymbol{X}_{l}\right)\right)
$$

Writing this in the cooridinates $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ yields the assertion.
REMARK 9.3. If $\sigma \neq \mathrm{id}, \bar{\Gamma}(=H)$ is generally not abelian — this is also the case for $\overline{\bar{\Gamma}}(=G)$. We will determine when $\widetilde{\Gamma}$ (and $G$ ) is abelian. See Theorem 10.11.

### 9.1. Generators of $\widetilde{\Gamma}, \bar{\Gamma}(=H)$ and $\overline{\bar{\Gamma}}(=G)$

The covering maps $p, q, r$ induce surjective homomorphisms (descent homomorphisms) $p_{*}: \widetilde{\Gamma} \rightarrow \Gamma, q_{*}: \widetilde{\Gamma} \rightarrow \bar{\Gamma}, r_{*}: \bar{\Gamma} \rightarrow \overline{\bar{\Gamma}}$ (see (9.1)). As $q_{*}$ and $r_{*}$ are surjective, generators of $\widetilde{\Gamma}$ descend to those of $\bar{\Gamma}$, and then, to those of $\overline{\bar{\Gamma}}$. Subsequently we will explicitly give generators of $\widetilde{\Gamma}$ and descend them to $\bar{\Gamma}$, and then to $\overline{\bar{\Gamma}}$.

First take a lift $\widetilde{\gamma}:=\widetilde{\alpha} \widetilde{\beta}_{1, p}$ of $\gamma$ (recall $\widetilde{\alpha}^{j} \widetilde{\beta}_{j, p}$ is a lift of $\gamma^{j}$; Corollary 4.6). To simplify discussion, for $\boldsymbol{p}$ we take $\boldsymbol{q}:=(0, \ldots, 0, \stackrel{\sigma(n)}{\kappa}, 0 \ldots, 0)$ :
(9.2) $\quad \widetilde{\alpha}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1} d} \boldsymbol{X}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l} d} \boldsymbol{X}_{l}^{\sigma_{l}}\right)$,

$$
\begin{equation*}
\widetilde{\beta}_{1, \boldsymbol{q}}:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, X_{2}, \ldots, e^{2 \pi \mathrm{i} \kappa / d} X_{\sigma(n)}, \ldots, X_{n}\right) \tag{9.3}
\end{equation*}
$$

We next take lifts $\widetilde{\mathrm{id}}_{1}, \widetilde{\mathrm{id}}_{2}, \ldots, \widetilde{\mathrm{id}}_{n-1}$ of id $\in \Gamma$ as follows: (9.4) ${\underset{\mathrm{id}}{i}}:\left(X_{1}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, \ldots, X_{i-1}, e^{2 \pi \mathrm{i} / d} X_{i}, X_{i+1}, \ldots, e^{-2 \pi \mathrm{i} / d} X_{n}\right)$.

Recall that $\widetilde{\Gamma}=\left\{\widetilde{\alpha}^{j} \widetilde{\beta}_{j, p}: \boldsymbol{p} \in \Lambda^{(j)}, j=1,2, \ldots, N\right\}$ (Theorem 9.1 (1)).
Lemma 9.4. Set $\delta:=\left(\widetilde{\beta}_{1, \sigma(q)}\right)^{j}$ (note in general $\left.\delta \notin \widetilde{\Gamma}\right)$, and for simplicity write $\widetilde{\gamma}, \tilde{\mathrm{id}}_{i}$ as $\varphi, \psi_{i}$. Then:
(1) $\varphi^{j}\left(\psi_{\sigma(n)} \psi_{\sigma^{2}(n)} \cdots \psi_{\sigma^{j}(n)}\right)^{-\kappa}=\widetilde{\alpha}^{j} \delta$.
(2) For $\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right) \in \Lambda^{(j)},\left(\psi_{1}\right)^{p_{1}}\left(\psi_{2}\right)^{p_{2}} \cdots\left(\psi_{n-1}\right)^{p_{n-1}}=\delta^{-1} \widetilde{\beta}_{j, p}$.
(3) For $\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right) \in \Lambda^{(j)}$,

$$
\varphi^{j}\left(\psi_{\sigma(n)} \psi_{\sigma^{2}(n)} \cdots \psi_{\sigma^{j}(n)}\right)^{-\kappa}\left(\psi_{1}\right)^{p_{1}}\left(\psi_{2}\right)^{p_{2}} \cdots\left(\psi_{n-1}\right)^{p_{n-1}}=\widetilde{\alpha}^{j} \widetilde{\beta}_{j, p}
$$

Proof. (1): Note first that

$$
\begin{aligned}
\varphi^{j} & =\left(\widetilde{\alpha} \widetilde{\beta}_{1, \boldsymbol{q}}\right)^{j} \\
& =\widetilde{\alpha}^{j} \widetilde{\beta}_{1, \sigma^{-j+1}(\boldsymbol{q})} \cdots \widetilde{\beta}_{1, \sigma^{-1}(\boldsymbol{q})} \widetilde{\beta}_{1, \boldsymbol{q}} \quad \text { as } \widetilde{\beta}_{1, \boldsymbol{q}} \widetilde{\alpha}=\widetilde{\alpha} \widetilde{\beta}_{1, \sigma^{-1}(\boldsymbol{q})}(\text { Lemma 4.8). }
\end{aligned}
$$

Here $\left(\psi_{\sigma^{i}(n)}\right)^{-\kappa}=\left(\widetilde{\beta}_{1, \sigma^{-i+1}(\boldsymbol{q})}\right)^{-1} \widetilde{\beta}_{1, \sigma(\boldsymbol{q})}$ and $\delta=\left(\widetilde{\beta}_{1, \sigma(\boldsymbol{q})}\right)^{j}$, so

$$
\left(\psi_{\sigma(n)} \psi_{\sigma^{2}(n)} \cdots \psi_{\sigma^{j}(n)}\right)^{-\kappa}=\left(\widetilde{\beta}_{1, \sigma^{-j+1}(\boldsymbol{q})} \cdots \widetilde{\beta}_{1, \sigma^{-1}(\boldsymbol{q})} \widetilde{\beta}_{1, \boldsymbol{q}}\right)^{-1} \delta
$$

Thus $\varphi^{j}\left(\psi_{\sigma(n)} \psi_{\sigma^{2}(n)} \cdots \psi_{\sigma^{j}(n)}\right)^{-\kappa}=\widetilde{\alpha}^{j} \delta$.
(2): Since $\boldsymbol{p} \in \Lambda^{(j)}$, we have

$$
(*) \quad-\left(p_{1}+\cdots+p_{n-1}\right) / d \equiv\left(p_{n}-j \kappa\right) / d \bmod \mathbb{Z}
$$

Now

$$
\begin{aligned}
&\left(\psi_{1}\right)^{p_{1}}\left(\psi_{2}\right)^{p_{2}} \cdots\left(\psi_{n-1}\right)^{p_{n-1}}\left(X_{1}, \ldots, X_{n}\right) \\
&=\left(e^{2 \pi \mathrm{i} p_{1} / d} X_{1}, \ldots, e^{2 \pi \mathrm{i} p_{n-1} / d} X_{n-1}, e^{-2 \pi \mathrm{i}\left(p_{1}+\cdots+p_{n-1}\right) / d} X_{n}\right) \\
& \quad=\left(e^{2 \pi \mathrm{i} p_{1} / d} X_{1}, \ldots, e^{2 \pi \mathrm{i} p_{n-1} / d} X_{n-1}, e^{2 \pi \mathrm{i}\left(p_{n}-j \kappa\right) / d} X_{n}\right) \quad \text { by }(*) \\
& \quad=\delta^{-1} \widetilde{\beta}_{j, p}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}
$$

The equation of (3) is the product of (1) and (2).

From Lemma $9.4(3)$, any element of $\widetilde{\Gamma}$ is written as a product of $\widetilde{\gamma}, \widetilde{\mathrm{id}}_{i}$ ( $i=1,2, \ldots, n-1$ ), so they generate $\widetilde{\Gamma}$, therefore:

Corollary 9.5. Set $\bar{\gamma}:=q_{*}(\widetilde{\gamma}), \overline{\operatorname{id}}_{i}:=q_{*}\left(\widetilde{\mathrm{id}}_{i}\right)$ and $\overline{\bar{\gamma}}:=r_{*}(\bar{\gamma}), \overline{\overline{\mathrm{id}}}_{i}:=$ $r_{*}\left(\overline{\mathrm{id}}_{i}\right)$, then:
(1) $\widetilde{\gamma}, \widetilde{\operatorname{id}}_{1}, \widetilde{\mathrm{id}}_{2}, \ldots, \widetilde{\mathrm{id}}_{n-1}$ generate $\widetilde{\Gamma}$.
(2) $\bar{\gamma}, \overline{\mathrm{id}}_{1}, \overline{\mathrm{id}}_{2}, \ldots, \overline{\mathrm{id}}_{n-1}$ generate $\bar{\Gamma}(=H)$.
(3) $\overline{\bar{\gamma}}, \overline{\overline{\mathrm{id}}}_{1}, \overline{\overline{\mathrm{id}}}_{2}, \ldots, \overline{\overline{\mathrm{id}}}_{n-1}$ generate $\overline{\bar{\Gamma}}(=G)$.


We summarize the explicit forms of relevant automorphisms. Set $\ell_{k}:=N c / n_{k} m_{k} L_{k}(k=1,2, \ldots, l)$, where $L_{k}$ is the integer given by (6.9). Then:

Theorem 9.6.
(1) $\widetilde{\gamma}=\widetilde{\alpha} \widetilde{\beta}_{1, \boldsymbol{q}}$, where

$$
\begin{aligned}
& \left\{\begin{array}{c}
\widetilde{\alpha}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1} d} \boldsymbol{X}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l} d} \boldsymbol{X}_{l}^{\sigma_{l}}\right), \\
\widetilde{\beta}_{1, \boldsymbol{q}}:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, X_{2}, \ldots, e^{2 \pi \mathrm{i} \kappa / d} X_{\sigma(n)}, \ldots, X_{n}\right) .
\end{array}\right. \\
& \widetilde{\mathrm{id}}_{i}:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, X_{2}, \ldots, e^{2 \pi \mathrm{i} / d} X_{i}, \ldots, e^{-2 \pi \mathrm{i} / d} X_{n}\right) .
\end{aligned}
$$

(2) $\bar{\gamma}=\bar{\alpha} \bar{\beta}_{1, \boldsymbol{q}}$, where

$$
\begin{aligned}
& \left\{\begin{array}{l}
\bar{\alpha}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(e^{2 \pi \mathrm{i} \mathrm{a}_{1} / c d} \boldsymbol{X}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / c d} \boldsymbol{X}_{l}^{\sigma_{l}}\right) \\
\bar{\beta}_{1, \boldsymbol{q}}:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto \\
\quad\left(X_{1}, X_{2}, \ldots, e^{2 \pi \mathrm{i} m_{l}^{\prime} \kappa / d} X_{\sigma(n)}, \ldots, X_{n}\right) .
\end{array}\right. \\
& \quad \overline{\mathrm{id}}_{i}:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto \\
& \quad\left(X_{1}, X_{2}, \ldots, e^{2 \pi \mathrm{i} m_{k}^{\prime} / d} X_{i}, \ldots, e^{-2 \pi \mathrm{i} m_{l}^{\prime} / d} X_{n}\right) \quad\left(\text { say } X_{i} \in \boldsymbol{X}_{k}\right) .
\end{aligned}
$$

(3) $\overline{\bar{\gamma}}=\overline{\bar{\alpha}} \overline{\bar{\beta}}_{1, \boldsymbol{q}}$, where

$$
\begin{aligned}
& \left\{\begin{array}{l}
\overline{\bar{\alpha}}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} \ell_{1} / c d} \boldsymbol{X}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} \ell_{l} / c d} \boldsymbol{X}_{l}^{\sigma_{l}}\right) \\
\overline{\bar{\beta}}_{1, \boldsymbol{q}}:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto \\
\quad\left(X_{1}, X_{2}, \ldots, e^{2 \pi \mathrm{i} m_{l}^{\prime} \ell_{l} \kappa / d} X_{\sigma(n)}, \ldots, X_{n}\right) .
\end{array}\right. \\
& \overline{\overline{\mathrm{id}}}_{i}:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto \\
& \quad\left(X_{1}, X_{2}, \ldots, e^{2 \pi \mathrm{i} m_{k}^{\prime} \ell_{k} / d} X_{i}, \ldots, e^{-2 \pi \mathrm{i} m_{l}^{\prime} \ell_{l} / d} X_{n}\right) \quad\left(\text { say } X_{i} \in \boldsymbol{X}_{k}\right) .
\end{aligned}
$$

$\underset{\sim}{\text { Proof. }}$ (1): $\widetilde{\gamma}=\widetilde{\alpha} \widetilde{\beta}_{1, q}$ is the definition of $\widetilde{\gamma}$, and the explicit forms of $\widetilde{\alpha}, \widetilde{\beta}_{1, q}, \widetilde{\mathrm{id}}_{i}$ are respectively given by (9.2), (9.3), and (9.4), confirming (1). (2) is the descent of (1) with respect to $q$ : Writing $\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}^{n}$ as $\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \in \mathbb{C}^{n_{1}} \times \mathbb{C}^{n_{l}}$, then by (6.4),

$$
\begin{equation*}
q:\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(\boldsymbol{X}_{1}^{m_{1}^{\prime}}, \boldsymbol{X}_{2}^{m_{2}^{\prime}}, \ldots, \boldsymbol{X}_{l}^{m_{l}^{\prime}}\right) \tag{9.6}
\end{equation*}
$$

Similarly (3) is the descent of (2) with respect to $r:\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{l}\right) \mapsto$ $\left(\boldsymbol{u}_{1}^{\ell_{1}}, \boldsymbol{u}_{2}^{\ell_{2}}, \ldots, \boldsymbol{u}_{l}^{\ell_{l}}\right)$ (this explicit form of $r$ is given in Lemma 7.1).

Note that while $\widetilde{\mathrm{id}}_{i} \in \widetilde{\Gamma}$ is a lift of id $\in \Gamma, \widetilde{\mathrm{id}}_{i}$ itself is not the identity map; neither are its descents $\overline{\mathrm{id}}_{i}, \overline{\overline{\mathrm{id}}}_{i}$.

Lemma 9.7. The set of lifts of $\mathrm{id} \in \Gamma$ is given by

$$
\left\{\left(\widetilde{\mathrm{id}}_{1}\right)^{k_{1}}\left(\tilde{\mathrm{id}}_{2}\right)^{k_{2}} \cdots\left(\widetilde{\mathrm{id}}_{n-1}\right)^{k_{n-1}} \quad: k_{i} \in \mathbb{Z}, 0 \leq k_{i}<d\right\}
$$

Proof. For simplicity, set $\tilde{\mathrm{id}}_{\underset{k}{ }}:=\left(\widetilde{\mathrm{id}}_{1}\right)^{k_{1}}\left(\widetilde{\mathrm{id}}_{2}\right)^{k_{2}} \cdots\left(\widetilde{\mathrm{id}}_{n-1}\right)^{k_{n-1}}$, where $\boldsymbol{k}=\left(k_{1}, k_{2}, \ldots, k_{n-1}\right)$. Note that $\widetilde{\mathrm{id}}_{\boldsymbol{k}}$ is a lift of id $\in \Gamma$ as $\widetilde{\mathrm{id}}_{1}, \widetilde{\mathrm{id}}_{2}, \ldots, \widetilde{\mathrm{id}}_{n-1}$ are lifts of id $\in \Gamma$. Note next that explicitly

$$
\begin{aligned}
\tilde{\mathrm{id}}_{k}:\left(X_{1}, \ldots\right. & \left.X_{n}\right) \\
& \mapsto\left(e^{2 \pi \mathrm{i} k_{1} / d} X_{1}, \ldots e^{2 \pi \mathrm{i} k_{n-1} / d} X_{n-1}, e^{-2 \pi \mathrm{i}\left(k_{1}+\cdots+k_{n-1}\right) / d} X_{n}\right) .
\end{aligned}
$$

So $\tilde{\mathrm{id}}_{\boldsymbol{k}} \neq \widetilde{\mathrm{id}}_{\boldsymbol{l}}$ if $\boldsymbol{k} \neq \boldsymbol{l}$, and the elements of $S:=\left\{\tilde{\operatorname{id}}_{\boldsymbol{k}}: \boldsymbol{k} \in \mathbb{Z}^{n-1} \mathcal{Z}_{d} 0 \leq k_{i}<d\right\}$ are all distinct. Thus $S$ consists of $d^{n-1}$ elements. Since $p: \widetilde{A}_{d-1} \rightarrow A_{d-1}$ is $d^{n-1}$-fold, this implies that $S$ exhausts all lifts of id $\in \Gamma$.

From the explicit forms of $\widetilde{\mathrm{id}}_{i}, \overline{\mathrm{id}}_{i}, \overline{\overline{\mathrm{id}}}_{i}$ in Theorem 9.6, the following is clear:

Corollary 9.8. $\quad \tilde{\mathrm{id}}_{i} \neq \widetilde{\mathrm{id}}_{j}, \overline{\mathrm{id}}_{i} \neq \overline{\mathrm{id}}_{j}, \overline{\mathrm{id}}_{i} \neq \overline{\mathrm{id}}_{j}$ for $i \neq j$.
Consider the special case that $\sigma \in \mathfrak{S}_{n}$ is cyclic of length $n$. Then $\gamma$ is of the following form ( $a_{1}, m_{1}$ are for simplicity denoted as $a, m$ ):

$$
\begin{equation*}
\gamma:\left(x_{1}, \ldots, x_{n}, t\right) \longmapsto\left(e^{2 \pi \mathrm{i} a / n m} x_{\sigma(1)}, \ldots, e^{2 \pi \mathrm{i} a / n m} x_{\sigma(n)}, e^{2 \pi \mathrm{i} / n m} t\right) \tag{9.7}
\end{equation*}
$$

Corollary 9.9. For the cyclic group $\Gamma$ generated by (9.7), the small finite subgroup $G \subset G L_{n}(\mathbb{C})$ such that $A_{d-1} / \Gamma \cong \mathbb{C}^{n} / G$ (see Theorem 8.1) satisfies:
(1) $\widetilde{\Gamma}=H=G$, that is, the covering maps $q$ and $r$ in (8.1) are the identity maps.
(2) $G$ is generated by the automorphisms $f, g_{1}, g_{2}, \ldots, g_{n-1}$ given by

$$
f:\left(x_{1}, \ldots, x_{n}\right)
$$

$$
\mapsto\left(e^{2 \pi \mathrm{i} a / n m d} x_{\sigma(1)}, \ldots, e^{2 \pi \mathrm{i} a / n m d} x_{\sigma(n-1)}, e^{2 \pi \mathrm{i}(a+n m \kappa) / n m d} x_{\sigma(n)}\right)
$$

$$
g_{i}:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, x_{2}, \ldots, e^{2 \pi \mathrm{i} / d} x_{i}, \ldots, e^{-2 \pi \mathrm{i} / d} x_{n}\right)
$$

Proof. (1): In the present case, $\sigma$ is cyclic of length $n$, so $l=1$ in (9.6) and Lemma 7.1, and thus $q: \boldsymbol{X} \mapsto \boldsymbol{X}^{m_{1}^{\prime}}, r: \boldsymbol{u} \mapsto \boldsymbol{u}^{\ell_{1}}$. We claim that $m_{1}^{\prime}=\ell_{1}=1$ (so $q$ and $r$ are the identity maps). First since $c=\operatorname{gcd}\left(n_{1} m_{1}\right)=n_{1} m_{1}$, we have $m_{1}^{\prime}:=n_{1} m_{1} / c=1$. Next $N=\left(m_{1}^{\prime}\right)^{n_{1}} c=$ $n_{1} m_{1}$ and $L_{1}=\operatorname{lcm}\left(n_{1} m_{1}\right)=n_{1} m_{1}$, thus $\ell_{1}:=N c / n_{1} m_{1} L_{1}=1$, confirming (1).
(2): Since $\widetilde{\Gamma}=G$, this follows from Theorem 9.6 (1) (note $n_{1}, m_{1}, a_{1}$ are denoted by $n, m, a$ in the assertion).

### 9.2. Preparation to deduce relations

Recall that $\widetilde{\gamma}, \widetilde{\mathrm{id}}_{i} \in \widetilde{\Gamma}$ are lifts of $\gamma$, id $\in \Gamma$, and their descents are $\bar{\gamma}, \overline{\bar{d}}_{i} \in \bar{\Gamma}$, whose descents are $\overline{\bar{\gamma}}, \overline{\overline{\mathrm{id}}}_{i} \in \overline{\bar{\Gamma}}$. None of them are identity maps (see Theorem 9.6 for their explicit forms). Note that $i=1,2, \ldots, n-1$. Convention: Define $\widetilde{\mathrm{id}}_{n}, \overline{\mathrm{id}}_{n}, \overline{\overline{\mathrm{id}}}_{n}$ as identity maps.

Recall that $\widetilde{\Gamma}$ is generated by $\widetilde{\gamma}, \widetilde{\operatorname{id}}_{i}(i=1,2, \ldots, n-1)$, and $\bar{\Gamma}$ by $\bar{\gamma}, \overline{\mathrm{id}}_{i}$, and $\overline{\bar{\Gamma}}$ by $\overline{\bar{\gamma}}, \overline{\overline{\mathrm{id}}}_{i}$ (Corollary 9.5). We deduce relations among $\widetilde{\gamma}, \widetilde{\mathrm{id}}_{i}$ (which descend to relations among $\bar{\gamma}, \overline{\mathrm{id}}_{i}$ and then those among $\overline{\bar{\gamma}}, \overline{\overline{\mathrm{i}}}_{i}$ ). We begin with preparation. By Theorem 9.6 (1), $\widetilde{\gamma}=\widetilde{\alpha} \widetilde{\beta}_{1, \boldsymbol{q}}$, where $\boldsymbol{q}:=$ $(0, \ldots, 0, \kappa, 0, \ldots, 0)(\kappa$ lies in the $\sigma(n)$ th place $)$ and

$$
\left\{\begin{array}{l}
\widetilde{\alpha}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(e^{2 \pi \mathrm{i} a_{1} / n_{1} m_{1} d} \boldsymbol{X}_{1}^{\sigma_{1}}, \ldots, e^{2 \pi \mathrm{i} a_{l} / n_{l} m_{l} d} \boldsymbol{X}_{l}^{\sigma_{l}}\right) \\
\widetilde{\beta}_{1, \boldsymbol{q}}:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto\left(X_{1}, X_{2}, \ldots, e^{2 \pi \mathrm{i} \kappa / d} X_{\sigma(n)}, \ldots, X_{n}\right) .
\end{array}\right.
$$

REMARK 9.10. $\widetilde{\beta}_{1, \boldsymbol{p}}$ (for general $\left.\boldsymbol{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right)$ is given as follows (see Lemma 9.2 (1)):

$$
\widetilde{\beta}_{1, p}:\left(X_{1}, X_{2}, \ldots, X_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i} p_{1} / d} X_{1}, e^{2 \pi \mathrm{i} p_{2} / d} X_{2}, \ldots, e^{2 \pi \mathrm{i} p_{n} / d} X_{n}\right)
$$

Using the relation $\widetilde{\beta}_{1, p} \widetilde{\alpha}=\widetilde{\alpha} \widetilde{\beta}_{1, \sigma^{-1}(\boldsymbol{p})}$ (Lemma 4.8), we may rewrite $\widetilde{\gamma}^{N}=\underbrace{\left(\widetilde{\alpha} \widetilde{\beta}_{1, \boldsymbol{q}}\right) \cdots\left(\widetilde{\alpha} \widetilde{\beta}_{1, \boldsymbol{q}}\right)}_{N}$ as $\widetilde{\gamma}^{N}=\widetilde{\alpha}^{N}\left(\widetilde{\beta}_{1, \sigma^{-N+1}(\boldsymbol{q})} \cdots \widetilde{\beta}_{1, \sigma^{-1}(\boldsymbol{q})} \widetilde{\beta}_{1, \boldsymbol{q}}\right)$; for instance if $N=3$,

$$
\begin{aligned}
\widetilde{\gamma}^{3} & =\left(\widetilde{\alpha} \widetilde{\beta}_{1, \boldsymbol{q}}\right)\left(\widetilde{\alpha} \widetilde{\beta}_{1, \boldsymbol{q}}\right)\left(\widetilde{\alpha} \widetilde{\beta}_{1, \boldsymbol{q}}\right)=\left(\widetilde{\alpha} \widetilde{\beta}_{1, \boldsymbol{q}}\right) \widetilde{\alpha} \widetilde{\alpha} \widetilde{\beta}_{1, \sigma^{-1} \boldsymbol{q}} \widetilde{\beta}_{1, \boldsymbol{q}} \\
& =\widetilde{\alpha} \widetilde{\alpha} \widetilde{\alpha} \widetilde{\beta}_{1, \sigma^{-2}(\boldsymbol{q})} \widetilde{\beta}_{1, \sigma^{-1} \boldsymbol{q}} \widetilde{\beta}_{1, \boldsymbol{q}} .
\end{aligned}
$$

From the explicit form of $\widetilde{\beta}_{1, \boldsymbol{p}}$ (see Remark 9.10), $\widetilde{\beta}_{1, \boldsymbol{p}} \widetilde{\boldsymbol{p}}_{1, \boldsymbol{p}^{\prime}}=\widetilde{\beta}_{1, \boldsymbol{p}^{\prime}} \widetilde{\beta}_{1, \boldsymbol{p}}$ for any $\boldsymbol{p}, \boldsymbol{p}^{\prime}$. Thus

$$
\begin{equation*}
\widetilde{\gamma}^{N}=\widetilde{\alpha}^{N} \prod_{i=0}^{N-1} \widetilde{\beta}_{1, \sigma^{-i}(\boldsymbol{q})} \tag{9.8}
\end{equation*}
$$

To rewrite this, recall that $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{l}$ (cycle decomposition) and the length of $\sigma_{j}$ is $n_{j}$.

Lemma 9.11.
(i) $\sigma_{j}^{n_{j}}=$ id.
(ii) $\sigma^{n_{l}}(\boldsymbol{q})=\boldsymbol{q}$. Consequently $\sigma^{i}(\boldsymbol{q})=\sigma^{i^{\prime}}(\boldsymbol{q})$ if $i \equiv i^{\prime} \bmod n_{l}$.
(iii) $n_{l}$ divides $N$.
(iv) $\sigma^{-i}(\boldsymbol{q})=\sigma^{N-i}(\boldsymbol{q})$.

Proof. (i) is clear as $\sigma_{j}$ is a cyclic permutation of length $n_{j}$.
(ii): Since $\boldsymbol{q}:=(0, \ldots, 0, \kappa, 0, \ldots, 0)(\kappa$ lies in the $\sigma(n)$ th place $)$, we have $\sigma^{n_{l}}(\boldsymbol{q})=(0, \ldots, 0, \kappa, 0, \ldots, 0)\left(\kappa\right.$ lies in the $\sigma^{-n_{l}+1}(n)$ th place $)$. To show $\sigma^{n_{l}}(\boldsymbol{q})=\boldsymbol{q}$, it thus suffices to show $\sigma^{-n_{l}+1}(n)=\sigma(n)$, that is, $\sigma^{n_{l}}(n)=n$. Note that $n$ is contained in the cycle $J_{l}$ of $\sigma_{l}$ (indeed $J_{l}=\left\{n-n_{l}+1, \ldots, n-\right.$ $1, n\})$, so $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l-1}$ are 'irrelevant' to the transformation of $n$. Hence $\sigma(n)=\sigma_{l}(n)$, so $\sigma^{n_{l}}(n)=\sigma_{l}^{n_{l}}(n)=n\left(\right.$ as $\sigma_{l}^{n_{l}}=\mathrm{id}$ by $\left.(\mathrm{i})\right)$.
(iii): Note that

$$
\begin{aligned}
N & =\left(m_{1}^{\prime}\right)^{n_{1}} \cdots\left(m_{l}^{\prime}\right)^{n_{l}} c=\left(m_{1}^{\prime}\right)^{n_{1}} \cdots\left(m_{l}^{\prime}\right)^{n_{l}-1} m_{l}^{\prime} c \\
& =\left(m_{1}^{\prime}\right)^{n_{1}} \cdots\left(m_{l}^{\prime}\right)^{n_{l}-1} n_{l} m_{l} \quad \text { as } m_{l}^{\prime} c=n_{l} m_{l} .
\end{aligned}
$$

Thus $n_{l}$ divides $N$.
(iv): Since $n_{l}$ divides $N$, we have $N-i \equiv-i \bmod n_{l}$. Thus $\sigma^{N-i}(\boldsymbol{q})=$ $\sigma^{-i}(\boldsymbol{q})$ by (ii).

Using (iv), rewrite (9.8) as $\widetilde{\gamma}^{N}=\widetilde{\alpha}^{N} \prod_{i=0}^{N-1} \widetilde{\beta}_{1, \sigma^{i}(\boldsymbol{q})}$. This is further rewritten. For instance if $N=6$ and $n_{l}=2$,

$$
\begin{aligned}
\widetilde{\gamma}^{6} & =\widetilde{\alpha}^{6}\left(\widetilde{\beta}_{1, \boldsymbol{q}} \widetilde{\beta}_{1, \sigma^{1}(\boldsymbol{q})}\right)\left(\widetilde{\beta}_{1, \sigma^{2}(\boldsymbol{q})} \widetilde{\beta}_{1, \sigma^{3}(\boldsymbol{q})}\right)\left(\widetilde{\beta}_{1, \sigma^{4}(\boldsymbol{q})} \widetilde{\beta}_{1, \sigma^{5}(\boldsymbol{q})}\right) \\
& =\widetilde{\alpha}^{6}\left(\widetilde{\beta}_{1, \boldsymbol{q}} \widetilde{\beta}_{1, \sigma^{1}(\boldsymbol{q})}\right)^{3} \quad \text { as } \sigma^{2}(\boldsymbol{q})=\boldsymbol{q} .
\end{aligned}
$$

In general, the following holds:

$$
\begin{equation*}
\widetilde{\gamma}^{N}=\widetilde{\alpha}^{N}\left(\prod_{i=0}^{n_{l}-1} \widetilde{\beta}_{1, \sigma^{i}(\boldsymbol{q})}\right)^{N / n_{l}} \tag{9.9}
\end{equation*}
$$

Here

$$
\left\{\begin{array}{l}
\widetilde{\alpha}^{N}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \mapsto\left(e^{2 \pi \mathrm{i} a_{1} N / n_{1} m_{1} d} \boldsymbol{X}_{1} \ldots, e^{2 \pi \mathrm{i} a_{l} N / n_{l} m_{l} d} \boldsymbol{X}_{l}\right)  \tag{9.10}\\
\widetilde{\beta}_{1, \sigma^{i}(\boldsymbol{q})}:\left(X_{1}, \ldots, X_{n}\right) \mapsto\left(X_{1}, \ldots, e^{2 \pi \mathrm{i} \kappa / d} X_{\sigma_{l}^{-i+1}(n)}, \ldots, X_{n}\right)
\end{array}\right.
$$

We claim that

$$
\prod_{i=0}^{n_{l}-1} \widetilde{\beta}_{1, \sigma^{i}(\boldsymbol{q})}:\left(X_{1}, \ldots, X_{n}\right) \mapsto(X_{1}, X_{2}, \ldots, \underbrace{e^{2 \pi \mathrm{i} \kappa / d} X_{n-n_{l}+1}, \ldots, e^{2 \pi \mathrm{i} \kappa / d} X_{n}}_{n_{l}})
$$

that is,

$$
\begin{equation*}
\prod_{i=0}^{n_{l}-1} \widetilde{\beta}_{1, \sigma^{i}(\boldsymbol{q})}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \mapsto\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l-1}, e^{2 \pi \mathrm{i} \kappa / d} \boldsymbol{X}_{l}\right) \tag{9.11}
\end{equation*}
$$

Since $\widetilde{\beta}_{1, \sigma^{i}(\boldsymbol{q})}:\left(X_{1}, \ldots, X_{n}\right) \mapsto\left(X_{1}, \ldots, e^{2 \pi \mathrm{i} \kappa / d} X_{\sigma_{l}^{-i+1}(n)}, \ldots, X_{n}\right)$, the composition $\prod_{i=0}^{n_{l}-1} \widetilde{\beta}_{1, \sigma^{i}(\boldsymbol{q})}$ is the multiplication of each coordinate $X_{\sigma_{l}^{-i+1}(n)}$ $\left(i=0,1, \ldots, n_{l}-1\right)$ by $e^{2 \pi \mathrm{i} \kappa / d}$. Here

$$
\begin{aligned}
\left\{\sigma_{l}^{-i+1}(n): i=0,1, \ldots, n_{l}-1\right\} & =\left\{n-n_{l}+1, \ldots, n-1, n\right\} \\
& =\left\{j: X_{j} \in \boldsymbol{X}_{l}\right\}
\end{aligned}
$$

So $\prod_{i=0}^{n_{l}-1} \widetilde{\beta}_{1, \sigma^{i}(\boldsymbol{q})}$ is given by the multiplication of every $X_{j} \in \boldsymbol{X}_{l}$ by $e^{2 \pi \mathrm{i} \kappa / d}$, that is, of the form (9.11). Consequently

$$
\begin{align*}
&\left(\prod_{i=0}^{n_{l}-1} \widetilde{\beta}_{1, \sigma^{i}(\boldsymbol{q})}\right)^{N / n_{l}}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right)  \tag{9.12}\\
& \mapsto\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l-1}, e^{2 \pi \mathrm{i} \kappa N / n_{l} d} \boldsymbol{X}_{l}\right)
\end{align*}
$$

where recall that $n_{l}$ divides $N$ (Lemma 9.11 (iii)).
Lemma 9.12. Set $\xi_{k}:=\left\{\begin{array}{ll}e^{2 \pi \mathrm{i} a_{k} N / n_{k} m_{k} d} & (k \neq l) \\ e^{2 \pi \mathrm{i}\left(a_{l}+m_{l} \kappa\right) N / n_{l} m_{l} d} & (k=l) .\end{array}\right.$ Then:
(1) $\widetilde{\gamma}^{N}:\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(\xi_{1} \boldsymbol{X}_{1}, \xi_{2} \boldsymbol{X}_{2}, \ldots, \xi_{l} \boldsymbol{X}_{l}\right)$.
(2) $\bar{\gamma}^{N}:\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(\xi_{1}^{m_{1}^{\prime}} \boldsymbol{X}_{1}, \xi_{2}^{m_{2}^{\prime}} \boldsymbol{X}_{2}, \ldots, \xi_{l}^{m_{l}^{\prime}} \boldsymbol{X}_{l}\right)$.
(3) $\overline{\bar{\gamma}}^{N}:\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(\xi_{1}^{m_{1}^{\prime} \ell_{1}} \boldsymbol{X}_{1}, \xi_{2}^{m_{2}^{\prime} \ell_{2}} \boldsymbol{X}_{2}, \ldots, \xi_{l}^{m_{l}^{\prime} \ell_{l}} \boldsymbol{X}_{l}\right)$.

Proof. It suffices to show (1), as (2) and (3) are descents of (1). First $\widetilde{\gamma}^{N}=\widetilde{\alpha}^{N}\left(\prod_{i=0}^{n_{l}-1} \widetilde{\beta}_{1, \sigma^{i}(\boldsymbol{q})}\right)^{N / n_{l}}$ (see (9.9)). By (9.10) and (9.12), setting $\alpha:=e^{2 \pi \mathrm{i} a_{l} N / n_{l} m_{l} d}$ and $\beta:=e^{2 \pi \mathrm{i} \kappa N / n_{l} d}$, then

$$
\widetilde{\gamma}^{N}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(\xi_{1} \boldsymbol{X}_{1}, \ldots, \xi_{l-1} \boldsymbol{X}_{l-1}, \alpha \beta \boldsymbol{X}_{l}\right)
$$

Here $\alpha \beta=e^{2 \pi \mathrm{i} a_{l} N / n_{l} m_{l} d} e^{2 \pi \mathrm{i} \kappa N / n_{l} d}=e^{2 \pi \mathrm{i}\left(a_{l}+m_{l} \kappa\right) N / n_{l} m_{l} d}=\xi_{l}$, so

$$
\widetilde{\gamma}^{N}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(\xi_{1} \boldsymbol{X}_{1}, \ldots, \xi_{l} \boldsymbol{X}_{l}\right)
$$

### 9.3. Relations between generators

We keep the notation above. We claim that the following relation holds:

$$
\begin{equation*}
\widetilde{\gamma}^{N}=\tilde{\mathbf{i d}}_{1} \tilde{\mathbf{i d}}_{2} \cdots \tilde{\mathbf{i d}}_{l} \tag{9.13}
\end{equation*}
$$

where $\widetilde{\mathbf{i d}}_{k}$ is defined as follows: Write $\{1,2, \ldots, n\}=J_{1} \amalg J_{2} \amalg \cdots \amalg J_{l}$ (the cycle decomposition, where $J_{k}$ is the cycle of $\sigma_{k}$ ), then

$$
\tilde{\mathbf{i d}}_{k}:= \begin{cases}\prod_{i \in J_{k}}\left(\tilde{\mathrm{id}}_{i}\right)^{a_{k} N / n_{k} m_{k}} & (k \neq l) \\ \prod_{i \in J_{l}}\left(\widetilde{\mathrm{id}}_{i}\right)^{\left(a_{l}+m_{l} \kappa\right) N / n_{l} m_{l}} & (k=l)\end{cases}
$$

More explicitly, letting $f_{k}: \mathbb{C}^{n_{l}} \rightarrow \mathbb{C}^{n_{l}}(k=1,2, \ldots, l)$ be the automorphism given by $\boldsymbol{X}_{l}=\left(X_{j_{1}}, \ldots, X_{j_{n_{l}}}\right) \mapsto\left(X_{j_{1}}, \ldots, X_{j_{n_{l}-1}}, \xi_{k}^{-n_{k}} X_{j_{n_{l}}}\right)$, then
(9.14) $\tilde{\mathbf{i d}}_{k}: \begin{cases}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \mapsto\left(\boldsymbol{X}_{1}, \ldots, \xi_{k} \boldsymbol{X}_{k} \ldots, \boldsymbol{X}_{l-1}, f_{k}\left(\boldsymbol{X}_{l}\right)\right) & \text { if } k \neq l, \\ \left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \mapsto\left(\boldsymbol{X}_{1} \ldots, \boldsymbol{X}_{l-1}, \xi_{l} f_{l}\left(\boldsymbol{X}_{l}\right)\right) & \text { if } k=l .\end{cases}$

So

$$
\tilde{\mathbf{i d}}_{1} \tilde{\mathbf{i d}}_{2} \cdots \tilde{\mathbf{i d}}_{l}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \mapsto\left(\xi_{1} \boldsymbol{X}_{1} \ldots, \xi_{l-1} \boldsymbol{X}_{l-1}, \xi_{l} f_{1} f_{2} \cdots f_{l}\left(\boldsymbol{X}_{l}\right)\right)
$$

Here $f_{1} f_{2} \cdots f_{l}=1$, indeed $\xi_{1}^{-n_{1}} \xi_{2}^{-n_{2}} \cdots \xi_{l}^{-n_{l}}=e^{-2 \pi \mathrm{i} N\left(a_{1} / m_{1}+\cdots+a_{l} / m_{l}+\kappa\right) / d}=$ $e^{-2 \pi \mathrm{i} d / d}=1$. Thus $\widetilde{\mathbf{i d}}_{1} \tilde{\mathbf{i d}}_{2} \cdots \tilde{\mathbf{i d}}_{l}=\widetilde{\gamma}^{N}$.

Lemma 9.13.
(1.a) For any $k, \tilde{\mathbf{i d}}_{k}=1 \Longleftrightarrow \xi_{k}=1$.
(1.b) $\tilde{\mathbf{i d}}_{1}=\tilde{\mathbf{i d}}_{2}=\cdots=\tilde{\mathbf{i d}}_{l}=1 \Longleftrightarrow \widetilde{\gamma}^{N}=1$.

Proof. (1.a) is immediate from (9.14).
(1.b): From Lemma 9.12 (1), $\widetilde{\gamma}^{N}=1 \Longleftrightarrow \xi_{1}=\xi_{2}=\cdots=\xi_{l}=1$. This and (1.a) gives (1.b).

Corresponding to the relation $\widetilde{\gamma}^{N}=\tilde{\mathbf{i d}}_{1} \tilde{\mathbf{i d}}_{2} \cdots \tilde{\mathbf{i d}}_{l}, \bar{\gamma}^{N}=\overline{\mathbf{i d}}_{1} \overline{\mathbf{i d}}_{2} \cdots \overline{\mathbf{i d}}_{l}$ and $\overline{\bar{\gamma}}^{N}=\overline{\overline{\mathbf{i d}}}_{1} \overline{\mathbf{i d}}_{2} \cdots \overline{\overline{\mathbf{i d}}}_{l}$, where explicitly
$\overline{\mathbf{i d}}_{k}=\left\{\begin{array}{ll}\prod_{i \in J_{k}}\left(\overline{\mathrm{id}}_{i}\right)^{a_{k} N / n_{k} m_{k}}, \\ \prod_{i \in J_{l}}\left(\overline{\mathrm{id}}_{i}\right)^{\left(a_{l}+m_{l} \kappa\right) N / n_{l} m_{l}},\end{array}, \quad \overline{\overline{\mathbf{i d}}}_{k}= \begin{cases}\prod_{i \in J_{k}}\left(\overline{\overline{\mathrm{id}}}_{i}\right)^{a_{k} N / n_{k} m_{k}} & (k \neq l), \\ \prod_{i \in J_{l}}\left(\overline{\overline{\mathrm{id}}}_{i}\right)^{\left(a_{l}+m_{l} \kappa\right) N / n_{l} m_{l}} & (k=l) .\end{cases}\right.$

Lemma 9.14.
(2.a) For any $k, \overline{\mathbf{i d}}_{k}=1 \Longleftrightarrow \xi_{k}^{m_{k}^{\prime}}=1$ and $\xi_{k}^{-n_{k} m_{l}^{\prime}}=1$.
(2.b) $\overline{\mathbf{i d}}_{1}=\overline{\mathbf{i d}}_{2}=\cdots=\overline{\mathbf{i d}}_{l}=1 \Longrightarrow \bar{\gamma}^{N}=1$.

Proof. (2.a): From (9.14), $\overline{\mathbf{i d}}_{k}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \mapsto\left(\boldsymbol{X}_{1}, \ldots, \xi_{k}^{m_{k}^{\prime}} \boldsymbol{X}_{k}\right.$, $\left.\ldots, \boldsymbol{X}_{l-1}, f_{k}^{m_{l}^{\prime}}\left(\boldsymbol{X}_{l}\right)\right)$. Here $f_{k}^{m_{l}^{\prime}}=1 \Longleftrightarrow \xi_{k}^{-n_{k} m_{l}^{\prime}}=1$, so the assertion holds.
(2.b): From Lemma $9.12(2), \bar{\gamma}^{N}=1 \Longleftrightarrow \xi_{1}^{m_{1}^{\prime}}=\xi_{2}^{m_{2}^{\prime}}=\cdots=\xi_{l}^{m_{l}^{\prime}}=1$. This and (2.a) gives (2.b).

REmark 9.15. In (2.b), " " does not hold: Since $m_{k}^{\prime}(k \neq l)$ does not divide $n_{k} m_{l}^{\prime}$, even if $\xi_{k}^{m_{k}^{\prime}}=1$, in general $\xi_{k}^{-n_{k} m_{l}^{\prime}} \neq 1\left(\right.$ that is, $\left.\overline{\mathbf{i d}}_{k} \neq 1\right)$.

From (9.14),

$$
\overline{\overline{\mathbf{i d}}}_{k}:\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{l}\right) \longmapsto\left(\boldsymbol{X}_{1}, \ldots, \xi_{k}^{m_{k}^{\prime} \ell_{k}} \boldsymbol{X}_{k} \ldots, \boldsymbol{X}_{l-1}, f_{k}^{m_{l}^{\prime} \ell_{l}}\left(\boldsymbol{X}_{l}\right)\right)
$$

where $f_{k}^{m_{l}^{\prime} \ell_{l}}: \boldsymbol{X}_{l}=\left(X_{j_{1}}, \ldots, X_{j_{n_{l}}}\right) \mapsto\left(X_{j_{1}}, \ldots, X_{j_{n_{l}-1}}, \xi_{k}^{-n_{k} m_{l}^{\prime} \ell_{l}} X_{j_{n_{l}}}\right)$. Here if $\xi_{k}^{m_{k}^{\prime}}=1$, then $\xi_{k}^{-n_{k} m_{l}^{\prime} \ell_{l}}=1$; otherwise $\overline{\overline{\mathbf{i d}}}_{k} \in \overline{\bar{\Gamma}}$ is a pseudo-reflection, but this
contradicts the fact that $\overline{\bar{\Gamma}}(=G)$ is a small group (Theorem 8.1 (1)). This proves (1) of the following ((2) is immediate from (1)):

Lemma 9.16. For any $k$,
(1) If $\xi_{k}^{m_{k}^{\prime}}=1$, then $\xi_{k}^{-n_{k} m_{l}^{\prime} \ell_{l}}=1$.
(2) $\overline{\overline{\mathbf{i d}}}_{k}=1 \Longleftrightarrow \xi_{k}^{m_{k}^{\prime} \ell_{k}}=1$.

From Lemma $9.12(3), \overline{\bar{\gamma}}^{N}=1 \Longleftrightarrow \xi_{1}^{m_{1}^{\prime} \ell_{1}}=\xi_{2}^{m_{2}^{\prime} \ell_{2}}=\cdots=\xi_{l}^{m_{l}^{\prime} \ell_{l}}=1$. This combined with Lemma 9.16 (2) gives:

LEMMA 9.17. $\overline{\overline{\mathbf{i d}}}_{1}=\overline{\overline{\mathbf{i d}}}_{2}=\cdots=\overline{\overline{\mathbf{i d}}}_{l}=1 \Longleftrightarrow \overline{\bar{\gamma}}^{N}=1$.

We summarize the above results as follows:

Proposition 9.18.
(1) $\widetilde{\gamma}^{N}=\tilde{\mathbf{i d}}_{1} \tilde{\mathbf{i d}}_{2} \cdots \tilde{\mathbf{i d}}_{l}$. Here $\tilde{\mathbf{i d}}_{1}=\tilde{\mathbf{i d}}_{2}=\cdots=\tilde{\mathbf{i d}}_{l}=1 \Longleftrightarrow \widetilde{\gamma}^{N}=1$.
(2) $\bar{\gamma}^{N}=\overline{\mathbf{i d}}_{1} \overline{\mathbf{i d}}_{2} \cdots \overline{\mathbf{i d}}_{l}$.
(3) $\overline{\bar{\gamma}}^{N}=\overline{\overline{\mathbf{i d}}}_{1} \overline{\overline{\mathbf{i d}}}_{2} \cdots \overline{\overline{\mathbf{i d}}}_{l}$. Here $\overline{\overline{\mathbf{i d}}}_{1}=\overline{\overline{\mathbf{i d}}}_{2}=\cdots=\overline{\overline{\mathbf{i d}}}_{l}=1 \Longleftrightarrow \overline{\bar{\gamma}}^{N}=1$.

For (2), we merely have: $\overline{\mathbf{i d}}_{1}=\overline{\mathbf{i d}}_{2}=\cdots=\overline{\mathbf{i d}}_{l}=1 \Longrightarrow \bar{\gamma}^{N}=1$.
Another relation. There is another relation among $\widetilde{\gamma}, \widetilde{\mathrm{id}}_{i}$ (and also among $\bar{\gamma}, \overline{\mathrm{id}}_{i}$ and among $\left.\overline{\bar{\gamma}}, \overline{\overline{\mathrm{id}}}_{i}\right)$ :

Lemma 9.19. For each $i=1,2, \ldots, n-1$,
(1) $\widetilde{\mathrm{id}}_{i} \widetilde{\gamma}=\widetilde{\gamma} \widetilde{\mathrm{id}}_{\sigma(i)}\left(\widetilde{\mathrm{id}}_{\sigma(n)}\right)^{-1}$.
(2) $\overline{\mathrm{id}}_{i} \bar{\gamma}=\bar{\gamma} \overline{\mathrm{id}}_{\sigma(i)}\left(\overline{\mathrm{id}}_{\sigma(n)}\right)^{-1}$.
(3) $\overline{\overline{\mathrm{id}}}_{i} \overline{\bar{\gamma}}=\overline{\bar{\gamma}}_{\overline{\mathrm{id}}}^{\sigma(i)}\left(\overline{\overline{\mathrm{id}}}_{\sigma(n)}\right)^{-1}$.

In particular if $\sigma(i)=i$, then $\tilde{\mathrm{id}}_{i} \widetilde{\gamma}=\widetilde{\gamma} \widetilde{\mathrm{id}}_{i}\left(\widetilde{\mathrm{id}}_{\sigma(n)}\right)^{-1}, \overline{\mathrm{id}}_{i} \bar{\gamma}=\bar{\gamma} \overline{\mathrm{id}}_{i}\left(\overline{\mathrm{id}}_{\sigma(n)}\right)^{-1}$, and $\overline{\overline{\mathrm{id}}}_{i} \overline{\bar{\gamma}}=\overline{\bar{\gamma}} \overline{\overline{\mathrm{id}}}_{i}\left(\overline{\overline{\mathrm{id}}}_{\sigma(n)}\right)^{-1}$ (these indicate that $\widetilde{\Gamma}, \bar{\Gamma}$ and $\overline{\bar{\Gamma}}$ are not abelian. Indeed they are not except for $\sigma=\mathrm{id}$ or $n=d=2$ (Theorem 10.11)).

Proof. (1) can be shown as in the proof of Lemma 4.8. (2) and (3) are the descents of (1).

REMARK 9.20. If $\sigma(n)=n$, then $\tilde{\mathrm{id}}_{\sigma(n)}$ is the identity map ( $\operatorname{\text {as}} \tilde{\mathrm{id}}_{\sigma(n)}=$ $\widetilde{\mathrm{id}}_{n}$ is the identity map), thus (1) becomes $\widetilde{\sim}_{i d} \widetilde{\gamma}=\widetilde{\gamma} \widetilde{\mathrm{id}}_{\sigma(i)}$. In particular if $\sigma$ is the identity, then $\widetilde{\mathrm{id}}_{i} \widetilde{\gamma}=\widetilde{\gamma} \widetilde{\mathrm{id}}_{i}$. This implies that $\widetilde{\Gamma}$ is abelian. Accordingly $\bar{\Gamma}$ and $\overline{\bar{\Gamma}}$ are abelian.

## 10. When $G$ is Abelian?

We will determine when $G(=\overline{\bar{\Gamma}})$ is abelian. We begin with preparation. Recall that $G$ is generated by $\overline{\bar{\gamma}}, \overline{\overline{\mathrm{i}}}_{i}(i=1,2, \ldots, n-1)$ (Corollary $\left.9.5(3)\right)$.

LEmMA 10.1. Set $f:=\overline{\bar{\gamma}}$ and $g_{i}:=\overline{\overline{\mathrm{id}}}_{i}(i=1,2, \ldots, n-1)$. Then:
(1) $G$ is abelian if and only if $\left(g_{i}\right)^{-1} g_{\sigma(i)}=g_{\sigma(n)}$ for every $i$.
(2) Suppose that $G$ is abelian. If $\sigma=\mathrm{id}$, then $g_{\sigma(n)}=\mathrm{id}($ so $\sigma(n)=n)$. Otherwise $g_{\sigma(n)} \neq \mathrm{id}($ so $\sigma(n) \neq n)$.

Proof. (1): As $G$ is generated by $f, g_{i}(i=1,2, \ldots, n-1)$ it is abelian precisely when $g_{i} f=f g_{i}$ for every $i$. By Lemma 9.19 (3), this is equivalent to $g_{i}=g_{\sigma(i)}\left(g_{\sigma(n)}\right)^{-1}$ for every $i$.
(2): If $\sigma=\mathrm{id}$, then $g_{\sigma(n)}=g_{n}=\mathrm{id}$. We next show that if $\sigma \neq \mathrm{id}$, then $g_{\sigma(n)} \neq \mathrm{id}$. Since $G$ is abelian, $\left(g_{i}\right)^{-1} g_{\sigma(i)}=g_{\sigma(n)}$ by (1). Thus if $g_{\sigma(n)}=\mathrm{id}$, then $\left(g_{i}\right)^{-1} g_{\sigma(i)}=\mathrm{id}$, so $g_{i}=g_{\sigma(i)}$. This implies $i=\sigma(i)$ (note: $g_{i}=g_{j} \Leftrightarrow$ $i=j$ by Corollary 9.8). Hence $\sigma=\mathrm{id}$, contradicting the assumption.

Lemma 10.2. If $\sigma \neq \mathrm{id}$ and $G$ is abelian, then $\{1, \sigma(1)\}=\{2, \sigma(2)\}=$ $\cdots=\{n, \sigma(n)\}$ (as sets).

Proof. Since $G$ is abelian, $\left(g_{i}\right)^{-1} g_{\sigma(i)}=g_{\sigma(n)}$ for every $i$ (Lemma 10.1 (1)). We explicitly give both sides. First from Theorem 9.6 (3), $g_{i}$ and $g_{\sigma(i)}$
are given by ( say $x_{i} \in \boldsymbol{x}_{k}$, so $x_{\sigma(i)} \in \boldsymbol{x}_{k}$ ):

$$
\begin{aligned}
& g_{i}:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \longmapsto\left(x_{1}, x_{2}, \ldots, e^{2 \pi \mathrm{i} m_{k}^{\prime} \ell_{k} / d} x_{i}, \ldots, e^{-2 \pi \mathrm{i} m_{l}^{\prime} \ell_{l} / d} x_{n}\right), \\
& g_{\sigma(i)}:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \longmapsto\left(x_{1}, x_{2}, \ldots, e^{2 \pi \mathrm{i} m_{k}^{\prime} \ell_{k} / d} x_{\sigma(i)}, \ldots, e^{-2 \pi \mathrm{i} m_{l}^{\prime} \ell_{l} / d} x_{n}\right) .
\end{aligned}
$$

Accordingly

$$
\begin{aligned}
\left(g_{i}\right)^{-1} g_{\sigma(i)}:\left(x_{1}, \ldots\right. & \left., x_{n}\right) \\
& \mapsto\left(x_{1}, \ldots, e^{-2 \pi \mathrm{i} m_{k}^{\prime} \ell_{k} / d} x_{i}, \ldots, e^{2 \pi \mathrm{i} m_{k}^{\prime} \ell_{k} / d} x_{\sigma(i)}, \ldots, x_{n}\right)
\end{aligned}
$$

Note next that as $\sigma \neq \mathrm{id}$, we have $\sigma(n) \neq n$ (Lemma $10.1(2))$. From Theorem 9.6 (3),

$$
g_{\sigma(n)}:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \longmapsto\left(x_{1}, x_{2}, \ldots, e^{2 \pi \mathrm{i} m_{l}^{\prime} \ell_{l} / d} x_{\sigma(n)}, \ldots, e^{-2 \pi \mathrm{i} m_{l}^{\prime} \ell_{l} / d} x_{n}\right) .
$$

As $\left(g_{i}\right)^{-1} g_{\sigma(i)}=g_{\sigma(n)}$, we have $\{i, \sigma(i)\}=\{n, \sigma(n)\}$ for every $i$.
Corollary 10.3. If $\sigma \neq$ id and $G$ is abelian, then $n=2$ and $\sigma=$ (12).

Proof. By Lemma 10.2, $\{1, \sigma(1)\}=\{2, \sigma(2)\}=\cdots=\{n, \sigma(n)\}$. This equation indeed holds for $n=2, \sigma=(12)$, as $\{1,2\}=\{2,1\}$. In contrast, this fails for $n \geq 3$. For instance, if $n=3$ and $\sigma=(123)$, then $\{1,2\}=\{2,3\}=\{3,1\}$, which is absurd. The general case is similarly confirmed.

We revive the notation $\overline{\bar{\gamma}}, \overline{\overline{i d}}_{i}$ for $f, g_{i}$. Recall that $A_{d-1} / \Gamma \cong \mathbb{C}^{n} / G$ as well as the following diagram:


Lemma 10.4. Suppose $n=2$ and $\sigma=(12)$. Then:
(A) The covering maps $q, r$ in (10.1) are the identity maps. Accordingly $\widetilde{\Gamma}=\bar{\Gamma}=G$ and $\widetilde{\gamma}=\bar{\gamma}=\overline{\bar{\gamma}}, \widetilde{\mathrm{id}}_{i}=\overline{\mathrm{id}}_{i}=\overline{\overline{\mathrm{id}}}_{i}$.
(B) $G$ is abelian if and only if $d=2$.

Proof. Since $\sigma=(12)$ is cyclic, (A) follows from Corollary 9.9 (1). We next show (B). For simplicity, set $\psi_{i}:=\tilde{\mathrm{id}}_{i}$ and $g_{i}:=\overline{\overline{\mathrm{id}}}_{i}$. By (A) in the present case, $\psi_{i}=g_{i}$. By Lemma 10.1 (1), $G$ is abelian if and only if $\left(g_{i}\right)^{-1} g_{\sigma(i)}=g_{\sigma(n)}$. Substituting $n=2, \sigma=(12)$ and $\psi_{i}=g_{i}$ into this equation yields $\left(\psi_{1}\right)^{-1} \psi_{2}=\psi_{1}$, so $\left(\psi_{1}\right)^{2}=$ id. By Theorem $9.6(1)$, this is equivalent to $\left(e^{2 \pi \mathrm{i} / d}\right)^{2}=1$, that is, $d=2$.

Hence:
Proposition 10.5. $\sigma \neq \mathrm{id}$ and $G$ is abelian if and only if $n=2$, $\sigma=(12)$ and $d=2$.

In this case $G$ is actually cyclic. To see this, note first that when $n=2$ and $\sigma=(12), G$ is generated by $\overline{\bar{\gamma}}, \overline{\overline{i d}}_{1}$ (Corollary 9.5 (3)) and $\widetilde{\gamma}=\overline{\bar{\gamma}}$, $\widetilde{\mathrm{id}}_{i}=\overline{\overline{\mathrm{id}}}_{i}$ (Lemma $\left.10.4(\mathrm{~A})\right)$ and $2=d=2 a+2 m \kappa$, so $a=1$ and $\kappa=0$. Then from Theorem 9.6 (1),

$$
\begin{aligned}
& \overline{\bar{\gamma}}(=\widetilde{\gamma}):\left(x_{1}, x_{2}\right) \longmapsto\left(e^{2 \pi \mathrm{i} / 4 m} x_{2}, e^{2 \pi \mathrm{i} / 4 m} x_{1}\right), \\
& \overline{\overline{\mathrm{id}}}_{1}\left(=\widetilde{\mathrm{id}}_{1}\right):\left(x_{1}, x_{2}\right) \longmapsto\left(e^{2 \pi \mathrm{i} / 2} x_{1}, e^{2 \pi \mathrm{i} / 2} x_{2}\right) .
\end{aligned}
$$

Hence $\overline{\overline{\mathrm{id}}}_{1}=(\overline{\bar{\gamma}})^{2 m}$, so $G$ is generated by $\overline{\bar{\gamma}}$. This confirms (2) of the following; (1) is already shown in Remark 9.20.

Theorem 10.6. Whether $G$ is abelian depends on $\sigma, n$, and $d$. More precisely:
(1) If $\sigma=$ id, then $G$ is always abelian. (If moreover $n=2, G$ is cyclic ([SaTa] Theorem 2.1, p. 682 - originally proved in [Tak])).
(2) If $\sigma \neq$ id, then $G$ is rarely abelian - in fact only when $n=2$ and $d=2($ and in which case $G$ is cyclic generated by $\bar{\gamma})$.

For (2), we will determine when $\widetilde{\Gamma}$ is abelian. The following is needed.
Lemma 10.7. For each $i=1,2, \ldots, n-1$,

$$
\widetilde{\mathrm{id}}_{i}=\widetilde{\alpha}^{N} \widetilde{\beta}_{N, \boldsymbol{p}_{i}} \quad \text { for some } \boldsymbol{p}_{i} \in \Lambda^{(N)}
$$

where as in (4.4),

$$
\begin{align*}
\Lambda^{(N)}=\left\{\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{Z}^{n}: 0 \leq\right. & p_{i}<d,  \tag{10.2}\\
& \left.\sum_{i=1}^{n} \frac{p_{i}}{d} \equiv \frac{N \kappa}{d} \bmod \mathbb{Z}\right\} .
\end{align*}
$$

Proof. Since $\tilde{\mathrm{id}}_{i}$ is a lift of $1\left(=\gamma^{N}\right) \in \Gamma$, this follows from Corollary 4.6.

For $\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right) \in \Lambda^{(j)}$, the automorphism $\widetilde{\beta}_{j, p}$ is given by

$$
\widetilde{\beta}_{j, p}:\left(X_{1}, \ldots, X_{n}\right) \longmapsto\left(e^{2 \pi \mathrm{i} p_{1} / d} X_{1}, \ldots, e^{2 \pi \mathrm{i} p_{n} / d} X_{n}\right) \quad(\text { Lemma } 9.2(1)) .
$$

Thus

$$
\begin{cases}(*) & \widetilde{\beta}_{j, \boldsymbol{p}} \widetilde{\beta}_{j^{\prime}, \boldsymbol{p}^{\prime}}=\widetilde{\beta}_{j^{\prime}, \boldsymbol{p}^{\prime}} \widetilde{\beta}_{j, \boldsymbol{p}} \text { for any } \boldsymbol{p} \in \Lambda^{(j)}, \boldsymbol{p}^{\prime} \in \Lambda^{\left(j^{\prime}\right)},  \tag{10.3}\\ (* *) & \widetilde{\beta}_{j, \boldsymbol{p}}=\widetilde{\beta}_{j^{\prime}, \boldsymbol{p}^{\prime}}^{\Longleftrightarrow} \boldsymbol{p}=\boldsymbol{p}^{\prime}\end{cases}
$$

Actually: $\widetilde{\Gamma}$ is abelian $\Longleftrightarrow \sigma=$ id or $n=d=2$. The following is the first step to show this.

Lemma 10.8. $\widetilde{\Gamma}$ is abelian $\Longleftrightarrow \sigma\left(\boldsymbol{p}_{i}\right)=\boldsymbol{p}_{i}$ for every $i$.
(Notation: For $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, set $\sigma(\boldsymbol{x}):=\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$. So $\sigma(\boldsymbol{x})=\boldsymbol{x}$ means $x_{\sigma(1)}=x_{1} \ldots, x_{\sigma(n)}=x_{n}$, i.e. $\sigma$ fixes all elements of $\boldsymbol{x}$.)

Proof. Since $\widetilde{\Gamma}$ is generated by $\widetilde{\gamma}$ and $\widetilde{\mathrm{id}}_{i}(i=1,2, \ldots, n-1)$ (Corollary 9.5 (1)), we have

$$
\widetilde{\Gamma} \text { is abelian } \Longleftrightarrow \widetilde{\gamma} \widetilde{\mathrm{id}}_{i}=\tilde{\mathrm{id}}_{i} \widetilde{\gamma} \text { for every } i
$$

Since $\widetilde{\gamma}=\widetilde{\alpha} \widetilde{\beta}_{1, \boldsymbol{q}}($ Theorem $9.6(1))$ and $\widetilde{\mathrm{id}}_{i}=\widetilde{\alpha}^{N} \widetilde{\beta}_{N, \boldsymbol{p}_{i}}$ for some $\boldsymbol{p}_{i} \in \Lambda^{(N)}$ (Lemma 10.7), the condition on R.H.S. is rewritten as

$$
\widetilde{\alpha} \widetilde{\beta}_{1, q} \widetilde{\alpha}^{N} \widetilde{\beta}_{N, p_{i}}=\widetilde{\alpha}^{N} \widetilde{\beta}_{N, p_{i}} \widetilde{\alpha} \widetilde{\beta}_{1, \boldsymbol{q}} \text { for every } i
$$

By Lemma 4.8, $\widetilde{\beta}_{N, \boldsymbol{p}_{i}} \widetilde{\alpha}=\widetilde{\alpha} \widetilde{\beta}_{N, \sigma^{-1}\left(\boldsymbol{p}_{i}\right)}$ and $\widetilde{\beta}_{1, \boldsymbol{q}} \widetilde{\alpha}^{N}=\widetilde{\alpha}^{N} \widetilde{\beta}_{1, \sigma^{-N}(\boldsymbol{q})}$. Here $\widetilde{\beta}_{1, \sigma^{-N}(\boldsymbol{q})}=\widetilde{\beta}_{1, \boldsymbol{q}}\left(\right.$ as $\left.\sigma^{-N}=\mathrm{id}\right)$, thus
$\widetilde{\Gamma}$ is abelian $\Longleftrightarrow \widetilde{\alpha}^{N+1} \widetilde{\beta}_{1, \boldsymbol{q}} \widetilde{\beta}_{N, \boldsymbol{p}_{i}}=\widetilde{\alpha}^{N+1} \widetilde{\beta}_{N, \sigma^{-1}\left(\boldsymbol{p}_{i}\right)} \widetilde{\beta}_{1, \boldsymbol{q}},{ }^{\forall} i$

$$
\begin{aligned}
& \Longleftrightarrow \widetilde{\beta}_{1, \boldsymbol{q}} \widetilde{\beta}_{N, \boldsymbol{p}_{i}}=\widetilde{\beta}_{N, \sigma^{-1}\left(\boldsymbol{p}_{i}\right)} \widetilde{\beta}_{1, \boldsymbol{q}},{ }_{i} \\
& \Longleftrightarrow \widetilde{\beta}_{N, \boldsymbol{p}_{i}} \widetilde{\beta}_{1, \boldsymbol{q}}=\widetilde{\beta}_{N, \sigma^{-1}\left(\boldsymbol{p}_{i}\right)} \widetilde{\beta}_{1, \boldsymbol{q}},{ }^{\forall} \quad \text { by }(*) \text { of }(10.3) \\
& \Longleftrightarrow \widetilde{\beta}_{N, \boldsymbol{p}_{i}}=\widetilde{\beta}_{N, \sigma^{-1}\left(\boldsymbol{p}_{i}\right)},{ }_{i} \\
& \Longleftrightarrow \boldsymbol{p}_{i}=\sigma^{-1}\left(\boldsymbol{p}_{i}\right),{ }^{\forall} \quad \text { by }(* *) \text { of }(10.3) . \square
\end{aligned}
$$

Furthermore:
Proposition 10.9. The following are equivalent:
(1) $\widetilde{\Gamma}$ is abelian.
(2) $\sigma(\boldsymbol{p})=\boldsymbol{p}$ for any $\boldsymbol{p} \in \Lambda^{(N)}$.
(3) $\sigma=\mathrm{id}$ or $n=d=2$.
(From the equivalence of (1) and (3), in most cases $\widetilde{\Gamma}$ is not abelian.)
Proof. " 11 (2)" was shown as Lemma 4.9.
$(2) \Longrightarrow(1)$ : If $\sigma(\boldsymbol{p})=\boldsymbol{p}$ for every $\boldsymbol{p} \in \Lambda^{(N)}$, then in particular $\sigma\left(\boldsymbol{p}_{i}\right)=\boldsymbol{p}_{i}$ for every $i$. The assertion thus follows from Lemma 10.8.
$(3) \Longrightarrow(2)$ : First if $\sigma=\mathrm{id},(2)$ is obvious. Next if $n=d=2$, then either $\sigma=\mathrm{id}$ or $\sigma=(12)$. It suffices to consider the latter case - for which $2=d=2 a+2 m \kappa$, so $a=1$ and $\kappa=0$, accordingly (10.2) is

$$
\begin{aligned}
\Lambda^{(N)} & =\left\{\left(p_{1}, p_{2}\right) \in \mathbb{Z}^{2}: 0 \leq p_{i}<2, \frac{p_{1}+p_{2}}{2} \equiv 0 \bmod \mathbb{Z}\right\} \\
& =\{(0,0),(1,1)\}
\end{aligned}
$$

Then for $\boldsymbol{p} \in \Lambda^{(N)}$, clearly $\sigma(\boldsymbol{p})=\boldsymbol{p}$ (note: for $\boldsymbol{p}=\left(p_{1}, p_{2}\right), \sigma(\boldsymbol{p})=\boldsymbol{p}$ precisely when $\left.p_{\sigma(1)}=p_{1}, p_{\sigma(2)}=p_{2}\right)$.
$(1) \Longrightarrow(3)$ : If $\widetilde{\Gamma}$ is abelian, its descent $G$ is necessarily abelian, thus $\sigma=\mathrm{id}$ or $n=d=2$ by Theorem 10.6.

Lemma 10.10. The following are equivalent:
(A) $\widetilde{\Gamma}$ is abelian.
(B) $H$ is abelian.
(C) $G$ is abelian.

Proof. " $(\mathrm{A}) \Longrightarrow(\mathrm{B})$ " and " $(\mathrm{B}) \Longrightarrow(\mathrm{C})$ " follow from the facts that $H$ is the descent of $\widetilde{\Gamma}$ and $G$ is the descent of $H$. "(C) $\Longrightarrow(\mathrm{A})$ ": If $G$ is abelian, then $\sigma=$ id or $n=d=2$ by Theorem 10.6 , so $\widetilde{\Gamma}$ is abelian by Proposition 10.9.

Lemma 10.10 combined with Proposition 10.9 yields:

Theorem 10.11. The following are equivalent:
(1) $\sigma=\mathrm{id}$ or $n=d=2$.
(2) $\widetilde{\Gamma}$ is abelian.
(3) $H$ is abelian.
(4) $G$ is abelian.

Supplement. For each $\sigma \in \mathfrak{S}_{n}$, define an automorphism $f_{\sigma}$ of $\mathbb{C}^{n}$ by $f_{\sigma}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)$. This does "not" define a group action of $\mathfrak{S}_{n}$ on $\mathbb{C}^{n}$. Indeed $f_{\tau}\left(f_{\sigma}\left(x_{1}, \ldots, x_{n}\right)\right)=f_{\tau}\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)=$ $\left(x_{\sigma \tau(1)}, \ldots, x_{\sigma \tau(n)}\right)=f_{\sigma \tau}\left(x_{1}, \ldots, x_{n}\right)$, so $f_{\tau} \circ f_{\sigma}=f_{\sigma \tau} \neq f_{\tau \sigma}$. In contrast, $f_{\sigma}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \ldots, x_{\sigma^{-1}(n)}\right)$ defines a group action of $\mathfrak{S}_{n}$, as $f_{\tau} \circ f_{\sigma}=f_{\tau \sigma}$.

## References

[SaTa] Sasaki, K. and S. Takamura, Uniformization of Cyclic Quotients of Multiplicative A-singularities, J. Math. Sci. Univ. Tokyo 23 (3) (2016), 675-726.
[Tak] Takamura, S., Towards the classification of atoms of degenerations, II, (Linearization of degenerations of complex curves), RIMS Preprint 1344 (2001).

Department of Mathematics
Graduate School of Science
Kyoto University
Oiwakecho, Kitashirakawa, Sakyo-ku
Kyoto 606-8502 JAPAN
E-mail: kjr-ssk@math.kyoto-u.ac.jp takamura@math.kyoto-u.ac.jp

