J. Math. Sci. Univ. Tokyo **25** (2018), 35–90.

Dehn Twists, Hypertwists, and Uniformization of Twined Singularities

By Kenjiro SASAKI and Shigeru TAKAMURA

Abstract. There are two kinds of homeomorphisms of an annulus that appear as local monodromies of degenerations of Riemann surfaces: *fractional Dehn twist* and *Nielsen twist*. In this paper, they are "in a unified way" generalized to higher dimensions as a *hypertwist*, which is the monodromy of a *twined singularity* (a quotient of a multiplicative A-singularity). We moreover establish the uniformization theorem of this quotient, which generalizes the uniformization theorem in our previous paper.

Contents

1.	Introduction	36
2.	Twining Automorphisms	42
3.	Lifting and Descent	47
4.	Determination of $\tilde{\Gamma}$ and H	50
5.	Simple Pseudo-Reflections	56
6.	The Pseudo-Reflection Subgroup of H	58
7.	Numerical Criterion of Smallness	65
8.	Uniformization of Twined Singularities	67
	8.1. Uniformization theorem	67
9.	Explicit Forms of Elements of $\tilde{\Gamma}$, H , G	71
	9.1. Generators of $\tilde{\Gamma}$, $\overline{\Gamma} (= H)$ and $\overline{\overline{\Gamma}} (= G)$	73
	9.2. Preparation to deduce relations	78
	9.3. Relations between generators	81
10.	When G is Abelian?	84

²⁰¹⁰ Mathematics Subject Classification. Primary 32Q30; Secondary 14D05.

Key words: Uniformization of singularity, cyclic quotient, group action, multiplicative A-singularity, monodromy, fractional Dehn twist, small group, lifting and descent.

1. Introduction

Let a and m (0 < a < m) and b and n (0 < b < n) be two pairs of relatively prime integers. An $\left(\frac{a}{m}, \frac{b}{n}\right)$ -fractional Dehn twist is a selfhomeomorphism of an annulus $[0,1] \times S^1$ given by $(t, e^{i\theta}) \mapsto (t, e^{2\pi i \{-(1-t)a/m+tb/n\}}e^{i\theta})$. More generally, where κ is an integer, an $\left(\frac{a}{m}, \frac{b}{n}, \kappa\right)$ -fractional Dehn twist is defined as the composite map of a κ -Dehn twist and an $\left(\frac{a}{m}, \frac{b}{n}\right)$ -fractional Dehn twist (Figure 1.1). We next introduce a Nielsen twist. First let $H : [0,1] \times \mathbb{R} \to [0,1] \times \mathbb{R}$ be an affine transformation given by $H(t,y) = \left(1-t, (2t-1)\frac{a}{2m}-y\right)$. Then H and H^2 transform $[0,1] \times \mathbb{R}$ as illustrated in Figure 1.2; note that $H^2(t,y) =$ $\left(t, (1-2t)\frac{a}{m}+y\right)$. Under the covering map $f : [0,1] \times \mathbb{R} \to [0,1] \times S^1$, $f(t,y) = (t, e^{2\pi i y})$, H descends to an $\frac{a}{2m}$ -Nielsen twist $h : [0,1] \times S^1 \to$ $[0,1] \times S^1$, $h(t, e^{i\theta}) = (1-t, e^{2\pi i (2t-1)a/2m}e^{-i\theta})$. Note that h^2 is a $-\left(\frac{a}{m}, \frac{a}{m}\right)$ fractional Dehn twist.

More generally, an $\left(\frac{a}{2m}, \kappa\right)$ -Nielsen twist of h and a $(-\kappa)$ -Dehn twist (not $(+\kappa)$ -Dehn twist), explicitly given by

$$(t, e^{i\theta}) \in [0, 1] \times S^1 \longmapsto (1 - t, e^{2\pi i \{(2t-1)a/2m + t\kappa\}} e^{-i\theta}) \in [0, 1] \times S^1.$$

Note that its square is a $-\left(\frac{a}{m}, \frac{a}{m}, 2\kappa\right)$ -fractional Dehn twist.

A fractional Dehn twist appears as the topological monodromy of a degeneration: Set $c := \operatorname{gcd}(m, n), m' := m/c, n' := n/c$, and let $\gamma : \mathbb{C}^3 \to \mathbb{C}^3$ be an automorphism defined by

(1.1)
$$\gamma: (z, w, t) \longmapsto (e^{2\pi i a/m} z, e^{2\pi i b/n} w, e^{2\pi i/m'n'c} t).$$

Suppose that γ preserves $A_{d-1} := \{(z, w, t) \in \mathbb{C}^3 : zw = t^d\}$; this is the case precisely when $e^{2\pi i a/m} e^{2\pi i b/n} = e^{2\pi i d/m'n'c}$, that is, $\frac{a}{m} + \frac{b}{n} \equiv \frac{d}{m'n'c} \mod \mathbb{Z}$. Write $d = m'n'c \left(\frac{a}{m} + \frac{b}{n} + \kappa\right)$ for some integer κ such that $\frac{a}{m} + \frac{b}{n} + \kappa > 0$. Let Γ the cyclic group generated by γ . Define a holomorphic map Φ : $A_{d-1} \to \mathbb{C}$ by $\Phi(z, w, t) = t^{m'n'c}$. Then Φ is Γ -invariant, so descends to a holomorphic map $\overline{\Phi} : A_{d-1}/\Gamma \to \mathbb{C}$, which is a degeneration of annuli whose topological monodromy is a $-\left(\frac{a}{m}, \frac{b}{n}, \kappa\right)$ -fractional Dehn twist.

Fig. 1.1. An $\left(\frac{a}{m}, \frac{b}{n}, \kappa\right)$ -fractional Dehn twist.

Fig. 1.2.

A Nielsen twist also appears as the topological monodromy of a degeneration: Let $\gamma' : \mathbb{C}^3 \to \mathbb{C}^3$ be an automorphism defined by

(1.2)
$$\gamma' : (z, w, t) \longmapsto (e^{2\pi i a/2m} w, e^{2\pi i a/2m} z, e^{2\pi i/2m} t).$$

Suppose that γ' preserves A_{d-1} ; this is the case precisely when $e^{2\pi i a/m} = e^{2\pi i d/2m}$, that is, $\frac{a}{m} \equiv \frac{d}{2m} \mod \mathbb{Z}$. Write $d = 2a + 2m\kappa$ for some integer $\kappa \geq 0$. Let Γ' be the cyclic group generated by γ' . Define a holomorphic map $\Phi' : A_{d-1} \to \mathbb{C}$ by $\Phi'(z, w, t) = t^{2m}$. Then Φ' is Γ' -invariant, so descends to a holomorphic map $\overline{\Phi}' : A_{d-1}/\Gamma' \to \mathbb{C}$, which is a degeneration of annuli whose topological monodromy is an $\left(\frac{a}{2m}, \kappa\right)$ -Nielsen twist.

Fig. 1.3. An $\frac{a}{2m}$ -Nielsen twist *h*.

Main results

We generalize the above notions/results to higher dimensions. Fix a positive integer d and consider a complex variety (a *multiplicative A-singularity*)

$$A_{d-1} = \{ (x_1, x_2, \dots, x_n, t) \in \mathbb{C}^{n+1} : x_1 x_2 \cdots x_n = t^d \}.$$

If $n \geq 3$, the singular locus of A_{d-1} is not isolated — the union of ${}_{n}C_{2}$ hyperplanes $H_{ij} = \{x_i = x_j = t = 0\}$ $(1 \leq i < j \leq n)$. In contrast, the additive A-singularity $x_1^2 + x_2^2 + \cdots + x_n^2 = t^d$ has only an isolated singularity at the origin. In particular if $n \geq 3$, this is not biholomorphic to A_{d-1} . (If n = 2, they are biholomorphic: Via $x'_1 = x_1 + ix_2$ and $x'_2 = x_1 - ix_2$, $x_1^2 + x_2^2 = t^d$ is transformed to $x'_1x'_2 = t^d$.)

Now take $\sigma \in \mathfrak{S}_n$ (a permutation of *n* elements) and nonzero complex numbers $\alpha_1, \ldots, \alpha_n, \delta$ such that $\alpha_1 \alpha_2 \cdots \alpha_n = \delta^d$, and define an automorphism $\gamma : A_{d-1} \to A_{d-1}$ by

$$\gamma: (x_1, x_2, \dots, x_n, t) \longmapsto (\alpha_1 x_{\sigma(1)}, \alpha_2 x_{\sigma(2)}, \dots, \alpha_n x_{\sigma(n)}, \delta t).$$

Simple Case. We first consider the case that σ is cyclic of full length n. Take an (arbitrary) nth root β of $\alpha_1 \alpha_2 \cdots \alpha_n$ and define another automorphism $\gamma' : A_{d-1} \to A_{d-1}$ by

$$(*) \qquad \gamma': (x_1, x_2, \dots, x_n, t) \mapsto (\beta x_{\sigma(1)}, \beta x_{\sigma(2)}, \dots, \beta x_{\sigma(n)}, \delta t).$$

Then irrespective of the choice of β , γ' is conjugate to γ in Aut (A_{d-1}) (Lemma 2.3 (3)). Say $\gamma' = f^{-1} \circ \gamma \circ f$, then under a coordinate change via f of A_{d-1} , γ' may be regarded as γ . We thus only consider an automorphism of the form (*).

In what follows, suppose that $\alpha_1 \alpha_2 \cdots \alpha_n$ is a root of unity (this is equivalent to the finiteness of the order of γ (Corollary 2.2)). Say $\alpha_1 \alpha_2 \cdots \alpha_n$ is an *m*th root of unity, and consider an automorphism

(
$$\sharp$$
) $\gamma: (x_1, x_2, \dots, x_n, t) \in A_{d-1} \longmapsto (e^{2\pi i a/mn} x_{\sigma(1)}, e^{2\pi i a/mn} x_{\sigma(2)}, \dots, e^{2\pi i a/mn} x_{\sigma(n)}, e^{2\pi i a/mn} t) \in A_{d-1},$

where σ is a cyclic permutation of full length n and $d = an + mn\kappa$ for some integer $\kappa \geq 0$. This generalizes the automorphism in (1.2) given by

$$\gamma: (z, w, t) \in A_{d-1} \longmapsto (e^{2\pi i a/2m} w, e^{2\pi i a/2m} z, e^{2\pi i/2m} t) \in A_{d-1},$$

where $d = 2a + 2m\kappa$ for some integer $\kappa \ge 0$.

Before stating our results, we recall some terminology: A pseudo-reflection is a linear transformation conjugate to $(z_1, \ldots, z_i, \ldots, z_n) \mapsto (z_1, \ldots, \zeta_{z_i}, \ldots, z_n)$, where $\zeta \neq 1$ is a root of unity. By abuse of terminology, a matrix conjugate to the diagonal matrix diag $(1, \ldots, \zeta, \ldots, 1)$ is also called a pseudo-reflection. A subgroup of $GL_n(\mathbb{C})$ is small if it contains no pseudoreflections.

Result 1 (Corollary 9.9) Uniformization. Let Γ be the cyclic group generated by the automorphism γ of A_{d-1} given by (\sharp) . Then A_{d-1}/Γ is isomorphic to \mathbb{C}^n/G , where G is a small finite group generated by the automorphisms $f, g_1, g_2, \ldots, g_{n-1}$ of \mathbb{C}^n given by

$$f: (z_1, \dots, z_n) \mapsto (e^{2\pi i a/mnd} z_{\sigma(1)}, \dots, e^{2\pi i a/mnd} z_{\sigma(n-1)}, e^{2\pi i (a+mn\kappa)/mnd} z_{\sigma(n)}),$$
$$g_i: (z_1, \dots, z_n) \mapsto (z_1, \dots, z_{i-1}, e^{2\pi i/d} z_i, z_{i+1}, \dots, z_{n-1}, e^{-2\pi i/d} z_n)$$

We remark that G is abelian only when n = 2 and d = 2 (Theorem 10.6 (2)).

Now define a holomorphic map $\Phi: A_{d-1} \to \mathbb{C}$ by $\Phi(x_1, \ldots, x_n, t) = t^{mn}$. Then Φ is Γ -invariant, so descends to a holomorphic map $\overline{\Phi}: A_{d-1}/\Gamma \to \mathbb{C}$. **Result 2 (Lemma 8.2) Correspondence of maps.** Under the isomorphism $A_{d-1}/\Gamma \cong \mathbb{C}^n/G$, $\overline{\Phi} : A_{d-1}/\Gamma \to \mathbb{C}$ corresponds to the holomorphic map $\overline{\phi} : \mathbb{C}^n/G \to \mathbb{C}$ induced by the G-invariant holomorphic map $\phi : \mathbb{C}^n \to \mathbb{C}$, $\phi(v_1, v_2, \dots v_n) = (v_1 v_2 \cdots v_n)^{mn}$.

In the case that $\sigma \in \mathfrak{S}_n$ is arbitrary, decompose it into disjoint cyclic permutations: $\sigma = \sigma_1 \sigma_2 \cdots \sigma_l$, say the length of σ_i is n_i . Renumbering the indices, assume that σ_1 permutes $\{1, 2, \ldots, n_1\}$, σ_2 permutes $\{n_1 + 1, n_1 + 2, \ldots, n_1 + n_2\}$, σ_3 permutes $\{n_1 + n_2 + 1, \ldots, n_1 + n_2 + n_3\}$ and so on. Write $\mathbb{C}^n = \mathbb{C}^{n_1} \times \mathbb{C}^{n_2} \times \cdots \times \mathbb{C}^{n_l}$; then σ_i acts on \mathbb{C}^{n_i} as $\boldsymbol{x}_i := (x_1^{(i)}, \ldots, x_{n_i}^{(i)}) \mapsto$ $\boldsymbol{x}_i^{\sigma_i} := (x_{\sigma_i(1)}^{(i)}, \ldots, x_{\sigma_i(n_i)}^{(i)})$. As in Simple Case, the following holds (Lemma 2.6): γ is via an element of Aut (A_{d-1}) conjugate to an automorphism γ' : $A_{d-1} \to A_{d-1}$ of the form

$$\gamma': (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \longmapsto (\beta_1 \boldsymbol{x}_1^{\sigma_1}, \dots, \beta_l \boldsymbol{x}_l^{\sigma_l}, \delta t), \quad \beta_i \in \mathbb{C}^{\times}.$$

It thus suffices to consider automorphisms of this form. Note that the condition that γ preserves A_{d-1} is given by

(1.3)
$$\beta_1^{n_1}\beta_2^{n_2}\cdots\beta_l^{n_l}=\delta^d$$

In what follows, we consider the following automorphism of A_{d-1} generalizing (\sharp) in Simple Case:

(1.4)
$$\gamma: (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \longmapsto (e^{2\pi i a_1/n_1 m_1} \boldsymbol{x}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_l m_l} \boldsymbol{x}_l^{\sigma_l}, e^{2\pi i/N} t),$$

where

- (i) n_i is the length of σ_i , and a_i , m_i are positive integers such that a_i is relatively prime to $n_i m_i$.
- (ii) $N := (m'_1)^{n_1} \cdots (m'_l)^{n_l} c$, where $c := \gcd(n_1 m_1, \dots, n_l m_l)$ and $m'_i := \frac{n_i m_i}{c}$.
- (iii) $(e^{2\pi i a_1/n_1 m_1})^{n_1} (e^{2\pi i a_2/n_2 m_2})^{n_2} \cdots (e^{2\pi i a_l/n_l m_l})^{n_l} = e^{2\pi i d/N}$ (see (1.3)), that is, $\frac{a_1}{m_1} + \frac{a_2}{m_2} + \cdots + \frac{a_l}{m_l} + \kappa = \frac{d}{N}$ for some integer κ .

We say that Γ is a twining automorphism group, γ is a twining automorphism, and the quotient A_{d-1}/Γ is a twined singularity. Here in case σ is the identity, Γ (and γ) is said to be *neat*. We will prove the following (if Γ is neat, this reduces to the uniformization theorem in [SaTa]):

Result 3 (Theorems 8.1, 9.6) Uniformization of twined singularity. Let Γ be the cyclic group generated by the automorphism γ of A_{d-1} given by (1.4). Then there exists a small finite subgroup G of $GL_n(\mathbb{C})$ such that $A_{d-1}/\Gamma \cong \mathbb{C}^n/G$. Here $G = \langle f, g_1, g_2, \ldots, g_{n-1} \rangle$ and (i) f is given as the composition $f = \varphi \psi$, where (below, ℓ_k is given in Remark 1.1)

$$\begin{cases} \varphi: (\boldsymbol{X}_1, \dots, \boldsymbol{X}_l) \longmapsto (e^{2\pi i a_1 \ell_1 / cd} \boldsymbol{X}_1^{\sigma_1}, \dots, e^{2\pi i a_l \ell_l / cd} \boldsymbol{X}_l^{\sigma_l}), \\ \psi: (X_1, X_2, \dots, X_n) \longmapsto (X_1, X_2, \dots, e^{2\pi i m_l' \ell_l \kappa / d} X_{\sigma(n)}, \dots, X_n). \end{cases}$$

(ii) g_i is given as follows: Say $X_i \in \mathbf{X}_k$, then

$$g_i: (X_1, X_2, \dots, X_n) \longmapsto (X_1, X_2, \dots, e^{2\pi \mathrm{i} m'_k \ell_k/d} X_i, \dots, e^{-2\pi \mathrm{i} m'_l \ell_l/d} X_n).$$

Note: f, g_i denote $\overline{\overline{\gamma}}, \overline{\mathrm{id}}_i$ in Theorem 9.6 and φ, ψ denote $\overline{\overline{\alpha}}, \overline{\overline{\beta}}_{1,q}$ therein.

REMARK 1.1. In Result 3, ℓ_k is the positive integer given in Lemma 7.4, that is, $\ell_k := Nc/n_k m_k L_k$, where $n_k = \text{length}(\boldsymbol{X}_k)$ and L_k is given by (below, $n_k m_k$ means the omission of $n_k m_k$)

$$L_k := \begin{cases} \operatorname{lcm}(n_1 m_1, n_2 m_2, \dots, n_k m_k, \dots, n_l m_l) & \text{if } \operatorname{length}(\boldsymbol{X}_k) = 1, \\ \operatorname{lcm}(n_1 m_1, n_2 m_2, \dots, n_l m_l) & \text{if } \operatorname{length}(\boldsymbol{X}_k) \ge 2. \end{cases}$$

Whether G in Result 3 is abelian depends on σ , n, d. In fact:

Result 4 (Theorem 10.6).

- (1) If $\sigma = \text{id}$, then G is always abelian. (If moreover n = 2, G is cyclic ([SaTa] Theorem 2.1, p.682 originally proved in [Tak])).
- (2) If $\sigma \neq id$, then G is rarely abelian in fact only when n = 2 and d = 2 (and in which case G is cyclic generated by f in Result 3).

Result 3 is further enriched. Define a holomorphic map $\Phi : A_{d-1} \to \mathbb{C}$ by $\Phi(x_1, \dots, x_n, t) = t^N$. Then Φ is Γ -invariant, so descends to a holomorphic map $\overline{\Phi} : A_{d-1}/\Gamma \to \mathbb{C}$.

Result 5 (Theorem 8.3) Correspondence of maps. As above, let Γ be the cyclic group generated by

$$\gamma: (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \longmapsto (e^{2\pi i a_1/n_1 m_1} \boldsymbol{x}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_l m_l} \boldsymbol{x}_l^{\sigma_l}, e^{2\pi i/N} t).$$

For each σ_k , let J_k be its cycle, that is, $J_k = \{i : x_i \in \mathbf{x}_k\}$. Then:

- (1) A holomorphic map $\phi : \mathbb{C}^n \to \mathbb{C}$ given by $\phi(x_1, \dots, x_n) = \prod_{k=1}^l \left(\prod_{i \in J_k} x_i\right)^{L_k}$ is G-invariant.
- (2) Under the isomorphism $A_{d-1}/\Gamma \cong \mathbb{C}^n/G$, $\overline{\Phi} : A_{d-1}/\Gamma \to \mathbb{C}$ corresponds to the descent $\overline{\phi} : \mathbb{C}^n/G \to \mathbb{C}$.

The topological monodromy of $\overline{\Phi} : A_{d-1}/\Gamma \to \mathbb{C}$ generalizes both a fractional Dehn twist and a Nielsen twist — in a unified way! We call it a *hypertwist* (more precisely, $\left(\frac{a_1}{n_1m_1}, \frac{a_2}{n_2m_2}, \cdots, \frac{a_l}{n_lm_l}, \kappa, \sigma\right)$ -hypertwist). Its action on a smooth fiber of $\overline{\Phi}$ will be described in our subsequent paper.

Acknowledgments. We would like to thank Professor Tadashi Ashikaga for useful discussions.

2. Twining Automorphisms

Let d be a positive integer and consider the multiplicative A-singularity:

$$A_{d-1} := \{ (x_1, x_2, \dots, x_n, t) \in \mathbb{C}^{n+1} : x_1 x_2 \cdots x_n = t^d \}.$$

The automorphism group $\operatorname{Aut}(A_{d-1})$ of A_{d-1} is the subgroup of $GL_{n+1}(\mathbb{C})$ consisting of elements that map A_{d-1} to itself. Now take a cyclic permutation $\sigma \in \mathfrak{S}_n$ of length n and nonzero complex numbers $\alpha_1, \alpha_2, \ldots, \alpha_n, \delta$ such that $\alpha_1 \alpha_2 \cdots \alpha_n = \delta^d$. Define then an automorphism γ of A_{d-1} by

(2.1)
$$\gamma: (x_1, x_2, \dots, x_n, t) \longmapsto (\alpha_1 x_{\sigma(1)}, \alpha_2 x_{\sigma(2)}, \dots, \alpha_n x_{\sigma(n)}, \delta t).$$

LEMMA 2.1. Let k be an integer. Then $\gamma^k = 1$ if and only if k is a multiple of n and $(\alpha_1 \alpha_2 \cdots \alpha_n)^{k/n} = 1$ and $\delta^k = 1$.

PROOF. Note that $\gamma^k : (x_1, \ldots, x_n, t) \mapsto (\mu_1 x_{\sigma^k(1)}, \ldots, \mu_n x_{\sigma^k(n)}, \nu t)$ for some nonzero complex numbers $\mu_1, \ldots, \mu_n, \nu$. If $\gamma^k = 1$, then it is necessary that $\sigma^k = 1$. Since σ is cyclic of length n, this implies that k is a multiple of n. Write k = nl, then $\gamma^{nl} = 1$. Here $\gamma^n : (x_1, \ldots, x_n, t) \mapsto$ $(\alpha_1 \alpha_2 \cdots \alpha_n x_1, \ldots, \alpha_1 \alpha_2 \cdots \alpha_n x_n, \delta^n t)$, thus $(\alpha_1 \alpha_2 \cdots \alpha_n)^l = 1$ and $\delta^{nl} = 1$ (that is, $\delta^k = 1$). Conversely, if k is a multiple of n and $(\alpha_1 \alpha_2 \cdots \alpha_n)^{k/n} = 1$ and $\delta^k = 1$, then $\gamma^k = 1$, indeed

$$\gamma^{k} : (x_{1}, \dots, x_{n}, t) \longmapsto ((\alpha_{1}\alpha_{2} \cdots \alpha_{n})^{k/n}x_{1}, \dots, (\alpha_{1}\alpha_{2} \cdots \alpha_{n})^{k/n}x_{n}, \delta^{k}t)$$
$$= (x_{1}, \dots, x_{n}, t). \square$$

COROLLARY 2.2. The order of γ is finite if and only if $\alpha_1 \alpha_2 \cdots \alpha_n$ is a root of unity.

PROOF. \implies : Say that the order of γ is k. Then from Lemma 2.1, k is a multiple of n and $(\alpha_1\alpha_2\cdots\alpha_n)^{k/n} = 1$; so $\alpha_1\alpha_2\cdots\alpha_n$ is a k/nth root of unity.

 \Leftarrow : Say that $\alpha_1 \alpha_2 \cdots \alpha_n$ is an *l*th root of unity: $(\alpha_1 \alpha_2 \cdots \alpha_n)^l = 1$. This and $\alpha_1 \alpha_2 \cdots \alpha_n = \delta^d$ yield $1 = \delta^{ld}$. Set k := nld, then k is a multiple of n and $(\alpha_1 \alpha_2 \cdots \alpha_n)^{k/n} = 1$ and $\delta^k = 1$, so by Lemma 2.1, $\gamma^k = 1$. \Box

Note next the following:

LEMMA 2.3. Let γ be the automorphism of A_{d-1} given by (2.1). Then:

- (1) For an arbitrary nth root β of $\alpha_1 \alpha_2 \cdots \alpha_n$, $\gamma' : (x_1, \ldots, x_n, t) \mapsto (\beta x_{\sigma(1)}, \ldots, \beta x_{\sigma(n)}, \delta t)$ is an automorphism of A_{d-1} .
- (2) Let b_1, b_2, \ldots, b_n, c be nonzero complex numbers such that $b_1 b_2 \cdots b_n = c^d$. Define $f \in \operatorname{Aut}(A_{d-1})$ by $f: (x_1, \ldots, x_n, t) \mapsto (b_1 x_1, \ldots, b_n x_n, ct)$. Then

$$f^{-1} \circ \gamma \circ f : (x_1, \dots, x_n, t) \longmapsto \left(\frac{\alpha_1 b_{\sigma(1)}}{b_1} x_{\sigma(1)}, \dots, \frac{\alpha_n b_{\sigma(n)}}{b_n} x_{\sigma(n)}, \delta t\right).$$

(3) γ is conjugate to γ' in Aut (A_{d-1}) .

PROOF. (1): It suffices to show that γ' preserves A_{d-1} , that is, $(\beta x_{\sigma(1)})(\beta x_{\sigma(2)}) \cdots (\beta x_{\sigma(n)}) = \delta^d t^d$. This is seen as follows:

$$(\beta x_{\sigma(1)})(\beta x_{\sigma(2)})\cdots(\beta x_{\sigma(n)}) = \beta^n x_1 x_2 \cdots x_n$$

= $\delta^d x_1 x_2 \cdots x_n$ by $\beta^n = \alpha_1 \alpha_2 \cdots \alpha_n = \delta^d$
= $\delta^d t^d$ by $x_1 x_2 \cdots x_n = t^d$.

(2): This is confirmed as follows:

$$f^{-1} \circ \gamma \circ f(x_1, \dots, x_n, t) = f^{-1} \circ \gamma(b_1 x_1, \dots, b_n x_n, ct)$$

= $f^{-1}(\alpha_1 b_{\sigma(1)} x_{\sigma(1)}, \dots, \alpha_n b_{\sigma(n)} x_{\sigma(n)}, \delta ct)$
= $\left(\frac{\alpha_1 b_{\sigma(1)}}{b_1} x_{\sigma(1)}, \dots, \frac{\alpha_n b_{\sigma(n)}}{b_n} x_{\sigma(n)}, \delta t\right).$

(3): In terms of (2), it suffices to show that there exist nonzero complex numbers b_1, b_2, \ldots, b_n, c satisfying

(i)
$$b_1 b_2 \cdots b_n = c^d$$
,
(ii) $\beta = \frac{\alpha_i b_{\sigma(i)}}{b_i}$ $(i = 1, 2, ..., n)$, that is, $b_{\sigma(i)} = \frac{\beta b_i}{\alpha_i}$ $(i = 1, 2, ..., n)$.

Note that once we show the existence of b_1, b_2, \ldots, b_n satisfying (ii), it suffices to take c as dth root of $b_1b_2\cdots b_n$.

Since σ is cyclic of length n, we have $\{1, 2, \dots, n\} = \{1, \sigma(1), \dots, \sigma^{n-1}(1)\}$, so (ii) is restated as $b_{\sigma^j(1)} = \frac{\beta b_{\sigma^{j-1}(1)}}{\alpha_{\sigma^{j-1}(1)}}$ $(j=1,2,\dots,n)$. Set $b_1 = 1$ and inductively define $b_{\sigma^j(1)}$ $(j=1,2,\dots,n-1)$ by $b_{\sigma^j(1)} := \frac{\beta b_{\sigma^{j-1}(1)}}{\alpha_{\sigma^{j-1}(1)}}$. It then suffices to show that $b_1 = \frac{\beta b_{\sigma^{n-1}(1)}}{\alpha_{\sigma^{n-1}(1)}}$. Since $\beta = \frac{\alpha_{\sigma^{j-1}(1)} b_{\sigma^j(1)}}{b_{\sigma^{j-1}(1)}}$ $(j=1,2,\dots,n-1)$, we have $\beta^{n-1} = \prod_{j=1}^{n-1} \frac{\alpha_{\sigma^{j-1}(1)} b_{\sigma^j(1)}}{b_{\sigma^{j-1}(1)}}$. Here $\prod_{j=1}^n \frac{\alpha_{\sigma^{j-1}(1)} b_{\sigma^j(1)}}{b_{\sigma^{j-1}(1)}} = \alpha_1 \alpha_2 \cdots \alpha_n = \beta^n$, so $\prod_{j=1}^{n-1} \frac{\alpha_{\sigma^{j-1}(1)} b_{\sigma^j(1)}}{b_{\sigma^{j-1}(1)}} = \beta^n \frac{b_{\sigma^{n-1}(1)} b_1}{\alpha_{\sigma^{n-1}(1)} b_1}$. Thus $\beta^{n-1} = \beta^n \frac{b_{\sigma^{n-1}(1)}}{\alpha_{\sigma^{n-1}(1)} b_1}$, implying that $b_1 = \frac{\beta b_{\sigma^{n-1}(1)}}{\alpha_{\sigma^{n-1}(1)}}$.

44

LEMMA 2.4. If $\alpha_1 \alpha_2 \cdots \alpha_n$ is an *m*th root of unity, then (1) δ is a root of unity and (2) the order of γ' (also, of γ) is the least common multiple of *nm* and the order of δ . (For a kth root of unity, k is called its order.)

PROOF. (1): By $\alpha_1 \alpha_2 \cdots \alpha_n = \delta^d$. (2): Since γ' is a linear transformation, it is expressed as $\gamma' : (\boldsymbol{x}, t) \mapsto (B\boldsymbol{x}, \delta t)$, where $\boldsymbol{x} = (x_1, \ldots, x_n)$ and Bis an invertible $n \times n$ matrix of order nm. Then $(\gamma')^k : (\boldsymbol{x}, t) \mapsto (B^k \boldsymbol{x}, \delta^k t)$, so the order of γ' is the least common multiple of the orders of B and δ , confirming the assertion. \Box

General Case. We have discussed the case that $\sigma \in \mathfrak{S}_n$ is a cyclic permutation of length n. In the sequel, $\sigma \in \mathfrak{S}_n$ is *arbitrary*, for which consider the automorphism of A_{d-1} given by

$$(2.2) \qquad \gamma: (x_1, x_2, \dots, x_n, t) \longmapsto (\alpha_1 x_{\sigma(1)}, \alpha_2 x_{\sigma(2)}, \dots, \alpha_n x_{\sigma(n)}, \delta t).$$

Decompose σ into disjoint cyclic permutations: $\sigma = \sigma_1 \sigma_2 \cdots \sigma_l$, say the length of σ_i is n_i . Without loss of generality, we assume that σ_1 permutes $\{1, 2, \ldots, n_1\}$, σ_2 permutes $\{n_1 + 1, n_1 + 2, \ldots, n_1 + n_2\}$, σ_3 permutes $\{n_1 + n_2 + 1, \ldots, n_1 + n_2 + n_3\}$ and so on; these sets are cycles of σ . Write \mathbb{C}^{n+1} as $\mathbb{C}^{n_1} \times \mathbb{C}^{n_2} \times \cdots \times \mathbb{C}^{n_l} \times \mathbb{C}$ and $(x_1, x_2, \ldots, x_n, t) \in \mathbb{C}^{n+1}$ as $(\boldsymbol{x}_1, \boldsymbol{x}_2, \ldots, \boldsymbol{x}_l, t)$, where $\boldsymbol{x}_i \in \mathbb{C}^{n_i}$. Then σ_i acts on \mathbb{C}^{n_i} as a cyclic permutation, and the restriction of γ to \mathbb{C}^{n_i} is of the form:

$$\gamma_i: \ \mathbf{x}_i = (x_{j_1}, x_{j_2}, \dots, x_{j_{n_i}}) \ \longmapsto \ (\alpha_{j_1} x_{\sigma_i(j_1)}, \alpha_{j_2} x_{\sigma_i(j_2)}, \dots, \alpha_{j_{n_i}} x_{\sigma_i(j_{n_i})}).$$

The order of γ is finite if and only if the orders of all γ_i are finite. As in Corollary 2.2, this is restated as follows:

LEMMA 2.5. The order of γ is finite if and only if for every i, $\prod_{j \in J_i} \alpha_j$ is a root of unity, where J_i denotes the cycle of σ_i .

Note next the following:

LEMMA 2.6. Let γ be the automorphism of A_{d-1} given by (2.2). For each *i*, let β_i be an arbitrary n_i th root of $\prod_{j \in J_i} \alpha_j$, where J_i denotes the cycle of σ_i . Write J_i as $\{j_1, j_2, \ldots, j_{n_i}\}$ and for $\boldsymbol{x}_i = (x_{j_1}, x_{j_2}, \ldots, x_{j_{n_i}})$, set $\boldsymbol{x}_i^{\sigma_i} := (x_{\sigma_i(j_1)}, x_{\sigma_i(j_2)}, \ldots, x_{\sigma_i(j_{n_i})})$, then:

- (1) Irrespective of the choice of β_i , $\beta_1^{n_1}\beta_2^{n_2}\cdots\beta_l^{n_l}$ is constant. In fact $\beta_1^{n_1}\beta_2^{n_2}\cdots\beta_l^{n_l}=\delta^d$.
- (2) $\gamma' : (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \mapsto (\beta_1 \boldsymbol{x}_1^{\sigma_1}, \dots, \beta_l \boldsymbol{x}_l^{\sigma_l}, \delta t)$ is an automorphism of A_{d-1} .
- (3) γ is conjugate to γ' in Aut (A_{d-1}) .

PROOF. (1): $\beta_1^{n_1}\beta_2^{n_2}\cdots\beta_l^{n_l} = \prod_{i=1}^l \left(\prod_{j\in J_i}\alpha_j\right) = \alpha_1\alpha_2\cdots\alpha_n = \delta^d.$

(2): It suffices to show that γ' preserves A_{d-1} . Temporarily write x_i as $(x_1^{(i)}, x_2^{(i)}, \dots, x_{n_i}^{(i)})$. By $x_1 \cdot x_2 \cdots x_l = t^d$, we mean $(x_1^{(1)} \cdots x_{n_1}^{(1)})(x_1^{(2)} \cdots x_{n_2}^{(2)}) \cdots (x_1^{(l)} \cdots x_{n_l}^{(l)}) = t^d$. We then have to show that $\beta_1 x_1^{\sigma_1} \cdot \beta_2 x_2^{\sigma_2} \cdots \beta_l x_l^{\sigma_l} = (\delta t)^d$, that is, $(\beta_1 x_{\sigma_1(1)}^{(1)} \cdots \beta_l x_{\sigma_1(n_1)}^{(1)})(\beta_2 x_{\sigma_2(1)}^{(2)} \cdots \beta_2 x_{\sigma_2(n_2)}^{(2)}) \cdots (\beta_l x_{\sigma_l(1)}^{(l)} \cdots \beta_l x_{\sigma_l(n_l)}^{(l)}) = (\delta t)^d$, or (after reordering),

$$\beta_1^{n_1}\beta_2^{n_2}\cdots\beta_l^{n_l}(x_1^{(1)}\cdots x_{n_1}^{(1)})(x_1^{(2)}\cdots x_{n_2}^{(2)})\cdots(x_1^{(l)}\cdots x_{n_l}^{(l)})=\delta^d t^d.$$

This is equivalent to $\beta_1^{n_1}\beta_2^{n_2}\cdots\beta_l^{n_l}=\delta^d$, which is already shown in (1).

(3): The proof is similar to that of Lemma 2.3 (3). Construct first an automorphism $f_i: \mathbb{C}^{n_i} \to \mathbb{C}^{n_i}, f_i: \boldsymbol{x}_i = (x_1^{(i)}, \dots, x_{n_i}^{(i)}) \mapsto (b_1^{(i)} x_1^{(i)}, \dots, b_{n_i}^{(i)} x_{n_i}^{(i)})$ such that $f_i^{-1} \circ \gamma_i \circ f_i: \boldsymbol{x}_i \mapsto \beta_i \boldsymbol{x}_i^{\sigma_i}$. Set $\boldsymbol{b}^{(i)} := \prod_{j=1}^{n_i} b_j^{(i)}$ and take a complex number c satisfying $\boldsymbol{b}^{(1)} \boldsymbol{b}^{(2)} \cdots \boldsymbol{b}^{(l)} = c^d$. Then $f: (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \mapsto (f_1(\boldsymbol{x}_1), \dots, f_l(\boldsymbol{x}_l), ct)$ is an automorphism of A_{d-1} such that $\gamma' = f^{-1} \circ \gamma \circ f$. \Box

LEMMA 2.7. In Lemma 2.6, if for each i, $\alpha_i := \prod_{j \in J_i} \alpha_j$ is an m_i th root of unity, then:

- (1) δ is a root of unity.
- (2) The order of γ' (and so, γ) is finite, in fact it is the least common multiple of lcm(n₁m₁, n₂m₂,...,n_lm_l) and the order of δ.

PROOF. (1) follows from $\alpha_1 \alpha_2 \cdots \alpha_l = \delta^d$. (2):

For simplicity, express γ' : $(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_l, t) \mapsto (\beta_1 \boldsymbol{x}_1^{\sigma_1}, \beta_2 \boldsymbol{x}_2^{\sigma_2}, \dots, \beta_l \boldsymbol{x}_l^{\sigma_l}, \delta t)$ as $(\boldsymbol{x}, t) \mapsto (B\boldsymbol{x}, \delta t)$, where $\boldsymbol{x} = (x_1, \dots, x_n)$ and B is an invertible $n \times n$ matrix of the form

$$B = \begin{pmatrix} B_1 & O \\ B_2 & \\ O & B_l \end{pmatrix} \quad (B_i \text{ is an invertible } n_i \times n_i \text{ matrix}).$$

Since the order of B_i is $n_i m_i$, the order of B is $lcm(n_1m_1, n_2m_2, \ldots, n_lm_l)$. Noting that $(\gamma')^k : (\boldsymbol{x}, t) \mapsto (B^k \boldsymbol{x}, \delta^k t)$, the order of γ' is the least common multiple of the orders of B and δ , so the assertion holds. \Box

COROLLARY 2.8. If the order of δ is a multiple of lcm $(n_1m_1, n_2m_2, \ldots, n_lm_l)$, then the order of γ is that of δ .

DEFINITION 2.9. Let $\sigma \in \mathfrak{S}_n$ and $\alpha_1, \alpha_2, \ldots, \alpha_n, \delta$ be nonzero complex numbers such that $\alpha_1 \alpha_2 \cdots \alpha_n = \delta^d$. The automorphism of $\gamma : A_{d-1} \rightarrow A_{d-1}$ given by $(x_1, \ldots, x_n, t) \mapsto (\alpha_1 x_{\sigma(1)}, \ldots, \alpha_n x_{\sigma(n)}, \delta t)$ is called a *twining automorphism* (a *twiner*) if its order is finite.

3. Lifting and Descent

Let $p: X \to Y$ be a covering. For $f \in Aut(Y)$, $g \in Aut(X)$ is called a *lift* of f if the following diagram commutes:

In this case, f is called the *descent* of g. For a subgroup Γ of Aut(Y), its *lift* $\widetilde{\Gamma}$ is a subgroup of Aut(X) consisting of all lifts of elements of Γ . In this case, Γ is called the *descent* of $\widetilde{\Gamma}$.

We now return to twining automorphism. Let $\sigma \in \mathfrak{S}_n$ and decompose it into disjoint cyclic permutations: $\sigma = \sigma_1 \sigma_2 \cdots \sigma_l$. Say that the length of σ_i is n_i . Without loss of generality, we may assume that the cycle of σ_1 is $\{1, 2, \ldots, n_1\}$, the cycle of σ_2 is $\{n_1 + 1, \ldots, n_1 + n_2\}$, the cycle of σ_3 is $\{n_1 + n_2 + 1, \dots, n_1 + n_2 + n_3\}$ and so on. Write \mathbb{C}^n as $\mathbb{C}^{n_1} \times \mathbb{C}^{n_2} \times \dots \times \mathbb{C}^{n_l}$ and $(x_1, x_2, \dots, x_n) \in \mathbb{C}^n$ as $(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_l)$. Let σ_i act on \mathbb{C}^{n_i} as

$$\sigma_i : \boldsymbol{x}_i = (x_{j_1}, x_{j_2}, \dots, x_{j_{n_i}}) \longmapsto \boldsymbol{x}_i^{\sigma_i} := (x_{\sigma_i(j_1)}, x_{\sigma_i(j_2)}, \dots, x_{\sigma_i(j_{n_i})}).$$

Consider the following automorphism of \mathbb{C}^{n+1} given by

(3.1)
$$\gamma: (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \longmapsto (e^{2\pi i a_1/n_1 m_1} \boldsymbol{x}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_l m_l} \boldsymbol{x}_l^{\sigma_l}, e^{2\pi i/N} t),$$

where

- (I) a_i , m_i are positive integers such that a_i is relatively prime to $n_i m_i$ (where n_i is the length of σ_i).
- (II) $N := (m'_1)^{n_1} \cdots (m'_l)^{n_l} c$, where $c := \gcd(n_1 m_1, \dots, n_l m_l)$ and $m'_i := \frac{n_i m_i}{c}$.

Note that γ preserves $A_{d-1} = \{(x_1, \dots, x_n, t) \in \mathbb{C}^{n+1} : x_1 \cdots x_n = t^d\}$ precisely when $d = N\left(\frac{a_1}{m_1} + \cdots + \frac{a_l}{m_l} + \kappa\right)$ for some integer κ (see (iii) subsequent to (1.4)). In what follows, we assume this. Then:

Lemma 3.1.

- (1) The order of γ is N.
- (2) Let Γ be the cyclic group generated by γ . Then the holomorphic map $\Phi: A_{d-1} \to \mathbb{C}$ given by $\Phi(x_1, \cdots, x_n, t) = t^N$ is Γ -invariant. Consequently Φ descends to $\overline{\Phi}: A_{d-1}/\Gamma \to \mathbb{C}$.

PROOF. (1): Since the order N of δ is a multiple of lcm (n_1m_1, \ldots, n_lm_l) (see (II)), this follows from Corollary 2.8.

(2): For any $(x_1, \ldots, x_n, t) \in A_{d-1}, \ \Phi \circ \gamma(x_1, \cdots, x_n, t) = (\delta t)^N = \delta^N t^N = t^N$, so $\Phi \circ \gamma = \Phi$. \Box

Since the order of γ is finite, γ is a twining automorphism and Γ is a twining automorphism group. If the permutation σ is the identity, Γ (and γ) is said to be *neat*, in which case $\boldsymbol{x}_i = x_i$, so γ is of the form

$$(x_1,\ldots,x_n,t)\longmapsto (e^{2\pi i a_1/m_1}x_1,\ldots,e^{2\pi i a_n/m_n}x_n,e^{2\pi i/N}t).$$

For such γ , [SaTa] showed that there exists a small finite subgroup $G \subset GL_n(\mathbb{C})$ such that $A_{d-1}/\Gamma \cong \mathbb{C}^n/G$; moreover the holomorphic map $\mathbb{C}^n/G \to \mathbb{C}$ corresponding to $\overline{\Phi}$ (in Lemma 3.1) under this isomorphism is explicitly given. We will generalize these results (and more) to arbitrary γ . The construction of G is outlined as follows:

- (i) Let $p: \widetilde{A}_{d-1} (= \mathbb{C}^n) \to A_{d-1}$ be the universal covering, and lift Γ to a group $\widetilde{\Gamma}$ acting on \widetilde{A}_{d-1} . Then $A_{d-1}/\Gamma \cong \widetilde{A}_{d-1}/\widetilde{\Gamma}$. If $m'_1 = m'_2 = \cdots = m'_l = 1$ (e.g. n = 2 and Γ is not neat), then $\widetilde{\Gamma}$ is small. Thus $\widetilde{\Gamma}$ is the desired G.
- (ii) If the condition in (i) is not satisfied, let $q : \widetilde{A}_{d-1} \to \mathbb{C}^n$ be the covering map given by $q(\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_l) = (\mathbf{X}_1^{m'_1}, \mathbf{X}_2^{m'_2}, \ldots, \mathbf{X}_l^{m'_l})$, where $\mathbf{X}_i^{m'_i} := (X_{j_1}^{m'_i}, \ldots, X_{j_{n_i}}^{m'_i})$, and descend $\widetilde{\Gamma}$ to a group H acting on \mathbb{C}^n . Then $A_{d-1}/\Gamma \cong \widetilde{A}_{d-1}/\widetilde{\Gamma} \cong \mathbb{C}^n/H$. If n = 2 and Γ is neat, then H is a small finite group,
- (iii) In (ii), if $n \geq 3$ then H is generally *not* small, in which case take the *pseudo-reflection subgroup* P of H (i.e. the subgroup generated by all pseudo-reflections in H). It is normal in H and the quotient group H/P is small and $A_{d-1}/\Gamma \cong \widetilde{A}_{d-1}/\widetilde{\Gamma} \cong \mathbb{C}^n/H \cong (\mathbb{C}^n/P)/(H/P) \cong \mathbb{C}^n/(H/P)$ (because $\mathbb{C}^n/P \cong \mathbb{C}^n$ by Chevalley-Shephard-Todd theorem). Thus H/P is the desired G.

We give some comments on the above construction:

- (a) In (ii), whether H is small is *numerically* determined (Theorem 7.2).
- (b) In (iii), the quotient map $H \to H/P$ is the descent of H with respect to an *explicitly-given* covering map $r : \mathbb{C}^n \to \mathbb{C}^n$ whose covering transformation group is P. See Lemma 7.1.
- (c) $\tilde{\Gamma}$ and *H* are generally *not* abelian, which makes the above construction much more involved than that of [SaTa].

The construction of G is systematically described in terms of lifting and

descent with respect to the following diagram:

(3.2)
$$q^{\widetilde{A}_{d-1}} = \mathbb{C}^{n} p A_{d-1}.$$

4. Determination of $\widetilde{\Gamma}$ and H

Consider a twining automorphism $\gamma: A_{d-1} \to A_{d-1}$ of order N:

$$\gamma: (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \longmapsto (e^{2\pi i a_1/n_1 m_1} \boldsymbol{x}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_l m_l} \boldsymbol{x}_l^{\sigma_l}, e^{2\pi i/N} t),$$

where σ_i is a cyclic permutation of length n_i $(n_1 + n_2 + \cdots + n_l = n)$ and

(4.1)
$$(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_l) \in \mathbb{C}^{n_1} \times \mathbb{C}^{n_2} \times \dots \times \mathbb{C}^{n_l}$$

For each γ^j (j = 1, 2, ..., N), we determine its lifts with respect to p: $\widetilde{A}_{d-1} \to A_{d-1}$, first for j = 1. To that end, express γ as the product of the *x*-part and the *t*-part: $\gamma = \gamma_x \gamma_t$ $(= \gamma_t \gamma_x)$, where

$$\begin{aligned} \gamma_x : (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) &\longmapsto (e^{2\pi i a_1/n_1 m_1} \boldsymbol{x}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_l m_l} \boldsymbol{x}_l^{\sigma_l}, e^{2\pi i (1/N - \kappa/d)} t), \\ \gamma_t : (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) &\longmapsto (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, e^{2\pi i \kappa/d} t). \end{aligned}$$

The lifts of γ_x and γ_t are easy to describe. In what follows, to be consistent with the notation $(\boldsymbol{x}_1, \boldsymbol{x}_2, \ldots, \boldsymbol{x}_l, t) \in A_{d-1}$, write $(X_1, X_2, \ldots, X_n) \in \widetilde{A}_{d-1}$ (= \mathbb{C}^n) as $(\boldsymbol{X}_1, \boldsymbol{X}_2, \ldots, \boldsymbol{X}_l)$, where $\boldsymbol{X}_i \in \mathbb{C}^{n_i}$.

LEMMA 4.1. A lift of γ_x is given by an automorphism $\widetilde{\gamma}_x : \widetilde{A}_{d-1} \to \widetilde{A}_{d-1}$ defined by

$$(\boldsymbol{X}_1, \boldsymbol{X}_2, \dots, \boldsymbol{X}_l)$$

$$\mapsto \left(e^{2\pi i a_1/n_1 m_1 d} \boldsymbol{X}_1^{\sigma_1}, e^{2\pi i a_2/n_2 m_2 d} \boldsymbol{X}_2^{\sigma_2}, \dots, e^{2\pi i a_l/n_l m_l d} \boldsymbol{X}_l^{\sigma_l}\right).$$

PROOF. Since $p(X_1, X_2, \ldots, X_n) = (X_1^d, X_2^d, \ldots, X_n^d, X_1 X_2 \cdots X_n), \ \widetilde{\gamma}_x$ descends to an automorphism of A_{d-1} that maps $(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_l, t)$ to

$$\left((e^{2\pi i a_1/n_1 m_1 d})^d \boldsymbol{x}_1^{\sigma_1}, \dots, (e^{2\pi i a_l/n_l m_l d})^d \boldsymbol{x}_l^{\sigma_l}, \\ (e^{2\pi i a_1/n_1 m_1 d})^{n_1} \cdots (e^{2\pi i a_l/n_l m_l d})^{n_l} t \right),$$

that is, to $(e^{2\pi i a_1/n_1m_1} \boldsymbol{x}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_lm_l} \boldsymbol{x}_l^{\sigma_l}, e^{2\pi i (a_1/m_1+\dots+a_l/m_l)/d}t)$. Here since $\frac{a_1}{m_1} + \dots + \frac{a_l}{m_l} = \frac{d}{N} - \kappa$, $e^{2\pi i (a_1/m_1+\dots+a_l/m_l)/d} = e^{2\pi i (1/N-\kappa/d)}$. Thus $\widetilde{\gamma}_x$ descends to γ_x . \Box

Consider the set Λ of $(p_1, p_2, \ldots, p_n) \in \mathbb{Z}^n$ satisfying $0 \leq p_i < d$ $(i = 1, 2, \ldots, n)$ and

(4.2)
$$\frac{p_1 + p_2 + \dots + p_n}{d} \equiv \frac{\kappa}{d} \mod \mathbb{Z}.$$

Observe that the number of elements of Λ is d^{n-1} , as p_n is determined from $(p_1, p_2, \ldots, p_{n-1})$ $(0 \le p_i < d)$ by (4.2).

We determine the lifts of γ_t . To be consistent with the notation $(\boldsymbol{X}_1, \boldsymbol{X}_2, \ldots, \boldsymbol{X}_l) \in \mathbb{C}^n$, write (p_1, p_2, \ldots, p_n) as $\boldsymbol{p} = (\boldsymbol{p}_1, \boldsymbol{p}_2, \ldots, \boldsymbol{p}_l)$, where $\boldsymbol{p}_i \in \mathbb{Z}^{n_i}$.

LEMMA 4.2. Define an automorphism of \widetilde{A}_{d-1} by

(4.3)
$$\widetilde{\gamma}_{t,\boldsymbol{p}}: (\boldsymbol{X}_1, \boldsymbol{X}_2, \dots, \boldsymbol{X}_l) \longmapsto (\widetilde{\gamma}_{t,\boldsymbol{p}_1}(\boldsymbol{X}_1), \widetilde{\gamma}_{t,\boldsymbol{p}_2}(\boldsymbol{X}_2), \dots, \widetilde{\gamma}_{t,\boldsymbol{p}_l}(\boldsymbol{X}_l)),$$

where $\widetilde{\gamma}_{t,\boldsymbol{p}_{i}}$: $\boldsymbol{X}_{i} = (X_{j_{1}}, \ldots, X_{j_{n_{i}}}) \mapsto (e^{2\pi i p_{j_{1}}/d} X_{j_{1}}, \ldots, e^{2\pi i p_{j_{n_{i}}}/d} X_{j_{n_{i}}})$. Then $\widetilde{\gamma}_{t,\boldsymbol{p}}$ is a lift of γ_{t} . Moreover $\{\widetilde{\gamma}_{t,\boldsymbol{p}} : \boldsymbol{p} \in \Lambda\}$ exhausts all lifts of γ_{t} .

PROOF. Since $p(X_1, X_2, \ldots, X_n) = (X_1^d, X_2^d, \ldots, X_n^d, X_1X_2 \cdots X_n), \widetilde{\gamma}_{t,p}$ descends to an automorphism of A_{d-1} that maps $(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_l, t)$ to

$$\Big((\widetilde{\gamma}_{t,\boldsymbol{p}_1})^d(\boldsymbol{x}_1),\ldots,(\widetilde{\gamma}_{t,\boldsymbol{p}_l})^d(\boldsymbol{x}_l),\,(e^{2\pi\mathrm{i}p_1/d})(e^{2\pi\mathrm{i}p_2/d})\cdots(e^{2\pi\mathrm{i}p_n/d})t\Big),$$

that is, to $(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_l, e^{2\pi i (p_1+p_2+\cdots+p_n)/d}t)$. Here by (4.2), $e^{2\pi i (p_1+p_2+\cdots+p_n)/d} = e^{2\pi i \kappa/d}$. Thus $\tilde{\gamma}_{t,\boldsymbol{p}}$ descends to γ_t . We next show that $\{\tilde{\gamma}_{t,\boldsymbol{p}} : \boldsymbol{p} \in \Lambda\}$ exhausts all lifts of γ_t . As p is d^{n-1} -fold, it suffices to show that the cardinality of this set is d^{n-1} . This is clear, as Λ consists of d^{n-1} elements and $\tilde{\gamma}_{t,\boldsymbol{p}} \neq \tilde{\gamma}_{t,\boldsymbol{p}'}$ for $\boldsymbol{p} \neq \boldsymbol{p}'$. \Box

COROLLARY 4.3. $\widetilde{\gamma}_x \widetilde{\gamma}_{t,p}$ is a lift of γ . Moreover $\{\widetilde{\gamma}_x \widetilde{\gamma}_{t,p} : p \in \Lambda\}$ exhausts all lifts of γ .

PROOF. $\widetilde{\gamma}_x \widetilde{\gamma}_{t,p}$ descends to $\gamma_x \gamma_t$, i.e. γ . We show that $\{\widetilde{\gamma}_x \widetilde{\gamma}_{t,p} : p \in \Lambda\}$ exhausts all lifts of γ . As $p : \widetilde{A}_{d-1} \to A_{d-1}$ is d^{n-1} -fold, it suffices to show

that the cardinality of this set is d^{n-1} . This is clear, as Λ consists of d^{n-1} elements and $\tilde{\gamma}_{t,p} \neq \tilde{\gamma}_{t,p'}$ for $p \neq p'$. \Box

We next determine all lifts of γ^j by replacing γ_x, γ_t with γ_x^j, γ_t^j in the above argument. First from $\gamma = \gamma_x \gamma_t$, we have $\gamma^j = \gamma_x^j \gamma_t^j$. Here since $\tilde{\gamma}_x$ is a lift of γ_x (Lemma 4.1),

LEMMA 4.4. $\widetilde{\gamma}_x^j$ is a lift of γ_x^j .

We next determine lifts of γ_t^j . First for each j = 1, 2, ..., N (= ord(γ)), set

(4.4)
$$\Lambda^{(j)} = \left\{ (p_1, p_2, \dots, p_n) \in \mathbb{Z}^n : 0 \le p_i < d, \sum_{i=1}^n \frac{p_i}{d} \equiv \frac{j\kappa}{d} \mod \mathbb{Z} \right\}.$$

We write (p_1, p_2, \ldots, p_n) as $\boldsymbol{p} = (\boldsymbol{p}_1, \boldsymbol{p}_2, \ldots, \boldsymbol{p}_l) \in \mathbb{Z}^{n_1} \times \mathbb{Z}^{n_2} \times \cdots \times \mathbb{Z}^{n_l}$; note $n_1 + n_2 + \cdots + n_l = n$. As for Lemma 4.2, we can show:

LEMMA 4.5. For $\boldsymbol{p} = (\boldsymbol{p}_1, \boldsymbol{p}_2, \dots, \boldsymbol{p}_l) \in \Lambda^{(j)}$, let $\widetilde{\gamma}_{t, \boldsymbol{p}_i}$ be the automorphism of \mathbb{C}^{n_i} in Lemma 4.2 and define an automorphism of \widetilde{A}_{d-1} by

(4.5)
$$\widetilde{\gamma}_{t,\boldsymbol{p}}^{(j)}: (\boldsymbol{X}_1, \boldsymbol{X}_2, \dots, \boldsymbol{X}_l) \longmapsto (\widetilde{\gamma}_{t,\boldsymbol{p}_1}(\boldsymbol{X}_1), \widetilde{\gamma}_{t,\boldsymbol{p}_2}(\boldsymbol{X}_2), \dots, \widetilde{\gamma}_{t,\boldsymbol{p}_l}(\boldsymbol{X}_l)).$$

Then $\widetilde{\gamma}_{t,\mathbf{p}}^{(j)}$ is a lift of γ_t^j . Moreover $\{\widetilde{\gamma}_{t,\mathbf{p}}^{(j)} : \mathbf{p} \in \Lambda^{(j)}\}$ exhausts all lifts of γ_t^j .

As for Corollary 4.3, we can show:

COROLLARY 4.6. For $\mathbf{p} \in \Lambda^{(j)}$, let $\widetilde{\gamma}_{t,\mathbf{p}}^{(j)} : \widetilde{A}_{d-1} \to \widetilde{A}_{d-1}$ be the lift of γ_t^j given by (4.5). Then $\widetilde{\gamma}_x^j \widetilde{\gamma}_{t,\mathbf{p}}^{(j)}$ is a lift of γ^j . Moreover $\{\widetilde{\gamma}_x^j \widetilde{\gamma}_{t,\mathbf{p}}^{(j)} : \mathbf{p} \in \Lambda^{(j)}\}$ exhausts all lifts of γ^j .

Let Γ be the cyclic group of order N generated by γ and $\widetilde{\Gamma}$ be the lift of Γ with respect to $p : \widetilde{A}_{d-1} \to A_{d-1}$. By Corollary 4.6, the set of lifts of $\gamma^j \in \Gamma$ is given by $\operatorname{Lift}^{(j)} := \{\widetilde{\gamma}_x^j \widetilde{\gamma}_{t,p}^{(j)} : p \in \Lambda^{(j)}\}$. Since $\widetilde{\Gamma} = \bigcup_{i=1}^N \operatorname{Lift}^{(j)}$, we obtain the following: PROPOSITION 4.7. The lift $\widetilde{\Gamma}$ of Γ with respect to p is given by

(4.6)
$$\left\{\widetilde{\gamma}_x^j \widetilde{\gamma}_{t,\boldsymbol{p}}^{(j)} : \boldsymbol{p} \in \Lambda^{(j)}, \, j = 1, 2, \dots, N\right\}.$$

For $\boldsymbol{p} = (\boldsymbol{p}_1, \boldsymbol{p}_2, \dots, \boldsymbol{p}_l) \in \mathbb{Z}^{n_1} \times \mathbb{Z}^{n_2} \times \dots \times \mathbb{Z}^{n_l}$ and $\sigma = \sigma_1 \sigma_2 \cdots \sigma_l \in \mathfrak{S}_{n_1} \times \mathfrak{S}_{n_2} \times \dots \times \mathfrak{S}_{n_l}$, set $\sigma(\boldsymbol{p}) := (\sigma_1(\boldsymbol{p}_1), \sigma_2(\boldsymbol{p}_2), \dots, \sigma_l(\boldsymbol{p}_l)).$

LEMMA 4.8. Let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_l$ be the permutation appearing in the definition of γ . For $\mathbf{p} \in \Lambda^{(j)}$, set $\mathbf{q} := \sigma^{-j}(\mathbf{p})$. Then $\mathbf{q} \in \Lambda^{(j)}$ and $\widetilde{\gamma}_{t,\mathbf{p}}^{(j)} \widetilde{\gamma}_x^j = \widetilde{\gamma}_x^j \widetilde{\gamma}_{t,\mathbf{q}}^{(j)}$.

PROOF. Since q is a permutation of p, $\{q_1, q_2, \ldots, q_n\} = \{p_1, p_2, \ldots, p_n\}$ as sets, so $q_1 + q_2 + \cdots + q_n = p_1 + p_2 + \cdots + p_n$. In particular

$$\frac{q_1 + q_2 + \dots + q_n}{d} = \frac{p_1 + p_2 + \dots + p_n}{d}$$
$$\equiv \frac{j\kappa}{d} \mod \mathbb{Z}.$$

Hence $\boldsymbol{q} \in \Lambda^{(j)}$. We next show $\widetilde{\gamma}_{t,\boldsymbol{p}}^{(j)}\widetilde{\gamma}_x^j = \widetilde{\gamma}_x^j\widetilde{\gamma}_{t,\boldsymbol{q}}^{(j)}$. Note that

$$\left((\widetilde{\gamma}_{t,q_{i}})(\boldsymbol{X}_{i}) \right)^{\sigma_{i}^{j}} = (e^{2\pi i q_{j_{1}}/d} X_{j_{1}}, \dots, e^{2\pi i q_{j_{n_{i}}}/d} X_{j_{n_{i}}})^{\sigma_{i}^{j}}$$

$$= (e^{2\pi i p_{j_{1}}/d} X_{\sigma_{i}^{j}(j_{1})}, \dots, e^{2\pi i p_{j_{n_{i}}}/d} X_{\sigma_{i}^{j}(j_{n_{i}})}) \quad \text{as } \sigma_{i}^{j}(\boldsymbol{q}_{i}) = \boldsymbol{p}_{i}$$

$$= \widetilde{\gamma}_{t,\boldsymbol{p}_{i}}(X_{\sigma_{i}^{j}(j_{1})}, \dots, X_{\sigma_{i}^{j}(j_{n_{i}})}) = \widetilde{\gamma}_{t,\boldsymbol{p}_{i}}(\boldsymbol{X}_{i}^{\sigma_{i}^{j}}).$$

Then for any $\boldsymbol{X} := (\boldsymbol{X}_1, \dots, \boldsymbol{X}_l) \in \widetilde{A}_{d-1},$

$$\begin{split} \widetilde{\gamma}_{x}^{j}\widetilde{\gamma}_{t,\boldsymbol{q}}^{(j)}(\boldsymbol{X}) &= \left(e^{2\pi i j a_{1}/n_{1}m_{1}} \left((\widetilde{\gamma}_{t,\boldsymbol{q}_{1}})(\boldsymbol{X}_{1})\right)^{\sigma_{1}^{j}}, \dots, e^{2\pi i j a_{l}/n_{l}m_{l}} \left((\widetilde{\gamma}_{t,\boldsymbol{q}_{l}})(\boldsymbol{X}_{1})\right)^{\sigma_{l}^{j}}\right) \\ &= \left(e^{2\pi i j a_{1}/n_{1}m_{1}}\widetilde{\gamma}_{t,\boldsymbol{p}_{1}}(\boldsymbol{X}_{1}^{\sigma_{1}^{j}}), \dots, e^{2\pi i j a_{l}/n_{l}m_{l}}\widetilde{\gamma}_{t,\boldsymbol{p}_{l}}(\boldsymbol{X}_{l}^{\sigma_{l}^{j}})\right) \\ &= \left(\widetilde{\gamma}_{t,\boldsymbol{p}_{1}}(e^{2\pi i j a_{1}/n_{1}m_{1}}\boldsymbol{X}_{1}^{\sigma_{1}^{j}}), \dots, \widetilde{\gamma}_{t,\boldsymbol{p}_{l}}(e^{2\pi i j a_{l}/n_{l}m_{l}}\boldsymbol{X}_{l}^{\sigma_{l}^{j}})\right) \\ &= \widetilde{\gamma}_{t,\boldsymbol{p}}^{(j)}\widetilde{\gamma}_{x}^{j}(\boldsymbol{X}). \ \Box \end{split}$$

We will give a necessary condition for $\widetilde{\Gamma}$ to be abelian. Recall first that for $\boldsymbol{p} = (p_1, \ldots, p_n) \in \Lambda^{(j)}$, the automorphism $\widetilde{\gamma}_{t, \boldsymbol{p}}^{(j)}$ is given by

$$\widetilde{\gamma}_{t,\boldsymbol{p}}^{(j)}: (X_1,\ldots,X_n) \longmapsto (e^{2\pi i p_1/d} X_1,\ldots,e^{2\pi i p_n/d} X_n).$$

Thus the following holds:

(4.7)
$$\begin{cases} (*) \quad \widetilde{\gamma}_{t,p}^{(j)} \, \widetilde{\gamma}_{t,p'}^{(j')} = \widetilde{\gamma}_{t,p'}^{(j')} \widetilde{\gamma}_{t,p}^{(j)} \text{ for any } \boldsymbol{p} \in \Lambda^{(j)}, \, \boldsymbol{p}' \in \Lambda^{(j')}, \\ (**) \quad \widetilde{\gamma}_{t,p}^{(j)} = \widetilde{\gamma}_{t,p'}^{(j')} \iff \boldsymbol{p} = \boldsymbol{p}'. \end{cases}$$

LEMMA 4.9. If $\tilde{\Gamma}$ is abelian, then $\sigma(\mathbf{p}) = \mathbf{p}$ for any $\mathbf{p} \in \Lambda^{(N)}$. (Actually the converse holds (Proposition 10.9).)

PROOF. Taking auxiliary $\boldsymbol{q} \in \Lambda^{(1)}$, set $\eta_1 := \widetilde{\gamma}_x^N \widetilde{\gamma}_{t,\boldsymbol{p}}^{(N)}$, $\eta_2 := \widetilde{\gamma}_x \widetilde{\gamma}_{t,\boldsymbol{q}}^{(1)} \in \widetilde{\Gamma}$. If $\widetilde{\Gamma}$ is abelian, then $\eta_1 \eta_2 = \eta_2 \eta_1$. Here

$$\begin{cases} \eta_1 \eta_2 = \widetilde{\gamma}_x^N (\widetilde{\gamma}_{t,\boldsymbol{p}}^{(N)} \widetilde{\gamma}_x) \widetilde{\gamma}_{t,\boldsymbol{q}}^{(1)} = \widetilde{\gamma}_x^N (\widetilde{\gamma}_x \widetilde{\gamma}_{t,\sigma^{-1}(\boldsymbol{p})}^{(N)}) \widetilde{\gamma}_{t,\boldsymbol{q}}^{(1)} & \text{by Lemma 4.8,} \\ \eta_2 \eta_1 = \widetilde{\gamma}_x (\widetilde{\gamma}_{t,\boldsymbol{q}}^{(1)} \widetilde{\gamma}_x^N) \widetilde{\gamma}_{t,\boldsymbol{p}}^{(N)} = \widetilde{\gamma}_x (\widetilde{\gamma}_x^N \widetilde{\gamma}_{t,\sigma^{-N}(\boldsymbol{q})}^{(1)}) \widetilde{\gamma}_{t,\boldsymbol{p}}^{(N)} & \text{by Lemma 4.8.} \end{cases}$$

Thus:

$$\eta_{1}\eta_{2} = \eta_{2}\eta_{1} \iff \widetilde{\gamma}_{x}^{N+1}\widetilde{\gamma}_{t,\sigma^{-1}(p)}^{(N)}\widetilde{\gamma}_{t,q}^{(1)} = \widetilde{\gamma}_{x}^{N+1}\widetilde{\gamma}_{t,\sigma^{-N}(q)}^{(1)}\widetilde{\gamma}_{t,p}^{(N)}$$

$$\iff \widetilde{\gamma}_{t,\sigma^{-1}(p)}^{(N)}\widetilde{\gamma}_{t,q}^{(1)} = \widetilde{\gamma}_{t,\sigma^{-N}(q)}^{(1)}\widetilde{\gamma}_{t,p}^{(N)} \quad \text{as } \sigma^{-N} = \text{id}$$

$$\iff \widetilde{\gamma}_{t,\sigma^{-1}(p)}^{(N)}\widetilde{\gamma}_{t,q}^{(1)} = \widetilde{\gamma}_{t,p}^{(N)}\widetilde{\gamma}_{t,q}^{(1)} \quad \text{by (*) of (4.7)}$$

$$\iff \widetilde{\gamma}_{t,\sigma^{-1}(p)}^{(N)} = \widetilde{\gamma}_{t,p}^{(N)}$$

$$\iff \sigma^{-1}(p) = p \quad \text{by (**) of (4.7).} \square$$

We next determine the descent H of $\widetilde{\Gamma}$ with respect to the covering $q: \widetilde{A}_{d-1} \to \mathbb{C}^n$ given by $q(\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_l) = (\mathbf{X}_1^{m'_1}, \mathbf{X}_2^{m'_2}, \dots, \mathbf{X}_l^{m'_l})$. For simplicity, set $\alpha := \gamma_x$, $\beta := \gamma_t$ and $\widetilde{\alpha} := \widetilde{\gamma}_x$, $\widetilde{\beta}_{j, \mathbf{p}} := \widetilde{\gamma}_{t, \mathbf{p}}^{(j)}$, where $\mathbf{p} =$

54

 (p_1, p_2, \ldots, p_l) . The latter pair is explicitly given by (see Lemma 4.1 and (4.5)):

$$(4.8) \qquad \widetilde{\alpha} : (\boldsymbol{X}_1, \dots, \boldsymbol{X}_l) \longmapsto \left(e^{2\pi i a_1/n_1 m_1 d} \boldsymbol{X}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_l m_l d} \boldsymbol{X}_l^{\sigma_l} \right), \qquad (4.8) \qquad \widetilde{\beta}_{j, \boldsymbol{p}} : (\boldsymbol{X}_1, \boldsymbol{X}_2, \dots, \boldsymbol{X}_l) \qquad \longmapsto \left(\widetilde{\beta}_{j, \boldsymbol{p}_1}(\boldsymbol{X}_1), \, \widetilde{\beta}_{j, \boldsymbol{p}_2}(\boldsymbol{X}_2), \dots, \widetilde{\beta}_{j, \boldsymbol{p}_l}(\boldsymbol{X}_l) \right),$$

where we set $\widetilde{\beta}_{j,p_k} := \widetilde{\gamma}_{t,p_k}$. Since $q(X_1, X_2, \dots, X_l) = (X_1^{m'_1}, X_2^{m'_2}, \dots, X_l)$, the following holds:

LEMMA 4.10. The descents $\overline{\alpha}$, $\overline{\beta}_{j,p}$ of $\widetilde{\alpha}$, $\widetilde{\beta}_{j,p}$ with respect to q are explicitly given by

$$\overline{\alpha}: (\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_l) \longmapsto (e^{2\pi i a_1/cd} \boldsymbol{u}_1^{\sigma_1}, e^{2\pi i a_2/cd} \boldsymbol{u}_2^{\sigma_2}, \dots, e^{2\pi i a_l/cd} \boldsymbol{u}_l^{\sigma_l}), \\
\overline{\beta}_{j, \boldsymbol{p}}: (\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_l) \\
\longmapsto ((\widetilde{\beta}_{j, \boldsymbol{p}_1})^{m_1'}(\boldsymbol{u}_1), (\widetilde{\beta}_{j, \boldsymbol{p}_2})^{m_2'}(\boldsymbol{u}_2), \dots, (\widetilde{\beta}_{j, \boldsymbol{p}_l})^{m_l'}(\boldsymbol{u}_l)).$$

Lemma 4.11.

(1)
$$\widetilde{\Gamma} = \{ \alpha^{j} \beta_{j, p} : p \in \Lambda^{(j)}, j = 1, 2, \dots, N \}.$$

(2) $H = \{ \overline{\alpha}^{j} \overline{\beta}_{j, p} : p \in \Lambda^{(j)}, j = 1, 2, \dots, N \}.$

PROOF. (1): Proposition 4.7. (2) follows from (1) as the induced homomorphism $q_*: \widetilde{\Gamma} \to H$ from $q: \widetilde{A}_{d-1} \to \mathbb{C}^n$ is surjective, \Box

REMARK 4.12. If $\sigma \neq id$, $\tilde{\Gamma}$ is generally not abelian (see Lemma 4.9). Accordingly H is generally not abelian.

Lemma 4.11(2) implies the following:

LEMMA 4.13. Each element of H is of the form

 $(u_1, u_2, \ldots, u_n) \longmapsto (\zeta_1 u_{\sigma^j(1)}, \zeta_2 u_{\sigma^j(2)}, \ldots, \zeta_n u_{\sigma^j(n)}),$

where $\zeta_1, \zeta_2, \ldots, \zeta_n$ are roots of unity, σ is the permutation appearing in the definition of γ , and $j \in \mathbb{Z}$.

5. Simple Pseudo-Reflections

To determine the pseudo-reflection subgroup of H, some technical preparation is needed. A pseudo-reflection is *simple* if it is of the following form (and a general pseudo-reflection is conjugate to such):

 $(u_1,\ldots,u_n) \longmapsto (u_1,\ldots,\zeta u_i,\ldots,u_n) \quad (\zeta \neq 1 \text{ is a root of unity}).$

This is denoted by $h_{i,\zeta}$. In the particular case $\zeta = -1$, it is a *simple* reflection. Note that the order of a pseudo-reflection is finite (if ζ is a kth root of unity, its order is k) and its fixed point set is an (n-1)-dimensional subspace (for $h_{i,\zeta}$, this is defined by $u_i = 0$).

An example of a non-simple pseudo-reflection is

$$k_{ij,\alpha}: (u_1,\ldots,u_i,\ldots,u_j,\ldots,u_n) \longmapsto (u_1,\ldots,\alpha u_j,\ldots,\alpha^{-1}u_i,\ldots,u_n),$$

where $\alpha \neq 0$. This is called an (i, j)-switching. Note $k_{ij,\alpha}$ is conjugate to $h_{i,-1}$, for instance if n = 3 and (i, j) = (1, 2), then via $A = \begin{pmatrix} -\alpha & \alpha & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$:

$$A^{-1} \begin{pmatrix} 0 & \alpha & 0\\ \alpha^{-1} & 0 & 0\\ 0 & 0 & 1 \end{pmatrix} A = \begin{pmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

LEMMA 5.1. A linear automorphism of \mathbb{C}^n is a pseudo-reflection if and only if its order is finite and the dimension of its fixed point set is n-1.

PROOF. It suffices to show "if". Suppose that a linear automorphism f(z) = Az satisfies the condition. Then $A^k = E$ for some positive integer k. The minimal polynomial of A thus divides $x^k - 1$, so its roots are distinct kth roots of unity. Hence A is diagonalizable to a matrix of the form $\begin{pmatrix} \zeta_1 & O \\ & \ddots & \\ O & & \zeta_n \end{pmatrix}$, where ζ_i is a kth root of unity. Here by assumption the dimension of the fixed point set of f is n - 1, so only one of ζ_1 (ζ_2 ... (ζ_n)

dimension of the fixed point set of f is n-1, so only one of $\zeta_1, \zeta_2, \ldots, \zeta_n$ is not 1 and the others are 1, implying that f is a pseudo-reflection. \Box

LEMMA 5.2. Let $h: (u_1, \ldots, u_n) \mapsto (\zeta_1 u_{\tau(1)}, \ldots, \zeta_n u_{\tau(n)})$ be an automorphism of \mathbb{C}^n $(n \geq 2)$, where ζ_1, \ldots, ζ_n are roots of unity and $\tau \in \mathfrak{S}_n$ is a cyclic permutation of length n.

(1) Let Fix(h) be the fixed point set of h, then

$$\dim \operatorname{Fix}(h) = \begin{cases} 1 & \text{if } \zeta_1 \zeta_2 \cdots \zeta_n = 1, \\ 0 & \text{otherwise.} \end{cases}$$

(2) If h is a pseudo-reflection, n must be 2 (so τ is necessarily a transposition) and $h: (u_1, u_2) \mapsto (\zeta_1 u_2, \zeta_1^{-1} u_1)$ (a (1,2)-switching).

PROOF. (1): First

Fix(h) = {
$$(u_1, \ldots, u_n) \in \mathbb{C}^n : u_1 = \zeta_1 u_{\tau(1)}, u_2 = \zeta_2 u_{\tau(2)}, \ldots, u_n = \zeta_n u_{\tau(n)}$$
 }.

Without loss of generality, we assume $\tau = (1 \ 2 \ \cdots \ n)$. Then Fix(h) is defined by $u_1 = \zeta_1 u_2, u_2 = \zeta_2 u_3, \ldots, u_n = \zeta_n u_1$; this is equivalent to

(*)
$$u_1 = \zeta_1 u_2 = \zeta_1 \zeta_2 u_3 = \dots = \zeta_1 \zeta_2 \dots \zeta_{n-1} u_n = \zeta_1 \zeta_2 \dots \zeta_n u_1.$$

We claim that setting $\boldsymbol{v} := (1, \zeta_1^{-1}, \zeta_1^{-1}\zeta_2^{-1}, \dots, \zeta_1^{-1}\zeta_2^{-1}\cdots \zeta_{n-1}^{-1}) \in \mathbb{C}^n$, then Fix(*h*) is { $c\boldsymbol{v} : c \in \mathbb{C}$ } if $\zeta_1\zeta_2\cdots \zeta_n = 1$, and {0} otherwise. Note that from (*), in particular $u_1 = \zeta_1\zeta_2\cdots \zeta_n u_1$, whose solution is, if $\zeta_1\zeta_2\cdots \zeta_n \neq 1$, unique $u_1 = 0$, accordingly the solution of (*) is unique $u_1 = u_2 = u_3 =$ $\dots = u_n = 0$, so Fix(*h*) = {0}. If $\zeta_1\zeta_2\cdots \zeta_n = 1$, solving (*) with respect to u_1 yields $u_2 = \zeta_1^{-1}u_1, u_3 = \zeta_1^{-1}\zeta_2^{-1}u_1, \dots, u_n = \zeta_1^{-1}\zeta_2^{-1}\cdots \zeta_{n-1}^{-1}u_1$. Thus setting $c := u_1$, then $(u_1, u_2, \dots, u_n) = c(1, \zeta_1^{-1}, \zeta_1^{-1}\zeta_2^{-1}, \dots, \zeta_1^{-1}\zeta_2^{-1}\cdots \zeta_{n-1}^{-1})$, hence Fix(*h*) = { $c\boldsymbol{v} : c \in \mathbb{C}$ }.

(2): If h is a pseudo-reflection of \mathbb{C}^n $(n \ge 2)$, then by Lemma 5.1, dim Fix(h) = $n - 1 \ge 1$. This combined with (1) implies n - 1 = 1and $\zeta_1 \zeta_2 \cdots \zeta_n = 1$, that is, n = 2 and $\zeta_1 \zeta_2 = 1$. Thus $h : (u_1, u_2) \mapsto (\zeta_1 u_2, \zeta_1^{-1} u_1)$. \Box

Lemma 5.2 (2) is generalized to:

LEMMA 5.3. Let $h: (u_1, \ldots, u_n) \mapsto (\zeta_1 u_{\tau(1)}, \ldots, \zeta_n u_{\tau(n)})$ be an automorphism of \mathbb{C}^n $(n \geq 2)$, where ζ_1, \ldots, ζ_n are roots of unity and $\tau \in \mathfrak{S}_n$. If h is a pseudo-reflection, then it is either simple or switching.

PROOF. Decompose τ into disjoint cyclic permutations: $\tau = \tau_1 \tau_2 \cdots \tau_l$. Without loss of generality, we assume that τ_1 permutes $\{1, 2, \ldots, n_1\}, \tau_2$ permutes $\{n_1 + 1, n_1 + 2, \ldots, n_1 + n_2\}$ and so on. Write \mathbb{C}^n as $\mathbb{C}^{n_1} \times \mathbb{C}^{n_2} \times \cdots \times \mathbb{C}^{n_l}$ and $(u_1, u_2, \ldots, u_n) \in \mathbb{C}^n$ as $(\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_l)$, where $\boldsymbol{u}_i \in \mathbb{C}^{n_i}$. Express then h as

$$h: (\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_l) \longmapsto (h_1(\boldsymbol{u}_1), h_2(\boldsymbol{u}_2), \dots, h_l(\boldsymbol{u}_l)),$$

where $h_i : \mathbb{C}^{n_i} \to \mathbb{C}^{n_i}$ is a linear automorphism of finite order (as h is). Then $\operatorname{Fix}(h)$ is expressed as $\operatorname{Fix}(h_1) \times \operatorname{Fix}(h_2) \times \cdots \times \operatorname{Fix}(h_l)$, so

$$\dim \operatorname{Fix}(h) = \dim \operatorname{Fix}(h_1) + \dim \operatorname{Fix}(h_2) + \dots + \dim \operatorname{Fix}(h_l).$$

Here if h is a pseudo-reflection, then by Lemma 5.1, dim $Fix(h) = n - 1 = n_1 + n_2 + \cdots + n_l - 1$, thus

$$\dim \operatorname{Fix}(h_1) + \dim \operatorname{Fix}(h_2) + \dots + \dim \operatorname{Fix}(h_l) = n_1 + n_2 + \dots + n_l - 1.$$

Noting dim Fix $(h_i) \leq n_i$, we have: For some h_k , dim Fix $(h_k) = n_k - 1$ (so h_k is a pseudo-reflection by Lemma 5.1) and for any other h_i , dim Fix $(h_i) = n_i$ (so h_i is the identity). Thus $h(\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_l) = (\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, h_k(\boldsymbol{u}_k), \ldots, \boldsymbol{u}_l)$ such that h_k is a pseudo-reflection. Here if $n_k \geq 2$, h is switching and if $n_k = 1$, simple, because: in the former case, by Lemma 5.2 (2), n_k must be 2 and h_k is switching and in the latter case, $h_k : \mathbb{C} \to \mathbb{C}$ is of the form $u \mapsto \zeta u$ ($\zeta \neq 1$ is a root of unity). \Box

6. The Pseudo-Reflection Subgroup of H

LEMMA 6.1. Let G be a finite subgroup of $GL_n(\mathbb{C})$ and Q be the pseudoreflection subgroup of G (i.e. the subgroup generated by all pseudo-reflections of G). Then Q is normal in G.

PROOF. By definition, any element conjugate to a pseudo-reflection is also a pseudo-reflection, so Q is normal in G. \Box

The G-action on \mathbb{C}^n naturally descends to a G/Q-action on \mathbb{C}^n/Q . Here:

THEOREM 6.2 (Chevalley-Shephard-Todd). $\mathbb{C}^n/Q \cong \mathbb{C}^n$ and under this isomorphism, G/Q acts on \mathbb{C}^n linearly. So G/Q may be regarded as a subgroup of $GL_n(\mathbb{C})$. (Note G/Q is a small group, as the pseudo-reflection subgroup of G/Q is trivial.)

We return to the cyclic group Γ generated by a twining automorphism $\gamma: A_{d-1} \to A_{d-1}$ given by

(6.1)
$$(\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \mapsto (e^{2\pi i a_1/n_1 m_1} \boldsymbol{x}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_l m_l} \boldsymbol{x}_l^{\sigma_l}, e^{2\pi i/N} t)$$

Recall that $\widetilde{\Gamma}$ is the lift of Γ with respect to the universal covering p: $\widetilde{A}_{d-1}(=\mathbb{C}^n) \to A_{d-1}$ and H is the descent of $\widetilde{\Gamma}$ with respect to the covering $q: \widetilde{A}_{d-1} \to \mathbb{C}^n$. We apply to H the above results, to determine its *pseudo-reflection subgroup* — the subgroup generated by all pseudo-reflections in H. Note first that:

Lemma 6.3.

- (1) The cyclic group Γ contains no switching that leaves t fixed.
- (2) Any pseudo-reflection in H is simple.

PROOF. (1): We only show that Γ contains no (1,2)-switching (other cases are similarly shown). Note first that from (6.1), $\gamma^k \in \Gamma$ maps t to $e^{2\pi i k/N}t$. If γ^k is a (1,2)-switching, then $e^{2\pi i k/N}$ must be 1; so k is a multiple of N. Since the order of γ is N, this implies that γ^k is the identity, which contradicts that γ^k is a (1,2)-switching.

(2): Let $h \in H$ be a pseudo-reflection. By Lemma 4.13, h is of the form:

$$(6.2) heta: (u_1, u_2, \dots, u_n) \mapsto (\zeta_1 u_{\sigma^j(1)}, \zeta_2 u_{\sigma^j(2)}, \dots, \zeta_n u_{\sigma^j(n)})$$

for some j and some roots $\zeta_1, \zeta_2, \ldots, \zeta_n$ of unity. Then by Lemma 5.3, h is either simple or switching. The assertion is thus confirmed by showing the latter does *not* occur. We only show that h cannot be a (1, 2)-switching (other cases are similarly shown). Otherwise

$$h: (u_1, u_2, u_3, \dots, u_n) \longmapsto (\alpha u_2, \alpha^{-1} u_1, u_3, \dots, u_n) \quad (\alpha: \text{ a root of unity}).$$

Comparing this with (6.2) yields $\sigma^j = (1 \ 2)$.

Recall that $\sigma = \sigma_1 \sigma_2 \cdots \sigma_l$, where $\sigma_1, \sigma_2, \ldots, \sigma_l$ are the cyclic permutations appearing in (6.1) and n_i is the length of σ_i . From $\sigma^j = (1 \ 2)$, we

have $\sigma_1^j = (1 \ 2)$ and $\sigma_2^j = \sigma_3^j = \cdots = \sigma_l^j = \text{id.}$ Note that $\sigma_1^j = (1 \ 2)$ implies $\sigma_1 = (1 \ 2)$ and $n_1 = 2$ (see Remark 6.4 (2) below); from the latter, $\boldsymbol{X}_1 = (X_1, X_2)$, so the covering $q : \widetilde{A}_{d-1} \to \mathbb{C}^n$ is given by

$$q: (X_1, X_2, X_3, \dots, X_n) \longmapsto (X_1^{m'_1}, X_2^{m'_1}, X_3^{m'_2}, \dots, X_n^{m'_l}).$$

Define a lift $\tilde{h} \in \tilde{\Gamma}$ of h with respect to q by

$$\widetilde{h}: (X_1, X_2, X_3, \dots, X_n) \longmapsto (\alpha^{1/m'_1} X_2, \alpha^{-1/m'_1} X_1, X_3, \dots, X_n).$$

The descent $\overline{h} \in \Gamma$ of \widetilde{h} with respect to $p : \widetilde{A}_{d-1} \to A_{d-1}$ is then

$$\overline{h}: (x_1, x_2, x_3, \dots, x_n, t) \longmapsto (\alpha^{d/m_1'} x_2, \alpha^{-d/m_1'} x_1, x_3, \dots, x_n, t).$$

This is a (1, 2)-switching, which contradicts that Γ contains no switching (as shown in (1)). \Box

REMARK 6.4. For a cyclic permutation τ , τ^j is generally *decomposable*: Say the length of τ is l and set k := gcd(j, l), then τ^j is a product of k cyclic permutations of the *same* length l/k (note k divides l).

(1) In case k = 1, τ^{j} is indecomposable, and the length l/1 of τ^{j} is the same as that of τ .

(2) If l = 2 (i.e. τ is a transposition), then necessarily k = 1 or 2. In the former case, by (1) the length of τ^j is also 2, so τ^j is a transposition — necessarily $\tau^j = \tau$ and j is odd.

We turn to determine the pseudo-reflection subgroup of H.

PROPOSITION 6.5. The pseudo-reflection subgroup P of H is a direct product $P_1 \times P_2 \times \cdots \times P_n$, where P_i is the subgroup of H generated by ith simple pseudo-reflections, that is, of the form

$$(u_1, u_2, \ldots, u_n) \longmapsto (u_1, u_2, \ldots, \zeta u_i, \ldots, u_n), \zeta \text{ is a root of unity.}$$

PROOF. Clearly $P_1P_2 \cdots P_n \subset P$. Since any pseudo-reflection in H is contained in some P_i (from Lemma 6.3 (2)), $P = P_1P_2 \cdots P_n$. Here by definition, $P_i \cap P_j = \{1\}$ $(i \neq j)$, thus $P = P_1 \times P_2 \times \cdots \times P_n$. \Box

We next determine P_i explicitly. Recall first the following diagram with group actions:

Here Γ is the cyclic group generated by a twining automorphism

$$\gamma: (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \longmapsto (e^{2\pi i a_1/n_1 m_1} \boldsymbol{x}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_l m_l} \boldsymbol{x}_l^{\sigma_l}, e^{2\pi i/N} t),$$

and $\widetilde{\Gamma}$ is the lift of Γ with respect to p, and H is the descent of $\widetilde{\Gamma}$ with respect to q.

Notation 6.6. The subsequent discussion involves the following groups:

- $\widetilde{\Gamma}_i \subset \widetilde{\Gamma}$: the subgroup generated by *i*th simple pseudo-reflections, that is, of the form $(X_1, X_2, \ldots, X_n) \mapsto (X_1, X_2, \ldots, \zeta X_i, \ldots, X_n)$, where ζ is a root of unity.
- $\Gamma_i \subset \Gamma$: the subgroup generated by automorphisms of the form $(x_1, \ldots, x_n, t) \mapsto (x_1, \ldots, \mu^d x_i, \ldots, x_n, \mu t)$, where μ is a root of unity.
- $P_i \subset H$: the subgroup generated by *i*th simple pseudo-reflections.

DEFINITION 6.7. The surjective homomorphism $p_* : \widetilde{\Gamma} \to \Gamma$ (resp. $q_* : \widetilde{\Gamma} \to H$) induced by p (resp. q) is called a *descent homomorphism*.

Lemma 6.8.

- (1) Γ_i is the descent of $\widetilde{\Gamma}_i$ with respect to p, that is, $p_*(\widetilde{\Gamma}_i) = \Gamma_i$. In fact $p_*: \widetilde{\Gamma}_i \to \Gamma_i$ is an isomorphism.
- (2) P_i is the descent of $\widetilde{\Gamma}_i$ with respect to q, that is, $q_*(\widetilde{\Gamma}_i) = P_i$.

PROOF. (1): Since

$$p: (X_1, X_2, \dots, X_n) \longmapsto (X_1^d, X_2^d, \dots, X_n^d, X_1 X_2 \cdots X_n),$$

an *i*th pseudo-reflection $(X_1, \ldots, X_n) \mapsto (X_1, \ldots, \zeta X_i, \ldots, X_n)$ descends to $(x_1, \ldots, x_n, t) \mapsto (x_1, \ldots, \zeta^d x_i, \ldots, x_n, \zeta t)$. This correspondence is clearly

surjective, so $p_*(\widetilde{\Gamma}_i) = \Gamma_i$. Moreover this is injective: Distinct automorphisms $\begin{cases}
(X_1, \dots, X_n) \mapsto (X_1, \dots, \zeta X_i, \dots, X_n) \\
(X_1, \dots, X_n) \mapsto (X_1, \dots, \zeta' X_i, \dots, X_n)
\end{cases}$ descend to distinct automorphisms $\begin{cases}
(x_1, \dots, x_n, t) \mapsto (x_1, \dots, \zeta^d x_i, \dots, x_n, \zeta t) \\
(x_1, \dots, x_n, t) \mapsto (x_1, \dots, (\zeta')^d x_i, \dots, x_n, \zeta' t).
\end{cases}$ (2): Write $(X_1, \dots, X_n) \in \mathbb{C}^n$ as $(X_1, X_2, \dots, X_l) \in \mathbb{C}^{n_1} \times \mathbb{C}^{n_2} \times \dots \times \mathbb{C}^{n_l}$ $(n = n_1 + n_2 + \dots + n_l)$, then

(6.4)
$$q: (\boldsymbol{X}_1, \boldsymbol{X}_2, \dots, \boldsymbol{X}_l) \longmapsto (\boldsymbol{X}_1^{m_1'}, \boldsymbol{X}_2^{m_2'}, \dots, \boldsymbol{X}_l^{m_l'}).$$

Say $X_i \in \mathbf{X}_k$, then under $q, (X_1, \ldots, X_n) \mapsto (X_1, \ldots, \zeta X_i, \ldots, X_n)$ descends to $(u_1, \ldots, u_n) \mapsto (u_1, \ldots, \zeta^{m'_k} u_i, \ldots, u_n)$. This correspondence is clearly surjective. \Box

Recall that Γ is the cyclic group of order N generated by

(6.5)
$$\gamma: (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \longmapsto (e^{2\pi i a_1/n_1 m_1} \boldsymbol{x}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_l m_l} \boldsymbol{x}_l^{\sigma_l}, e^{2\pi i N} t).$$

Thus

(6.6)
$$\gamma^{j}: (\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{l}, t) \\ \longmapsto (e^{2\pi \mathrm{i}ja_{1}/n_{1}m_{1}}\boldsymbol{x}_{1}^{\sigma_{1}^{j}}, \dots, e^{2\pi \mathrm{i}ja_{l}/n_{l}m_{l}}\boldsymbol{x}_{l}^{\sigma_{l}^{j}}, e^{2\pi \mathrm{i}j/N}t).$$

We investigate when $\gamma^j \in \Gamma_i$, that is, γ^j is of the form $(x_1, \ldots, x_n, t) \mapsto (x_1, \ldots, \zeta^d x_i, \ldots, x_n, \zeta t)$ for some root ζ of unity. Say $x_i \in \boldsymbol{x}_k$, then

(6.7)
$$\gamma^j: (x_1, \ldots, x_n, t) \longmapsto (\underbrace{x_1, \ldots}_{\boldsymbol{x}_1} \cdots \underbrace{, \zeta^d x_i, \ldots}_{\boldsymbol{x}_k} \cdots \underbrace{, x_n}_{\boldsymbol{x}_l}, \zeta t).$$

Comparing (6.6) and (6.7) yields $\sigma_1^j = 1, \sigma_2^j = 1, \ldots, \sigma_l^j = 1$, accordingly (6.6) reduces to

(6.8)
$$\gamma^j: (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \longmapsto (e^{2\pi i j a_1/n_1 m_1} \boldsymbol{x}_1, \dots, e^{2\pi i j a_l/n_l m_l} \boldsymbol{x}_l, e^{2\pi i j/N} t).$$

We then compare the coefficients in (6.7) and (6.8):

• Comparison for \boldsymbol{x}_s $(s = 1, ..., \check{k}, ..., l)$ gives $e^{2\pi i j a_s/n_s m_s} = 1$, where \check{k} means the omission of k.

• Comparison for \boldsymbol{x}_k gives $e^{2\pi i j a_k/n_k m_k} \boldsymbol{x}_k = (\underbrace{\dots, x_{i-1}, \zeta^d x_i, \dots}_{\boldsymbol{x}_k})$, that is,

$$(\ldots, e^{2\pi i j a_k/n_k m_k} x_{i-1}, e^{2\pi i j a_k/n_k m_k} x_i, \ldots) = (\ldots, x_{i-1}, \zeta^d x_i, \ldots).$$

If length $(\boldsymbol{x}_k) = 1$, this reduces to $(e^{2\pi i j a_k/n_k m_k} x_i) = (\zeta^d x_i)$, so $e^{2\pi i j a_k/n_k m_k} = \zeta^d$. If length $(\boldsymbol{x}_k) \geq 2$, then $e^{2\pi i j a_k/n_k m_k} = 1$ and $\zeta^d = 1$.

• Comparison for t gives $e^{2\pi i j/N} = \zeta$.

Note. If length $(\boldsymbol{x}_k) = 1$ (resp. ≥ 2), then $(\zeta, \zeta^d) = (e^{2\pi i j/N}, e^{2\pi i j a_k/n_k m_k})$ (resp. $(\zeta, \zeta^d) = (e^{2\pi i j/N}, 1)$). Accordingly $(e^{2\pi i j/N})^d = e^{2\pi i j a_k/n_k m_k}$ (resp. $(e^{2\pi i j/N})^d = 1$), which also follows from the fact that γ^j preserves A_{d-1} , that is, $x_1 x_2 \cdots x_n = t$.

We summarize the above results as follows:

LEMMA 6.9. Let Γ_i be the subgroup of Γ defined in Notation 6.6. Then $\gamma^j \in \Gamma_i$ if and only if γ^j is of the form (say $x_i \in \boldsymbol{x}_k$):

$$\begin{cases} (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \mapsto (\boldsymbol{x}_1, \dots, e^{2\pi \mathrm{i} dj/N} \boldsymbol{x}_k, \dots, \boldsymbol{x}_l, e^{2\pi \mathrm{i} j/N} t) & \text{if } \mathrm{length}(\boldsymbol{x}_k) = 1, \\ (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \mapsto (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, e^{2\pi \mathrm{i} j/N} t) & \text{if } \mathrm{length}(\boldsymbol{x}_k) \geq 2. \end{cases}$$

This condition is 'more explicitly' given by: $\sigma_1^j = 1, \sigma_2^j = 1, \ldots, \sigma_l^j = 1$ and (below, \check{k} is the omission of k)

$$(*) \quad \begin{cases} e^{2\pi i j a_s/n_s m_s} = 1 \text{ for } s = 1, 2, \dots, \check{k}, \dots, l & \text{if } \operatorname{length}(\boldsymbol{x}_k) = 1, \\ e^{2\pi i j a_s/n_s m_s} = 1 \text{ for } s = 1, 2, \dots, l & \text{if } \operatorname{length}(\boldsymbol{x}_k) \ge 2. \end{cases}$$

Here a_s and $n_s m_s$ (s = 1, 2, ..., l) are relatively prime, so (*) is restated as: *j* is a multiple of L_k , where (below, $n_k m_k$ is the omission of $n_k m_k$)

(6.9)
$$L_k := \begin{cases} \operatorname{lcm}(n_1 m_1, n_2 m_2, \dots, n_k m_k, \dots, n_l m_l) & \text{if } \operatorname{length}(\boldsymbol{x}_k) = 1, \\ \operatorname{lcm}(n_1 m_1, n_2 m_2, \dots, n_l m_l) & \text{if } \operatorname{length}(\boldsymbol{x}_k) \ge 2, \end{cases}$$

Here $n_s = \text{length}(\boldsymbol{x}_s)$ (the order of σ_s). Hence $\gamma^j \in \Gamma_i$ if and only if j is a common multiple of L_k and the orders of $\sigma_1, \sigma_2, \ldots, \sigma_l$, that is, j is a multiple of $\text{lcm}(L_k, n_1, n_2, \ldots, n_l) = L_k$. The following is thus obtained:

COROLLARY 6.10. In Lemma 6.9, $\gamma^j \in \Gamma_i$ if and only if j is a multiple of L_k given by (6.9).

We explicitly determine Γ_i and $\widetilde{\Gamma}_i$:

Lemma 6.11.

(1) The group Γ_i (in Notation 6.6) is cyclic: Say $x_i \in \mathbf{x}_k$, then Γ_i is generated by the following automorphism:

$$\gamma^{L_k}: (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \longmapsto (\boldsymbol{x}_1, \dots, e^{2\pi i L_k d/N} \boldsymbol{x}_k, \dots, \boldsymbol{x}_l, e^{2\pi i L_k/N} t),$$

(Note: If $n_k \geq 2$, then $e^{2\pi i L_k d/N} = 1$.)

(2) The subgroup $\widetilde{\Gamma}_i$ of $\widetilde{\Gamma}$ (in Notation 6.6) is cyclic: Say $X_i \in \mathbf{X}_k$, then $\widetilde{\Gamma}_i$ is generated by the following automorphism

(6.10)
$$\xi_i: (X_1, \dots, X_n) \longmapsto (X_1, \dots, e^{2\pi i L_k/N} X_i, \dots, X_n).$$

PROOF. (1): Γ_i is cyclic, because it is a subgroup of the cyclic group Γ . Say now $x_i \in \boldsymbol{x}_k$, then since $\gamma^j \in \Gamma_i$ if and only if j is a multiple of L_k (Corollary 6.10), Γ_i is generated by γ^{L_k} .

(2): Γ_i is cyclic, because Γ_i is isomorphic to the cyclic group Γ_i (Lemma 6.8 (1)). Say $X_i \in \mathbf{X}_k$. We then show that $\widetilde{\Gamma}_i$ is generated by the ξ_i given by (6.10). Since $X_i \in \mathbf{X}_k$, $x_i \in \mathbf{x}_k$, and thus by (1), Γ_i is generated by γ^{L_k} . Since $p_* : \widetilde{\Gamma}_i \to \Gamma_i$ is isomorphic (Lemma 6.8 (1)) and $p_*(\xi_i) = \gamma^{L_k}$, $\widetilde{\Gamma}_i$ is generated by $p_*^{-1}(\gamma^{L_k}) = \xi_i$. \Box

Recall that H is the descent of $\widetilde{\Gamma}$ with respect to q.

COROLLARY 6.12. The subgroup P_i of H generated by ith pseudo-reflections is actually cyclic: Say $u_i \in \mathbf{u}_k$, when we write $(u_1, \ldots, u_n) \in \mathbb{C}^n$ as $(\mathbf{u}_1, \ldots, \mathbf{u}_l) \in \mathbb{C}^{n_1} \times \cdots \times \mathbb{C}^{n_l}$. Then P_i is generated by

(6.11)
$$h_i: (u_1, \ldots, u_n) \longmapsto (u_1, \ldots, e^{2\pi i n_k m_k L_k/Nc} u_i, \ldots, u_n).$$

PROOF. Since $q_*(\widetilde{\Gamma}_i) = P_i$ (Lemma 6.8 (2)) and $\widetilde{\Gamma}_i$ is generated by ξ_i (Lemma 6.11 (2)), P_i is generated by $q_*(\xi_i)$. Here $q_*(\xi_i) = h_i$, confirming the assertion. \Box

Let P be the pseudo-reflection subgroup of H. Then $P = P_1 \times P_2 \times \cdots \times P_n$ (Lemma 6.5), thus from Corollary 6.12 the following holds:

PROPOSITION 6.13. The pseudo-reflection subgroup P of H is generated by the automorphisms h_1, h_2, \ldots, h_n in Corollary 6.12.

7. Numerical Criterion of Smallness

That is, its pseudo-reflection subgroup P is nontrivial. Consider the quotient map $r : \mathbb{C}^n \to \mathbb{C}^n/P$. By Chevalley-Shephard-Todd theorem, $\mathbb{C}^n/P \cong \mathbb{C}^n$ and under this isomorphism, H/P acts on \mathbb{C}^n linearly. So H/P may be regarded as a subgroup of $GL_n(\mathbb{C})$ and r as a map $r : \mathbb{C}^n \to \mathbb{C}^n$. Since the covering transformation group of r is P, the following is obvious:

(7.1)
$$r: \mathbb{C}^n \to \mathbb{C}^n \text{ is the identity map } \iff P = \{1\} \\ \iff H \text{ is small.}$$

We explicitly give r. We begin with observation. Let $\mathbb{Z}_{\ell} := \langle e^{2\pi i/\ell} \rangle$ act on \mathbb{C} by multiplication, then the quotient map $\mathbb{C} \to \mathbb{C}/\mathbb{Z}_{\ell} \cong \mathbb{C}$ is given by $z \mapsto z^{\ell}$. More generally let $\mathbb{Z}_{\ell_1} \times \cdots \times \mathbb{Z}_{\ell_n} = \langle e^{2\pi i/\ell_1} \rangle \times \cdots \times \langle e^{2\pi i/\ell_n} \rangle$ act on $\mathbb{C}^n = \mathbb{C} \times \cdots \times \mathbb{C}$ by multiplication, then the quotient map $\mathbb{C}^n \to \mathbb{C}^n/(\mathbb{Z}_{\ell_1} \times \cdots \times \mathbb{Z}_{\ell_n}) \cong \mathbb{C}^n$ is given by

(7.2)
$$(z_1,\ldots,z_n) \longmapsto (z_1^{\ell_1},\ldots,z_n^{\ell_n}).$$

Similarly the quotient map $r : \mathbb{C}^n \to \mathbb{C}^n / P \cong \mathbb{C}^n$ may be explicitly given. Recall first that $P = \langle h_1 \rangle \times \langle h_2 \rangle \times \cdots \times \langle h_n \rangle$ (Proposition 6.13), where h_i is an automorphism of \mathbb{C}^n given by (6.11): Set $\ell_k := Nc/n_k m_k L_k$, where L_k is the positive integer given by (6.9) and $N := (m'_1)^{n_1} \cdots (m'_l)^{n_l} c$ and $c := \gcd(n_1m_1, \ldots, n_lm_l)$ and $m'_k = \frac{n_k m_k}{c}$ (ℓ_k is an integer by Lemma 7.4 below), then explicitly

$$h_i: (u_1, \ldots, u_n) \longmapsto (u_1, \ldots, e^{2\pi i/\ell_k} u_i, \ldots, u_n),$$

As for (7.2), $r: \mathbb{C}^n \to \mathbb{C}^n / P \cong \mathbb{C}^n$ is then given by

$$(u_1,\ldots,u_n)\mapsto (\underbrace{u_1^{\ell_1},\ldots}_{\boldsymbol{u}_1}\ldots\underbrace{u_i^{\ell_k},\ldots}_{\boldsymbol{u}_k}\ldots\underbrace{u_l^{\ell_l}}_{\boldsymbol{u}_l}).$$

We formalize this result as follows:

LEMMA 7.1. Write $(u_1, u_2, \ldots, u_n) \in \mathbb{C}^n$ as $(\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_l) \in \mathbb{C}^{n_1} \times \mathbb{C}^{n_2} \times \cdots \times \mathbb{C}^{n_l}$, where $\boldsymbol{u}_k := (u_{j_1}, \ldots, u_{j_{n_k}})$. Then the covering map $r : \mathbb{C}^n \to \mathbb{C}^n$ is explicitly given by $r(\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_l) = (\boldsymbol{u}_1^{\ell_1}, \boldsymbol{u}_2^{\ell_2}, \ldots, \boldsymbol{u}_l^{\ell_l})$, where $\boldsymbol{u}_k^{\ell_k} := (u_{j_1}^{\ell_k}, \ldots, u_{j_{n_k}}^{\ell_k})$.

The following is immediate from Lemma 7.1:

$$r \text{ is the identity map} \iff \ell_1 = \ell_2 = \dots = \ell_l = 1$$

(i.e. $Nc/n_1m_1L_1 = \dots = Nc/n_lm_lL_l = 1$)
 $\iff m'_1L_1 = \dots = m'_lL_l = N.$

This combined with (7.1) yields the following:

THEOREM 7.2. The following are equivalent: (1) *H* is small. (2) The covering $r : \mathbb{C}^n \to \mathbb{C}^n$ is the identity map.

(3) $m'_1L_1 = m'_2L_2 = \cdots = m'_lL_l = N.$

COROLLARY 7.3. If n = 2, then H is small.

PROOF. From Theorem 7.2, it suffices to show $m'_1L_1 = m'_2L_2 = \cdots = m'_lL_l = 1$. Note first that the permutation $\sigma \in \mathfrak{S}_n$ appearing in the definition of γ is, if n = 2, either the identity or a transposition (12). We separate into two cases:

(i) If σ is the identity, then $n_1 = n_2 = 1$, $c = \gcd(m_1, m_2)$, $m'_1 = \frac{m_1}{c}$, $m'_2 = \frac{m_2}{c}$, $N = m'_1 m'_2 c$, $L_1 = m'_2 c$, and $L_2 = m'_1 c$. Thus $m'_1 L_1 = m'_2 L_2 = N$. (ii) If σ is the transposition (12), then $n_1 = 2$, $c = 2m_1$, $m'_1 = \frac{2m_1}{c} = 1$, $N = (m'_1)^2 c = 2m_1$, and $L_1 = n_1 m_1 = 2m_1$. Thus $m'_1 L_1 = N$. \Box

Supplement. We show that $\ell_k := Nc/n_k m_k L_k$ is an integer. Recall that $N := (m'_1)^{n_1} \cdots (m'_l)^{n_l} c$, where $c := \gcd(n_1 m_1, \ldots, n_l m_l)$ and $m'_k =$

 $\frac{n_k m_k}{c}$ and L_k is given by (6.9):

$$L_{k} = \begin{cases} \operatorname{lcm}(n_{1}m_{1}, n_{2}m_{2}, \dots, n_{k}m_{k}, \dots, n_{l}m_{l}) & \text{if } n_{k} = 1, \\ \operatorname{lcm}(n_{1}m_{1}, n_{2}m_{2}, \dots, n_{l}m_{l}) & \text{if } n_{k} \ge 2. \end{cases}$$

LEMMA 7.4. $\ell_k := Nc/n_k m_k L_k$ is an integer.

PROOF. Rewrite L_k as

$$L_{k} = \begin{cases} \operatorname{lcm}(m'_{1}, m'_{2} \dots, \check{m}'_{k}, \dots, m'_{l})c & \text{if } n_{k} = 1, \\ \operatorname{lcm}(m'_{1}, m'_{2}, \dots, m'_{l})c & \text{if } n_{k} \ge 2. \end{cases}$$

Here

$$\begin{cases} \operatorname{lcm}(m'_1, m'_2 \dots, \check{m}'_k, \dots, m'_l) \text{ divides } m'_1 m'_2 \dots \check{m}'_k \dots m'_l, \\ \operatorname{lcm}(m'_1, m'_2, \dots, m'_l) \text{ divides } m'_1 m'_2 \dots m'_l. \end{cases}$$

In either case L_k divides $m'_1 \cdots (m'_k)^{n_k-1} \cdots m'_l c$, so $n_k m_k L_k$ $(= m'_k L_k c)$ divides $m'_1 \cdots (m'_k)^{n_k} \cdots m'_l c^2$, in particular, divides $Nc = (m'_1)^{n_1} \cdots (m'_l)^{n_l} c^2$. \Box

8. Uniformization of Twined Singularities

8.1. Uniformization theorem

In what follows, set G := H/P. Consider the diagram expanding (6.3):

(8.1)
$$\begin{array}{c} \widetilde{A}_{d-1} = \mathbb{C}^n \curvearrowleft \widetilde{\Gamma} \\ q & p \\ A_{d-1} \curvearrowleft \Gamma \\ A_{d-1} \curvearrowleft \Gamma \\ A_{d-1} \curvearrowleft \Gamma \\ G := H/P \curvearrowright \mathbb{C}^n \end{array}$$

Then

(8.2)
$$A_{d-1}/\Gamma \cong \widetilde{A}_{d-1}/\widetilde{\Gamma} \cong \mathbb{C}^n/H \cong \mathbb{C}^n/G.$$

Here G is a small finite subgroup of $GL_n(\mathbb{C})$ (Theorem 6.2). We thus proved (1) of the following:

THEOREM 8.1 (Uniformization theorem). Let Γ be the cyclic group generated by a twining automorphism $\gamma: A_{d-1} \to A_{d-1}$ given by

$$\gamma: (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \longmapsto (e^{2\pi i a_1/n_1 m_1} \boldsymbol{x}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_l m_l} \boldsymbol{x}_l^{\sigma_l}, e^{2\pi i/N} t).$$

Then:

- (1) There exists a small finite group $G \subset GL_n(\mathbb{C})$ such that $A_{d-1}/\Gamma \cong \mathbb{C}^n/G$; this isomorphism is the composition $\overline{r} \circ \overline{q} \circ \overline{p}^{-1}$, where $\overline{p} : \widetilde{A}_{d-1}/\widetilde{\Gamma} \xrightarrow{\cong} A_{d-1}/\Gamma$, $\overline{q} : \widetilde{A}_{d-1}/\widetilde{\Gamma} \xrightarrow{\cong} \mathbb{C}^n/H$, $\overline{r} : \mathbb{C}^n/H \xrightarrow{\cong} \mathbb{C}^n/G$ are induced from p, q, r.
- (2) The isomorphism $\Psi := \overline{r} \circ \overline{q} \circ \overline{p}^{-1} : A_{d-1}/\Gamma \xrightarrow{\cong} \mathbb{C}^n/G$ in (1) is explicitly given by

$$\Psi([\boldsymbol{x}_1,\ldots,\boldsymbol{x}_l,t])=ig[\boldsymbol{x}_1^{\ell_1m_1'/d},\ldots,\boldsymbol{x}_l^{\ell_lm_l'/d}ig],$$

where $[\mathbf{x}_1, \ldots, \mathbf{x}_l, t] \in A_{d-1}/\Gamma$ and $[\mathbf{x}_1^{\ell_1 m'_1/d}, \ldots, \mathbf{x}_l^{\ell_l m'_l/d}] \in \mathbb{C}^n/G$ denote the images of $(\mathbf{x}_1, \ldots, \mathbf{x}_l, t) \in A_{d-1}$ and $(\mathbf{x}_1^{\ell_1 m'_1/d}, \ldots, \mathbf{x}_l^{\ell_l m'_l/d}) \in \mathbb{C}^n$ respectively.

PROOF. It remains to show (2). Since

$$\overline{p}([\boldsymbol{X}_1, \boldsymbol{X}_2, \dots, \boldsymbol{X}_l]) = [\boldsymbol{X}_1^d, \boldsymbol{X}_2^d, \dots, \boldsymbol{X}_l^d, \boldsymbol{X}_1 \boldsymbol{X}_2 \cdots \boldsymbol{X}_l],$$

we have $\overline{p}^{-1}([x_1, x_2, ..., x_l, t]) = [x_1^{1/d}, x_2^{1/d}, ..., x_l^{1/d}]$. Thus

$$\begin{split} \Psi\big([\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_l, t]\big) &= \overline{r} \circ \overline{q} \circ \overline{p}^{-1}\big([\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_l, t]\big) \\ &= \overline{r} \circ \overline{q}\big([\boldsymbol{x}_1^{1/d}, \, \boldsymbol{x}_2^{1/d}, \dots, \boldsymbol{x}_l^{1/d}]\big) = \overline{r}\big([\boldsymbol{x}_1^{m_1'/d}, \, \boldsymbol{x}_2^{m_2'/d}, \dots, \boldsymbol{x}_l^{m_l'/d}]\big) \\ &= \big[\boldsymbol{x}_1^{\ell_1 m_1'/d}, \, \boldsymbol{x}_2^{\ell_2 m_2'/d}, \dots, \boldsymbol{x}_l^{\ell_l m_l'/d}\big]. \ \Box \end{split}$$

Correspondence between maps

We keep the notation above: Γ is the cyclic group of order N generated by the automorphism of A_{d-1} given by

$$\gamma: (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \longmapsto (e^{2\pi i a_1/n_1 m_1} \boldsymbol{x}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_l m_l} \boldsymbol{x}_l^{\sigma_l}, e^{2\pi i/N} t).$$

Define a holomorphic map $\Phi: A_{d-1} \to \mathbb{C}$ by

(8.3)
$$\Phi(x_1, x_2, \dots, x_n, t) = t^N.$$

This, being Γ -invariant, descends to a holomorphic map $\overline{\Phi} : A_{d-1}/\Gamma \to \mathbb{C}$ (which is a local model of a degeneration of compact complex manifolds). We shall explicitly give the corresponding map $\mathbb{C}^n/G \to \mathbb{C}$ under the isomorphism $A_{d-1}/\Gamma \cong \mathbb{C}^n/G$ in Theorem 8.1.

Consider first the case l = 1, that is, $\gamma : (\boldsymbol{x}_1, t) \mapsto (e^{2\pi i a_1/nm_1} \boldsymbol{x}_1, e^{2\pi i/N} t)$. Explicitly γ is of the form (below, write a_1, m_1, L_1 as a, m, L etc):

$$\gamma: (x_1, \dots, x_n, t) \longmapsto (e^{2\pi i a/nm} x_{\sigma(1)}, \dots, e^{2\pi i a/nm} x_{\sigma(n)}, e^{2\pi i/N} t),$$

where $\sigma \in \mathfrak{S}_n$ is a cyclic permutation of length *n*. In this case, c = nm, m' = 1, L = nm, $N = (m')^n c = nm$. Accordingly $\ell := Nc/nmL = 1$ and $d = N(\frac{a}{m} + \kappa) = na + nm\kappa$. The following then hold:

LEMMA 8.2.

- (i) Let $G \subset GL_n(\mathbb{C})$ be the small finite group in Theorem 8.1. Then the holomorphic map $\phi : \mathbb{C}^n \to \mathbb{C}$ given by $\phi(v_1, \ldots, v_n) = (v_1 \cdots v_n)^{nm}$ is *G*-invariant. (So ϕ descends to a holomorphic map $\overline{\phi} : \mathbb{C}^n/G \to \mathbb{C}$.)
- (ii) Let Φ : A_{d-1} → C be the Γ-invariant map given by (8.3). Under the isomorphism Ψ : A_{d-1}/Γ → Cⁿ/G in Theorem 8.1, Φ̄ : A_{d-1}/Γ → C corresponds to φ̄, that is, Φ̄ = φ̄ ∘ Ψ.

PROOF. (i): As seen in Theorem 9.1 (3) below, $G = \{g_{j,p} : p \in \Lambda^{(j)}, j = 1, 2, ..., N\}$, where $g_{j,p}$ is $\overline{\overline{\alpha}}^j \overline{\overline{\beta}}_{j,p}$ therein. Explicitly

$$g_{j,\boldsymbol{p}}: (v_1,\ldots,v_n) \longmapsto (e^{2\pi i (ja+nmp_1)/nmd} v_{\sigma(1)},\ldots,e^{2\pi i (ja+nmp_n)/nmd} v_{\sigma(n)}).$$

For simplicity, set $\zeta_i := e^{2\pi i (ja + nmp_i)/nmd}$, then

$$g_{j,p}: (v_1, v_2, \ldots, v_n) \longmapsto (\zeta_1 v_{\sigma(1)}, \zeta_2 v_{\sigma(2)}, \ldots, \zeta_n v_{\sigma(n)}).$$

It suffices to show $\phi \circ g_{j,p}(v_1, v_2, \dots, v_n) = \phi(v_1, v_2, \dots, v_n)$. Note first that $(\zeta_1 \zeta_2 \cdots \zeta_n)^{nm} = 1$, indeed

$$(\zeta_1\zeta_2\cdots\zeta_n)^{nm} = e^{2\pi i \{jna+nm(p_1+\cdots+p_n)\}/d}$$
$$= e^{2\pi i (jna+nmj\kappa)/d} \quad \text{as } (p_1,\ldots,p_n) \in \Lambda^{(j)}$$
$$= e^{2\pi i j} = 1.$$

Then

$$\phi \circ g_{j,p}(v_1, v_2, \dots, v_n) = \phi(\zeta_1 v_{\sigma(1)}, \zeta_2 v_{\sigma(2)}, \dots, \zeta_n v_{\sigma(n)})$$
$$= (\zeta_1 \zeta_2 \cdots \zeta_n)^{nm} (v_{\sigma(1)} v_{\sigma(2)} \cdots v_{\sigma(n)})^{nm}$$
$$= (v_{\sigma(1)} v_{\sigma(2)} \cdots v_{\sigma(n)})^{nm} \quad \text{as} \ (\zeta_1 \zeta_2 \cdots \zeta_n)^{nm} = 1$$
$$= (v_1 v_2 \cdots v_n)^{nm} = \phi(v_1, v_2, \dots, v_n).$$

(ii): From Theorem 8.1 (2), $\Psi([x_1, \ldots, x_n, t]) = [x_1^{1/d}, \ldots, x_n^{1/d}]$. Thus

$$\overline{\phi} \circ \Psi([x_1, \dots, x_n, t]) = \overline{\phi}([x_1^{1/d}, \dots, x_n^{1/d}]) = (x_1 \cdots x_n)^{nm/d}$$
$$= t^{nm} \quad \text{as } x_1 \cdots x_n = t^d$$
$$= t^N \quad \text{as } N = nm$$
$$= \overline{\Phi}([x_1, \dots, x_n, t]) \quad \text{by definition.} \ \Box$$

We turn to the general case:

$$(*) \quad \gamma: \ (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \ \longmapsto \ (e^{2\pi i a_1/n_1 m_1} \boldsymbol{x}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_l m_l} \boldsymbol{x}_l^{\sigma_l}, e^{2\pi i/N} t).$$

As for Lemma 8.2, we can show the following:

THEOREM 8.3. Write $(v_1, \ldots, v_n) \in \mathbb{C}^n$ as $(v_1, \ldots, v_l) \in \mathbb{C}^n = \mathbb{C}^{n_1} \times \cdots \times \mathbb{C}^{n_l}$. For each permutation σ_k appearing in (*), let J_k be its cycle, that is, $J_k = \{i : v_i \in v_k\}$. Then:

- (1) Let $G \subset GL_n(\mathbb{C})$ be the small finite group in Theorem 8.1 and $\phi : \mathbb{C}^n \to \mathbb{C}$ be a holomorphic map given by $\phi(v_1, \ldots, v_n) = \prod_{k=1}^l \left(\prod_{i \in J_k} v_i\right)^{L_k}$, where L_k is the integer given by (6.9). Then ϕ is *G*-invariant.
- (2) Let $\Phi : A_{d-1} \to \mathbb{C}$ be the Γ -invariant map given by (8.3). Under the isomorphism $\Psi : A_{d-1}/\Gamma \xrightarrow{\cong} \mathbb{C}^n/G$ in Theorem 8.1, $\overline{\Phi} : A_{d-1}/\Gamma \to \mathbb{C}$ corresponds to the descent $\overline{\phi} : \mathbb{C}^n/G \to \mathbb{C}$.

9. Explicit Forms of Elements of $\widetilde{\Gamma}$, H, G

We subsequently deal with many notations — to reduce the burden of memorizing them, H, G are denoted by $\overline{\Gamma}, \overline{\overline{\Gamma}}$. Recall:

• Express $\gamma = \alpha \beta$, where

$$\begin{cases} \alpha : (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \\ \longmapsto (e^{2\pi i a_1/n_1 m_1} \boldsymbol{x}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_l m_l} \boldsymbol{x}_l^{\sigma_l}, e^{2\pi i (1/N - \kappa/d)} t), \\ \beta : (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, t) \longmapsto (\boldsymbol{x}_1, \dots, \boldsymbol{x}_l, e^{2\pi i \kappa/d} t). \end{cases}$$

- Set $\Lambda^{(j)} := \left\{ \boldsymbol{p} = (p_1, \dots, p_n) \in \mathbb{Z}^n : 0 \le p_i \le d, \sum_{i=1}^n \frac{p_i}{d} \equiv \frac{j\kappa}{d} \mod \mathbb{Z} \right\}$ (see (4.4)).
- For $\boldsymbol{p} \in \Lambda^{(j)}$, let $\widetilde{\alpha}, \widetilde{\beta}_{j,\boldsymbol{p}}$ be the lifts of α, β given by (4.8), and $\overline{\alpha}, \overline{\beta}_{j,\boldsymbol{p}}$ be their descents with respect to q. Let $\overline{\overline{\alpha}}, \overline{\overline{\beta}}_{j,\boldsymbol{p}}$ be the descents of $\overline{\alpha}, \overline{\beta}_{j,\boldsymbol{p}}$ with respect to r.

The following then holds:

Theorem 9.1.

(1)
$$\widetilde{\Gamma} = \{ \widetilde{\alpha}^{j} \widetilde{\beta}_{j, p} : p \in \Lambda^{(j)}, j = 1, 2, ..., N \}, where$$

$$\begin{cases} \widetilde{\alpha} : (\boldsymbol{X}_{1}, ..., \boldsymbol{X}_{l}) \longmapsto (e^{2\pi i a_{1}/n_{1}m_{1}d} \boldsymbol{X}_{1}^{\sigma_{1}}, ..., e^{2\pi i a_{l}/n_{l}m_{l}d} \boldsymbol{X}_{l}^{\sigma_{l}}), \\ \widetilde{\beta}_{j, p} : (\boldsymbol{X}_{1}, ..., \boldsymbol{X}_{l}) \longmapsto (\widetilde{\beta}_{j, p_{1}}(\boldsymbol{X}_{1}), ..., \widetilde{\beta}_{j, p_{l}}(\boldsymbol{X}_{l})). \end{cases}$$

(2) $\overline{\Gamma} = \{ \overline{\alpha}^{j} \overline{\beta}_{j, p} : p \in \Lambda^{(j)}, j = 1, 2, \dots, N \}, where \\ \begin{cases} \overline{\alpha} : (\boldsymbol{u}_{1}, \dots, \boldsymbol{u}_{l}) \longmapsto (e^{2\pi i a_{1}/cd} \boldsymbol{u}_{1}^{\sigma_{1}}, \dots, e^{2\pi i a_{l}/cd} \boldsymbol{u}_{l}^{\sigma_{l}}), \\ \overline{\beta}_{j, p} : (\boldsymbol{u}_{1}, \dots, \boldsymbol{u}_{l}) \longmapsto ((\widetilde{\beta}_{j, p_{1}})^{m_{1}'}(\boldsymbol{u}_{1}), \dots, (\widetilde{\beta}_{j, p_{l}})^{m_{l}'}(\boldsymbol{u}_{l})). \end{cases}$

(3)
$$\overline{\Gamma} = \{\overline{\overline{\alpha}}^{j}\overline{\beta}_{j,p} : p \in \Lambda^{(j)}, j = 1, 2, \dots, N\}, where \\ \begin{cases} \overline{\overline{\alpha}} : (\boldsymbol{v}_{1}, \dots, \boldsymbol{v}_{l}) \longmapsto (e^{2\pi i a_{1}\ell_{1}/cd}\boldsymbol{v}_{1}^{\sigma_{1}}, \dots, e^{2\pi i a_{l}\ell_{l}/cd}\boldsymbol{v}_{l}^{\sigma_{l}}), \\ \overline{\overline{\beta}}_{j,p} : (\boldsymbol{v}_{1}, \dots, \boldsymbol{v}_{l}) \longmapsto ((\widetilde{\beta}_{j,p_{1}})^{m_{1}'\ell_{1}}(\boldsymbol{v}_{1}), \dots, (\widetilde{\beta}_{j,p_{l}})^{m_{l}'\ell_{l}}(\boldsymbol{v}_{l})) \}$$

Namely

(9.1)
$$\overline{\Gamma} = \{\overline{\alpha}^{j}\overline{\beta}_{j,p}\} \qquad \Gamma = \{\gamma^{j} = \alpha^{j}\beta^{j}\}.$$

$$\overline{\overline{\Gamma}} = \{\overline{\alpha}^{j}\overline{\overline{\beta}}_{j,p}\} \qquad \Gamma = \{\gamma^{j} = \alpha^{j}\beta^{j}\}.$$

PROOF. (1) and (2) are already shown in Lemma 4.11. (3) follows from (2), as the descent homomorphism $r_*: \overline{\Gamma} \to \overline{\overline{\Gamma}}$ is surjective and the covering $r: \mathbb{C}^n \to \mathbb{C}^n$ is given by $r: (\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_l) \mapsto (\boldsymbol{u}_1^{\ell_1}, \boldsymbol{u}_2^{\ell_2}, \ldots, \boldsymbol{u}_l^{\ell_l})$ (see Lemma 7.1). \Box

Note:

$$\begin{array}{c|c} \alpha, \beta \notin \Gamma & \overline{\alpha}, \widetilde{\beta}_{j, p} \notin \widetilde{\Gamma} & \overline{\alpha}, \overline{\beta}_{j, p} \notin \overline{\Gamma} & \overline{\overline{\alpha}}, \overline{\overline{\beta}}_{j, p} \notin \overline{\overline{\Gamma}} \\ \hline \alpha \beta \in \Gamma & \overline{\alpha}^{j} \widetilde{\beta}_{j, p} \in \widetilde{\Gamma} & \overline{\alpha}^{j} \overline{\beta}_{j, p} \in \overline{\Gamma} & \overline{\overline{\alpha}}^{j} \overline{\overline{\beta}}_{j, p} \in \overline{\overline{\Gamma}} \end{array}$$

Here explicitly:

LEMMA 9.2. Setting $\zeta_k := e^{2\pi i m'_k/d}$, then for $\boldsymbol{p} = (p_1, p_2, \dots, p_n) \in \Lambda^{(j)}$, (1) $\tilde{\beta}_{j,\boldsymbol{p}} : (X_1, X_2, \dots, X_n) \longmapsto (e^{2\pi i p_1/d} X_1, e^{2\pi i p_2/d} X_2, \dots, e^{2\pi i p_n/d} X_n)$. (2) $\overline{\beta}_{j,\boldsymbol{p}} : (X_1, X_2, \dots, X_n) \longmapsto (Y_1, Y_2, \dots, Y_l)$, where $Y_1 = (\underbrace{\zeta_1^{p_1} X_1, \zeta_1^{p_2} X_2, \dots, \zeta_1^{p_{n_1}} X_{n_1}}_{n_1})_{n_1}$ $Y_2 = (\underbrace{\zeta_2^{p_{n_1+1}} X_{n_1+1}, \zeta_2^{p_{n_1+2}} X_{n_1+2}, \dots, \zeta_2^{p_{n_1+n_2}} X_{n_1+n_2}}_{n_2})_{n_2}$ $Y_3 = (\underbrace{\zeta_3^{p_{n_1+n_2+1}} X_{n_1+n_2+1}, \zeta_3^{p_{n_1+n_2+2}} X_{n_1+n_2+2}, \dots, \zeta_3^{p_{n_1+n_2+n_3}} X_{n_1+n_2+n_3}}_{n_3})$

• • • .

(3)
$$\overline{\beta}_{j,p}: (X_1, X_2, \dots, X_n) \longmapsto (Z_1, Z_2, \dots, Z_l), where$$

$$Z_1 = \underbrace{\left(\underbrace{\zeta_1^{\ell_1 p_1} X_1, \zeta_1^{\ell_1 p_2} X_2, \dots, \zeta_1^{\ell_1 p_n_1} X_{n_1}}_{n_1} \right)_{n_1}}_{Z_2}_{Z_2} = \underbrace{\left(\underbrace{\zeta_2^{\ell_2 p_{n_1+1}} X_{n_1+1}, \zeta_2^{\ell_2 p_{n_1+2}} X_{n_1+2}, \dots, \zeta_2^{\ell_2 p_{n_1+n_2}} X_{n_1+n_2}}_{n_2} \right)_{n_2}}_{R_3}$$

$$Z_3 = \underbrace{\left(\underbrace{\zeta_3^{\ell_3 p_{n_1+n_2+1}} X_{n_1+n_2+1}, \zeta_3^{\ell_3 p_{n_1+n_2+2}} X_{n_1+n_2+2}, \dots, \zeta_3^{\ell_3 p_{n_1+n_2+n_3}} X_{n_1+n_2+n_3}}_{n_3} \right)_{n_3}$$
....

PROOF. (1): Write $\boldsymbol{p} = (p_1, p_2, \dots, p_n)$ as $(\boldsymbol{p}_1, \boldsymbol{p}_2, \dots, \boldsymbol{p}_l) \in \mathbb{Z}^{n_1} \times \mathbb{Z}^{n_2} \times$ $\cdots \times \mathbb{Z}^{n_l}$. Note that (see Theorem 9.1 (1)) $\widetilde{\beta}_{j,\boldsymbol{p}}: (\boldsymbol{X}_1, \boldsymbol{X}_2, \dots, \boldsymbol{X}_l) \longmapsto (\widetilde{\beta}_{j,\boldsymbol{p}_1}(\boldsymbol{X}_1), \widetilde{\beta}_{j,\boldsymbol{p}_2}(\boldsymbol{X}_2), \dots, \widetilde{\beta}_{j,\boldsymbol{p}_l}(\boldsymbol{X}_l)),$ where $\widetilde{\beta}_{j, p_i} : \mathbf{X}_i = (X_{j_1}, \dots, X_{j_{n_i}}) \mapsto (e^{2\pi i p_{j_1}/d} X_{j_1}, \dots, e^{2\pi i p_{j_{n_i}}/d} X_{j_{n_i}})$. In

the coordinates (X_1, X_2, \ldots, X_n) ,

 $\widetilde{\beta}_{j,\boldsymbol{p}}: (X_1, X_2, \dots, X_n) \longmapsto (e^{2\pi i p_1/d} X_1, e^{2\pi i p_2/d} X_2, \dots, e^{2\pi i p_n/d} X_n).$

(2): Note that (see Theorem 9.1 (2)) $\overline{\beta}_{j,p}: (\boldsymbol{X}_1, \dots, \boldsymbol{X}_l) \longmapsto ((\widetilde{\beta}_{j,p_1})^{m'_1}(\boldsymbol{X}_1), \dots, (\widetilde{\beta}_{j,p_l})^{m'_l}(\boldsymbol{X}_l)).$

Writing this in the coordinates (X_1, X_2, \ldots, X_n) yields the assertion.

(3): Note that (see Theorem 9.1 (3))

 $\overline{\overline{\beta}}_{j,p}: (\boldsymbol{X}_1, \dots, \boldsymbol{X}_l) \longmapsto \big((\widetilde{\beta}_{j,p_1})^{m'_1\ell_1}(\boldsymbol{X}_1), \dots, (\widetilde{\beta}_{j,p_l})^{m'_l\ell_l}(\boldsymbol{X}_l) \big).$ Writing this in the coordinates (X_1, X_2, \dots, X_n) yields the assertion. \Box

REMARK 9.3. If $\sigma \neq id$, $\overline{\Gamma} (= H)$ is generally not abelian — this is also the case for $\overline{\overline{\Gamma}}(=G)$. We will determine when $\widetilde{\Gamma}$ (and G) is abelian. See Theorem 10.11.

Generators of $\widetilde{\Gamma}$, $\overline{\Gamma} (= H)$ and $\overline{\overline{\Gamma}} (= G)$ 9.1.

The covering maps p, q, r induce surjective homomorphisms (descent homomorphisms) $p_*: \widetilde{\Gamma} \to \Gamma, q_*: \widetilde{\Gamma} \to \overline{\Gamma}, r_*: \overline{\Gamma} \to \overline{\overline{\Gamma}}$ (see (9.1)). As q_* and r_* are surjective, generators of $\widetilde{\Gamma}$ descend to those of $\overline{\Gamma}$, and then, to those of $\overline{\overline{\Gamma}}$. Subsequently we will explicitly give generators of $\widetilde{\Gamma}$ and descend them to $\overline{\Gamma}$, and then to $\overline{\Gamma}$.

First take a lift $\tilde{\gamma} := \tilde{\alpha} \tilde{\beta}_{1, p}$ of γ (recall $\tilde{\alpha}^{j} \tilde{\beta}_{j, p}$ is a lift of γ^{j} ; Corollary 4.6). To simplify discussion, for p we take $q := (0, \ldots, 0, \overset{\sigma(n)}{\check{\kappa}}, 0, \ldots, 0)$:

 $(9.2) \qquad \widetilde{\alpha}: \ (\boldsymbol{X}_1, \dots, \boldsymbol{X}_l) \longmapsto \left(e^{2\pi i a_1/n_1 m_1 d} \boldsymbol{X}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_l m_l d} \boldsymbol{X}_l^{\sigma_l} \right),$

$$(9.3) \qquad \beta_{1,q}: (X_1, X_2, \dots, X_n) \longmapsto (X_1, X_2, \dots, e^{2\pi i n/d} X_{\sigma(n)}, \dots, X_n).$$

We next take lifts $\widetilde{id}_1, \widetilde{id}_2, \dots, \widetilde{id}_{n-1}$ of $id \in \Gamma$ as follows: (9.4) $\widetilde{id}_i : (X_1, \dots, X_n) \longmapsto (X_1, \dots, X_{i-1}, e^{2\pi i/d} X_i, X_{i+1}, \dots, e^{-2\pi i/d} X_n).$

Recall that $\widetilde{\Gamma} = \{ \widetilde{\alpha}^{j} \widetilde{\beta}_{j, p} : p \in \Lambda^{(j)}, j = 1, 2, \dots, N \}$ (Theorem 9.1 (1)).

LEMMA 9.4. Set $\delta := (\widetilde{\beta}_{1,\sigma(q)})^j$ (note in general $\delta \notin \widetilde{\Gamma}$), and for simplicity write $\widetilde{\gamma}$, \widetilde{id}_i as φ , ψ_i . Then:

(1)
$$\varphi^{j} (\psi_{\sigma(n)} \psi_{\sigma^{2}(n)} \cdots \psi_{\sigma^{j}(n)})^{-\kappa} = \widetilde{\alpha}^{j} \delta.$$

(2) For $\mathbf{p} = (p_{1}, \dots, p_{n}) \in \Lambda^{(j)}, \ (\psi_{1})^{p_{1}} (\psi_{2})^{p_{2}} \cdots (\psi_{n-1})^{p_{n-1}} = \delta^{-1} \widetilde{\beta}_{j,\mathbf{p}}.$

(3) For $\boldsymbol{p} = (p_1, \dots, p_n) \in \Lambda^{(j)}$, $\varphi^j (\psi_{\sigma(n)} \psi_{\sigma^2(n)} \cdots \psi_{\sigma^j(n)})^{-\kappa} (\psi_1)^{p_1} (\psi_2)^{p_2} \cdots (\psi_{n-1})^{p_{n-1}} = \widetilde{\alpha}^j \widetilde{\beta}_{j, \boldsymbol{p}}.$

PROOF. (1): Note first that

$$\varphi^{j} = (\widetilde{\alpha}\widetilde{\beta}_{1,q})^{j}$$

= $\widetilde{\alpha}^{j}\widetilde{\beta}_{1,\sigma^{-j+1}(q)}\cdots\widetilde{\beta}_{1,\sigma^{-1}(q)}\widetilde{\beta}_{1,q}$ as $\widetilde{\beta}_{1,q}\widetilde{\alpha} = \widetilde{\alpha}\widetilde{\beta}_{1,\sigma^{-1}(q)}$ (Lemma 4.8).

Here $(\psi_{\sigma^i(n)})^{-\kappa} = (\widetilde{\beta}_{1,\sigma^{-i+1}(q)})^{-1}\widetilde{\beta}_{1,\sigma(q)}$ and $\delta = (\widetilde{\beta}_{1,\sigma(q)})^j$, so

$$\left(\psi_{\sigma(n)}\psi_{\sigma^{2}(n)}\cdots\psi_{\sigma^{j}(n)}\right)^{-\kappa}=(\widetilde{\beta}_{1,\sigma^{-j+1}(q)}\cdots\widetilde{\beta}_{1,\sigma^{-1}(q)}\widetilde{\beta}_{1,q})^{-1}\delta.$$

Thus $\varphi^{j} (\psi_{\sigma(n)} \psi_{\sigma^{2}(n)} \cdots \psi_{\sigma^{j}(n)})^{-\kappa} = \widetilde{\alpha}^{j} \delta.$ (2): Since $\boldsymbol{p} \in \Lambda^{(j)}$, we have

(*)
$$-(p_1+\cdots+p_{n-1})/d \equiv (p_n-j\kappa)/d \mod \mathbb{Z}.$$

Now

$$(\psi_1)^{p_1}(\psi_2)^{p_2}\cdots(\psi_{n-1})^{p_{n-1}}(X_1,\ldots,X_n)$$

= $(e^{2\pi i p_1/d}X_1,\ldots,e^{2\pi i p_{n-1}/d}X_{n-1},e^{-2\pi i (p_1+\cdots+p_{n-1})/d}X_n)$
= $(e^{2\pi i p_1/d}X_1,\ldots,e^{2\pi i p_{n-1}/d}X_{n-1},e^{2\pi i (p_n-j\kappa)/d}X_n)$ by (*)
= $\delta^{-1}\widetilde{\beta}_{j,p}(X_1,\ldots,X_n).$

The equation of (3) is the product of (1) and (2). \Box

From Lemma 9.4 (3), any element of $\widetilde{\Gamma}$ is written as a product of $\widetilde{\gamma}$, id_i (i = 1, 2, ..., n - 1), so they generate $\widetilde{\Gamma}$, therefore:

COROLLARY 9.5. Set $\overline{\gamma} := q_*(\widetilde{\gamma}), \overline{\mathrm{id}}_i := q_*(\widetilde{\mathrm{id}}_i) \text{ and } \overline{\overline{\gamma}} := r_*(\overline{\gamma}), \overline{\mathrm{id}}_i := r_*(\overline{\mathrm{id}}_i), \text{ then:}$

(1)
$$\widetilde{\gamma}$$
, \widetilde{id}_1 , \widetilde{id}_2 , ..., \widetilde{id}_{n-1} generate $\widetilde{\Gamma}$.
(2) $\overline{\gamma}$, \overline{id}_1 , \overline{id}_2 , ..., \overline{id}_{n-1} generate $\overline{\Gamma} (= H)$.
(3) $\overline{\overline{\gamma}}$, $\overline{\overline{id}}_1$, $\overline{\overline{id}}_2$, ..., $\overline{\overline{id}}_{n-1}$ generate $\overline{\overline{\Gamma}} (= G)$.

(9.5)
$$\overline{\gamma}, \overline{\mathrm{id}}_1, \overline{\mathrm{id}}_2, \dots, \overline{\mathrm{id}}_{n-1} \in \overline{\Gamma} (=H) \qquad \Gamma \ni \gamma, \mathrm{id}.$$
$$\overline{\gamma}, \overline{\mathrm{id}}_1, \overline{\mathrm{id}}_2, \dots, \overline{\mathrm{id}}_{n-1} \in \overline{\Gamma} (=G)$$

We summarize the explicit forms of relevant automorphisms. Set $\ell_k := Nc/n_k m_k L_k$ (k = 1, 2, ..., l), where L_k is the integer given by (6.9). Then:

Theorem 9.6.

(1)
$$\widetilde{\gamma} = \widetilde{\alpha}\widetilde{\beta}_{1,\boldsymbol{q}}, \text{ where}$$

$$\begin{cases} \widetilde{\alpha} : (\boldsymbol{X}_1, \dots, \boldsymbol{X}_l) \longmapsto (e^{2\pi i a_1/n_1 m_1 d} \boldsymbol{X}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_l m_l d} \boldsymbol{X}_l^{\sigma_l}), \\ \widetilde{\beta}_{1,\boldsymbol{q}} : (X_1, X_2, \dots, X_n) \longmapsto (X_1, X_2, \dots, e^{2\pi i \kappa/d} X_{\sigma(n)}, \dots, X_n). \\ \widetilde{id}_i : (X_1, X_2, \dots, X_n) \longmapsto (X_1, X_2, \dots, e^{2\pi i/d} X_i, \dots, e^{-2\pi i/d} X_n). \end{cases}$$

(2)
$$\overline{\gamma} = \overline{\alpha} \beta_{1, q}$$
, where

$$\begin{cases} \overline{\alpha} : (\boldsymbol{X}_{1}, \dots, \boldsymbol{X}_{l}) \longmapsto (e^{2\pi i a_{1}/cd} \boldsymbol{X}_{1}^{\sigma_{1}}, \dots, e^{2\pi i a_{l}/cd} \boldsymbol{X}_{l}^{\sigma_{l}}), \\ \overline{\beta}_{1, q} : (X_{1}, X_{2}, \dots, X_{n}) \longmapsto \\ (X_{1}, X_{2}, \dots, e^{2\pi i m'_{l} \kappa/d} X_{\sigma(n)}, \dots, X_{n}). \\ \overline{\mathrm{id}}_{i} : (X_{1}, X_{2}, \dots, X_{n}) \longmapsto \\ (X_{1}, X_{2}, \dots, e^{2\pi i m'_{k}/d} X_{i}, \dots, e^{-2\pi i m'_{l}/d} X_{n}) \quad (say \ X_{i} \in \boldsymbol{X}_{k}). \end{cases}$$

$$(3) \ \overline{\gamma} = \overline{\alpha}\overline{\beta}_{1,\,q}, \ where$$

$$\begin{cases} \overline{\alpha} : \ (\boldsymbol{X}_1, \dots, \boldsymbol{X}_l) \longmapsto (e^{2\pi i a_1 \ell_1 / cd} \boldsymbol{X}_1^{\sigma_1}, \dots, e^{2\pi i a_l \ell_l / cd} \boldsymbol{X}_l^{\sigma_l}), \\ \overline{\beta}_{1,\,q} : \ (X_1, X_2, \dots, X_n) \longmapsto \\ (X_1, X_2, \dots, e^{2\pi i m'_l \ell_l \kappa / d} X_{\sigma(n)}, \dots, X_n). \end{cases}$$

$$\overline{\mathrm{id}}_i : \ (X_1, X_2, \dots, X_n) \longmapsto \\ (X_1, X_2, \dots, e^{2\pi \mathrm{im}'_k \ell_k / d} X_i, \dots, e^{-2\pi \mathrm{im}'_l \ell_l / d} X_n) \quad (say \ X_i \in \boldsymbol{X}_k) \end{cases}$$

PROOF. (1): $\tilde{\gamma} = \tilde{\alpha}\tilde{\beta}_{1,q}$ is the definition of $\tilde{\gamma}$, and the explicit forms of $\tilde{\alpha}, \tilde{\beta}_{1,q}, \tilde{\mathrm{id}}_i$ are respectively given by (9.2), (9.3), and (9.4), confirming (1). (2) is the descent of (1) with respect to q: Writing $(X_1, \ldots, X_n) \in \mathbb{C}^n$ as $(X_1, \ldots, X_l) \in \mathbb{C}^{n_1} \times \mathbb{C}^{n_l}$, then by (6.4),

(9.6)
$$q: (\boldsymbol{X}_1, \boldsymbol{X}_2, \dots, \boldsymbol{X}_l) \longmapsto (\boldsymbol{X}_1^{m_1'}, \boldsymbol{X}_2^{m_2'}, \dots, \boldsymbol{X}_l^{m_l'}).$$

Similarly (3) is the descent of (2) with respect to $r : (\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_l) \mapsto (\boldsymbol{u}_1^{\ell_1}, \boldsymbol{u}_2^{\ell_2}, \dots, \boldsymbol{u}_l^{\ell_l})$ (this explicit form of r is given in Lemma 7.1). \Box

Note that while $id_i \in \widetilde{\Gamma}$ is a lift of $id \in \Gamma$, id_i itself is *not* the identity map; neither are its descents id_i , \overline{id}_i .

LEMMA 9.7. The set of lifts of
$$id \in \Gamma$$
 is given by

$$\left\{ (\widetilde{id}_1)^{k_1} (\widetilde{id}_2)^{k_2} \cdots (\widetilde{id}_{n-1})^{k_{n-1}} : k_i \in \mathbb{Z}, \ 0 \le k_i < d \right\}$$

PROOF. For simplicity, set $\widetilde{id}_{k} := (\widetilde{id}_{1})^{k_{1}} (\widetilde{id}_{2})^{k_{2}} \cdots (\widetilde{id}_{n-1})^{k_{n-1}}$, where $k = (k_{1}, k_{2}, \ldots, k_{n-1})$. Note that \widetilde{id}_{k} is a lift of $id \in \Gamma$ as $\widetilde{id}_{1}, \widetilde{id}_{2}, \ldots, \widetilde{id}_{n-1}$ are lifts of $id \in \Gamma$. Note next that explicitly

$$\vec{\mathrm{id}}_{k} : (X_{1}, \dots, X_{n}) \mapsto (e^{2\pi \mathrm{i}k_{1}/d} X_{1}, \dots e^{2\pi \mathrm{i}k_{n-1}/d} X_{n-1}, e^{-2\pi \mathrm{i}(k_{1}+\dots+k_{n-1})/d} X_{n}).$$

So $\widetilde{\mathrm{id}}_{k} \neq \widetilde{\mathrm{id}}_{l}$ if $k \neq l$, and the elements of $S := {\widetilde{\mathrm{id}}_{k} : k \in \mathbb{Z}^{n-1}, 0 \leq k_{i} < d}$ are all distinct. Thus S consists of d^{n-1} elements. Since $p : \widetilde{A}_{d-1} \to A_{d-1}$ is d^{n-1} -fold, this implies that S exhausts all lifts of $\mathrm{id} \in \Gamma$. \Box

From the explicit forms of id_i , id_i , id_i in Theorem 9.6, the following is clear:

COROLLARY 9.8.
$$\widetilde{\mathrm{id}}_i \neq \widetilde{\mathrm{id}}_j, \ \overline{\mathrm{id}}_i \neq \overline{\mathrm{id}}_j, \ \overline{\mathrm{id}}_i \neq \overline{\mathrm{id}}_j \ for \ i \neq j.$$

Consider the special case that $\sigma \in \mathfrak{S}_n$ is cyclic of length n. Then γ is of the following form $(a_1, m_1 \text{ are for simplicity denoted as } a, m)$:

 $(9.7) \quad \gamma: \ (x_1, \dots, x_n, t) \longmapsto (e^{2\pi i a/nm} x_{\sigma(1)}, \dots, e^{2\pi i a/nm} x_{\sigma(n)}, e^{2\pi i/nm} t).$

COROLLARY 9.9. For the cyclic group Γ generated by (9.7), the small finite subgroup $G \subset GL_n(\mathbb{C})$ such that $A_{d-1}/\Gamma \cong \mathbb{C}^n/G$ (see Theorem 8.1) satisfies:

- (1) $\widetilde{\Gamma} = H = G$, that is, the covering maps q and r in (8.1) are the identity maps.
- (2) G is generated by the automorphisms $f, g_1, g_2, \ldots, g_{n-1}$ given by
- $f: (x_1, \dots, x_n)$ $\mapsto (e^{2\pi i a/nmd} x_{\sigma(1)}, \dots, e^{2\pi i a/nmd} x_{\sigma(n-1)}, e^{2\pi i (a+nm\kappa)/nmd} x_{\sigma(n)}),$ $g_i: (x_1, \dots, x_n) \mapsto (x_1, x_2, \dots, e^{2\pi i/d} x_i, \dots, e^{-2\pi i/d} x_n).$

PROOF. (1): In the present case, σ is cyclic of length n, so l = 1in (9.6) and Lemma 7.1, and thus $q : \mathbf{X} \mapsto \mathbf{X}^{m'_1}, r : \mathbf{u} \mapsto \mathbf{u}^{\ell_1}$. We claim that $m'_1 = \ell_1 = 1$ (so q and r are the identity maps). First since $c = \gcd(n_1m_1) = n_1m_1$, we have $m'_1 := n_1m_1/c = 1$. Next $N = (m'_1)^{n_1}c =$ n_1m_1 and $L_1 = \operatorname{lcm}(n_1m_1) = n_1m_1$, thus $\ell_1 := Nc/n_1m_1L_1 = 1$, confirming (1).

(2): Since $\widetilde{\Gamma} = G$, this follows from Theorem 9.6 (1) (note n_1, m_1, a_1 are denoted by n, m, a in the assertion). \Box

9.2. Preparation to deduce relations

Recall that $\tilde{\gamma}, \, \widetilde{\mathrm{id}}_i \in \tilde{\Gamma}$ are lifts of $\gamma, \, \mathrm{id} \in \Gamma$, and their descents are $\overline{\gamma}, \, \overline{\mathrm{id}}_i \in \overline{\Gamma}$, whose descents are $\overline{\overline{\gamma}}, \, \overline{\mathrm{id}}_i \in \overline{\overline{\Gamma}}$. None of them are identity maps (see Theorem 9.6 for their explicit forms). Note that $i = 1, 2, \ldots, n-1$. Convention: Define $\widetilde{\mathrm{id}}_n, \, \overline{\mathrm{id}}_n, \, \overline{\mathrm{id}}_n$ as identity maps.

Recall that $\widetilde{\Gamma}$ is generated by $\widetilde{\gamma}$, $\widetilde{\operatorname{id}}_i$ $(i = 1, 2, \ldots, n - 1)$, and $\overline{\Gamma}$ by $\overline{\gamma}$, $\overline{\operatorname{id}}_i$, and $\overline{\overline{\Gamma}}$ by $\overline{\overline{\gamma}}$, $\overline{\operatorname{id}}_i$ (Corollary 9.5). We deduce relations among $\widetilde{\gamma}$, $\widetilde{\operatorname{id}}_i$ (which descend to relations among $\overline{\gamma}$, $\overline{\operatorname{id}}_i$ and then those among $\overline{\overline{\gamma}}$, $\overline{\operatorname{id}}_i$). We begin with preparation. By Theorem 9.6 (1), $\widetilde{\gamma} = \widetilde{\alpha} \widetilde{\beta}_{1,\boldsymbol{q}}$, where $\boldsymbol{q} := (0, \ldots, 0, \kappa, 0, \ldots, 0)$ (κ lies in the $\sigma(n)$ th place) and

$$\begin{cases} \widetilde{\alpha}: (\boldsymbol{X}_1, \dots, \boldsymbol{X}_l) \longmapsto (e^{2\pi i a_1/n_1 m_1 d} \boldsymbol{X}_1^{\sigma_1}, \dots, e^{2\pi i a_l/n_l m_l d} \boldsymbol{X}_l^{\sigma_l}), \\ \widetilde{\beta}_{1, \boldsymbol{q}}: (X_1, X_2, \dots, X_n) \longmapsto (X_1, X_2, \dots, e^{2\pi i \kappa/d} X_{\sigma(n)}, \dots, X_n). \end{cases}$$

REMARK 9.10. $\widetilde{\beta}_{1, p}$ (for general $\boldsymbol{p} = (p_1, p_2, \dots, p_n)$) is given as follows (see Lemma 9.2 (1)):

$$\widetilde{\beta}_{1,\boldsymbol{p}}: (X_1, X_2, \dots, X_n) \longmapsto (e^{2\pi i p_1/d} X_1, e^{2\pi i p_2/d} X_2, \dots, e^{2\pi i p_n/d} X_n).$$

Using the relation $\widetilde{\beta}_{1,p}\widetilde{\alpha} = \widetilde{\alpha}\widetilde{\beta}_{1,\sigma^{-1}(p)}$ (Lemma 4.8), we may rewrite $\widetilde{\gamma}^N = \underbrace{(\widetilde{\alpha}\widetilde{\beta}_{1,q})\cdots(\widetilde{\alpha}\widetilde{\beta}_{1,q})}_{N}$ as $\widetilde{\gamma}^N = \widetilde{\alpha}^N(\widetilde{\beta}_{1,\sigma^{-N+1}(q)}\cdots\widetilde{\beta}_{1,\sigma^{-1}(q)}\widetilde{\beta}_{1,q})$; for instance if N = 3,

$$\begin{split} \widetilde{\gamma}^3 &= (\widetilde{\alpha}\widetilde{\beta}_{1,\boldsymbol{q}})(\widetilde{\alpha}\widetilde{\beta}_{1,\boldsymbol{q}})(\widetilde{\alpha}\widetilde{\beta}_{1,\boldsymbol{q}}) = (\widetilde{\alpha}\widetilde{\beta}_{1,\boldsymbol{q}})\widetilde{\alpha}\widetilde{\alpha}\widetilde{\beta}_{1,\sigma^{-1}\boldsymbol{q}}\widetilde{\beta}_{1,\boldsymbol{q}} \\ &= \widetilde{\alpha}\widetilde{\alpha}\widetilde{\alpha}\widetilde{\beta}_{1,\sigma^{-2}(\boldsymbol{q})}\widetilde{\beta}_{1,\sigma^{-1}\boldsymbol{q}}\widetilde{\beta}_{1,\boldsymbol{q}}. \end{split}$$

From the explicit form of $\tilde{\beta}_{1,p}$ (see Remark 9.10), $\tilde{\beta}_{1,p}\tilde{\beta}_{1,p'} = \tilde{\beta}_{1,p'}\tilde{\beta}_{1,p}$ for any p, p'. Thus

(9.8)
$$\widetilde{\gamma}^N = \widetilde{\alpha}^N \prod_{i=0}^{N-1} \widetilde{\beta}_{1,\sigma^{-i}(q)}$$

To rewrite this, recall that $\sigma = \sigma_1 \sigma_2 \cdots \sigma_l$ (cycle decomposition) and the length of σ_j is n_j .

Lemma 9.11.

(i) $\sigma_i^{n_j} = \text{id.}$

(ii)
$$\sigma^{n_l}(\boldsymbol{q}) = \boldsymbol{q}$$
. Consequently $\sigma^i(\boldsymbol{q}) = \sigma^{i'}(\boldsymbol{q})$ if $i \equiv i' \mod n_l$.

- (iii) n_l divides N.
- (iv) $\sigma^{-i}(\boldsymbol{q}) = \sigma^{N-i}(\boldsymbol{q}).$

PROOF. (i) is clear as σ_i is a cyclic permutation of length n_i .

(ii): Since $\boldsymbol{q} := (0, \ldots, 0, \kappa, 0, \ldots, 0)$ (κ lies in the $\sigma(n)$ th place), we have $\sigma^{n_l}(\boldsymbol{q}) = (0, \ldots, 0, \kappa, 0, \ldots, 0)$ (κ lies in the $\sigma^{-n_l+1}(n)$ th place). To show $\sigma^{n_l}(\boldsymbol{q}) = \boldsymbol{q}$, it thus suffices to show $\sigma^{-n_l+1}(n) = \sigma(n)$, that is, $\sigma^{n_l}(n) = n$. Note that n is contained in the cycle J_l of σ_l (indeed $J_l = \{n - n_l + 1, \ldots, n - 1, n\}$), so $\sigma_1, \sigma_2, \ldots, \sigma_{l-1}$ are 'irrelevant' to the transformation of n. Hence $\sigma(n) = \sigma_l(n)$, so $\sigma^{n_l}(n) = \sigma_l^{n_l}(n) = n$ (as $\sigma_l^{n_l} = \text{id by (i)}$).

(iii): Note that

$$N = (m'_1)^{n_1} \cdots (m'_l)^{n_l} c = (m'_1)^{n_1} \cdots (m'_l)^{n_l - 1} m'_l c$$

= $(m'_1)^{n_1} \cdots (m'_l)^{n_l - 1} n_l m_l$ as $m'_l c = n_l m_l$.

Thus n_l divides N.

(iv): Since n_l divides N, we have $N - i \equiv -i \mod n_l$. Thus $\sigma^{N-i}(\boldsymbol{q}) = \sigma^{-i}(\boldsymbol{q})$ by (ii). \Box

Using (iv), rewrite (9.8) as $\tilde{\gamma}^N = \tilde{\alpha}^N \prod_{i=0}^{N-1} \tilde{\beta}_{1,\sigma^i(\boldsymbol{q})}$. This is further rewritten. For instance if N = 6 and $n_l = 2$,

$$\begin{split} \widetilde{\gamma}^6 &= \widetilde{\alpha}^6 (\widetilde{\beta}_{1,\boldsymbol{q}} \widetilde{\beta}_{1,\sigma^1(\boldsymbol{q})}) (\widetilde{\beta}_{1,\sigma^2(\boldsymbol{q})} \widetilde{\beta}_{1,\sigma^3(\boldsymbol{q})}) (\widetilde{\beta}_{1,\sigma^4(\boldsymbol{q})} \widetilde{\beta}_{1,\sigma^5(\boldsymbol{q})}) \\ &= \widetilde{\alpha}^6 (\widetilde{\beta}_{1,\boldsymbol{q}} \widetilde{\beta}_{1,\sigma^1(\boldsymbol{q})})^3 \quad \text{as } \sigma^2(\boldsymbol{q}) = \boldsymbol{q}. \end{split}$$

In general, the following holds:

(9.9)
$$\widetilde{\gamma}^N = \widetilde{\alpha}^N \Big(\prod_{i=0}^{n_l-1} \widetilde{\beta}_{1,\sigma^i(\boldsymbol{q})} \Big)^{N/n_l} \cdot$$

Here

(9.10)
$$\begin{cases} \widetilde{\alpha}^N : (\boldsymbol{X}_1, \dots, \boldsymbol{X}_l) \mapsto (e^{2\pi i a_1 N/n_1 m_1 d} \boldsymbol{X}_1 \dots, e^{2\pi i a_l N/n_l m_l d} \boldsymbol{X}_l), \\ \widetilde{\beta}_{1,\sigma^i(\boldsymbol{q})} : (X_1, \dots, X_n) \mapsto (X_1, \dots, e^{2\pi i \kappa/d} X_{\sigma_l^{-i+1}(n)}, \dots, X_n). \end{cases}$$

We claim that

$$\prod_{i=0}^{n_l-1} \widetilde{\beta}_{1,\sigma^i(q)} : (X_1,\ldots,X_n) \mapsto (X_1,X_2,\ldots,\underbrace{e^{2\pi i\kappa/d}X_{n-n_l+1},\ldots,e^{2\pi i\kappa/d}X_n}_{n_l}),$$

that is,

(9.11)
$$\prod_{i=0}^{n_l-1} \widetilde{\beta}_{1,\sigma^i(\boldsymbol{q})} : (\boldsymbol{X}_1, \dots, \boldsymbol{X}_l) \mapsto (\boldsymbol{X}_1, \dots, \boldsymbol{X}_{l-1}, e^{2\pi i\kappa/d} \boldsymbol{X}_l).$$

Since $\widetilde{\beta}_{1,\sigma^{i}(q)}$: $(X_{1},...,X_{n}) \mapsto (X_{1},...,e^{2\pi i\kappa/d}X_{\sigma_{l}^{-i+1}(n)},...,X_{n})$, the composition $\prod_{i=0}^{n_{l}-1} \widetilde{\beta}_{1,\sigma^{i}(q)}$ is the multiplication of each coordinate $X_{\sigma_{l}^{-i+1}(n)}$ $(i = 0, 1, ..., n_{l} - 1)$ by $e^{2\pi i\kappa/d}$. Here

$$\{\sigma_l^{-i+1}(n): i=0,1,\ldots,n_l-1\} = \{n-n_l+1,\ldots,n-1,n\} = \{j: X_j \in \mathbf{X}_l\}.$$

So $\prod_{i=0}^{n_l-1} \widetilde{\beta}_{1,\sigma^i(q)}$ is given by the multiplication of every $X_j \in \mathbf{X}_l$ by $e^{2\pi i\kappa/d}$, that is, of the form (9.11). Consequently

(9.12)
$$\left(\prod_{i=0}^{n_l-1} \widetilde{\beta}_{1,\sigma^i(q)}\right)^{N/n_l} \colon (\boldsymbol{X}_1,\ldots,\boldsymbol{X}_l) \\ \mapsto (\boldsymbol{X}_1,\ldots,\boldsymbol{X}_{l-1}, e^{2\pi i \kappa N/n_l d} \boldsymbol{X}_l),$$

where recall that n_l divides N (Lemma 9.11 (iii)).

LEMMA 9.12. Set
$$\xi_k := \begin{cases} e^{2\pi i a_k N/n_k m_k d} & (k \neq l) \\ e^{2\pi i (a_l + m_l \kappa) N/n_l m_l d} & (k = l). \end{cases}$$
 Then:

(1) $\widetilde{\gamma}^{N}$: $(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \dots, \boldsymbol{X}_{l}) \longmapsto (\xi_{1}\boldsymbol{X}_{1}, \xi_{2}\boldsymbol{X}_{2}, \dots, \xi_{l}\boldsymbol{X}_{l}).$ (2) $\overline{\gamma}^{N}$: $(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \dots, \boldsymbol{X}_{l}) \longmapsto (\xi_{1}^{m_{1}'}\boldsymbol{X}_{1}, \xi_{2}^{m_{2}'}\boldsymbol{X}_{2}, \dots, \xi_{l}^{m_{l}'}\boldsymbol{X}_{l}).$ (3) $\overline{\overline{\gamma}}^{N}$: $(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \dots, \boldsymbol{X}_{l}) \longmapsto (\xi_{1}^{m_{1}'\ell_{1}}\boldsymbol{X}_{1}, \xi_{2}^{m_{2}'\ell_{2}}\boldsymbol{X}_{2}, \dots, \xi_{l}^{m_{l}'\ell_{l}}\boldsymbol{X}_{l}).$

PROOF. It suffices to show (1), as (2) and (3) are descents of (1). First $\widetilde{\gamma}^N = \widetilde{\alpha}^N \Big(\prod_{i=0}^{n_l-1} \widetilde{\beta}_{1,\sigma^i(\mathbf{q})} \Big)^{N/n_l}$ (see (9.9)). By (9.10) and (9.12), setting $\alpha := e^{2\pi i a_l N/n_l m_l d}$ and $\beta := e^{2\pi i \kappa N/n_l d}$, then

$$\widetilde{\gamma}^N : (\boldsymbol{X}_1, \dots, \boldsymbol{X}_l) \longmapsto (\xi_1 \boldsymbol{X}_1, \dots, \xi_{l-1} \boldsymbol{X}_{l-1}, \alpha \beta \boldsymbol{X}_l).$$

Here $\alpha\beta = e^{2\pi i a_l N/n_l m_l d} e^{2\pi i \kappa N/n_l d} = e^{2\pi i (a_l + m_l \kappa) N/n_l m_l d} = \xi_l$, so

$$\widetilde{\gamma}^N$$
 : $(\boldsymbol{X}_1, \ldots, \boldsymbol{X}_l) \longmapsto (\xi_1 \boldsymbol{X}_1, \ldots, \xi_l \boldsymbol{X}_l).$

9.3. Relations between generators

We keep the notation above. We claim that the following relation holds:

(9.13)
$$\widetilde{\gamma}^N = \widetilde{\mathbf{id}}_1 \widetilde{\mathbf{id}}_2 \cdots \widetilde{\mathbf{id}}_l$$

where $\widetilde{\mathbf{id}}_k$ is defined as follows: Write $\{1, 2, \ldots, n\} = J_1 \amalg J_2 \amalg \cdots \amalg J_l$ (the cycle decomposition, where J_k is the cycle of σ_k), then

$$\widetilde{\mathbf{id}}_k := \begin{cases} \prod_{i \in J_k} (\widetilde{\mathbf{id}}_i)^{a_k N/n_k m_k} & (k \neq l), \\ \prod_{i \in J_l} (\widetilde{\mathbf{id}}_i)^{(a_l + m_l \kappa) N/n_l m_l} & (k = l). \end{cases}$$

More explicitly, letting $f_k : \mathbb{C}^{n_l} \to \mathbb{C}^{n_l}$ (k = 1, 2, ..., l) be the automorphism given by $\mathbf{X}_l = (X_{j_1}, \ldots, X_{j_{n_l}}) \mapsto (X_{j_1}, \ldots, X_{j_{n_l-1}}, \xi_k^{-n_k} X_{j_{n_l}})$, then

(9.14)
$$\widetilde{\mathbf{id}}_k : \begin{cases} (\boldsymbol{X}_1, \dots, \boldsymbol{X}_l) \mapsto (\boldsymbol{X}_1, \dots, \xi_k \boldsymbol{X}_k \dots, \boldsymbol{X}_{l-1}, f_k(\boldsymbol{X}_l)) & \text{if } k \neq l, \\ (\boldsymbol{X}_1, \dots, \boldsymbol{X}_l) \mapsto (\boldsymbol{X}_1 \dots, \boldsymbol{X}_{l-1}, \xi_l f_l(\boldsymbol{X}_l)) & \text{if } k = l. \end{cases}$$

So

$$\widetilde{\operatorname{id}}_1 \widetilde{\operatorname{id}}_2 \cdots \widetilde{\operatorname{id}}_l : (\boldsymbol{X}_1, \dots, \boldsymbol{X}_l) \mapsto (\xi_1 \boldsymbol{X}_1 \dots, \xi_{l-1} \boldsymbol{X}_{l-1}, \xi_l f_1 f_2 \cdots f_l(\boldsymbol{X}_l)).$$

Here $f_1 f_2 \cdots f_l = 1$, indeed $\xi_1^{-n_1} \xi_2^{-n_2} \cdots \xi_l^{-n_l} = e^{-2\pi i N (a_1/m_1 + \cdots + a_l/m_l + \kappa)/d} = e^{-2\pi i d/d} = 1$. Thus $\widetilde{id}_1 \widetilde{id}_2 \cdots \widetilde{id}_l = \widetilde{\gamma}^N$.

Lemma 9.13.

- (1.a) For any k, $\widetilde{\mathbf{id}}_k = 1 \iff \xi_k = 1$.
- (1.b) $\widetilde{\mathbf{id}}_1 = \widetilde{\mathbf{id}}_2 = \dots = \widetilde{\mathbf{id}}_l = 1 \iff \widetilde{\gamma}^N = 1.$

PROOF. (1.a) is immediate from (9.14).

(1.b): From Lemma 9.12 (1), $\tilde{\gamma}^N = 1 \iff \xi_1 = \xi_2 = \cdots = \xi_l = 1$. This and (1.a) gives (1.b). \Box

Corresponding to the relation $\widetilde{\gamma}^N = \widetilde{\mathbf{id}}_1 \widetilde{\mathbf{id}}_2 \cdots \widetilde{\mathbf{id}}_l, \ \overline{\gamma}^N = \overline{\mathbf{id}}_1 \overline{\mathbf{id}}_2 \cdots \overline{\mathbf{id}}_l$ and $\overline{\overline{\gamma}}^N = \overline{\overline{\mathbf{id}}}_1 \overline{\overline{\mathbf{id}}}_2 \cdots \overline{\overline{\mathbf{id}}}_l$, where explicitly

$$\overline{\mathbf{id}}_{k} = \begin{cases} \prod_{i \in J_{k}} (\overline{\mathrm{id}}_{i})^{a_{k}N/n_{k}m_{k}}, \\ \prod_{i \in J_{l}} (\overline{\mathrm{id}}_{i})^{(a_{l}+m_{l}\kappa)N/n_{l}m_{l}}, \\ \prod_{i \in J_{l}} (\overline{\mathrm{id}}_{i})^{(a_{l}+m_{l}\kappa)N/n_{l}m_{l}}, \\ \end{bmatrix} \overline{\mathbf{id}}_{k} = \begin{cases} \prod_{i \in J_{k}} (\overline{\mathrm{id}}_{i})^{a_{k}N/n_{k}m_{k}} & (k \neq l), \\ \prod_{i \in J_{l}} (\overline{\mathrm{id}}_{i})^{(a_{l}+m_{l}\kappa)N/n_{l}m_{l}} & (k = l). \end{cases}$$

Lemma 9.14.

(2.a) For any k, $\overline{\mathbf{id}}_k = 1 \iff \xi_k^{m'_k} = 1$ and $\xi_k^{-n_k m'_l} = 1$. (2.b) $\overline{\mathbf{id}}_1 = \overline{\mathbf{id}}_2 = \cdots = \overline{\mathbf{id}}_l = 1 \implies \overline{\gamma}^N = 1$.

PROOF. (2.a): From (9.14), $\overline{\mathbf{id}}_k : (\mathbf{X}_1, \dots, \mathbf{X}_l) \mapsto (\mathbf{X}_1, \dots, \xi_k^{m'_k} \mathbf{X}_k, \dots, \mathbf{X}_{l-1}, f_k^{m'_l}(\mathbf{X}_l))$. Here $f_k^{m'_l} = 1 \iff \xi_k^{-n_k m'_l} = 1$, so the assertion holds. (2.b): From Lemma 9.12 (2), $\overline{\gamma}^N = 1 \iff \xi_1^{m'_1} = \xi_2^{m'_2} = \dots = \xi_l^{m'_l} = 1$. This and (2.a) gives (2.b). \Box

REMARK 9.15. In (2.b), " \Leftarrow " does not hold: Since m'_k $(k \neq l)$ does not divide $n_k m'_l$, even if $\xi_k^{m'_k} = 1$, in general $\xi_k^{-n_k m'_l} \neq 1$ (that is, $\overline{\mathbf{id}}_k \neq 1$).

From (9.14),

$$\overline{\overline{\mathrm{id}}}_k: (\boldsymbol{X}_1, \dots, \boldsymbol{X}_l) \longmapsto (\boldsymbol{X}_1, \dots, \boldsymbol{\xi}_k^{m'_k \ell_k} \boldsymbol{X}_k \dots, \boldsymbol{X}_{l-1}, f_k^{m'_l \ell_l} (\boldsymbol{X}_l)),$$

where $f_k^{m'_l\ell_l}: \mathbf{X}_l = (X_{j_1}, \dots, X_{j_{n_l}}) \mapsto (X_{j_1}, \dots, X_{j_{n_l-1}}, \xi_k^{-n_k m'_l\ell_l} X_{j_{n_l}})$. Here if $\xi_k^{m'_k} = 1$, then $\xi_k^{-n_k m'_l\ell_l} = 1$; otherwise $\overline{\mathbf{id}}_k \in \overline{\Gamma}$ is a pseudo-reflection, but this

82

contradicts the fact that $\overline{\overline{\Gamma}} (= G)$ is a small group (Theorem 8.1 (1)). This proves (1) of the following ((2) is immediate from (1)):

LEMMA 9.16. For any k,

(1) If $\xi_k^{m'_k} = 1$, then $\xi_k^{-n_k m'_l \ell_l} = 1$.

(2)
$$\overline{\overline{\mathbf{id}}}_k = 1 \iff \xi_k^{m'_k \ell_k} = 1.$$

From Lemma 9.12 (3), $\overline{\overline{\gamma}}^N = 1 \iff \xi_1^{m'_1 \ell_1} = \xi_2^{m'_2 \ell_2} = \cdots = \xi_l^{m'_l \ell_l} = 1$. This combined with Lemma 9.16 (2) gives:

LEMMA 9.17.
$$\overline{\mathbf{id}}_1 = \overline{\mathbf{id}}_2 = \dots = \overline{\mathbf{id}}_l = 1 \iff \overline{\overline{\gamma}}^N = 1.$$

We summarize the above results as follows:

PROPOSITION 9.18.

(1)
$$\widetilde{\gamma}^N = \widetilde{\mathbf{id}}_1 \widetilde{\mathbf{id}}_2 \cdots \widetilde{\mathbf{id}}_l$$
. Here $\widetilde{\mathbf{id}}_1 = \widetilde{\mathbf{id}}_2 = \cdots = \widetilde{\mathbf{id}}_l = 1 \iff \widetilde{\gamma}^N = 1$.

(2)
$$\overline{\gamma}^N = \overline{\mathbf{id}}_1 \overline{\mathbf{id}}_2 \cdots \overline{\mathbf{id}}_l$$

(3)
$$\overline{\overline{\gamma}}^N = \overline{\overline{\mathbf{id}}}_1 \overline{\overline{\mathbf{id}}}_2 \cdots \overline{\overline{\mathbf{id}}}_l$$
. Here $\overline{\overline{\mathbf{id}}}_1 = \overline{\overline{\mathbf{id}}}_2 = \cdots = \overline{\overline{\mathbf{id}}}_l = 1 \iff \overline{\overline{\gamma}}^N = 1$.

For (2), we merely have: $\overline{\mathbf{id}}_1 = \overline{\mathbf{id}}_2 = \cdots = \overline{\mathbf{id}}_l = 1 \Longrightarrow \overline{\gamma}^N = 1.$

Another relation. There is another relation among $\tilde{\gamma}$, \tilde{id}_i (and also among $\overline{\gamma}$, \overline{id}_i and among $\overline{\overline{\gamma}}$, $\overline{\overline{id}}_i$):

LEMMA 9.19. For each i = 1, 2, ..., n - 1, (1) $id_i \tilde{\gamma} = \tilde{\gamma} id_{\sigma(i)} (id_{\sigma(n)})^{-1}$. (2) $id_i \overline{\gamma} = \overline{\gamma} id_{\sigma(i)} (id_{\sigma(n)})^{-1}$.

(3) $\overline{\operatorname{id}}_i \overline{\overline{\gamma}} = \overline{\overline{\gamma}} \,\overline{\operatorname{id}}_{\sigma(i)} (\overline{\operatorname{id}}_{\sigma(n)})^{-1}.$

In particular if $\sigma(i) = i$, then $\widetilde{\operatorname{id}}_i \widetilde{\gamma} = \widetilde{\gamma} \widetilde{\operatorname{id}}_i (\widetilde{\operatorname{id}}_{\sigma(n)})^{-1}$, $\overline{\operatorname{id}}_i \overline{\gamma} = \overline{\gamma} \overline{\operatorname{id}}_i (\overline{\operatorname{id}}_{\sigma(n)})^{-1}$, and $\overline{\operatorname{id}}_i \overline{\overline{\gamma}} = \overline{\overline{\gamma}} \overline{\operatorname{id}}_i (\overline{\operatorname{id}}_{\sigma(n)})^{-1}$ (these indicate that $\widetilde{\Gamma}, \overline{\Gamma}$ and $\overline{\overline{\Gamma}}$ are not abelian. Indeed they are not except for $\sigma = \operatorname{id}$ or n = d = 2 (Theorem 10.11)).

PROOF. (1) can be shown as in the proof of Lemma 4.8. (2) and (3) are the descents of (1). \Box

REMARK 9.20. If $\sigma(n) = n$, then $\widetilde{id}_{\sigma(n)}$ is the identity map (as $\widetilde{id}_{\sigma(n)} = \widetilde{id}_n$ is the identity map), thus (1) becomes $\widetilde{id}_i \widetilde{\gamma} = \widetilde{\gamma} \widetilde{id}_{\sigma(i)}$. In particular if σ is the identity, then $\widetilde{id}_i \widetilde{\gamma} = \widetilde{\gamma} \widetilde{id}_i$. This implies that $\widetilde{\Gamma}$ is abelian. Accordingly $\overline{\Gamma}$ and $\overline{\overline{\Gamma}}$ are abelian.

10. When G is Abelian?

We will determine when $G (= \overline{\overline{\Gamma}})$ is abelian. We begin with preparation. Recall that G is generated by $\overline{\overline{\gamma}}, \overline{\mathrm{id}}_i \ (i = 1, 2, \dots, n-1)$ (Corollary 9.5 (3)).

LEMMA 10.1. Set $f := \overline{\overline{\gamma}}$ and $g_i := \overline{\overline{\mathrm{id}}}_i$ $(i = 1, 2, \dots, n-1)$. Then:

- (1) G is abelian if and only if $(g_i)^{-1}g_{\sigma(i)} = g_{\sigma(n)}$ for every i.
- (2) Suppose that G is abelian. If $\sigma = id$, then $g_{\sigma(n)} = id$ (so $\sigma(n) = n$). Otherwise $g_{\sigma(n)} \neq id$ (so $\sigma(n) \neq n$).

PROOF. (1): As G is generated by $f, g_i (i = 1, 2, ..., n-1)$ it is abelian precisely when $g_i f = fg_i$ for every *i*. By Lemma 9.19 (3), this is equivalent to $g_i = g_{\sigma(i)} (g_{\sigma(n)})^{-1}$ for every *i*.

(2): If $\sigma = id$, then $g_{\sigma(n)} = g_n = id$. We next show that if $\sigma \neq id$, then $g_{\sigma(n)} \neq id$. Since G is abelian, $(g_i)^{-1}g_{\sigma(i)} = g_{\sigma(n)}$ by (1). Thus if $g_{\sigma(n)} = id$, then $(g_i)^{-1}g_{\sigma(i)} = id$, so $g_i = g_{\sigma(i)}$. This implies $i = \sigma(i)$ (note: $g_i = g_j \Leftrightarrow i = j$ by Corollary 9.8). Hence $\sigma = id$, contradicting the assumption. \Box

LEMMA 10.2. If $\sigma \neq \text{id}$ and G is abelian, then $\{1, \sigma(1)\} = \{2, \sigma(2)\} = \cdots = \{n, \sigma(n)\}$ (as sets).

PROOF. Since G is abelian, $(g_i)^{-1}g_{\sigma(i)} = g_{\sigma(n)}$ for every *i* (Lemma 10.1 (1)). We explicitly give both sides. First from Theorem 9.6 (3), g_i and $g_{\sigma(i)}$

are given by (say $x_i \in \boldsymbol{x}_k$, so $x_{\sigma(i)} \in \boldsymbol{x}_k$):

$$g_{i}: (x_{1}, x_{2}, \dots, x_{n}) \longmapsto (x_{1}, x_{2}, \dots, e^{2\pi i m_{k}^{\prime} \ell_{k}/d} x_{i}, \dots, e^{-2\pi i m_{l}^{\prime} \ell_{l}/d} x_{n}),$$

$$g_{\sigma(i)}: (x_{1}, x_{2}, \dots, x_{n}) \longmapsto (x_{1}, x_{2}, \dots, e^{2\pi i m_{k}^{\prime} \ell_{k}/d} x_{\sigma(i)}, \dots, e^{-2\pi i m_{l}^{\prime} \ell_{l}/d} x_{n})$$

Accordingly

$$(g_i)^{-1}g_{\sigma(i)}:(x_1,\ldots,x_n)$$

$$\mapsto (x_1,\ldots,e^{-2\pi \mathrm{i}m'_k\ell_k/d}x_i,\ldots,e^{2\pi \mathrm{i}m'_k\ell_k/d}x_{\sigma(i)},\ldots,x_n).$$

Note next that as $\sigma \neq id$, we have $\sigma(n) \neq n$ (Lemma 10.1 (2)). From Theorem 9.6 (3),

$$g_{\sigma(n)}: (x_1, x_2, \dots, x_n) \longmapsto (x_1, x_2, \dots, e^{2\pi \mathrm{i} m_l' \ell_l / d} x_{\sigma(n)}, \dots, e^{-2\pi \mathrm{i} m_l' \ell_l / d} x_n).$$

As $(g_i)^{-1} g_{\sigma(i)} = g_{\sigma(n)}$, we have $\{i, \sigma(i)\} = \{n, \sigma(n)\}$ for every i . \Box

COROLLARY 10.3. If $\sigma \neq \text{id}$ and G is abelian, then n = 2 and $\sigma = (12)$.

PROOF. By Lemma 10.2, $\{1, \sigma(1)\} = \{2, \sigma(2)\} = \cdots = \{n, \sigma(n)\}$. This equation indeed holds for n = 2, $\sigma = (12)$, as $\{1, 2\} = \{2, 1\}$. In contrast, this fails for $n \ge 3$. For instance, if n = 3 and $\sigma = (123)$, then $\{1, 2\} = \{2, 3\} = \{3, 1\}$, which is absurd. The general case is similarly confirmed. \Box

We revive the notation $\overline{\overline{\gamma}}$, $\overline{\overline{\mathrm{id}}}_i$ for f, g_i . Recall that $A_{d-1}/\Gamma \cong \mathbb{C}^n/G$ as well as the following diagram:

(10.1)
$$\begin{array}{c} \widetilde{A}_{d-1} = \mathbb{C}^n \widehat{\gamma}, \, \widetilde{\mathrm{id}}_i \\ q \\ p \\ A_{d-1} \widehat{\gamma}, \, \widetilde{\mathrm{id}}_i \widehat{\gamma}, \, \widetilde{\mathrm{cn}}_i \\ \overline{\gamma}, \, \overline{\mathrm{id}}_i \widehat{\gamma}, \, \mathbb{C}^n \end{array}$$

LEMMA 10.4. Suppose n = 2 and $\sigma = (12)$. Then:

- (A) The covering maps q, r in (10.1) are the identity maps. Accordingly $\widetilde{\Gamma} = \overline{\Gamma} = G$ and $\widetilde{\gamma} = \overline{\gamma} = \overline{\gamma}, \quad \widetilde{\mathrm{id}}_i = \overline{\mathrm{id}}_i = \overline{\mathrm{id}}_i.$
- (B) G is abelian if and only if d = 2.

PROOF. Since $\sigma = (12)$ is cyclic, (A) follows from Corollary 9.9 (1). We next show (B). For simplicity, set $\psi_i := id_i$ and $g_i := id_i$. By (A) in the present case, $\psi_i = g_i$. By Lemma 10.1 (1), *G* is abelian if and only if $(g_i)^{-1}g_{\sigma(i)} = g_{\sigma(n)}$. Substituting n = 2, $\sigma = (12)$ and $\psi_i = g_i$ into this equation yields $(\psi_1)^{-1}\psi_2 = \psi_1$, so $(\psi_1)^2 = id$. By Theorem 9.6 (1), this is equivalent to $(e^{2\pi i/d})^2 = 1$, that is, d = 2. \Box

Hence:

PROPOSITION 10.5. $\sigma \neq \text{id}$ and G is abelian if and only if n = 2, $\sigma = (12)$ and d = 2.

In this case G is actually cyclic. To see this, note first that when n = 2and $\sigma = (12)$, G is generated by $\overline{\overline{\gamma}}, \overline{\overline{\mathrm{id}}}_1$ (Corollary 9.5 (3)) and $\widetilde{\gamma} = \overline{\overline{\gamma}},$ $\widetilde{\mathrm{id}}_i = \overline{\mathrm{id}}_i$ (Lemma 10.4 (A)) and $2 = d = 2a + 2m\kappa$, so a = 1 and $\kappa = 0$. Then from Theorem 9.6 (1),

$$\overline{\overline{\gamma}} (= \widetilde{\gamma}) : (x_1, x_2) \longmapsto (e^{2\pi i/4m} x_2, e^{2\pi i/4m} x_1),$$

$$\overline{\overline{\mathrm{id}}}_1 (= \widetilde{\mathrm{id}}_1) : (x_1, x_2) \longmapsto (e^{2\pi i/2} x_1, e^{2\pi i/2} x_2).$$

Hence $\overline{id}_1 = (\overline{\gamma})^{2m}$, so G is generated by $\overline{\gamma}$. This confirms (2) of the following; (1) is already shown in Remark 9.20.

THEOREM 10.6. Whether G is abelian depends on σ , n, and d. More precisely:

- (1) If $\sigma = \text{id}$, then G is always abelian. (If moreover n = 2, G is cyclic ([SaTa] Theorem 2.1, p.682 originally proved in [Tak])).
- (2) If $\sigma \neq id$, then G is rarely abelian in fact only when n = 2 and d = 2 (and in which case G is cyclic generated by $\overline{\gamma}$).

86

For (2), we will determine when $\widetilde{\Gamma}$ is abelian. The following is needed.

LEMMA 10.7. For each i = 1, 2, ..., n - 1,

$$\widetilde{\operatorname{id}}_i = \widetilde{\alpha}^N \widetilde{\beta}_{N, p_i} \quad \text{for some } p_i \in \Lambda^{(N)},$$

where as in (4.4),

(10.2)
$$\Lambda^{(N)} = \left\{ \boldsymbol{p} = (p_1, \dots, p_n) \in \mathbb{Z}^n : 0 \le p_i < d, \\ \sum_{i=1}^n \frac{p_i}{d} \equiv \frac{N\kappa}{d} \mod \mathbb{Z} \right\}.$$

PROOF. Since \widetilde{id}_i is a lift of $1 (= \gamma^N) \in \Gamma$, this follows from Corollary 4.6. \Box

For
$$\boldsymbol{p} = (p_1, \dots, p_n) \in \Lambda^{(j)}$$
, the automorphism $\widetilde{\beta}_{j, \boldsymbol{p}}$ is given by
 $\widetilde{\beta}_{j, \boldsymbol{p}} : (X_1, \dots, X_n) \longmapsto (e^{2\pi i p_1/d} X_1, \dots, e^{2\pi i p_n/d} X_n)$ (Lemma 9.2 (1)).

Thus

(10.3)
$$\begin{cases} (*) \quad \widetilde{\beta}_{j,p} \ \widetilde{\beta}_{j',p'} = \widetilde{\beta}_{j',p'} \widetilde{\beta}_{j,p} \text{ for any } p \in \Lambda^{(j)}, \ p' \in \Lambda^{(j')}, \\ (**) \quad \widetilde{\beta}_{j,p} = \widetilde{\beta}_{j',p'} \iff p = p'. \end{cases}$$

Actually: $\widetilde{\Gamma}$ is abelian $\iff \sigma = \text{id or } n = d = 2$. The following is the first step to show this.

LEMMA 10.8. $\widetilde{\Gamma}$ is abelian $\iff \sigma(\mathbf{p}_i) = \mathbf{p}_i$ for every *i*. (Notation: For $\mathbf{x} = (x_1, \dots, x_n)$, set $\sigma(\mathbf{x}) := (x_{\sigma(1)}, \dots, x_{\sigma(n)})$. So $\sigma(\mathbf{x}) = \mathbf{x}$ means $x_{\sigma(1)} = x_1, \dots, x_{\sigma(n)} = x_n$, i.e. σ fixes all elements of \mathbf{x} .)

PROOF. Since $\widetilde{\Gamma}$ is generated by $\widetilde{\gamma}$ and id_i $(i = 1, 2, \ldots, n-1)$ (Corollary 9.5 (1)), we have

$$\widetilde{\Gamma}$$
 is abelian $\iff \widetilde{\gamma} \, \widetilde{\mathrm{id}}_i = \widetilde{\mathrm{id}}_i \widetilde{\gamma}$ for every i .

Since $\tilde{\gamma} = \tilde{\alpha}\tilde{\beta}_{1, q}$ (Theorem 9.6 (1)) and $i\tilde{d}_i = \tilde{\alpha}^N\tilde{\beta}_{N, p_i}$ for some $p_i \in \Lambda^{(N)}$ (Lemma 10.7), the condition on R.H.S. is rewritten as

$$\widetilde{\alpha}\widetilde{\beta}_{1,\,\boldsymbol{q}}\widetilde{\alpha}^{N}\widetilde{\beta}_{N,\,\boldsymbol{p}_{i}}=\widetilde{\alpha}^{N}\widetilde{\beta}_{N,\,\boldsymbol{p}_{i}}\widetilde{\alpha}\widetilde{\beta}_{1,\,\boldsymbol{q}}\text{ for every }i.$$

By Lemma 4.8, $\widetilde{\beta}_{N, p_i} \widetilde{\alpha} = \widetilde{\alpha} \widetilde{\beta}_{N, \sigma^{-1}(p_i)}$ and $\widetilde{\beta}_{1, q} \widetilde{\alpha}^N = \widetilde{\alpha}^N \widetilde{\beta}_{1, \sigma^{-N}(q)}$. Here $\widetilde{\beta}_{1, \sigma^{-N}(q)} = \widetilde{\beta}_{1, q}$ (as $\sigma^{-N} = \mathrm{id}$), thus

$$\begin{split} \widetilde{\Gamma} \text{ is abelian } &\iff \widetilde{\alpha}^{N+1} \widetilde{\beta}_{1,\,\boldsymbol{q}} \widetilde{\beta}_{N,\,\boldsymbol{p}_{i}} = \widetilde{\alpha}^{N+1} \widetilde{\beta}_{N,\,\sigma^{-1}(\boldsymbol{p}_{i})} \widetilde{\beta}_{1,\,\boldsymbol{q}}, \,\,^{\forall} i \\ &\iff \widetilde{\beta}_{1,\,\boldsymbol{q}} \widetilde{\beta}_{N,\,\boldsymbol{p}_{i}} = \widetilde{\beta}_{N,\,\sigma^{-1}(\boldsymbol{p}_{i})} \widetilde{\beta}_{1,\,\boldsymbol{q}}, \,\,^{\forall} i \\ &\iff \widetilde{\beta}_{N,\,\boldsymbol{p}_{i}} \widetilde{\beta}_{1,\,\boldsymbol{q}} = \widetilde{\beta}_{N,\,\sigma^{-1}(\boldsymbol{p}_{i})} \widetilde{\beta}_{1,\,\boldsymbol{q}}, \,\,^{\forall} i \quad \text{by (*) of (10.3)} \\ &\iff \widetilde{\beta}_{N,\,\boldsymbol{p}_{i}} = \widetilde{\beta}_{N,\,\sigma^{-1}(\boldsymbol{p}_{i})}, \,\,^{\forall} i \\ &\iff \boldsymbol{p}_{i} = \sigma^{-1}(\boldsymbol{p}_{i}), \,\,^{\forall} i \quad \text{by (**) of (10.3).} \ \Box \end{split}$$

Furthermore:

PROPOSITION 10.9. The following are equivalent:

- (1) $\widetilde{\Gamma}$ is abelian.
- (2) $\sigma(\boldsymbol{p}) = \boldsymbol{p}$ for any $\boldsymbol{p} \in \Lambda^{(N)}$.
- (3) $\sigma = \text{id } or n = d = 2.$

(From the equivalence of (1) and (3), in most cases $\tilde{\Gamma}$ is not abelian.)

PROOF. "(1) \implies (2)" was shown as Lemma 4.9.

(2) \implies (1): If $\sigma(\mathbf{p}) = \mathbf{p}$ for every $\mathbf{p} \in \Lambda^{(N)}$, then in particular $\sigma(\mathbf{p}_i) = \mathbf{p}_i$ for every *i*. The assertion thus follows from Lemma 10.8.

(3) \implies (2): First if $\sigma = id$, (2) is obvious. Next if n = d = 2, then either $\sigma = id$ or $\sigma = (12)$. It suffices to consider the latter case — for which $2 = d = 2a + 2m\kappa$, so a = 1 and $\kappa = 0$, accordingly (10.2) is

$$\Lambda^{(N)} = \left\{ (p_1, p_2) \in \mathbb{Z}^2 : 0 \le p_i < 2, \ \frac{p_1 + p_2}{2} \equiv 0 \ \text{mod} \ \mathbb{Z} \right\}$$
$$= \{ (0, 0), \ (1, 1) \}.$$

Then for $\boldsymbol{p} \in \Lambda^{(N)}$, clearly $\sigma(\boldsymbol{p}) = \boldsymbol{p}$ (note: for $\boldsymbol{p} = (p_1, p_2), \sigma(\boldsymbol{p}) = \boldsymbol{p}$ precisely when $p_{\sigma(1)} = p_1, p_{\sigma(2)} = p_2$).

(1) \implies (3): If $\widetilde{\Gamma}$ is abelian, its descent G is necessarily abelian, thus $\sigma = \mathrm{id}$ or n = d = 2 by Theorem 10.6. \Box

LEMMA 10.10. The following are equivalent:

(A) $\widetilde{\Gamma}$ is abelian. (B) *H* is abelian. (C) *G* is abelian.

PROOF. "(A) \Longrightarrow (B)" and "(B) \Longrightarrow (C)" follow from the facts that H is the descent of $\widetilde{\Gamma}$ and G is the descent of H. "(C) \Longrightarrow (A)": If G is abelian, then $\sigma = \operatorname{id}$ or n = d = 2 by Theorem 10.6, so $\widetilde{\Gamma}$ is abelian by Proposition 10.9. \Box

Lemma 10.10 combined with Proposition 10.9 yields:

THEOREM 10.11. The following are equivalent:

- (1) $\sigma = \text{id } or n = d = 2.$
- (2) $\widetilde{\Gamma}$ is abelian.
- (3) H is abelian.
- (4) G is abelian.

Supplement. For each $\sigma \in \mathfrak{S}_n$, define an automorphism f_{σ} of \mathbb{C}^n by $f_{\sigma}(x_1, x_2, \ldots, x_n) = (x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)})$. This does "not" define a group action of \mathfrak{S}_n on \mathbb{C}^n . Indeed $f_{\tau}(f_{\sigma}(x_1, \ldots, x_n)) = f_{\tau}(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = (x_{\sigma\tau(1)}, \ldots, x_{\sigma\tau(n)}) = f_{\sigma\tau}(x_1, \ldots, x_n)$, so $f_{\tau} \circ f_{\sigma} = f_{\sigma\tau} \neq f_{\tau\sigma}$. In contrast, $f_{\sigma}(x_1, x_2, \ldots, x_n) = (x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \ldots, x_{\sigma^{-1}(n)})$ defines a group action of \mathfrak{S}_n , as $f_{\tau} \circ f_{\sigma} = f_{\tau\sigma}$.

References

[SaTa] Sasaki, K. and S. Takamura, Uniformization of Cyclic Quotients of Multiplicative A-singularities, J. Math. Sci. Univ. Tokyo 23 (3) (2016), 675–726.

[Tak] Takamura, S., Towards the classification of atoms of degenerations, II, (Linearization of degenerations of complex curves), RIMS Preprint 1344 (2001).

(Received March 17, 2017)

Department of Mathematics Graduate School of Science Kyoto University Oiwakecho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 JAPAN E-mail: kjr-ssk@math.kyoto-u.ac.jp takamura@math.kyoto-u.ac.jp