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De Finetti Theorems for a Boolean Analogue

of Easy Quantum Groups

By Tomohiro Hayase

Abstract. We show an organized form of quantum de Finetti
theorem for Boolean independence. We define a Boolean analogue of
easy quantum groups for the categories of interval partitions, which is
a family of sequences of quantum semigroups.

We construct the Haar states on those quantum semigroups. The
proof of our de Finetti theorem is based on the analysis of the Haar
states.

Introduction

In the study of distributional symmetries in probability theory, the per-

mutation groups Sn and the orthogonal groups On play central roles. The

de Finetti theorem states that a sequence of real random variables have a

joint distribution which is stable under each Sn action if and only if it is

conditionally independent and identically distributed (i.i.d. for short) over

its tail σ-algebra. Similarly, the symmetry given by the orthogonal groups

On induces conditionally i.i.d. centered Gaussian random variables. See [2]

for details.

In noncommutative probability theory, a probability measure space is

replaced with a W∗-probability space (M,ϕ) which is a pair of a von Neu-

mann algebra and a normal state. A self-adjoint operator in M has a role

as a random variable. Contrary to Kolmogorov probability theory, there

are several possible notions of independence in noncommutative probability

theory. By [10], there exist only three universal independences; the classical

independence, the free independence and the Boolean independence. Free

probability theory is one of the most developed noncommutative probability

theory [13]. The Boolean independence appeared in [14], [12]. The Boolean
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one occurs only in the non-unital situations. Each universal independence is

characterized by a family of multivariate cumulants whose index runs over

one of a category of partitions. Free cumulants and Boolean cumulants are

determined by noncrossing partitions and interval partitions, respectively.

By using Boolean cumulants, it can be proven that the central limit distri-

bution of the Boolean independence is the Bernoulli distribution.

Köstler and Speicher have shown the free de Finetti theorem in [3]. The

theorem states that the symmetry given by the free permutation groups

(C(S+
n ))n∈N induces the conditional free independence. The free permuta-

tion group C(S+
n ) is the liberation, that is, a free analogue, of Sn (See [1] for

the liberation). More precisely, the Hopf algebra C(S+
n ) is given by elimi-

nating the commuting relations among the generators of the Hopf algebra

C(Sn). The free permutation group is one of the free quantum groups which

appeared in [15], [16].

An easy quantum group is one of Woronowicz’s compact matrix quantum

groups which is characterized by a tensor category of partitions in the sense

of the Tannaka-Krein duality. De Finetti theorems have been proven for

easy quantum groups (see [1]) in particular easy groups Sn, Hn, Bn, On
and free quantum groups C(S+

n ), C(H+
n ), C(B+

n ), C(O+
n ). It is known that

every compact quantum group admits a unique Haar state [17], and the

Haar states play a main role in the de Finetti theorem.

Liu’s work [6] starts the research of the de Finetti theorem for the

Boolean independence. He adds a projection P to the generators of free

quantum groups C(S+
n ) and defines a quantum semigroup (in the sense of

[9]) Bs(n) and has proven associated Boolean de Finetti theorem. The theo-

rem states that the symmetry given by the family (Bs(n))n∈N characterizes

the conditionally Boolean i.i.d. random variables.

Main Results

To develop the research of the Boolean de Finetti theorem, we are in-

terested in finding the Haar states on Boolean quantum semigroups. By

using the Haar state, we can apply the organized strategy for the de Finetti

theorems for easy quantum groups [1] a similar way. We define a Boolean

analogue of permutation group Sn in a different form Beqs.

We do not prove that Beqs(n) and Bs(n) are isomorphic, but we prove

that Beqs(n) and Bs(n) admit a same Haar state hs. Moreover, we prove

that the Boolean quantum semigroups Beqh on the category Ih and the
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Boolean quantum semigroups Beqo on Io = I2 have unique Haar states hh,

ho. We do not prove the existence of the Haar state on Boolean quantum

semigroups Beqb on Ib, but we prove that of the Haar state on Boolean

pr-quantum semigroups Ap[Ib].
We first define the notion of categories of interval partitions which is

deeply connected with Boolean independence by Boolean cumulants. By

using the categories of interval partitions, we induce the notion of Boolean

pre-quantum semigroups (Ap[D;n])n∈N (see Definition 2.3) which is a se-

quence of unital ∗-algebras equipped with coproducts. Taking their C∗-
completion, we define Boolean quantum semigroups Beqx(n).

For a sequence of coalgebras (A(n))n∈N, we say that (xj)j∈N is

A-invariant if its joint distribution is invariant under the coactions of

(A(n))n∈N. Then we show the following Boolean de Finetti theorems.

Theorem 0.1. Let (M,ϕ) be a pair of a von Neumann algebra and

a nondegenerate normal state. Assume M is σ-weakly generated by self-

adjoint elements (xj)j∈N. Let Mnut be the non-unital tail von Neumann

algebra.

(s) The following assertions are equivalent;

(0) The sequence (xj)j∈N is Bs-invariant.

(alg) The sequence (xj)j∈N is Ap[I]-invariant.

(beq) The sequence (xj)j∈N is Beqs-invariant.

(iid) The elements (xj)j∈N are Boolean i.i.d. over Mnut.

(o) The following assertions are equivalent;

(alg) The sequence (xj)j∈N is Ap[I2]-invariant.

(beq) The sequence (xj)j∈N is Beqo-invariant.

(iid) The elements (xj)j∈N form a Mnut-valued Boolean centered

Bernoulli family.

(h) The following assertions are equivalent;

(alg) The sequence (xj)j∈N is Ap[Ih]-invariant.

(beq) The sequence (xj)j∈N is Beqh-invariant.
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(iid) The elements (xj)j∈N are Boolean independent, and have even

and identically distributions, over Mnut.

(b) The following assertions are equivalent;

(alg) The sequence (xj)j∈N is Ap[Ib]-invariant.

(iid) The elements (xj)j∈N form a Mnut-valued Boolean shifted

Bernoulli family.

The common difficulty in carrying out the proof is that Boolean indepen-

dence is a non-unital phenomenon. That is, if M is a von Neumann algebra

and ϕ is a faithful normal state on A, and (M1,M2) is a pair of von Neumann

subalgebras with 1M ∈ M1,M2 and M1,M2 �= C1M . Then (M1,M2) cannot

be Boolean independent in (M,ϕ). Hence, we consider non-unital embed-

dings of von Neumann algebras in the arguments of Boolean independence

and conditional Boolean independence.

The main difficulty is to find the Haar states on (Beqx(n))n∈N. We

do that by constructing the GNS-representation of Beqs(n) on the Hilbert

space L2(Sn) of L2-functions on classical permutation group Sn.

Related Works

In recent preprints [5] [7], Liu generalizes Bs in a different form from

Beqx and proves generalized Boolean de Finetti theorems. His strategy

does not rely on the Haar states.

Organization

This paper consists of four sections. Section 1 is devoted to some pre-

liminaries. In Section 2, we introduce the Boolean pre-quantum semigroups

Ap[D;n] and the Boolean quantum semigroups Beqx(n). Section 3 provides

a detailed exposition of the Haar functionals and the Haar states. In Section

4, our main results, the Boolean de Finetti type results are proved.

1. Preliminaries

1.1. Partitions

Let us review some notations related to partitions of a set.

Notation 1.1.



De Finetti Theorems for Boolean EQG 359

(1) A partition of a set S is a decomposition into mutually disjoint, non-

empty subsets. Those subsets are called blocks of the partition. We

denote by P (S) the set of all partitions of S.

(2) For a partition π of a set S and r, s ∈ S, we define r ∼
π

s if r and s

belong to the same block of π.

(3) Let S, J be any sets and j ∈ Map (S, J). We denote by ker j the

partition of S defined as r ∼
ker j

s if and only if j(r) = j(s).

(4) For π, σ ∈ P (S), we write π ≤ σ if each block of π is a subset of some

block of σ. The set P (S) is a poset under the relation ≤.

(5) We set for π, σ ∈ P (S),

δ(π, σ) :=

{
1, if π = σ,

0, otherwise,
ζ(π, σ) :=

{
1, if π ≤ σ,

0, otherwise.

We introduce the Möbius function. See [8] for more details.

Definition 1.2 (The Möbius function). Let (P,≤) be a finite poset.

The Möbius function µP : P 2 → C is defined as the inverse of ζ, that

is, determined by the following relations: for any π, σ ∈ P with π �≤ σ,

µP (π, σ) = 0, and for any π, σ ∈ P with π ≤ σ ,∑
ρ∈P
π≤ρ≤σ

µP (π, ρ) = δ(π, σ),
∑
ρ∈P
π≤ρ≤σ

µP (ρ, σ) = δ(π, σ),(1.1)

The following remark is one of the most important properties of the

Möbius function to prove de Finetti theorems.

Proposition 1.3. Let Q be a subposet of P which is closed under tak-

ing an interval, that is, if π, σ ∈ Q, ρ ∈ P and π ≤ ρ ≤ σ then ρ ∈ Q. Then

for any π, σ ∈ Q with π ≤ σ, we have µQ(π, σ) = µP (π, σ).

Proof. The proposition follows from the relations (1.1). �
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We define the notion of categories of interval partitions.

Definition 1.4. A partition π ∈ P (k) is said to be an interval parti-

tion of [k] if each block contains only consecutive elements. We denote by

I(k) the set of all interval partitions of [k].

Definition 1.5. The tensor product ⊗ of partitions is defined by hor-

izontal concatenation.

Definition 1.6. A category of interval partitions is a collection D =

(D(k))k∈N of subsets D(k) ⊆ I(k), subject to the following conditions.

(1) It is stable under the tensor product ⊗.

(2) It contains the pair partition �.

For a category of interval partitions D, let us denote LD := {k ∈ N : 1k ∈
D(k)}, where 1k ∈ P (k) is the partition which contains only one block

{1, 2, . . . , k}.

Notation 1.7. We denote by Ih(k), Ib(k), and I2(k) ⊆ I(k) the set of

all interval partitions with even block size, with block size ≤ 2, and with

block size 2 of [k], respectively. Then each Ix (x = h, b, 2) is a category of

interval partitions. We also write Is = I, Io = I2. Then we have LIs = N,

LIo = {2}, LIh = {2, 4, 6, . . . } and LIb = {1, 2}.

Notation 1.8. For n ∈ N, we denote by l2n the standard n-dimensional

Hilbert space. For k ∈ N and π ∈ P (k), set a vector in l2n
⊗k

by

T (n)
π :=

∑
j∈[n]k,
π≤ker j

ej,

where (ei)i∈[n] is a fixed complete orthonomal basis of l2n and ej := ej1 ⊗
ej2 ⊗ · · · ejk . For a category of interval partition D, let HD(k)(n) ∈ B(l2n

⊗k
)

be the orthogonal projection onto the subspace Span{T (n)
π | π ∈ D(k)}. We

omit the index (n) if there is no confusion. We set

H
D(k)
ij := 〈ei, HD(k)ej〉.
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Definition 1.9 (The Weingarten function). For π, σ ∈ P (k), set the

Gram matrix Gk,n by Gk,n(π, σ) := 〈T (n)
π , T

(n)
σ 〉 = n|π∨σ|. Let D be a

category of interval partitions. Since the family (T
(n)
π )π∈D(k) is linearly

independent for large n, Gk,n is invertible for sufficiently large n. We define

the Weingarten function WD
k,n to be its inverse.

Proposition 1.10. Let D be a category of interval partitions. For any

i, j ∈ [n]k and sufficiently large n, we have

H
D(k)
i,j =

∑
π,σ∈D(k)
π≤ker i
σ≤ker j

WD
k,n(π, σ).

Proof. This is a special case of a well-known result, see [1] for more

details. �

Definition 1.11. A category D of interval partitions is said to be

closed under taking an interval if for any k ∈ N and ρ, σ ∈ D(k), we have

{π ∈ I(k) | ρ ≤ π ≤ σ} = {π ∈ D(k) | ρ ≤ π ≤ σ}.

Proposition 1.12 (The Weingarten estimate). Assume D is closed

under taking an interval. For any π, σ ∈ D(k),

n|π|WD
k,n(π, σ) = µI(k)(π, σ) + O(

1

n
) (as n → ∞),

Proof. By [1, Prop.3.4], it holds that n|π|WD
k,n(π, σ) = µD(k)(π, σ) +

O(1/n), as n → ∞. Since the subposet D(k) ⊆ I(k) is closed under taking

an interval, we have µI(k) = µD(k), which proves the proposition. �

Remark 1.13. We call a category of interval partition D is join-stable

or ∨-stable if σ ∨ ρ ∈ D(k) for any σ, ρ ∈ D(k), k ∈ N. We see that each

category of interval partitions Is, Io, Ih is ∨-stable. Therefore, for x = s, o, h,

there exists an interval partition maxIx(k) W ∈ Ix(k) such that for any

nonempty subset W ⊆ Ix(k) with W ∨W ⊆ W .

However, the category Ib is not ∨-stable. For example,
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Notation 1.14. Let the index x be one of s, o, h. For any k ∈ N and

σ ∈ P (k), we write

inf
Ix

σ := max{π ∈ Ix(k) | π ≤ σ}.

1.2. Nonunital tail von Numann algebras

Let us define non-unital tail von Neumann algebras. In this paper, we do

not assume that an embedding of ∗-algebras, C∗-algebras or von Neumann

algebras is unital.

Definition 1.15.

(1) For n ∈ N, denote by �on (resp. �o∞) the ∗-algebra of all polynomi-

als without constant terms in noncommutative n-variables X1, . . . , Xn
(resp. countably infinite many variables (Xj)j∈N).

(2) Let M be a von Neumann algebra. Let (xj)j∈N be a sequence of self-

adjoint elements in M . Denote by evx : �o∞ → M the evaluation map

evx(Xj) = xj . Let us denote by Mnut the non-unital tail von Neumann

algebra, that is,

Mnut :=
∞⋂
n=1

evx(�
o
≥n)

σw
,

where �o≥n := {f ∈ �o∞ | f is a polynomial in variables Xj (j ≥ n)}.

We define the notion of conditional expectations for non-unital embed-

dings.

Definition 1.16. Let η : B ↪→ A be an embedding of ∗-algebras. A

linear map E : A → B is said to be a conditional expectation with respect

to η if it satisfies the following conditions:

(1) E(x∗x) ≥ 0 for all x ∈ A,

(2) E ◦ η = idB,
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(3) E(η(b)x) = bE(x), E(xη(b)) = E(x)b for all b ∈ B, x ∈ A.

Definition 1.17. Let A,B, η and E be the same as in Definition 1.16.

Let (aj)j∈J be self-adjoint elements in A. We say (aj)j∈J are identically

distributed over (E,B) if E[aib1aib2 · · · aibk] = E[aib1aib2 · · · aibk] holds for

any i, j ∈ J, k ∈ N, and b1, . . . , bk ∈ B ∪ {1A}.

Let us introduce the notion of conditional Boolean independence.

Definition 1.18. Let η : B ↪→ A be a non-unital embedding of unital

∗-algebras A,B with a conditional expectation E : A → B. Let 1A be a unit

of A. Let (xj)j∈J be a family of self-adjoint elements of A. Write

B〈xj〉o := Span
∞⋃
n=1

{b0xjb1xj . . . bn−1xjbn | b0, . . . , bn ∈ B ∪ {1A}}.

The elements (xj)j∈J are said to be Boolean independent over (E,B) if

E[y1 · · · yk] = E[y1] · · ·E[yk],

whenever k ∈ N, j1, . . . , jk ∈ J, j1 �= j2 �= · · · �= jk, and yl ∈ B〈xjl〉o,
l = 1, . . . , k.

Notation 1.19.

(1) Let (S,≤) be a finite totally ordered set and we write S = {s1 <

s2 < · · · < sn}. For a family (as)s∈S of elements in M , we denote by∏→
s∈S as the ordered product

∏→
s∈S as = as1 · · · asn .

(2) For an interval partition π and blocks V,W ∈ π, we write V ≤ W if

k ≤ l for any k ∈ V and l ∈ W . The set π is a totally ordered set

under the relation ≤.

Lemma 1.20. The elements (xj)j∈N are Boolean independent and iden-

tically distributed over (E,B) if and only if the following holds: for any

j1, . . . , jk ∈ N and b0, b1, . . . bk ∈ B ∪ {1A},

E[b0xj1b1xj2b2 · · ·xjkbk] = b0 ·
→∏

V ∈infI ker j

E[
→∏
l∈V

xjlbl].

Proof. For r, s ∈ [n], r ∼infI ker j s if and only if r and s are consecutive

elements and jr = js. By the linearlity of E, we have the claim. �
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1.3. Boolean cumulants

In operator-valued free probability, operator-valued cumulants charac-

terize the conditional free independence (see [8] [11]). We introduce some

properties of the operator-valued Boolean cumulants. They combinatori-

ally characterize conditional Boolean independence. Single variate Boolean

cumulants are defined in [12]. As far as the author knows, multivariate

Boolean cumulants first appeared in [4].

Throughout this section, we suppose B ⊆ A is an embedding of ∗-
algebras (not necessarily unital) with a normal conditional expectation E.

Definition 1.21. Let us define B-valued multilinear functions KE
π :

An → B (π ∈ I(k), k ∈ N) inductively by the following three relations:

(1) For k ∈ N and y1, . . . , yk ∈ M , E[y1 · · · yk] =
∑
π∈I(k) K

E
π [y1, . . . , yk].

(2) For k ∈ N and π ∈ I(k), KE
π [y1, . . . , yk] =

∏→
V ∈πK

E
(V )[y1, . . . , yk].

(3) For π ∈ I(k) and V ∈ π, KE
(V )[y1, . . . , yk] := KE

1m
[yj1 , . . . , yjm ] where

V = {j1 < j2 < · · · < jm}.

We call them Boolean cumulants with respect to E. We write KE
n = KE

1n

for n ∈ N.

Proposition 1.22. For π ∈ I(k), y1, . . . , yk and k ∈ N, set

Eπ[y1, . . . , yk] :=
∏→
V ∈π E[

∏→
j∈V yj ]. Then for π ∈ P (k), y1, . . . , yk ∈ M

and k ∈ N,

Eπ[y1, . . . , yk] =
∑
σ∈I(k)
σ≤π

KE
σ [y1, . . . , yk].

Hence we have KE
π [y1, . . . , yk] =

∑
σ∈I(k)
σ≤π

Eσ[y1, . . . , yk]µI(k)(σ, π).

Proof. The proof is a straight induction on |π|. �

The conditional Boolean independence can be characterized by vanishing

of mixed cumulants.
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Theorem 1.23. Let (xj)j∈J be a family of self-adjoint elements in A.

Then (xj)j∈J are Boolean independent identically distributed with respect to

E if and only if

E[b0xj1b1xj2b2 · · ·xjkbk] =
∑
π∈I(k)
π≤ker j

KE
π [b0x1b1, x1b2, . . . , x1bk]

for any b1, · · · , bk ∈ B ∪ {1A}, j ∈ Jk, k ∈ N.

Proof. We have

b0 ·
→∏

V ∈infI ker j

E[

→∏
l∈V

x1bl] = b0E
infI ker j[x1b1, x2b2, . . . , x1bk]

=
∑
π∈I(k)

π≤infI ker j

KE
π [b0x1b1, x1b2, . . . , x1bk].

We see that {π ∈ I(k) | π ≤ infI ker j} = {π ∈ I(k) | π ≤ ker j}.
Lemma 1.20 completes the proof. �

Definition 1.24. Let x be a self-adjoint element in (M,E).

(1) The element x is said to have centered Bernoulli distribution if for any

b1, . . . , bk−1 ∈ N ∪ {1M} and k ∈ N,

E[xb1xb2 · · · bk−1x] =
∑

π∈I2(k)

KE
π [xb1, xb2, . . . , x].

We see immediately that if N = C1M , x has centered Bernoulli dis-

tribution if and only if that is (δσ + δ−σ)/2 where σ :=
√

KE
2 [x, x].

(2) The element x is said to have shifted Bernoulli distribution if for any

b1, . . . , bk−1 ∈ N ∪ {1M} and k ∈ N,

E[xb1xb2 · · · bk−1x] =
∑

π∈Ib(k)
KE
π [xb1, xb2, . . . , x].

We check easily that if N = C1N , x has shifted Bernoulli distribution

with KE
1 [x] = µ and KE

2 [x, x] = σ2 if and only if its distribution is

Ber(µ, σ2) :=
αδα + βδ−β

α + β
,



366 Tomohiro Hayase

where α, β > 0, and (α,−β) is the pair of distinct solutions of the

quadratic equation Z2 − µZ − σ2 = 0 in the variable Z. Its n-th

moment is given by E[xn] =
(
αn+1 − (−β)n+1

)
/(α + β).

A Bernoulli distribution is the central limit distribution of Boolean

i.i.d. self-adjoint elements (see [12]). Hence the Bernoulli distribution is

the Boolean analogue of Gaussian distribution.

2. Boolean Analogues of Easy Quantum Groups

2.1. Boolean quantum semigroups

In this section we introduce the notions of Boolean quantum semigroups

on categories of interval partitions.

Definition 2.1. For a category D of interval partitions, consider the

following three conditions.

(D1) It is block-stable, which means that for any k ∈ N,

D(k) = {π ∈ D(k) | {V } ∈ D(|V |), V ∈ π}.

(D2) It is closed under taking an interval.

(D3) It has enough patitions, which means that for l ∈ N, it holds that

D(l) �= ∅ if there is k ∈ LD with D(k + l) �= ∅.

We say that D is blockwise if it satisfies (D1)–(D3).

Example 2.2. Categories Is, Io, Ih, Ib of interval paritions are block-

wise.

Definition 2.3. Let D be a blockwise category of partitions. De-

note by A[D;n] the non-unital ∗-algebra generated by self-adjoint elements

u
(n)
ij (1 ≤ i, j ≤ n) and an orthogonal projection p(n) with the following
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relations: for any k ∈ LD and i, j ∈ [n]k,

n∑
i=1

u
(n)
ij1

· · ·u(n)
ijk

p(n) =

{
p(n), j1 = · · · = jk,

0, otherwise,

n∑
j=1

u
(n)
i1j

· · ·u(n)
ikj

p(n) =

{
p(n), i1 = · · · = ik,

0, otherwise.

If there is no confusion, we omit the index (n) and simply write ui,j and p.

There is a linear map ∆: A[D;n] → A[D;n] ⊗ A[D;n] with

∆(p) := p⊗ p, ∆(uij) :=

n∑
k=1

uik ⊗ ukj (i, j = 1, 2, . . . , n).

It is easy to check that ∆ is a coproduct, that is, the following holds:

(id ⊗ ∆)∆ = (∆ ⊗ id)∆.

Set a linear map ε : A[D;n] → C by ε(uij) = δij , ε(p) = 1. We have

(id⊗ε)∆ = id = (ε⊗ id)∆. Hence A[D;n] is a coalgebra with the coproduct

∆ and the counit ε. We define a sequence of unital ∗-algebra equipped with

a coproduct by

Ap[D;n] := pA[D;n]p

We call (Ap[D;n])n∈N the Boolean pre-quantum semigroups on D.

Definition 2.4. We call the sequences of pairs ((Beqx(n),∆))n∈N de-

fined by the following Boolean quantum semigroups on D for Ix (x =

s, o, h, b).

(1) For a ∈ A[Ix;n], we set

||a|| := sup{||π(a)|| | π is a ∗ -representation of A[Ix;n],

π(p) = 1, ||(π(uij))i,j ||n ≤ 1},

where || · ||n is the operator norm on B(H) ⊗ Mn(C) for each ∗-
representation (π,H). Since there is the ∗-representation π : A[I;n] →
C(Sn) ⊆ B(H) defined by π(uij)(σ) = δ(σ(i), j) (σ ∈ Sn), we obtain

0 ≤ ||a|| < ∞. Hence || · || is a C∗-seminorm on A[Ix;n].
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(2) Let B be the C∗-completion of A[Ix;n]/〈|| · || = 0〉. We define the

Boolean quantum semigroup on Ix of n by

Beqx(n) := pBp.

(3) We denote by ιn the unital ∗-hom Ap[Ix;n] → Beqx(n) which is the

restriction of the ∗-hom A[Ix;n] → Beqx(n) determined by ιn(uij) =

[uij ] (i, j ∈ [n]), ιn(p) = [p]. By abuse of notation, we use the same

symbols uij , p for the generators [uij ], [p] of Beqx(n).

(4) For any ∗-representation π of A[Ix;n] with ||(π(uij))ij ||n ≤ 1, we

obtain ||(π(∆uij)ij ||n ≤ 1. Hence we can extend the domain of ∆,

that is, there is a unique bounded ∗-hom ∆̄: Beqx(n) → Beqx(n)⊗min

Beqs(n) with ∆̄(uij) =
∑
s∈[n] uis ⊗ usj and ∆̄(p) = p⊗ p. We simply

denote by ∆ the bounded ∗-hom ∆̄ if there is no confusion. It is easy

to check that ∆ is a coproduct of Beqx(n).

Lemma 2.5. Let the index x be one of s, o, h, b. Then for any k, n ∈ N

and π ∈ Ix(k), we have

∑
i∈[n]k

π≤ker i

u
(n)
i1j1

· · ·u(n)
ikjk

p(n) =

{
p(n), π ≤ ker j,

0, otherwise,

∑
j∈[n]k

π≤ker j

u
(n)
i1j1

· · ·u(n)
ikjk

p(n) =

{
p(n), π ≤ ker i,

0, otherwise.

Proof. The proof is induction on |π|. �

Remark 2.6. We denote by Pij ∈ B(L2(Sn)) (i, j ≤ n) the generators

of C(Sn), where Pij(σ) = δi,σ(j) (σ ∈ Sn). We see at once that there is a

∗-representation Beqs → B(L2(Sn)) which maps uij to Pij and P to 1.

In Section 3.2, we prove that there is another ∗-representation on L2(Sn)

(see Notation 3.8, Propositon 3.9). In the construction, we use Pij in a

different way. Let P̂ij (resp. 1̂) be the image of Pij (resp. 1) with respect

to the standard inclusion C(Sn) ↪→ L2(Sn). The ∗-representation maps uij
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(resp. p) to the one dimensional projection onto the closed subspace CP̂ij
(resp. C1̂) ⊆ L2(Sn). Furthermore, we show that Beqs admits the unique

Haar state and that this ∗-representation is the GNS-representation of the

Haar state (see Theorem 3.14).

Next we consider coactions on the ∗-algebra of noncommutative polyno-

mials without constant terms.

Definition 2.7. Let A be a unital ∗-algebra equipped with a coprod-

uct ∆. For any ∗-algebra P, a ∗-preserving linear map T : P → P ⊗ A is

said to be a linear coaction on P if we have

(T ⊗ id) ◦ T = (id ⊗ ∆) ◦ T.

Notation 2.8. Let D be a blockwise category of interval partitions.

(1) For m,n ∈ N with m ≥ n, we define a ∗-hom rnm : A[D;m] → A[D;n]

by

rnm(u
(m)
ij ) :=

{
u

(n)
ij , i, j ≤ n,

δij1A[D;n], otherwise,
rnm(p(m)) := p(n).

(2) Define a linear map Λn : �on → �on ⊗Ap[D;n] by

Λn(Xj1 · · ·Xjk) :=
∑

i∈[n]k

Xi1 · · ·Xik ⊗ pui1j1 · · ·uikjkp.

We define a linear map Ψn : �o∞ → �o∞ ⊗Ap[D;n] by

Ψn(f) := (id ⊗ rnm) ◦ Λm(f),

for f ∈ �om ⊆ �o∞. Then by a direct calculation, each Ψn is a linear

coaction of Ap[D;n] on �o∞.

(3) We define a coaction Φn of Beqx(n) on �o∞ by

Φn := (id ⊗ ιn) ◦ Ψn.
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Definition 2.9. Let (M,ϕ) be a pair of a von Neumann algebra and

a state. For any sequence (xj)j∈N of self-adjoint elements in M , we say that

its joint distribution is Ap[D]-invariant if it is invariant under the coactions

of (A[D;n])n∈N, that is, for any n ∈ N,

(ϕ ◦ evx ⊗ id) ◦ Ψn = ϕ ◦ evx ⊗ p.

We also say that it is Beqx-invariant if for any n ∈ N,

(ϕ ◦ evx ⊗ id) ◦ Φn = ϕ ◦ evx ⊗ p.

It is clear that A[Ix]-invariance implies Beqx-invariance.

2.2. Relations with Liu’s Boolean quantum semigroups

We introduce Liu’s boolean permutation quantum semigroup defined in

[6]. Let Bs(n) be the universal unital C∗-algebra generated by projections

P, Ui,j(i, j = 1, . . . , n) and relations such that

n∑
i=1

UijP = P, j = 1, . . . , n,

Ui1jUi2j = 0, if i1 �= i2, for any j = 1, . . . , n,

Uij1Uij2 = 0, if j1 �= j2, for any i = 1, . . . , n.

By [6, Lemma 3.3], we have

n∑
j=1

UijP = P, i = 1, . . . , n.

We see that Bs(n) admits a coproduct ∆ determined by ∆(P) := P ⊗
P,∆(Uij) :=

∑n
k=1 Uik⊗Ukj (i, j = 1, 2, . . . , n). Then let us introduce Liu’s

boolean permutation quantum semigroup.

Definition 2.10. We set Bs(n) = PBs(n)P, and we call (Bs(n),∆)

the boolean permutation quantum semigroup of n.

We can check that each Bs(n) is a quantum semigroup in the sense of

Soltan [9].
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Lemma 2.11. There is a ∗-hom α : Beqs(n) → Bs(n) with α(uij) = Uij
(i, j ≤ n) and α(p) = P.

Proof. We see that for any k ∈ N and i, j ∈ [n]k,

n∑
i=1

Uij1 · · ·UijkP =

{
P, j1 = · · · = jk,

0, otherwise,

n∑
j=1

Ui1j · · ·uikjP =

{
P, i1 = · · · = ik,

0, otherwise.

This completes the proof. �

Notation 2.12. We set a linear map Ln : �on → �on ⊗ Bs(n) by

Ln(Xj1 · · ·Xjk) :=
∑

i∈[n]k Xi1 · · ·Xik ⊗PUi1j1 · · ·UikjkP. We set a lin-

ear map Ln : �o∞ → �o∞ ⊗ Bs(n) by Ψn(f) := (id ⊗ rnm) ◦ Λm(f), for

f ∈ �om ⊆ �o∞. Then by a direct calculation, each Ln is a linear coaction

of Bs(n) on �o∞.

Let (M,ϕ) be a von Neumann algebra and a nondegenerate normal state

and (xj)j∈N be a sequence of self-adjoint elements in M . We may assume

M ⊆ B(H), and ϕ is implemented by Ω ∈ H, which is a cyclic vector for

M . We suppose that evx(�
o
∞) is σ-weakly dense in M , where evx is the

evaluation map.

Notation 2.13. We say that (xj)j∈N is Bs-invariant if for any n ∈ N,

(ϕ ◦ evx ⊗ id) ◦ Ln = ϕ ◦ evx ⊗P.

Lemma 2.14. Assume (xj)j∈N is Ap[Ix]-invariant or Beqx-invariant

for one of x = s, o, h, b. Then it is Bs-invariant.

Proof. This follows immediately from Lemma 2.11. �

We review that Bs-invariance implies the existence of the normal con-

ditional expectation onto the non-unital tail von Neumann algebra. As-

sume that (xj)j∈N is Bs-invariant. Then by [6, Lemma 6.4] , for a ∈
evx(�

o
∞), E[a] := σw- limn→∞ shn(a) is well-defined, E[a] ∈ Mnut and E
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is state-preserving. By [6, Lemma 6.7] , we have for any a, b, c ∈ evx(�
o
∞),

〈E[a]bΩ, cΩ〉 = 〈aEnut[b]Ω, E[c]Ω〉. By [6, Lemma 6.8], we can define Enut :

M → Mnut by

Enut[y] := σw- lim
n→∞

E[yn],(2.1)

where (yn) is a bounded sequence in evx(�
o
∞) with σw- limn→∞ yn = y.

By [6, Lemma 6.9], Enut is normal. By [6, Lemma 6.10], E[b] = b for any

b ∈ Mnut. By [6, Lemma 6.11] and since E is normal, it holds that for any

y, z1, z2 ∈ M ,

〈Enut[y]z1Ω, z2Ω〉 = 〈yEnut[z1]Ω, Enut[z2]Ω〉.(2.2)

In particular, ϕ ◦ Enut = ϕ. By [6, Lemma 6.12], E[by] = bE[y], E[yb] =

E[y]b for any b ∈ Mnut and y ∈ M . Hence Enut is a normal conditional

expectation onto Mnut, which is state-preserving.

Proposition 2.15. Assume that (xj)j∈N is Bs-invariant. Let Enut :

M → Mnut be the conditional expectation defined by (2.1). Set enut ∈ B(H)

be the orthogonal projection onto the closed subspace MnutΩ. Then it holds

that

Enut[y] = enut y enut (y ∈ M).

In particular, Mnut = enutMenut.

Proof. Let b ∈ Mnut, y ∈ M . As Enut[b
∗y] = b∗Enut[y], 〈bΩ, (y −

Enut[y])Ω〉 = 〈Ω, (b∗y−Enut[b
∗y])Ω〉 = 0. Hence (b∗y−Enut[b

∗y])Ω ∈ MnutΩ,

enutyΩ = Enut[y]Ω. By (2.2), for any y ∈ M , a, b ∈ evx(�
o
∞),

〈Enut[y]aΩ, bΩ〉 = 〈yEnut[a]Ω, Enut[b]Ω〉 = 〈yenutaΩ, enutbΩ〉
= 〈enutyenutaΩ, bΩ〉.

Since the subspace evx(�
o
∞)Ω is dense in H, it holds that Enut[y] =

enutyenut. As Enut[M ] = Mnut, it holds that Mnut = enutMenut. �

Corollary 2.16. Assume (xj)j∈N is Ap[Ix]-invariant or Beqx-invari-

ant for one of x = s, o, h, b. Then Enut[y] := enut y enut (y ∈ M) is a

nondegenerate normal conditional expectation onto Mnut with respect to the

embedding Mnut ⊆ M .

Proof. This follows from Lemma 2.14 and Proposition 2.15. �
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3. Haar Functionals and Haar States

3.1. Haar functionals on A[D;n]

At first, we construct a linear functional with an invariance property on

A[D;n] instead of a Haar state.

Definition 3.1. Let A be a unital ∗-algebra. Assume A is equipped

with a coproduct ∆. A linear functional h (resp. a state) on A is called

a Haar functional (resp. a Haar state) if it satisfies the following Haar

invariance property:

(id ⊗ h)∆ = h(·)1A = (h⊗ id)∆.(3.1)

Proposition 3.2. Under the assumption of A in Definition 3.1, the

unital Haar functional on A is unique if it exists.

Proof. Assume that g, h are unital Haar linear functionals on A.

Combining invariant properties, for any a ∈ A we obtain (h ⊗ g)∆(a) =

(h⊗ id)(id⊗ g)∆(a) = (h⊗ id)(1A ⊗ g(a)) = g(a). Similarly, (h⊗ g)∆(a) =

(id ⊗ g)(h ⊗ id)∆(a) = (id ⊗ g)(h(a) ⊗ 1A) = h(a). This completes the

proof. �

Notation 3.3. Let D be a category of interval partitions.

(1) Set

V Dn := Span({p} ∪ {pui1j1 · · ·uikjkp | i, j ∈ [n]k, k ∈ N}) ⊆ Ap[D;n].

We see at once that ∆(V Dn ) ⊆ V Dn ⊗ V Dn .

(2) We write uij = ui1j1 · · ·uikjk for i, j ∈ [n]k, k ∈ N. Fix a complete or-

thonormal basis {ei}i∈[n] of the standard n dimensional Hilbert space

ln2 . Set ei := ei1 ⊗ · · · ⊗ eik for i ∈ [n]k.

(3) We denote by Λkn the linear map l2n
⊗k → l2n

⊗k ⊗ V Dn defined by

Λkn(ej) :=
∑

i∈[n]k

ei ⊗ puijp.
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By a direct calculation, Λkn is a linear coaction of V Dn , that is,

(id ⊗ ∆)Λkn = (Λkn ⊗ id)Λkn.

(4) Let Fix(Λkn) denote the invariant subspace of the coaction Λkn, that is,

Fix(Λkn) := {ξ ∈ l2n
⊗k | Λkn(ξ) = ξ ⊗ p}.

Lemma 3.4. Let g be a functional on Ap[I;n]. Assume g|V D
n

satisfies

the Haar invariance property and g(apb) = g(a)g(b) for any a, b ∈ V Dn .

Then g is a Haar functional.

Proof. For any k, l ∈ [n] and for any multi-indices i(1), i(2), . . . , i(l),

j(1), j(2), . . . , j(l) ∈ [n]k,

(id ⊗ h)∆(pui(1)j(1)pui(2)j(2)p · · · pui(l)j(l)p)

=
∑

s(1),··· ,s(l)∈[n]k

pui(1)s(1)pui(2)s(2)p · · · pui(l)s(l)p

· h(pus(1)j(1)p)h(pus(2)j(2)p) · · ·h(pus(l)j(l)p)

= (id ⊗ h)∆(pus(1)j(1)p) · (id ⊗ h)∆(pus(2)j(2)p) · · · (id ⊗ h)∆(pus(l)j(l)p).

This finishes the proof by using the Haar invariance on V Dn . �

Lemma 3.5. For any k, n ∈ N, π ∈ D(k), and i ∈ [n]l,

Λk+ln (Tπ ⊗ ei) = Tπ ⊗ Λln(ei), Λl+kn (ei ⊗ Tπ) = Λln(ei) ⊗ Tπ.

Proof.

Λk+ln (Tπ ⊗ ei) =
∑

j∈[n]k

π≤ker j

Λk+ln (ej ⊗ ei)

=
∑

j∈[n]k

π≤ker j

∑
s∈[n]k, r∈[n]l

es ⊗ er ⊗ pus1j1 · · ·uskjkur1i1 · · ·urlilp

=
∑

s∈[n]k, r∈[n]l

es ⊗ er ⊗
∑

j∈[n]k

π≤ker j

(pus1j1 · · ·uskjk)ur1i1 · · ·urlilp.
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By Lemma 2.5, we have
∑

j∈[n]k, π≤ker j pus1j1 · · ·uskjk = ζ(π, ker s)p. Hence

Λk+ln (Tπ ⊗ ei) =
∑

s∈[n]k

π≤ker s

∑
r∈[n]l

es ⊗ er ⊗ pur1i1 · · ·urlilp = Tπ ⊗ Λln(ei).

The proof for the second equation is similar to that of the first one. �

Lemma 3.6. Let D be a category of interval partitions with D(l) �= ∅
for a fixed index l ∈ N. For any k ∈ LD and j ∈ [n]l, we have

HD(k+l)(T1k
⊗ ej) = T1k

⊗HD(l)ej.

Proof. Since D is ⊗-stable, we have HD(k+l) ≥ HD(k) ⊗ HD(l). As

D(k), D(l) �= ∅, it holds that D(k + l) �= ∅. We have HD(k+l)(T1k
⊗

HD(l)ej) = T1k
⊗HD(l)ej. We only need to show that

〈Tπ, T1k
⊗ ej〉 = 〈Tπ, T1k

⊗HD(l)ej〉, for any π ∈ D(k + l).(3.2)

As D(l) �= ∅ by the assumption, there are scalars (ασ)σ∈D(l) with

HD(l)ej =
∑
σ∈D(l) ασTσ. Then for any ρ ∈ D(l),

〈Tρ, ej〉 =
∑
σ∈D(k)

ασ〈Tρ, Tσ〉 =
∑
σ∈D(l)

ασn
|ρ∨σ|.(3.3)

For any π ∈ D(k + l),

〈Tπ, T1k
⊗HD(l)ej〉 =

∑
σ∈D(l)

ασ〈Tπ, T1k
⊗ Tσ〉 =

∑
σ∈D(l)

ασn
|π∨(1k⊗σ)|.(3.4)

Consider the case k ∼π k+1. Set π′ := π|[k+1,k+l]. We have π∨(1k⊗σ) =

(↑⊗(k−1) ⊗�⊗ ↑⊗l−1)∨ (1k ⊗ (π′ ∨ σ)). Hence |π ∨ (1k ⊗ σ)| = |π′ ∨ σ|. By

(3.3), (3.4),

〈Tπ, T1k
⊗HD(l)ej〉 =

∑
σ∈D(l)

ασn
|π′∨σ| = 〈Tπ′ , ej〉.

As k ∼π k + 1, we have 〈Tπ, T1k
⊗ ej〉 = 〈Tπ, e⊗kj1 ⊗ ej〉 = 〈Tπ′ , ej〉. Hence in

this case we have shown (3.2).
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Consider the case k �∼π k + 1. Since D is block-stable, there are π1 ∈
D(k) and π2 ∈ D(l) with π = π1 ⊗ π2. Then π ∨ (1k ⊗ σ) = 1k ⊗ (π2 ∨ σ),

and |π ∨ (1k ⊗ σ)| = 1 + |π2 ∨ σ|. By (3.3), (3.4),

〈Tπ, T1k
⊗HD(l)ej〉 =

∑
σ∈D(l)

ασn
1+|π2∨σ| = n〈Tπ2 , ej〉

= 〈Tπ1 , T1k
〉〈Tπ2 , ej〉 = 〈Tπ, T1k

⊗ ej〉.

Hence we have shown (3.2). Then we have proven the lemma. �

Theorem 3.7 (The Haar Functionals). Assume D is blockwise. Then

for any k ∈ N,

Fix(Λkn) = Span{Tπ : π ∈ D(k)}.(3.5)

Moreover, for any n ∈ N there exists a unique unital Haar functional hD
on Ap[D;n] with

(1) hD(p) = 1,

(2) hD(puijp) = H
D(k)
ij for i, j ∈ [n]k, and k ∈ N,

(3) hD(a1 · · · al) = hD(a1) · · ·hD(al) for any l ∈ N, a1, . . . , al ∈ V Dn .

Proof. By a direct calculation, Fix(Λkn) ⊇ Span{Tπ : π ∈ D(k)}.
We prove the opposite inclusion. We have

∑
s∈[n]k, π≤ker s H

D(k)
rs =

〈er, HD(k)Tπ〉 = 〈er, Tπ〉 = ζ(π, ker r). Similarly we have∑
r∈[n]k, π≤ker r H

D(k)
rs = ζ(π, ker s).

Assume k ∈ LD. We prove that for any l ∈ N and i, j, r ∈ [n]k+l,∑
s∈[n]k

1k≤ker s

H
D(k+l)
r�i,s�j = ζ(π, ker r)H

D(l)
ij .(3.6)

In the case HD(k+l) = 0 it holds that HD(l) = 0 as D is D(k) �= ∅ and

(D1). Assume that HD(k+l) �= 0. By condition (D3), D(l) �= ∅. Thus by

Lemma 3.6, we have∑
s∈[n]k

1k≤ker s

H
D(k+l)
r�i,s�j = 〈er ⊗ ei, H

D(k+l)(T1k ⊗ ej)〉 = 〈er ⊗ ei, T1k ⊗HD(l)ej〉
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This proves the claim (3.6). Similarly we have∑
r∈[n]k

π≤ker r

H
D(k+l)
r�i,s�j = ζ(π, ker s)H

D(l)
ij , for any s ∈ [n]k,

∑
s∈[n]k

π≤ker s

H
D(k+l)
i�r,j�s = ζ(π, ker r)H

D(l)
ij , for any r ∈ [n]k,

∑
r∈[n]k

π≤ker r

H
D(k+l)
i�r,j�s = ζ(π, ker s)H

D(l)
ij , for any s ∈ [n]k.

Therefore, there is a functional hD on V Dn with (1) and (2).

For any ξ ∈ Fix(Λkn), (id⊗hD)Λkn(ξ) = (id⊗hD)(ξ⊗ p) = ξ⊗ 1. On the

other hand, we have

(id⊗ hD)Λkn(ξ) =
∑

i, j∈[n]k

ξiej ⊗H
D(k)
ij p = HD(k)ξ ⊗ p.

Thus we have HD(k)ξ = ξ, which proves Fix(Λkn) = Span{Tπ : π ∈ D(k)}.
As Λkn(H

D(k)ej) = HD(k)ej it holds that
∑

s∈[n]k puispH
D(k)
sj = H

D(k)
ij p.

Hence

(id⊗ hD)∆(pui1j1 · · ·uikjkp) =
∑

s∈[n]k

pus1j1 · · ·uskjkpH
D(k)
sj

= H
D(k)
ij p = hD(pui1j1 · · ·uikjkp)p.

Therefore, we have (id ⊗ hD)∆ = hD(·)p. The other invariance property

follows from a similar proof. By Lemma 3.4, we can extend hD to Ap[D;n]

by (3) with the Haar invariance. �

3.2. Haar states on Beqx
In this section, we construct a ∗-representation of A[I;n] on L2(Sn),

which induces the GNS-representation of (Ap[I;n], hI). In particular, we

see that hI is a state and that Beqs has unique Haar states. By a similar

discussion, we show that Beqh, Beqo have the unique Haar state.

Notation 3.8. Let (L2(Sn))n∈N be the sequence of the Hilbert spaces

of all L2-functions on permutation groups Sn with respect to the uniform
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probability measure on Sn, which is precisely the normalized counting mea-

sure. In particular, the inner product of elements ξ, η ∈ L2(Sn) is given

by

〈ξ, η〉 =

∑
σ∈Sn ξ̄(σ)η(σ)

#Sn
.

We write ||ξ|| :=
√
〈ξ, ξ〉. Let C(Sn) be the C∗-algebra of all continuous

functions on Sn. Let τn be the tracial state on C(Sn) given by the normalized

counting measure on Sn. The C∗-algebra C(Sn) acts on L2(Sn) by the

left multiplication. Set ˆ : C(Sn) → L2(Sn) be the inclusion map then

(L2(Sn),ˆ) is the GNS-representation of (C(Sn), τn). We set the projections

Pij ∈ C(Sn) (i, j ≤ n) by

Pij(σ) := δi,σ(j) (σ ∈ Sn).

We have ||P̂ij ||2 = τn(P
∗
ijPij) = τn(Pij) = 1/n and ||1̂||2 = τn(1) = 1. For

ξ ∈ L2(Sn), let us denote by Q(ξ) the orthogonal projection onto the one

dimensional subspace Cξ ⊆ L2(Sn). For η, ξ ∈ L2(Sn), we denote by |ξ〉〈η|
the bounded linear operator ζ ∈ L2(Sn) �→ 〈η, ζ〉ξ ∈ L2(Sn). We have

Q(P̂ij) =
1

||P̂ij ||2
|P̂ij〉〈P̂ij |.

We denote by ω the vector state on B(L2(Sn)) induced by the unit vector

1̂.

We obtain that if n ≥ 2, i1, i2, j1, j2 ∈ [n] with i1 �= i2 and j1 �= j2 then

Q( ˆPi1j1)Q( ˆPi2j2) =
〈 ˆPi1j1 ,

ˆPi2j2〉
|| ˆPi1j1 ||2|| ˆPi2j2 ||2

| ˆPi1j1〉〈 ˆPi2j2 | =
#Sn−2

n2
| ˆPi1j1〉〈 ˆPi2j2 |.

Hence Q( ˆPi1j1)Q( ˆPi2j2) �= Q( ˆPi2j2)Q( ˆPi1j1), and (Q(P̂ij))ij contains mutu-

ally noncommutative pairs.

We prove that the ∗-representation of A[I;n] determined by uij �→
Q(P̂ij) and p �→ Q(1̂) is well-defined. At first, we show that the opera-

tors Q(P̂ij) and Q(1̂) satisfy the relations which appear in the definition of

Liu’s Boolean quantum permutation group.



De Finetti Theorems for Boolean EQG 379

Proposition 3.9. Let uij(i, j ≤ n), p be the generators of A[I;n].

Then we have

Q( ˆPij1)Q( ˆPij2) = δj1,j2Q( ˆPij1), for any i ∈ [n], j1, j2 ∈ [n],

Q( ˆPi1j)Q( ˆPi2j) = δi1,i2Q( ˆPi1j), for any j ∈ [n], i1, i2 ∈ [n],

Q(P̂ij)Q(1̂) = |P̂ij〉〈1̂|, for any i, j ∈ [n].

Proof. For any indices i ≤ n and j1, j2 ≤ n, it holds that

〈 ˆPij1 ,
ˆPij2〉 =

∑
σ∈Sn δσ(i),j1δσ(i),j2

#Sn
=

δj1,j2#Sn−1

#Sn
,

Q( ˆPij1)Q( ˆPij2) =
〈 ˆPij1 ,

ˆPij2〉
〈 ˆPij2 ,

ˆPij2〉
Q( ˆPij1) = δj1,j2Q( ˆPij1).

Similarly, Q( ˆPi1j)Q( ˆPi2j) = δi1,i2Q( ˆPi1j) for any indices i1, i2 ≤ n and j ≤ n.

Then

Q(P̂ij)Q(1̂) =
〈P̂ij , 1̂〉

〈P̂ij , P̂ij〉〈1̂, 1̂〉
|P̂ij〉〈1̂| = |P̂ij〉〈1̂|. �

Corollary 3.10. There is the unique ∗-representation πs : Ap[I;n] →
B(L2(Sn)) with

πs(uij) = Q(P̂ij) (i, j ≤ n), πs(p) = Q(1̂).(3.7)

Moreover, there are ∗-representations π̄s : Beqs(n) → B(L2(Sn)) and

Πs : Bs(n) → B(L2(Sn)) with π̄s([uij ]) = πs(uij) = Πs(Uij)(i, j ≤ n) and

π̄s([p]) = πs(p) = Πs(P).

Proof. Since
∑n
i=1 P̂ij = 1̂ (j ≤ n) and

∑n
j=1 P̂ij = 1̂ (i ≤ n), we

have for any k ∈ N and i, j ∈ [n]k,

n∑
i=1

Q( ˆPij1) . . . Q( ˆPijk)Q(1̂) =

{
Q(1̂), j1 = · · · = jk,

0, otherwise,

n∑
j=1

Q( ˆPi1j) . . . Q( ˆPikj)Q(1̂) =

{
Q(1̂), i1 = · · · = ik,

0, otherwise.
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Hence the ∗-representation πs (3.7) is well-defined. The existence of Πs
directory follows from Proposition 3.9. Since ||πs(uij)||n ≤ 1 and πs(p) = 1,

we have π̄s is well-defined. �

Lemma 3.11. For any i, j ∈ [n]k and k ∈ N, we have

Q(1̂)Q( ˆPi1j1) . . . Q( ˆPikjk)Q(1̂) =
δ(infI ker i, infI ker j)

n(n− 1)| infI ker i|−1
Q(1̂).(3.8)

Proof. In the case | infI ker i| = 1 it holds that ker i = 1k. Then the

left hand side of the equation (3.8) is equal to

δ(1k, ker j)Q(1̂)Q( ˆPi1j1)Q(1̂) =
δ(1k, ker j)

n
Q(1̂).

This proves (3.8).

Let m ∈ N and assume that the equation holds if | infI ker i| ≤ m. Let

infI ker i = {V1 < V2 < · · · < Vb}, where b = | infI ker i|, and sν := minVν
for ν ∈ [b]. Then the left hand side of the equation (3.8) is equal to

ζ(inf
I

ker i, ker j)Q(1̂)Q( ˆPi(s1)j(s1)) · · ·Q( ˆPi(sb)j(sb))Q(1̂).

Since i(sν) �= i(sν+1) for any ν < k, Q( ˆPi(sν)j(sν))Q( ˆPi(sν+1)j(sν+1)) = 0,

whenever j(sν) = j(sν+1). Now

ζ(inf
I

ker i, ker j)
b∏
ν=1

1(j(sν) �= j(sν+1)) = δ(inf
I

ker i, inf
I

ker j).

Assume indices satisfy i1 �= i2 and j1 �= j2. Then

〈 ˆPi1j1 ,
ˆPi2j2〉 =

∑
σ∈Sn δσ(i1),j1δσ(i2),j2

#Sn
=

#Sn−2

#Sn
.

Hence, if infI ker i = infI ker j, we have

Q(1̂)Q( ˆPi(s1)j(s1)) . . . Q( ˆPi(sb)j(sb))Q(1̂)

=
(#Sn−1/#Sn)

2(#Sn−2/#Sn)
b−1

(#Sn−1/#Sn)b
Q(1̂)

=
(#Sn−2)

b−1

#Sn(#Sn−1)b−2
Q(1̂) =

1

n(n− 1)b−1
Q(1̂).
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It proves the lemma. �

Lemma 3.12. Let uij(i, j ∈ [n]) and p be the generaters of A[I;n].

Then for any k ∈ N, π ∈ I(k) and i, j ∈ [n]k,∑
r∈[n]k,

infI ker r=π

urjp = δ(π, inf
I

kerI j)p.(3.9)

∑
s∈[n]k,

infI ker s=π

uisp = δ(inf
I

ker i, π)p,(3.10)

Proof. We give the proof only for the equation (3.9); the same proof

runs for the other. The proof is by induction on |π|. In the case |π| = 1, we

have π = 1k. Then for any r ∈ [n]k, it holds that infI ker r = π if and only

if ker r = 1k. This gives the equation (3.9).

Let b ∈ N. Assume (3.9) holds in the case |π| = b. In the case |π| = b+1,

write π = {V1 < V2 < · · · < Vb+1}. Set v = maxVb.

Then the left hand side of (3.9) is equal to∑
r∈[n][k]\Vb+1 ,

infI ker r=π|[k]\Vb+1

(ur1j1ur2j2 . . . urvjv
∑
r′∈[n],
r′ �=rv

ur′jv+1ur′jv+2 . . . ur′jkp).(3.11)

It follows that∑
r′∈[n],
r′ �=rv

ur′jv+1ur′jv+2 . . . ur′jkp

= δ(ker(j|Vb+1
),1Vb+1

)p− urvjv+1urvjv+2 . . . urvjkp.

Then by the assumption of induction, (3.11) is equal to

δ(π|[k]\Vb+1
, inf
I

ker(j|[k]\Vb+1
))p · δ

(
1Vb+1

, ker(j|Vb+1
)
)
−R,(3.12)
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where

R =
∑

r∈[n][k]\Vb+1 ,
infI ker r=π|[k]\Vb+1

ur1j1ur2j2 . . . urvjv · urvjv+1urvjv+2 . . . urvjkp.

For any multi-index r ∈ [n][k]\Vb+1 , set r̃ ∈ [n]k by r̃m := rm if m ≤ v, and

r̃m := rv, otherwise. Then infI ker r = π|[k]\Vb+1
if and only if infI ker r̃ = π̃,

where π̃ := π ∨ (↑⊗(v−1) ⊗ � ⊗ ↑⊗(k−v−1)). We see that the partition π̃ is

drown as the following figure.

Since |π̃| = b, applying the assumption of induction yields R =

δ(π̃, infI ker j)p. Hence (3.12) is equal to[
δ
(
π|[k]\Vb+1

, inf
I

ker(j|[k]\Vb+1
)
)
· δ(1Vb+1

, ker(j|Vb+1
)) − δ(π̃, inf

I
ker j)

]
p

= δ(π, inf
I

ker j)p.

This is the desired conclusion. �

Proposition 3.13. The functional hI is a Haar state and the triplet

(πs, L
2(Sn), 1̂) is the GNS-representation of the pair (Ap[I;n], hI).

Proof. Our proof starts with the observation that the functional ω◦πs
satisfies the Haar invariance on V sn . For any k ∈ N, i, j ∈ [n]k,

(id⊗ ω ◦ πs)∆(puijp) =
∑

s∈[n]k

puisp ·
δ(infI ker s, infI ker j)

n(n− 1)| infI ker s|−1

=
1

n(n− 1)| infI ker j|−1

∑
s∈[n]k,

infI ker s=infI ker j

puisp.

By the equation (3.9) , we have for any interval partition π ∈ I(k),∑
s∈[n]k,

infI ker s=π

puisp = δ(inf
I

ker i, π)p.
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From this, we obtain the half of the Haar invariance of ω ◦ πs. Similar

arguments can be applied to the other invariance. By the uniqueness of the

Haar functional (Lemma 3.2), we have proven the proposition. �

Theorem 3.14. For any n ∈ N, Beqs(n) and Bs(n) admit the unique

Haar states. We write them hs and hBs, respectively. Furthermore, we have

hBs ◦ α = hs.

Proof. The existence of a Haar state follows immediately from Propo-

sition 3.13. The uniqueness follows from Proposition 3.2. �

Lemma 3.15. Assume the index x be o or h. Let uij(i, j ∈ [n]) and p be

the generaters of A[Ix;n]. Then for any k ∈ N, π ∈ Ix(2k) and multi-indices

i, j ∈ [n]2k with �⊗k ≤ ker i, ker j, it holds that∑
r∈[n]2k,

infIx ker r=π

urjp = δ(π, inf
Ix

kerI j)p,(3.13)

∑
s∈[n]2k,

infIx ker s=π

uisp = δ(inf
Ix

ker i, π)p.(3.14)

Proof. We only prove the first equation. In the case of x = o, we

have π = �⊗k and infIo ker ρ = �⊗k for any ρ ∈ P (2k) with ρ ≥ �⊗k. Hence

the first equation follows from the definiton.

In the case of x = h, the proof is by induction on |π|. In the case |π| = 1,

we have π = 12k. Then for any r ∈ [n]2k, it holds that infIh ker r = π if and

only if ker r = 12k. This gives (3.13).

Let b ∈ N. Assume the first equation holds in the case |π| = b. In the

case |π| = b + 1, write π = {V1 < V2 < · · · < Vb+1}. Set v = maxVb.

Then the left hand side of (3.13) is equal to∑
r∈[n][2k]\Vb+1 ,

infIh ker r=π|[k]\Vb+1

(ur1j1ur2j2 . . . urvjv
∑
r′∈[n],
r′ �=rv

ur′jv+1ur′jv+2 . . . ur′j2kp).
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Since |Vb+1| is even, it follows that

∑
r′∈[n],
r′ �=rv

ur′jv+1ur′jv+2 . . . ur′j2kp

= δ(ker(j|Vb+1
),1Vb+1

)p− urvjv+1urvjv+2 . . . urvj2kp.

By the assumption of induction, (3.13) is equal to

δ(π|[k]\Vb+1
, inf
Ih

ker(j|[k]\Vb+1
))p · δ

(
1Vb+1

, ker(j|Vb+1
)
)
−R,(3.15)

where

R =
∑

r∈[n][2k]\Vb+1 ,
infIh ker r=π|[2k]\Vb+1

ur1j1ur2j2 . . . urvjv · urvjv+1urvjv+2 . . . urvj2kp.

For any multi-index r ∈ [n][2k]\Vb+1 , set r̃ ∈ [n]2k by r̃m := rm if m ≤ v,

r̃m := rv, otherwise.

Set π̃ := π ∨ (↑⊗(v−1) ⊗ �⊗ ↑⊗(2k−v−1)). The partition π̃ can be drown

as the following figure.

Then infIh ker r = π|[2k]\Vb+1
if and only if infIh ker r̃ = π̃. Since |π̃| = b,

applying the assumption of induction yields R = δ(π̃, infIh ker j)p. Hence

(3.15) is equal to

[
δ
(
π|[k]\Vb+1

, inf
Ih

ker(j|[2k]\Vb+1
)
)
· δ(1Vb+1

, ker(j|Vb+1
)) − δ(π̃, inf

Ih
ker j)

]
p

= δ(π, inf
Ih

ker j)p.

This is the desired conclusion. �

Let us construct ∗-representations of A[Io;n], A[Ih;n], which give us

Haar states. We set a one dimensional projection R and self-adjoint opera-
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tors Fi ∈ Mn+1(C) (i ≤ n) by the following: for k, l ≤ n + 1,

R(k, l) =

{
1, if k = l = n + 1,

0, otherwise,

Fi(k, l) =

{
1, if (k, l) = (i, n + 1), (n + 1, i),

0, otherwise.

For any i, r ∈ [n] with i �= r we have

RF 2
i = R, RFiFr = 0.(3.16)

Set Fij = Fi ⊗ Fj . We set operators

P o := R⊗R, Uoij :=
1√
n
Fij ,

P h := Q(1̂) ⊗ P o, Uhij := Q(P̂ij) ⊗ Fij .

Lemma 3.16. The following relations define a ∗-homomorphism

πo : A[Io;n] → Mn+1(C)⊗Mn+1(C) and a ∗-homomorphism πh : A[Io;n] →
B(L2(Sn)) ⊗Mn+1(C) ⊗Mn+1(C).

πx(p
x) = P x, πx(u

x
ij) = Uxij .

Proof. The proof is straightforward. �

Lemma 3.17. Let l, n ∈ N. If l is odd then for any i, j ∈ [n]l, we have

πo(puijp) = πh(puijp) = 0.(3.17)

If l is even and l = 2k, then for any i, j ∈ [n]2k, we have

πo(puijp) = ζ(�⊗k, ker i)ζ(�⊗k, ker j)
1

nk
· Po.(3.18)

πh(puijp) = ζ(�⊗k, ker i)ζ(�⊗k, ker j)δ(inf
Ih

ker i, inf
Ih

ker j)(3.19)

× 1

n(n− 1)| infIh ker i|−1
· Ph.
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Proof. The first and the second equations follow directory from

(3.16). We prove the last equation. If i �= r, or j �= s, we have PhU
h
ijU

h
rs = 0.

Hence if ζ(�⊗k, ker i) = 0 or ζ(�⊗k, ker j) = 0 then πh(puij) = 0.

Assume ζ(�⊗k, ker i) = 1 and ζ(�⊗k, ker j) = 1. Then infI ker i =

infIh ker i and infI ker j = infIh ker j. We check that PhU
h
ij

2
= Q(1̂)Q(P̂ij)

2⊗
R⊗R = Ph(Q(P̂ij)

2 ⊗ 1 ⊗ 1). By (3.8),

πh(puijp) = Q(1̂)Q( ˆPi1j1)
2 · · ·Q( ˆPi2k−1j2k−1

)2Q(1̂) ⊗R⊗R

=
δ(infI ker i, infI ker j)

n(n− 1)| infI ker i|−1
Q(1̂) ⊗R⊗R.

=
δ(infIh ker i, infIh ker j)

n(n− 1)| infIh ker i|−1
Ph.

This finishes proof. �

Notation 3.18. We define states ωo on Mn+1(C) and ωh on B(L2(Sn))⊗
Mn+1(C) by

ωo :=
trn+1(Po·)
trn+1Po

, ωh :=
ω ⊗ trn+1(Ph·)
ω ⊗ trn+1(Ph)

.

Proposition 3.19. For x = o, h, each state ωx ◦ πx is a Haar state.

Furthermore, hIx = ωx ◦ πx.

Proof. If l ∈ N is odd, by (3.17), (id⊗ (ω ◦ πx)) ∆(puijp) = 0 =

ωx(puijp), where i, j ∈ [n]l and x = o, h.

Assume l ∈ N is even and set l = 2k. By (3.18) and (3.19), we have

(id⊗ (ωo ◦ πo))∆(puijp) =
∑

s∈[n]2k

puisp · ζ(�⊗k, ker s)ζ(�⊗k, ker j)
1

nk

=
ζ(�⊗k, ker j)

nk

∑
s∈[n]k,

�⊗k≤ker s

puisp.

(id⊗ (ωh ◦ πh))∆(puijp) =
∑

s∈[n]2k

puisp · δ(inf
Ih

ker s, inf
Ih

ker j)
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× ζ(�⊗k, ker s)ζ(�⊗k, ker j)

n(n− 1)| infIh ker s|−1

=
ζ(�⊗k, ker j)

n(n− 1)| infIh ker j|−1

∑
s∈[n]k,

infIh ker s=infIh ker j

puisp.

By (3.13), we obtain the half of the Haar invariance of ωx ◦ πx (x = o, h).

Similar arguments can be applied to the other invariance. By the uniqueness

of the Haar functional (Lemma 3.2), we have proven the proposition. �

Theorem 3.20. For any n ∈ N, Beqo(n) and Beqh(n) admit the

unique Haar states. We write them ho and hh, respectively. In particu-

lar, we have ho ◦ ιn = hIo and hh ◦ ιn = hIh.

Proof. As ||Uxij ||n ≤ 1, we can extend πx to Beqx (x = 0, h), which

proves the theorem. �

4. Boolean De Finetti Theorems

Let (M,ϕ) be a pair of a von Neumann algebra and a normal state

with faithful GNS-representation and consider an infinite sequence (xj)j∈N
of self-adjoint elements xj ∈ M . We may assume M ⊆ B(H), and ϕ

is implemented by Ω ∈ H, which is a cyclic vector for M . Throughout

this section we suppose evx(�
o
∞) is σ-weakly dense in M , where evx is the

evaluation map (see Notation 1.15. for the definition).

4.1. Combinatorial part

At first we show the purely combinatorial part of Boolean de Finetti

theorems.

Proposition 4.1. Assume D be a blockwise category of interval par-

titions. Let E : M → N be a ϕ-preserving conditional expectation. Suppose

(xj)j∈J are Boolean independent and identically distributed over (E,N), and

KE
k [x1, x1, . . . , x1] = 0, for all k ∈ N\LD. Then (xj)j∈N is Ap[D]-invariant.
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Proof. By the moments-cumulants formula, we have for any j ∈ [n]k

and k ∈ N,

(ϕ ◦ evx ⊗ id) ◦ Ψn(Xj1 · · ·Xjk)
=

∑
i∈[n]k

ϕ(xi1 · · ·xik) ⊗ pui1j1 · · ·uikjkp

=
∑

i∈[n]k

∑
π∈D(k)
π≤ker i

K
(π)
E [x1, . . . , x1] ⊗ pui1j1 · · ·uikjkp

=
∑
π∈D(k)

K
(π)
E [x1, . . . , x1] ⊗

∑
i∈[n]k

π≤ker i

pui1j1 · · ·uikjkp

=
∑
π∈D(k)
π≤ker j

K
(π)
E [x1, . . . , x1] ⊗ p

= ϕ ◦ evx(Xj1 · · ·Xjk) ⊗ p. �

4.2. Observations on the conditional expectations

To prove the opposite direction, we observe properties of the conditional

expectations. Throughout this section, we assume D is a blockwise category

of interval partitions.

Notation 4.2.

(1) Denote by �o,Ψn
∞ the fixed point algebra of the coaction Ψn, that is,

�o,Ψn
∞ := {f ∈ �o∞ | Ψn(f) = f ⊗ p}.

(2) Define a linear map En : �o∞ → �o∞ by En := (id ⊗ h) ◦ Ψn.

(3) For π ∈ P (k), we set

Xπ :=
∑

j∈[n]k, π≤ker j

Xj1 · · ·Xjk .

Proposition 4.3. The following hold:
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(1) Ψn is �o,Ψn
∞ -�o,Ψn

∞ bilinear map : for each f ∈ �o,Ψn
∞ and g ∈ �o∞,

Ψn(fg) = (f ⊗ id)Ψn(g), Ψn(gf) = Ψn(g)(f ⊗ id).

(2) En is a conditional expectation with respect to the embedding �o,Ψn
∞ ↪→

�o∞.

Proof. By (3.5), it follows that �o,Ψn
∞ = Span{Xπ ∈ �o∞ | π ∈

D(k), k ∈ N}. For any j ∈ [n]k, π ∈ D(l) and k, l ∈ N,

Ψn(Xi1 · · ·XikXπ) = Ψn(Xi1 · · ·Xik)(Xπ ⊗ id)

by the direct computation. The symmetric proof shows Ψn is a �o,Ψn
∞ -�o,Ψn

∞
bilinear map.

Next, we prove that En is a conditional expectation. En is also �o,Ψn
∞ -

�o,Ψn
∞ bilinear map since so is Ψn. Clearly we have En[f ] = (id⊗h)(f⊗p) = f

for any f ∈ �o,Ψn
∞ . The proof is completed by showing that Ψn ◦ En =

En[·] ⊗ p. Let ν be the natural isomorphism V Dn ⊗ C → V Dn . Then

Ψn ◦ En[f ] = (id ⊗ ν) ◦ (Ψn ◦ id) ◦ (id ⊗ h) ◦ Ψn

= (id ⊗ ν) ◦ (id ⊗ id ⊗ h) ◦ (Ψn ⊗ id) ◦ Ψn.

As Ψn is a linear coaction, the right-hand side is equal to (id ⊗ ν) ◦ (id ⊗
id ⊗ h) ◦ (id ⊗ ∆) ◦ Ψn. By the invariance property of the Haar functional

h, this is equal to (id ⊗ ν) ◦ ι ◦ (id ⊗ h) ◦ Ψn, where ι is the embedding

�o∞ ⊗C ↪→ �o∞ ⊗ V Dn ⊗C; ι(f ⊗ λ) = f ⊗ p⊗ λ. By the easy computation,

this is equal to En[ · ] ⊗ p. �

Using the invariance of the joint distribution, we see that the conditional

expectation is connected with the L2-conditional expectation.

Lemma 4.4. Suppose (xj)j∈N is Ap[D]-invariant for a blockwise cate-

gory D of interval partitions, or Beqx-invariant for x = s, o, h. Then En
preserves ϕ ◦ evx for any n ∈ N. Moreover for any f ∈ �o∞, we have

enevx(f)en = evx(En(f))en,

where en is the orthogonal projection onto evx(�
Ψn)Ω.
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Proof. By definition Ap[D]-invariance implies that En preserves ϕ ◦
evx. Assume Beqx-invariance. Since hIx = hx ◦ ιn, we have En =

(id ⊗ (hx ◦ ιn)) Ψn = (id ⊗ hx)Φn. The Beqx-invariance implies that En
preserves ϕ ◦ evx. For any π, σ ∈ D(k) and f ∈ �o∞, we have

〈XπΩ, evx ◦ En(f)fσΩ〉 = ϕ(evx ◦ En(X∗
πfXσ)) = ϕ(evx(X

∗
πfXσ))

= 〈XπΩ, evx(f)fσΩ〉,

which completes the proof. �

In [1], a noncommutative martingale convergence theorem of cumulants

plays an important role in the proof of de Finetti theorems. Since ϕ is not

faithful, we modify this convergence theorem.

Proposition 4.5. Let (M ⊆ B(H), Ω ∈ H) be a pair of a von Neu-

mann algebra and a cyclic vector. Assume M is σ-weekly generated by a

sequence (xn)n∈N of self-adjoint elements. Let q ∈ M be a non-zero projec-

tion and L := qMq, set a conditional expectaion EL := q · q : M → L. Let

(�n)n∈N be a decreasing sequence of ∗-subalgebras of �o∞, and denote by en
the orthogonal projections onto the closed subspaces evx(�n)Ω. Set

B∞ :=
⋂
n∈N

evx(�n)
σw

.

We assume the following conditions:

(1) There is a ϕ ◦ evx preserving conditional expectation En : �o∞ → �n

for each n ∈ N.

(2) B∞Ω = LΩ.

Then for any π ∈ I(k), k ∈ N, and f1, . . . , fk ∈ �o∞, we have

s- lim
n→∞

evx(Eπn [f1, . . . , fk])en = EπL[f1(x), . . . , fk(x)],

s- lim
n→∞

evx(K
En
π [f1, . . . , fk])en = KEL

π [f1(x), . . . , fk(x)],

where we write f(x) = evx(f) for f ∈ �o∞.

Proof. By condition (1), enevx(f)en = evx(En(f))en. By condtition

(2), s-limn→∞ en = q, and s-limn→∞ evx(En(f))en = qevx(f)q =
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EL[evx(f)]. It holds that evx ◦ Eπn [f1, . . . , fk]en =
∏→
V ∈π enevx(

∏→
j∈V fj)en,

for any π ∈ I(k). Hence

s- lim
n→∞

evx ◦ Eπn [f1, . . . , fk]en =
→∏
V ∈π

EL[
→∏
j∈V

fj(x)]

= EπL[f1(x), f2(x), . . . , fk(x)].

Partitioned cumulants are linear combinations of partitioned conditional

expectations, which proves the statement. �

Proposition 4.6. For any k ∈ N, π ∈ D(k) and sufficiently large n

such that the Gram matrix is invertible, we have

Eπn [X1, . . . , X1] =
1

n|π|

∑
i∈[n]k

π≤ker i

Xi1Xi2 · · ·Xik .

Proof. This follows by a similar proof to that in [1, Prop.4.7], which

is induction on |π|. �

Lemma 4.7. Let M be a von Neumann algebra. Fix a nonzero pro-

jection e ∈ M . Set a conditional expectation E : M → N = eMe by

E(y) = eye. Let k ∈ N with k ≥ 2 and π ∈ I(k). Assume that l ∈ N

satisfies l < k and l ∼π l + 1. Then for any b ∈ N, y1, . . . , yk ∈ M ,

KE
π [y1, · · · , ylb, yl+1, · · · , yk] = 0.(4.1)

Proof. In the case k = 2, it holds I(2) = {�} and KE
2 [y1b, y2] =

E[y1by2] − E[y1b]E[y2] = ey1by2e− ey1bey2e = 0 as b = be.

Let k ≥ 3. Assume (4.1) holds for any π ∈ I(k − 1). Since b = be,

E[y1 . . . ylbyl+1 . . . yk] = E[y1 . . . ylb]E[yl+1 . . . yk]. The moments-cumulants

formula and the assumption of induction imply that

KE
k [y1 · · · , ylb, yl+1, · · · , yk]

= E[y1 . . . ylbyl+1 . . . yk] −
∑

π∈I(k),π �=1k

KE
π [y1, · · · , ylb, yl+1, · · · , yk]

= E[y1 . . . ylb]E[yl+1 . . . yk] −
∑

π∈I(k),l �∼πl+1

KE
π [y1, · · · , ylb, yl+1, · · · , yk].
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We have {π ∈ I(k) | l �∼π l + 1} = {σ ⊗ ρ | σ ∈ I(l), ρ ∈ I(k − l)}. Then

KE
σ⊗ρ[y1, · · · , ylb, yl+1, · · · , yk]

=
→∏

V ∈σ⊗ρ
KE

(V )[y1, · · · , ylb, yl+1, · · · , yk]

=

→∏
V1∈σ

KE
(V1)[y1, · · · , ylb]

→∏
V2∈ρ

KE
(V2)[yl+1, · · · , yk]

= KE
σ [y1, · · · , ylb]KE

ρ [yl+1, · · · , yk].
Hence E[y1 . . . ylb]E[yl+1 . . . yk] −

∑
π∈I(k),l �∼πl+1 K

E
π [y1, · · · , ylb, yl+1,

· · · , yk] = 0. Induction on k proves the lemma. �

4.3. Boolean de Finetti theorems

Lemma 4.8. Assume that ||xj || ≤ ||x1|| for any j ∈ N. Let D be one

of I, Io, Ih, Ib. For any k ∈ N, σ ∈ D(k) and n0, n ∈ N with n0 ≤ n, set an

element in �o≥n0
by

fn0,n
σ :=

∑
π∈D(k)

1

n|π|

∑
i∈[n0,n]k

π≤ker i

Xi1Xi2 · · ·XikµI(k)(π, σ).

Then we have

||evx ◦ En[Xj1Xj2 · · ·Xjk ] −
∑
σ∈D(k)
σ≤ker j

evx ◦KEn
σ [X1, . . . , X1]||(4.2)

→ 0 (as n → ∞).

||evx ◦ En[Xj1Xj2 · · ·Xjk ] −
∑
σ∈D(k)
σ≤ker j

evx(f
n0,n
σ )|| → 0 (as n → ∞).(4.3)

Proof. By Proposition 1.10 and Lemma 4.6, we have for sufficiently

large n,

En[Xj1Xj2 · · ·Xjk ] =
∑

i∈[n]k

Xi1Xi2 · · ·XikQ
(k)
ij

=
∑

i∈[n]k

Xi1Xi2 · · ·Xik
∑

π,σ∈D(k)
π≤ker i,σ≤ker j

Wk,n(π, σ)
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=
∑
σ∈D(k)
σ≤ker j

∑
π∈D(k)

(
1

n|π|

∑
i∈[n]k

π≤ker i

Xi1Xi2 · · ·Xik)n|π|Wk,n(π, σ)

=
∑
σ∈D(k)
σ≤ker j

∑
π∈D(k)

Eπn [X1, . . . , X1]n
|π|Wk,n(π, σ).

By the moments-cumulants formula Proposition 1.22, we have

En[Xj1Xj2 · · ·Xjk ] −
∑
σ∈D(k)
σ≤ker j

KEn
σ [X1, . . . , X1]

=
∑
σ∈D(k)
σ≤ker j

∑
π∈D(k)

Eπn [X1, . . . , X1]n
|π|Wk,n(π, σ)

−
∑
σ∈D(k)
σ≤ker j

∑
π∈D(k)

Eπn [X1, . . . , X1]µI(k)(π, σ)

=
∑
π∈D(k)

[
∑
σ∈D(k)
σ≤ker j

n|π|Wk,n(π, σ) − µI(k)(π, σ)]Eπn [X1, . . . , X1].

||evx ◦ En[Xj1Xj2 · · ·Xjk ] −
∑
σ∈D(k)
σ≤ker j

evx ◦KEn
σ [X1, . . . , X1]||

≤ max
π∈D(k)

[
∑
σ∈D(k)
σ≤ker j

|n|π|Wk,n(π, σ) − µI(k)(π, σ)|]

×
∑
π∈D(k)

||exx ◦ Eπn [X1, . . . , X1]||

≤ max
π∈D(k)

∑
σ∈D(k)
σ≤ker j

|n|π|Wk,n(π, σ) − µI(k)(π, σ)| · |D(k)| · ||x1||k.

By the Weingarten estimate in Proposition 1.12,

max
π∈D(k)

∑
σ∈D(k)
σ≤ker j

|n|π|Wk,n(π, σ) − µI(k)(π, σ)| = O(
1

n
) (as n → ∞).
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Therefore, we have (4.2).

For any n0 ∈ N, we have

KEn
σ [X1, . . . , X1] − fn0,n

σ =
∑
π∈D(k)

1

n|π|

∑
i∈[n]k\[n0,n]k

π≤ker i

Xi1Xi2 · · ·XikµI(k)(π, σ).

Now

1

n|π|

∑
i∈[n]k\[n0,n]k

π≤ker i

||xi1xi2 · · ·xik || ≤
n|π| − (n− n0)

|π|

n|π| ||x1||k → 0 (as n → ∞).

Hence

||evx ◦ En[Xj1Xj2 · · ·Xjk ] −
∑
σ∈D(k)
σ≤ker j

evx(f
n0,n
σ )||

≤ ||evx ◦ En[Xj1Xj2 · · ·Xjk ] −
∑
σ∈D(k)
σ≤ker j

evx ◦KEn
σ [X1, . . . , X1]||

+
∑
σ∈D(k)
σ≤ker j

||evx ◦KEn
σ [X1, . . . , X1] − evx(f

n0,n
σ )||

→ 0 (as n → ∞). �

Now we are prepared to prove our main theorem, de Finetti theorems

for Ap[Ix] and Beqx.

Theorem 4.9. Let (M,ϕ) be a pair of a von Neumann algebra and

a nondegenerate normal state. Assume M is generated by self-adjoint ele-

ments (xj)j∈N. Consider the following three assertions.

(1) The joint distribution of (xj)j∈N is Ap[Ix]-invariant.

(2) The joint distribution of (xj)j∈N is Beqx-invariant.

(3) The elements (xj)j∈N are Boolean independent and identically dis-

tributed over (Enut,Mnut), and for all k ∈ N \ LIx, and b1, · · · , bk ∈
Mnut ∪ {1}, it holds that

KEnut
k [x1b1, x1b2, . . . , x1] = 0.
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Then for x = s, o, h, all assertions are equivalent. For x = b, (1) and (3)

are equivalent.

Proof. By Proposition 4.1, we have (3) implies (1). We prove each

condition (1), (2) implies (3) in the case x = s, o, h, and prove (1) im-

plies (3) in the case x = b. Let (H,Ω) be the GNS-representation of

(M,ϕ). As ϕ is nondegenerate, we may assume M ⊆ B(H). Set B∞ :=⋂
n∈N evx(�

Ψn)
σw

. At first, we prove B∞Ω = MnutΩ. Since �o≥n ⊆ �Ψn ,

it is clear that B∞Ω ⊇ MnutΩ. Let en be the orthogonal projection onto

the subspace Hn := evx(�
Ψn)Ω ⊆ H. Set e∞ be the orthogonal projec-

tion onto ∩n∈∞Hn = B∞Ω. The projections (en)n∈N strongly converges to

e∞. To see B∞Ω ⊆ MnutΩ, we only need to show that e∞xjΩ ∈ MnutΩ

for any k ∈ N, j ∈ [n]k. By Lemma 4.4, each condition (1) , (2) implies

evx ◦ En[Xj1Xj2 · · ·Xjk ]Ω = enxj1xj2 · · ·xjkΩ. As each condition (1), (2)

implies that (xj)j∈N are identically distributed, we have ||xj || = ||x1|| for

any j ∈ N. Then by Lemma 4.8, it holds that evx(f
n0,n
σ )Ω converges to an

element in evx(�
o
≥n0

)Ω as n → ∞. We have

e∞xjΩ = lim
n→∞

evx ◦ En[Xj1Xj2 · · ·Xjk ]Ω ∈
⋂
n0∈N

evx(�
o
≥n0

)Ω = MnutΩ.

By Lemma 4.4, En preserves ϕ ◦ evx and by the modified martingale

convergence theorem (see Proposition 4.5) and (4.2), we obtain for any

j1, . . . , jk ∈ J, k ∈ N,

Enut[xj1 · · ·xjk ] =
∑
σ∈D(k)
σ≤ker j

KEnut
σ [x1, . . . , x1].(4.4)

The proof is completed by showing that for any b0, . . . , bk ∈ Mnut ∪ {1},
j1, . . . , jk ∈ J , and k ∈ N,

Enut[xj1b1xj2b2 · · · bk−1xjk ] =
∑
σ∈D(k)
σ≤ker j

KEnut
σ [x1b1, x1b2, . . . , x1].(4.5)

We prove this by induction on #{l ∈ [k − 1]; bl �= 1}. In the case #{l ∈
[k − 1]; bl �= 1} = 1, the claim holds by (4.4). Pick any m ∈ N ∪ {0}
with m ≤ k − 1. Assume that (4.5) is proved in the case that #{l ∈



396 Tomohiro Hayase

[k − 1]; bl �= 1} < m. Consider the case #{l ∈ [k − 1]; bl �= 1} = m. Let

r = max{l ∈ [k − 1]; bl �= 1}. Then by Lemma 4.7,∑
σ∈D(k)
σ≤ker j

KEnut
σ [x1b1, . . . , x1br, . . . , x1]

=
∑

σ∈D(k),σ≤ker j
r �∼
σ
r+1

KEnut

σ|[1,r] [x1b1, . . . , x1]brK
Enut

σ|[r+1,k]
[x1br+1, . . . , x1].

By the property (D1), this equals to∑
π∈D(r)

π≤ker j|[1,r]

KEnut
π [x1b1, . . . , x1]br

∑
ρ∈D(k−r)

ρ≤ker j|[r+1,k]

KEnut
ρ [x1br+1, . . . , x1]

= Enut[xj1b1 · · ·xjr ]brEnut[xjr+1br+1 · · ·xjk ]
= Enut[xj1b1xj2b2 · · · bk−1xjk ].

By induction on m, (4.5) holds for any b0, . . . , bk ∈ Mnut∪{1}, which proves

(1). �

Corollary 4.10. If the equaivalent conditions in Theorem 4.9 are

satisfied for one of x = o, h and b, then the following hold:

(o) If x = o, (xj)j∈N form a Mnut-valued Boolean centered Bernoulli fam-

ily.

(h) If x = h, (xj)j∈N are Boolean independent, and have even and identi-

cally distributions, over Mnut.

(b) If x = b, (xj)j∈N form a Mnut-valued Boolean shifted Bernoulli family.

Proof. The proof directly follows from Theorem 4.9. �
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