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Fundamental Groups of Neighborhood Complexes

By Takahiro Matsushita

Abstract. The neighborhood complexes of graphs were intro-
duced by Lovász in his proof of the Kneser conjecture. He showed
that a certain topological property of N(G) gives a lower bound for
the chromatic number of G.

In this paper, we study a combinatorial description of the funda-
mental groups of the neighborhood complexes. For a positive integer r,
we introduce the r-fundamental group πr

1(G, v) of a based graph (G, v)
and the r-neighborhood complex Nr(G) of G. The 1-neighborhood
complex is the neighborhood complex. We show that the even part
π2r

1 (G, v)ev, which is a subgroup of π2r
1 (G, v) with index 1 or 2, is iso-

morphic to the fundamental group of (Nr(G), v) if v is not isolated.
We can use the r-fundamental groups to show the non-existence of
graph homomorphisms. For example, we show that π3

1(KG2k+1,k) is
isomorphic to Z/2, and this implies that there is no graph homomor-
phism from KG2k+1,k to the 5-cycle graph C5. We discuss the covering
maps associated to r-fundamental groups.

1. Introduction

An n-coloring of a graph G is a map from the vertex set of G to the

n-point set {0, 1, · · · , n − 1} so that adjacent vertices have different values.

The chromatic number of G is the smallest integer n such that G has an

n-coloring. The graph coloring problem, which is one of the most classical

problems in graph theory, is to compute the chromatic number.

The neighborhood complex was introduced by Lovász [4] in the context

of this subject. The neighborhood complex N(G) of a graph G is the simpli-

cial complex whose vertices are non-isolated vertices and whose simplices are

finite sets of vertices which have a common neighbor. Lovász showed that

if N(G) is n-connected, then the chromatic number χ(G) of G is greater

than n + 2. Using this method, he determined the chromatic number of
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the Kneser graphs KGn,k. For further development of the neighborhood

complex and its related topics, we refer to [3].

In this paper, we study a combinatorial description of the fundamental

group of the neighborhood complex. Throughout the paper, r denotes a

fixed positive integer. In Section 3, we introduce the r-fundamental group

πr
1(G, v) of a based graph (G, v) in a combinatorial way. If G is simple,

it turns out that πr
1(G, v) is isomorphic to the fundamental group of the

2-complex Xr(G), which is obtained by attaching 2-cells to all (2s)-cycles

of G for s ≤ r (Theorem 3.1). The even part of πr
1(G, v) = π1(Xr(G), v) is

the subgroup of πr
1(G, v) consisting of elements represented by loops with

even length, and is denoted by πr
1(G, v)ev.

In Section 4, we introduce the notion of the r-neighborhood complex

Nr(G). The 1-neighborhood complex is the neighborhood complex men-

tioned above. In terms of these notions, our principal result is stated as

follows.

Theorem 1.1. Let G be a graph, and let v be a non-isolated vertex of

G. Then there is a natural isomorphism

π1(Nr(G), v)
∼=−−−→ π2r

1 (G, v)ev.

We can apply the r-fundamental groups of graphs to the existence prob-

lem of the graph homomorphisms (see Section 2), which is a certain general-

ization of the graph coloring problem. In Section 6, we show that for every

positive integer k, the 3-fundamental group of the Kneser graph KG2k+1,k

is isomorphic to Z/2 (Proposition 5.3). This implies that there is no graph

homomorphism from KG2k+1,k to the 5-cycle graph C5 (Corollary 5.11).

Since the odd girth of KG2k+1,k is 2k + 1 (see Lemma 5.6), this obstruc-

tion of the existence of graph homomorphisms is not obtained from the odd

girths for k ≥ 2. Moreover, this is not obtained from the topology of the

neighborhood complex. In fact, the neighborhood complexes of C3 and C5

are homeomorphic to the circle S1, and there is a graph homomorphism

from KG2k+1,k to C3
∼= K3. The case of box complexes discussed in [5] is

the same.

In Section 6, we discuss the covering maps associated to the r-fundamen-

tal groups, called r-covering maps. As is the case of topological spaces (see
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Chapter 2 of [6]), it turns out that there is a 1-1 correspondence between

subgroups of r-fundamental groups and connected r-coverings (Theorem

6.11). Moreover, we have a purely graph theoretic description of covering

spaces over neighborhood complexes. Namely, in case G is not bipartite, a

connected covering space over Nr(G) corresponds to a connected 2-covering

over the Kronecker double covering K2 × G.

The rest of the paper is organized as follows. In Section 2, we review the

definitions and facts related to graphs and simplicial complexes. In Section

3, we introduce the r-fundamental group πr
1(G, v) of a based graph (G, v)

and show that πr
1(G, v) is isomorphic to the fundamental group of a certain

2-dimensional complex Xr(G). In Section 4, we define the r-neighborhood

complex Nr(G) and prove Theorem 1.1. In Section 5, we determine the

r-fundamental groups of the Kneser graphs. In Section 6, we introduce the

r-covering map and investigate its properties.

2. Preliminaries

In this section, we review definitions and facts related to graphs and

simplicial complexes, in particular, the edge-path group of a based simpli-

cial complex [6]. The edge-path group plays a central role in the proof of

Theorem 1.1.

A graph is a pair G = (V (G), E(G)) consisting of a set V (G) together

with a symmetric subset E(G) of V (G) × V (G). We call an element of

V (G) a vertex of G. Hence our graphs are undirected, may have loops, but

have no multiple edges. A graph is simple if it has no looped vertices. The

complete graph Kn with n-vertices is defined by V (Kn) = {0, 1, · · · , n − 1}
and E(Kn) = {(x, y) | x �= y}. An n-coloring of G is identified with a

graph homomorphism from G to Kn. Then the chromatic number of G is

formulated as the number

χ(G) = inf{n ≥ 0 | There is an n-coloring of G.}.

Here we consider the infimum of the empty set as +∞.

An (abstract) simplicial complex is a pair (V,∆) consisting of a set V

together with a family ∆ of finite subsets of V , which satisfies the following

conditions:

• v ∈ V implies {v} ∈ ∆.
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• σ ∈ ∆ and τ ⊂ σ imply τ ∈ ∆.

We call the set V the vertex set, and an element of ∆ a simplex. We

frequently abbreviate (V,∆) to ∆. With this notation, we write V (∆) to

indicate the vertex set of ∆. A simplicial map from ∆0 to ∆1 is a map

f : V (∆0) → V (∆1) such that σ ∈ ∆0 implies f(σ) ∈ ∆1.

Let ∆ be a simplicial complex. The free R-module generated by V (∆) is

denoted by R
(V (∆)). We consider that the topology of R

(V (∆)) is induced by

the finite dimensional vector subspaces of R
(V (∆)). For a vertex v of V (∆),

the vector of R
(V (∆)) associated to v is denoted by ev. For a simplex σ of

∆, let

∆σ =
{∑

v∈σ
avev | av ≥ 0,

∑
v∈σ

av = 1
}
⊂ R

(V (∆)).

The geometric realization of ∆ is defined to be the topological subspace

|∆| =
⋃
σ∈∆

∆σ

of R
(V (∆)). We frequently identify a vertex v of ∆ with the element ev of

|∆| associated to v.

We recall the definition of the edge-path group. An edge-path is a se-

quence γ = (v0, · · · , vn) of vertices of ∆ such that {vi−1, vi} is a simplex

of ∆ for i = 1, · · · , n. We call v0 the origin of γ, and vn the end of γ.

Let v and w be vertices of ∆. The set of edge-paths joining v to w is de-

noted by E(∆, v, w). Let γ and γ′ be edge-paths of ∆, and suppose that

the end of γ coincides with the origin of γ′. The concatenation γ′ · γ of

edge-paths is defined to be the sequence γ followed by the sequence γ′, i.e. if

γ = (v0, · · · , vm) and γ′ = (v′0, · · · , v′n), then γ′ ·γ = (v0, · · · , vn, v
′
1, · · · , v′n).

Let ∼ be the equivalence relation on E(G, v, w) generated by the follow-

ing two conditions:

(a) If vi−1 = vi, then

(v0, · · · , vn) ∼ (v0, · · · , vi−1, vi+1, · · · , vn).

(b) If {vi−1, vi, vi+1} is a simplex of ∆, then

(v0, · · · , vn) ∼ (v0, · · · , vi−1, vi+1, · · · , vn).
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The edge-paths ϕ and ψ are homotopic if ϕ ∼ ψ. Let E(∆, v, w) be the

quotient set E(∆, v, w)/ ∼.

A based simplicial complex (∆, v) is a simplicial complex ∆ equipped

with a distinct vertex v of it. We write E(∆, v) instead of E(∆, v, v). Clearly

the concatenation of the edge-paths induces a group operation of E(∆, v),

and we call this group the edge-path group of (∆, v).

Let γ = (v0, · · · , vn) be an edge-path of ∆. Define the path ϕγ : [0, 1] →
|∆| as follows:

• If n = 0, then we let ϕγ : [0, 1] → |∆| be the constant path at v0.

• If n > 0, then

ϕγ

( i − 1 + t

n

)
= (1 − t)vi−1 + tvi

for i = 1, · · · , n and 0 ≤ t ≤ 1.

It is easy to show that the correspondence γ �→ ϕγ induces a group homo-

morphism

ρ : E(∆, v) −→ π1(|∆|, v), [γ] �→ [ϕγ ].

Proposition 2.1 (Corollary 17 of Section 3.6 in [6]). The group ho-

momorphism ρ is a natural isomorphism.

3. r-Fundamental Groups

In this section we shall introduce the r-fundamental groups, and show

that it is isomorphic to the fundamental group of a certain 2-dimensional

cell complex Xr(G) for a simple graph G. Recall that r denotes a fixed

positive integer.

For a non-negative integer n, let Ln be the graph defined by V (Ln) =

{0, 1, · · · , n} and E(Ln) = {(x, y) | |x − y| = 1}. A graph homomorphism

from Ln to a graph G is called a path of G with length n. The length of a

path ϕ is denoted by l(ϕ). We write P (G, v, w) to indicate the set of paths

joining v to w. Consider the following conditions concerning a pair ϕ and

ψ of paths joining v to w:

(A) l(ψ) = l(ϕ) + 2 and there is an integer x ∈ {0, 1, · · · , l(ϕ)} such that

ψ(i) = ϕ(i) for i ≤ x and ψ(i + 2) = ϕ(i) for i ≥ x (see Figure 3.1).
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Fig. 3.1.

(B)r l(ϕ) = l(ψ) and #{i | 0 ≤ i ≤ l(ϕ), ϕ(i) �= ψ(i)} < r.

The equivalence relation generated by the conditions (A) and (B)r is denoted

by �r. The paths ϕ and ψ are r-homotopic if ϕ �r ψ. Let πr
1(G, v, w) be

the set of equivalence classes of �r on P (G, v, w). Let [ϕ]r denote the

equivalence class of �r represented by ϕ.

Remark 3.1. Consider the following conditions concerning a pair ϕ

and ψ of paths joining v to w:

(B)′r l(ϕ) = l(ψ) and there is x ∈ {0, 1, · · · , l(ϕ)} such that ϕ(i) = ψ(i) if

i ≤ x or i ≥ x + r.

Figure 3.2 describes the case r = 3. It is easy to see that the equivalence

relation generated by (A) and (B)′r coincides with �r.
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Let ϕ : Lm → G and ψ : Ln → G be paths and suppose ϕ(m) = ψ(0).

The concatenation ψ · ϕ : Lm+n → G of ϕ followed by ψ is defined by

ψ · ϕ(i) =

{
ϕ(i) (i ≤ m)

ψ(i − m) (i ≥ m).

It is easy to see that the concatenation of paths induces a map

πr
1(G, v, w) × πr

1(G, u, v) −→ πr
1(G, u,w), ([ψ]r, [ϕ]r) �−→ [ψ · ϕ]r.

For a vertex v of G, the graph homomorphism from L0 to G which takes

0 to v is denoted by ∗v, and is called the trivial loop at v. For a path

ϕ : Ln → G, define ϕ : Ln → G by ϕ(i) = ϕ(n − i) for i = 0, 1, · · · , n. For

a path ϕ joining v to w, it is clear that ϕ · ∗v = ϕ = ∗w · ϕ and ϕ · ϕ �r ∗v.
A based graph is a pair (G, v) consisting of a graph G equipped with a

distinct vertex v of G. We call an element of P (G, v, v) a loop of (G, v). We

write πr
1(G, v) instead of πr

1(G, v, v). The concatenation of loops induces

a group operation of πr
1(G, v). In fact, the identity element is [∗v] and the

inverse of [ϕ]r is [ϕ]r. We call this group the r-fundamental group. Note that

a basepoint preserving graph homomorphism f : (G, v) → (H,w) induces a

group homomorphism f∗ : πr
1(G, v) → πr

1(H,w), [ϕ]r �→ [f ◦ ϕ]r.

By the definition of the equivalence relation �r, we have a well-defined

group homomorphism

l : πr
1(G, v) → Z/2, ([ϕ]r �→ (l(ϕ) mod.2)).

We call the kernel of this homomorphism the even part of πr
1(G, v), and

write πr
1(G, v)ev to indicate it. An element α of πr

1(G, v) is even if α is

contained in πr
1(G, v)ev. An element of πr

1(G, v) is odd if it is not even.

Note that the group homomorphism induced by a graph homomorphism

preserves the parity. Clearly πr
1(G, v)ev is a subgroup of πr

1(G, v) with index

1 or 2. The index of πr
1(G, v)ev is 2 if and only if the connected component

of G containing v is not bipartite.

Let v and w be vertices of G, and let α be an r-homotopy class of paths

joining v to w. Then we have a group isomorphism

πr
1(G, v) → πr

1(G,w), β �→ α · β · α−1.
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This isomorphism depends on the choice of α ∈ πr
1(G, v, w). If a graph G is

connected and we only deal with the isomorphism class of the r-fundamental

group, we often abbreviate πr
1(G, v) to πr

1(G).

Next we construct the 2-dimensional cell complex whose fundamental

group is isomorphic to πr
1(G, v) in case G is simple. Let G be a simple

graph. If we regard G as a 1-dimensional simplicial complex in the usual

way, we write ∆(G) to indicate the complex. We write |G| instead of |∆(G)|.
Define the n-cycle graph Cn by V (Cn) = Z/n and E(Cn) = {(x, x ±

1) | x ∈ Z/n}. An n-cycle of G is a graph homomorphism from Cn to

G. Here we do not require that the homomorphism be an embedding. We

associate each n-cycle Cn → G to the continuous map S1 = |Cn| → |G| in an

obvious way. The 2-dimensional complex Xr(G) is obtained from attaching

2-cells to |G| by the maps |C2s| → |G| associated to the (2s)-cycles of G for

2 ≤ s ≤ r.

Theorem 3.2. Let (G, v) be a based graph and suppose that G is sim-

ple. Then there is a group isomorphism

πr
1(G, v)

∼=−−−→ π1(Xr(G), v).

Proof. Without loss of generality, we can assume that G is connected.

First we define the group homomorphism Φ : πr
1(G, v) → π1(Xr(G), v).

Let ϕ : Ln → G be a loop of (G, v). We associate ϕ to a path Φ(ϕ) :

[0, 1] → Xr(G) of Xr(G) as follows. If n = 0, then Φ(ϕ) is a constant path

at v ∈ Xr(G). If n > 1, let

Φ(ϕ)
(k − 1 + t

n

)
= (1 − t)ϕ(k − 1) + tϕ(k)

for k = 1, · · · , n and 0 ≤ t ≤ 1. Here we consider the right side of the

equality as an element of |G| = |∆(G)|. We write Φ(ϕ) to indicate the

homotopy class of the loop Φ(ϕ) of (Xr(G), v).

Let ϕ : Lm → G and ϕ′ : Ln → G be loops of (G, v) and suppose ϕ �r ϕ′.
We want to show that Φ(ϕ) = Φ(ϕ′). It suffices to show that Φ(ϕ) = Φ(ϕ′)
in case the pair of loops ϕ and ϕ′ satisfies one of the conditions (A) and (B)′r
(see Remark 3.1). However, the verification of this part is straightforward,

so we omit the details. Thus the correspondence ϕ �→ Φ(ϕ) induces a map

Φ : πr
1(G, v) → π1(Xr(G), v). Clearly, Φ is a group homomorphism.
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Next we construct the inverse Ψ : π1(Xr(G), v) → πr
1(G, v) of Φ. We

start with the construction of a group homomorphism Ψ : E(∆(G), v) →
πr

1(G, v). Let α be an element of E(∆(G), v). Let γ = (v0, · · · , vn) be an

edge-path which represents α such that vi �= vi−1 for i = 1, · · · , k. Let

Ψ̂(γ) : Ln → G be the loop which takes i to vi for i = 0, 1, · · · , n. It is clear

that if γ � γ′, then Ψ̂(γ) �r Ψ̂(γ′). We let Ψ(α) = [Ψ̂(γ)]r. Then Ψ is a

group homomorphism.

Let N be the kernel of the composition of the sequence

E(∆(G), v)
ρ−−−→ π1(|G|, v)

i∗−−−→ π1(Xr(G), v).

Here i denotes the inclusion. By Proposition 2.1, we have that

E(∆(G), v)/N ∼= π1(Xr(G), v). We now describe the generator of N .

Let σ be a (2s)-cycle C2s → G with s ≤ r. Let σ̂ be the edge-path

(σ(0), σ(1), · · · , σ(2s)) of ∆(G). Let θσ be an edge-path joining v to σ(0).

By Theorem 10 of Section 3.8 of [6] and Proposition 2.1, N is the normal sub-

group of E(∆(G), v) generated by the set {θσ · σ̂ · θσ | σ is a (2s)-cycle of G

with s ≤ r.}. Clearly, Ψ : E(∆(G), v) → πr
1(G, v) takes an element of N to

0. Since π1(Xr(G), v) ∼= E(∆(G), v)/N , Ψ induces a group homomorphism

Ψ : π1(Xr(G), v) → πr
1(G, v). It is clear that Ψ is the inverse of Φ. This

completes the proof. �

Next we reduce the 2-cells attached to |G|. A (2n)-cycle σ : C2n → G is

non-degenerate if for i ∈ Z/(2n) and k ∈ Z/(2n), σ(i) = σ(i + 2k) implies

k = 0 modulo n. In case G is bipartite, a (2n)-cycle of G is non-degenerate if

and only if it is embedding. Two (2n)-cycles σ : C2n → G and τ : C2n → G

are equivalent if there is an automorphism f of C2n such that τ = σ ◦ f .

The 2-dimensional complex X ′
r(G) is obtained by attaching 2-cells to |G|

by the maps associated to equivalence classes of non-degenerate (2s)-cycles

for 2 ≤ s ≤ r.

Proposition 3.3. Let (G, v) be a based graph and suppose that G is

simple. Then there is a group isomorphism

πr
1(G, v)

∼=−−−→ π1(X
′
r(G), v).

Proof. For each equivalence class α of non-degenerate (2s)-cycles, we

let σα be its representative. Regard X ′
r(G) as the subcomplex of Xr(G),
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whose 2-cells are the 2-cells of Xr(G) associated to σα for all α. By Theorem

10 of Section 3.8 of [6], it suffices to show that the attaching map of every

2-cell of Xr(G) not contained in X ′
r(G) is null-homotopic in X ′

r(G).

Let k be a positive integer with k < r and suppose that every l ≤ k

and every (2l)-cycle σ : C2l → G of G, the map S1 → |G| associated to σ

is null-homotopic in |X ′
r(G)|. Let σ′ : C2k+2 → G be a (2k + 2)-cycle σ′. If

σ′ is non-degenerate, then it follows from the definition of X ′
r(G) that the

associated map S1 → |G| is null-homotopic in X ′
r(G). Suppose that σ′ is

degenerate. Then σ′ factors through C2m ∨ C2m′ for 1 ≤ m,m′ ≤ k. Here

C2m ∨ C2m′ denotes the wedge sum of C2m and C2m′ . It follows from the

inductive hypothesis that the map associated to τ is null-homotopic. �

Example 3.4. Let n be a positive integer. The complex X ′
r(C2n) is a

circle S1 if r < n, and is a disk D2 if r ≥ n. Thus we have

πr
1(C2n) =

{
Z (r < n)

1 (r ≥ n).

On the other hand, X ′
r(C2n+1) is a circle if r ≤ 2n and is a 2-dimensional

real projective plane if r > 2n. Thus we have

πr
1(C2n+1) =

{
Z (r < n)

Z/2 (r ≥ n).

4. Proof of Theorem 1.1

In this section, we give the definition of the r-neighborhood complex and

prove Theorem 1.1.

The neighborhood N(v) of a vertex v of G is the set of vertices of G

adjacent to v. The r-neighborhood Nr(v) is defined inductively by N0(v) =

{v} and

Nr(v) =
⋃

w∈Nr−1(v)

N(w).

The r-neighborhood complex Nr(G) is the simplicial complex defined as fol-

lows. The vertices of Nr(G) are the non-isolated vertices of G, and a fi-

nite subset σ of V (G) is a simplex if and only if σ is contained in the
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r-neighborhood of some vertex of G. The 1-neighborhood complex is the

neighborhood complex introduced by Lovász [4].

The rest of this section is devoted to the proof of Theorem 1.1. It suffices

to show that E(Nr(G), v) and π2r
1 (G, v)ev are isomorphic (see Proposition

2.1).

Now we construct a natural group homomorphism Φ : E(Nr(G), v) →
π2r

1 (G, v)ev. Let α be an element of E(Nr(G), v) and let γ = (x0, · · · , xn) be

an edge-path of Nr(G) which represents α. Then there is a loop ϕ : L2rn →
G of (G, v) such that ϕ(2ri) = xi for i = 0, 1, · · · , n. We set Φ(α) = [ϕ]2r.

To see that Φ is well defined, we show that the (2r)-homotopy class

[ϕ]2r does not depend on the choices of γ and ϕ. First we show that for a

fixed representative γ of α, the (2r)-homotopy class [ϕ]2r does not depend

on the choice of ϕ. Consider another loop ψ : L2rn → G of (G, v) such that

ψ(2ri) = xi. Define the loop ϕj (j = 0, 1, · · · , n) by the correspondence

ϕj(i) =

{
ψ(i) (i ≤ 2rj)

ϕ(i) (i ≥ 2rj).

Then we have that ϕ0 = ϕ, ϕn = ψ, and the pair of loops ϕj−1 and ϕj

satisfies the condition (B)2r in Section 3 for j = 1, · · · , n. Hence we have

ϕ �2r ψ. Therefore the (2r)-homotopy class [ϕ]2r does not depend on the

choice of ϕ. So we shall write Φ̂(γ) to indicate the (2r)-homotopy class

[ϕ]2r.

Next let γ′ be an edge-path of Nr(G) which is homotopic to γ. We want

to show that Φ̂(γ) = Φ̂(γ′). We can assume that the pair of edge-paths γ

and γ′ satisfies one of the conditions (a) and (b) in Section 2. The case of

(a) is easily deduced, so we only give the proof of the case of (b). In this

case γ′ is written as the edge-path (x0, · · · , xj , y, xj+1, · · · , xn) such that

the set {xj , y, xj+1} is a simplex of Nr(G). By the definition of Nr(G),

there is a vertex w of G whose r-neighborhood contains xj , y, and xj+1. Let

θ : L(2j+1)r → G be a path joining x0 = v to w such that θ(2ri) = xi for

i = 0, 1, · · · , j, and let θ′ : L2(n−j)r−r → G be a path joining w to xn = v

such that θ′(2ri− r) = xj+i for i = 1, · · · , n− j. Finally, let τ : Lr → G be

a path joining w to y. Consider the paths ϕ = θ′ · θ and ψ = θ′ · τ · τ · θ (see

Figure 4.1). It is clear that Φ̂(γ) = [ϕ]2r, Φ̂(γ′) = [ψ]2r, and ϕ and ψ are

(2r)-homotopic. Thus we have shown that the correspondence γ �→ Φ̂(γ)

induces the map Φ : E(Nr(G), v) → π2r
1 (G, v)ev. It is clear that Φ is a



332 Takahiro Matsushita

�

�

�

�

�

�

�

❍❍ �
�
�
�◗◗

◗✟✟✟✟◗
◗

◗✡
✡
✡✡


❆
❆
❆
❆

�

�

�

✡
✡
✡✡
◗

◗
◗
✂
✂
✂✂

xj

w

xj+1

y

✡
✡✣

✟✟ ◗◗�
✡
✡✡

◗
◗�

✟✟✟

ϕ

ψ

Fig. 4.1.

group homomorphism, and natural with respect to basepoint preserving

graph homomorphisms.

Next we construct the inverse Ψ : π2r
1 (G, v)ev → E(Nr(G), v) of Φ. By

the hypothesis, there is a vertex w adjacent to v. Let α be an element of

π2r
1 (G, v)ev. Let ϕ : L2n → G be a loop of (G, v) with even length. Let m

be an integer such that 2rm ≥ n. Define the extension ϕ′ : L2rm → G by

ϕ′(i) =




ϕ(i) (i ≤ 2n)

v (i is even and i ≥ 2n)

w (i is odd and i ≥ 2n).

(1)

Define Ψ(ϕ) to be the homotopy class of the edge-path

(ϕ′(0), ϕ′(2r), · · · , ϕ′(2rm)).

Clearly the homotopy class Ψ(ϕ) does not depend on the choice of the

integer m.

We want to show that if the loops ϕ and ψ are r-homotopic, then the

edge-paths Ψ(ϕ) and Ψ(ψ) are homotopic. We can assume that the pair of

loops ϕ and ψ satisfies one of the conditions (A) and (B)′r in Section 3 (see

Remark 3.1).

First we consider the case of (A). Namely, if l(ϕ) = 2m, then l(ψ) =

2m + 2 and there is x ∈ {0, 1, · · · , 2m} such that ψ(i) = ϕ(i) for i ≤ x and



Fundamental Groups of Neighborhood Complexes 333

ψ(i + 2) = ϕ(i) for i ≥ x. Let m be an integer such that 2rm ≥ 2n + 2. Let

ϕ′, ψ′ : L2rm → G be the extensions of ϕ,ψ, respectively, described by the

equation (1). Then the following claims hold:

(I) {ϕ′(2ri), ϕ′(2r(i + 1)), ψ′(2r(i + 1))} ⊂ Nr(ϕ
′(2ri + r))

(II) {ϕ′(2ri), ψ′(2ri), ψ′(2r(i + 1))} ⊂ Nr(ψ
′(2ri + r))

The claim (II) is obvious since ϕ′(2ri) is equal to ψ′(2ri) or ψ′(2ri + 2).

We shall show the claim (I). It is clear that ϕ′(2ri) and ϕ′(2r(i + 1)) are

contained in Nr(ϕ
′(2ri+ r)). If x �= 2r(i+1)−1, then ψ′(2r(i+1)) is equal

to ϕ′(2r(i + 1)) or ϕ′(2r(i + 1) − 2), and is contained in Nr(ϕ
′(2ri + r)).

Suppose x = 2r(i + 1) − 1. Then ψ′(x) = ϕ′(x) ∈ Nr−1(ϕ
′(2ri + r)), and

hence ψ′(2r(i+1)) = ψ′(x+1) ∈ Nr(ϕ
′(2ri+ r)). This completes the proof

of the claim (I).

By the above claims, the triangles appearing in Figure 4.2 form simplices

of Nr(G). Thus the edge-paths

(ϕ′(0), ϕ′(2r), · · · , ϕ′(2rn))

and

(ψ′(0), ψ′(2r), · · · , ψ′(2rn))

of Nr(G) are homotopic.

� �

� �

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅❅

❅
❅

❅
❅

❅

ϕ′(2ri) ϕ′(2r(i + 1))

ψ′(2ri) ψ′(2r(i + 1))

· · · · · ·

· · · · · ·

Fig. 4.2.
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Next we consider the case of (B)′r (see Remark 3.1). Then l(ϕ) = l(ψ)

and there is x ∈ {0, 1, · · · , l(ϕ)} such that ϕ(i) = ψ(i) if i ≤ x or i ≥ x + r.

Suppose that x is even. Let k be a non-negative integer such that 2r divides

2k + x. Define ϕ1 by

ϕ1(i) =




v (i is even and i ≤ 2k.)

w (i is odd and i ≤ 2k.)

ϕ(i − 2k) (i ≥ 2k).

Recall that w is a fixed vertex adjacent to v. Define ψ1 in a similar way.

Then ϕ1(i) = ψ1(i) if i ≤ 2k +x or i ≥ 2k +x+2r. Since 2r divides 2k +x,

we have that ϕ1(2ri) = ψ1(2ri) for every integer i with 0 ≤ 2ri ≤ l(ϕ)+2k.

This implies that Ψ(ϕ1) = Ψ(ψ1). Since we have already shown that Ψ(ϕ) is

invariant under the condition (A), we have Ψ(ϕ) = Ψ(ϕ1) = Ψ(ψ1) = Ψ(ψ).

Next suppose that x is odd. By the same way as the previous paragraph,

we can suppose that 2r divides x−1. Let ϕ′, ψ′ : L2rm → G be extensions of

ϕ and ψ described in the equation (1), and suppose that 4r + x− 1 ≤ 2rm.

Figure 4.3 illustrates ϕ′ and ψ′ in the case of r = 2. Then the following

claims hold:

(i) {ϕ′(x − 1), ϕ′(x + 1), ϕ′(2r + x − 1)} ⊂ Nr(ϕ
′(r + x − 1))

(ii) {ϕ′(x − 1), ϕ′(x + 1), ψ′(2r + x − 1)} ⊂ Nr(ψ
′(r + x − 1))

(iii) {ϕ′(x + 1), ϕ′(2r + x − 1), ψ′(2r + x − 1)} ⊂ Nr(ϕ
′(r + x + 1))

(iv) {ϕ′(2r + x − 1), ψ′(2r + x − 1), ϕ′(4r + x − 1)} ⊂ Nr(ϕ
′(3r + x − 1))

Now we show the above claims. The claim (i) is obvious. The claim (ii)

follows from ϕ′(x) = ψ′(x) ∈ Nr−1(ψ
′(r + x − 1)). The claim (iii) follows

from ψ′(2r + x) = ϕ′(2r + x) ∈ Nr−1(ϕ
′(r + x + 1)). Finally, the claim (iv)

follows from ψ′(2r + x) = ϕ′(2r + x) ∈ Nr−1(ϕ
′(3r + x − 1)).

Note that ψ′(x− 1) = ϕ′(x− 1) and ψ′(4r + x− 1) = ϕ′(4r + x− 1). It

follows from the above claims and Figure 4.4 that the edge-paths (ϕ′(x −
1), ϕ′(2r + x − 1), ϕ′(4r + x − 1)) and (ψ′(x − 1), ψ′(2r + x − 1), ψ′(4r +

x− 1)) are homotopic. Therefore we have that (ϕ′(0), ϕ′(2r), · · · , ϕ′(2rm))

and (ψ′(0), ψ′(2r), · · · , ψ′(2rm)) are homotopic, and hence Ψ(ϕ) = Ψ(ψ).

Thus the correspondence ϕ �→ Ψ(ϕ) induces the map Ψ : π2r
1 (G, v)ev →

E(Nr(G), v). It is clear that Ψ is the inverse of Φ. This completes the proof

of Theorem 1.1.
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5. Kneser Graphs

Let n and k be positive integers, and suppose n ≥ 2k. Define the

Kneser graph KGn,k as follows. The vertices of KGn,k are the k-subsets

of {0, 1, · · · , n − 1} and two of them are adjacent if and only if they are

disjoint.
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The Kneser conjecture asserts that the chromatic number of KGn,k is

n − 2k + 2. In fact, it is easy to show χ(KGn,k) ≤ n − 2k + 2. On the

other hand, Lovász showed the following two theorems and solve the Kneser

conjecture.

Theorem 5.1 (Lovász [4]). If the neighborhood complex N(G) of G is

n-connected, then χ(G) ≥ n + 3.

Theorem 5.2 (Lovász [4]). The neighborhood complex of KGn,k is

(n − 2k − 1)-connected.

The purpose of this section is to determine the r-fundamental groups of

the Kneser graphs for r ≥ 2. If n = 2k, then the Kneser graph KG2k,k is

the disjoint union of copies of K2, so there is nothing we need to show.

Theorem 5.2 implies that KGn,k is connected if n > 2k. Suppose that

n > 2k + 1. Then Theorem 5.2 and Theorem 1.1 imply that the even

part π2
1(KGn,k)ev is trivial. Since the natural quotient map π2

1(G, v)ev →
πr

1(G, v)ev is surjective, we have that πr
1(KGn,k)ev is trivial for r ≥ 2. Since

KGn,k is not bipartite, the map

πr
1(KGn,k) → Z/2, [γ] �→ (l(γ) (mod. 2))

is a surjective group homomorphism with trivial kernel πr
1(KGn,k)ev. Thus

we have πr
1(KGn,k) ∼= Z/2.

Next we consider the case KG2k+1,k. Note that π2
1(KG2k+1,k) is isomor-

phic to π1
1(KG2k+1,k). In fact, Lemma 5.5 mentioned below implies that

every 4-cycle of KG2k+1,k is degenerate. Thus it follows from Proposition

3.3 that π2
1(KG2k+1,k) ∼= π1

1(KG2k+1,k) ∼= π1(|KG2k+1,k|).
The number of the vertices of KG2k+1,k is

(
2k + 1

k

)
.

Since the degree of each vertex of KG2k+1,k is k +1, the number of edges is

k + 1

2

(
2k + 1

k

)
.
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Thus the Euler characteristic c(KG2k+1,k) of KG2k+1,k is

c(KG2k+1,k) =
1 − k

2

(
2k + 1

k

)
.

Let F (m) denote the free group of rank m. For a connected graph G with

Euler characteristic m, it is clear that π1(G) ∼= F (1 − m). Thus we have

π2
1(KG2k+1,k) ∼= F

(
1 +

k − 1

2

(
2k + 1

k

))
.

Next we compute the even part of π2
1(KG2k+1,k). Note that a subgroup

of F (m) with index 2 is isomorphic to F (2m − 1). To see this, let X be

the wedge of m circles S1 ∨ · · · ∨ S1. A subgroup of F (m) with index 2 is

isomorphic to some connected double covering Y over X. Then the Euler

characteristic c(Y ) of Y is 2c(X) = 2 − 2m. Therefore we have

π1(N(KG2k+1,k)) ∼= π2
1(KG2k+1,k)ev ∼= F

(
1 + (k − 1)

(
2k + 1

k

))
.

Thus the only non-trivial part is the following proposition. It is clear

that the proposition implies πr
1(KG2k+1,k) ∼= Z/2 for all r ≥ 3.

Proposition 5.3. The even part of π3
1(KG2k+1,k) is trivial. Hence

π3
1(KG2k+1,k) ∼= Z/2.

To prove this, we need to observe several properties of the Kneser graph

KG2k+1,k. For a non-negative integer n, we write 〈n〉 to indicate the set

{0, 1, · · · , n − 1}.

Lemma 5.4. Let σ and σ′ be k-subsets of 〈2k + 1〉. There is a path of

KG2k+1,k with length 2 joining σ to σ′ in KG2k+1,k if and only if σ and σ′

coincide except for one element.

Proof. Let τ be a k-subset of 〈2k + 1〉 adjacent to both σ and σ′.
Then σ and σ′ are contained in the (k + 1)-set 〈2k + 1〉 \ τ . On the other

hand, if σ and σ′ coincide except for one element, then the cardinality of

the union σ ∪ σ′ is k or k + 1. Hence there is a k-subset τ of 〈2k + 1〉 such

that τ is disjoint from both σ and σ′. �
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Lemma 5.5. Let σ and σ′ be k-subsets of 〈2k + 1〉 and suppose that

σ �= σ′ and there is a path with length 2 joining σ to σ′. Then a vertex

adjacent to both σ and σ′ is unique.

Proof. By Lemma 5.4, the cardinality of the union σ ∪ σ′ is k + 1.

Let τ be a k-subset of 〈2k + 1〉 adjacent to both σ and σ′. Then τ is

contained in the k-subset 〈2k + 1〉 \ (σ ∪ σ′). Since τ is a k-subset, we have

τ = 〈2k + 1〉 \ (σ ∪ σ′). �

Recall that for a graph G, the odd girth g0(G) of G is the number

inf{2n + 1 | There is a graph homomorphism from C2n+1 to G.}.

In other words, the odd girth is the minimal length of odd cycles embedded

into G.

Lemma 5.6. The odd girth of KG2k+1,k is 2k + 1.

Proof. Let γ : L2m → G be a graph homomorphism. Applying

Lemma 5.4, we can show that

#(γ(0) \ γ(2m)) ≤ m

by the induction on m. If γ(0) and γ(2m) are adjacent, we have that

#(γ(0) \ γ(2m)) = #γ(0) = k, and hence m ≥ k. Thus we have

g0(KG2k+1,k) ≥ 2k + 1. On the other hand, let γ0 : Z/(2k + 1) →
V (KG2k+1,k) be the map defined by

γ0(i) = {ki mod. (2k+1), ki+1 mod. (2k+1), · · · , ki+k−1 mod. (2k+1)}.

Then γ0 is a graph homomorphism from C2k+1 to KG2k+1,k. Thus we have

g0(KG2k+1,k) = 2k + 1. �

Lemma 5.7. Let σ and τ be k-subsets of 〈2k+1〉 and suppose that there

is a path γ with length 3 connecting σ with τ . Then the cardinality of the

intersection σ ∩ τ is at most 1.

Proof. Let γ : L3 → KG2k+1,k be a path with length 3 joining σ to

τ . By Lemma 5.4, we have #(σ \ γ(2)) ≤ 1. Since σ ∩ τ ⊂ σ \ γ(2), we have

#(σ ∩ τ) ≤ 1. �
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Lemma 5.8. Let σ and τ be vertices of KG2k+1,k and suppose that

there is a path with length 3 joining σ to τ and σ ∩ τ �= ∅. In this case the

cardinality of the union σ∪τ is 2k−1, and let {a, b} = 〈2k+1〉\(σ∪τ). Then

there are only two paths γ and γ′ with length 3 joining σ to τ . Moreover,

a �∈ γ(1) implies a ∈ γ′(1).

Proof. It follows from Lemma 5.7 that σ ∪ τ is a (2k − 1)-subset of

〈2k + 1〉. Let γ : L3 → KG2k+1,k be a path with length 3 joining σ to

τ . Then γ(1) ⊂ 〈2k + 1〉 \ σ and #(γ(1) ∩ τ) = k − 1 (see Lemma 5.4).

Since τ \ σ = k − 1 (see Lemma 5.7), we have γ(1) ∩ τ = τ \ σ and hence

τ \ σ ⊂ γ(1). Thus we have γ(1) = (τ \ σ) ∪ {a} or (τ \ σ) ∪ {b}. If γ(1)

is determined, then γ(2) is uniquely determined by Lemma 5.5. Thus there

exist only two paths joining σ to τ with length 3. The last assertion clearly

follows from this proof. �

Note that the two paths γ and γ′ in Lemma 5.8 are 3-homotopic.

Let σ0 be the set 〈k〉 = {0, 1, · · · , k−1} and consider σ0 as the basepoint

of KG2k+1,k. Define the loop γ0 : L2k+1 → KG2k+1,k by

γ0(i) = {ki + j mod. (2k + 1) | j ∈ σ0}.
It follows from Lemma 5.6 that the length of an odd loop is greater than or

equal to 2k + 1.

Lemma 5.9. Let α be an odd element of π3
1(KG2k+1,k, σ0). Then there

is a representative γ of α whose length is minimal amongst the representa-

tives of α, such that γ|L2k+1
= γ0.

Proof. Let γ : L2m+1 → KG2k+1,k be a representative of α whose

length is minimal amongst the representatives of α. Suppose γ(1) �= γ0(1).

Then γ(1) contains 2k. Since γ(2m + 1) = σ0 does not contain 2k, there is

a ∈ {0, 1, · · · ,m − 1} such that

γ(1), γ(3), · · · , γ(2a + 1)

contain 2k but γ(2a + 3) does not contain 2k. Since the length of γ is

minimal, we have that γ(2a)∩γ(2a+3) �= ∅. In fact, if γ(2a)∩γ(2a+3) = ∅,
then the path γ̂ : L2m−1 → G defined by

γ̂(i) =

{
γ(i) (i ≤ 2a)

γ(i + 2) (i > 2a)
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is 3-homotopic to γ (see Figure 5.1).

Thus there is a unique loop γ′ : L2m+1 → G such that γ′(i) = γ(i) if

i ≤ 2a or i ≥ 2a + 3 but γ �= γ′ (see Lemma 5.8). Then it is clear that γ

and γ′ are 3-homotopic. Since γ(2a + 1) contains 2k, we have that γ(2a)

does not contain 2k. Since neither γ(2a) nor γ(2a + 3) contain 2k, we have

that γ′(2a + 1) does not contain 2k (see Lemma 5.8). Thus

γ′(1), γ′(3), · · · , γ′(2a − 1)

contain 2k + 1 but γ′(2a + 1) does not contain 2k. By the induction on a,

there is a loop γ′′ : L2m+1 → KG2k+1,k such that γ �3 γ′′ and γ′′(1) does

not contain 2k. This implies that γ′′(1) = γ(1).

By the same argument, we can show that if γ(i) = γ0(i) (i = 1, · · · , j)

for some integer j < 2k + 1, then there is a loop γ′ : L2m+1 → KG2k+1,k

such that γ′(i) = γ0(i) for i = 0, 1, · · · , j + 1 and γ′ �3 γ. This completes

the proof. �
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Fig. 5.1.

Lemma 5.10. Let (σ, σ′) and (τ, τ ′) be elements of E(KG2k+1,k). Then

there is an automorphism α of KG2k+1,k such that α(σ) = τ and α(σ′) = τ ′.

Proof. We write S2k+1 to indicate the group of the automorphisms

of the set 〈2k + 1〉 = {0, 1, · · · , 2k}. For an element f ∈ S2k+1, define the

automorphism αf of KG2k+1,k by αf (σ) = f(σ). Clearly, there is f ∈ S2k+1

such that αf (σ) = τ and αf (σ
′) = τ ′ since σ ∩ σ′ = ∅ and τ ∩ τ ′ = ∅. �

Proof of Proposition 5.3. Let α be an odd element of

π3
1(KG2k+1,k), let γ be a representative of α whose length is minimal

amongst the representatives of α. We want to show that γ is 3-homotopic



Fundamental Groups of Neighborhood Complexes 341

to γ0. Since the odd girth of KG2k+1,k is 2k + 1, we have l(γ) ≥ 2k + 1.

If l(γ) = 2k + 1, then Lemma 5.9 implies γ �3 γ0. Suppose that l(γ) is

greater than 2k + 1. By Lemma 5.9 we can assume that γ|L2k+1
= γ0, and

set γ = γ1 · γ0.

It follows from Lemma 5.10 that there is an automorphism α of KG2k+1,k

such that α(σ0) = σ0 and α(γ0(2k)) = γ1(1). Let γ′
0 = α ◦ γ0. Then we

have γ1 · γ0 �3 γ1 · γ′
0 since γ0 �3 γ′

0 (see the previous paragraph).

Note that γ1 · γ′
0(2k) = γ′

0(2k) = α(γ0(2k)) = γ1(1) = γ1 · γ′
0(2k + 2).

Hence γ is 3-homotopic to a loop whose length is smaller than l(γ) (see the

condition (A) in Section 3). This contradicts the assumption of γ. Thus we

have l(γ) = 2k + 1 and γ �3 γ0.

Therefore we conclude that π3
1(KG2k+1,k) has only one odd element.

Since the index of the even part is 2, this implies that the even part of

π3
1(KG2k+1,k) is trivial. �

We conclude this section with the following corollary.

Corollary 5.11. For every positive integer k, there is no graph ho-

momorphism from KG2k+1,k to C5.

Proof. Suppose that there is a graph homomorphism f : KG2k+1,k →
C5. Since π3

1(KG2k+1,k) ∼= Z/2 and π3
1(C5) ∼= Z (see Example 3.4), the

group homomorphism f∗ : π3
1(KG2k+1,k) → π3

1(C5) induced by f is trivial.

Let α be the generator of π3
1(KG2k+1,k). Since α is odd, we have that f∗(α)

is odd and hence non-trivial. This is a contradiction. �

Note that if there is a graph homomorphism f : G → H, then we have

g0(G) ≥ g0(H). Since the odd girth of KG2k+1,k is 2k + 1 (Lemma 5.6),

the obstruction of the existence of graph homomorphisms from KG2k+1,k

to C5 is not obtained from the odd girths if k ≥ 2. Moreover, we should

note that this obstruction is not obtained from the topology of neighbor-

hood complexes. In fact, both N(C5) and N(C3) are homeomorphic to S1

but there is a graph homomorphism from KG2k+1,k to C3
∼= K3 (recall

χ(KGn,k) = n − 2k + 2). Similarly, this obstruction is not obtained from

the equivariant topology of box complexes discussed in [5].
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6. Covering Maps

It is well known that there is a close relationship between covering spaces

and fundamental groups of topological spaces. In this section we introduce

the covering notion associated to r-fundamental groups, called r-covering

maps, and investigate their properties. As is the case of topogical spaces,

there is a correspondence between a subgroup of πr
1(G, v) and an connected

r-covering over (G, v) (Theorem 6.11).

It turns out that the even part of πr
1(G, v) corresponds to the Kro-

necker double covering K2 × G (Proposition 6.12). Since the fundamental

group of the r-neighborhood complex is isomorphic to the even part of (2r)-

fundamental group, this implies that there is a connected covering space over

Nr(G) and a (2r)-covering over K2 × G. We also show that (2r)-covering

induces a covering between r-neighborhood complexes (Proposition 6.14).

Now we start with the definition of the r-covering maps.

Definition 6.1. A graph homomorphism p : G → H is an r-covering

map if the map

p|Ni(v) : Ni(v) → Ni(p(v))

is a bijection for every 1 ≤ i ≤ r and every vertex v of G.

Lemma 6.2. Let p : G → H be a graph homomorphism. Then p is an

r-covering map if and only if for every vertex v of G, the map

p|N(v) : N(v) → N(p(v))

is surjective and the map

p|Nr(v) : Nr(v) → Nr(p(v))

is injective.

Proof. Since the “only if” part is obvious, we only show the “if” part.

Suppose that p|N(v) is surjective and p|Nr(v) is injective for every v ∈ V (G).

It is straightforward to show that p|Ni(v) is surjective and i ≥ 0 by the

induction on i, and we omit the details. We show the injectivity of p|Ni(v)

for every v ∈ V (G) and i = 1, · · · , r. In case v is isolated, the vertex p(v)

of H is also isolated since p|N(v) : N(v) → N(p(v)) is surjective. Hence we
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have that Ni(v) = ∅ and Ni(p(v)) = ∅, and hence p|Ni(v) : Ni(v) → Ni(p(v))

is injective. Suppose that v is not isolated. Then there is an element w of

Nr−i(v). Since Ni(v) ⊂ Nr(w), the injectivity of p|Ni(v) follows from the

injectivity of p|Nr(w). �

Example 6.3. Let n be a positive integer, and let m be an integer

greater than 1. Then the graph homomorphism

p : C2nm → C2n, (x mod. 2nm) �→ (x mod. 2n)

is an (n− 1)-covering but not an n-covering. On the other hand, the graph

homomorphism p : C2(2n+1) → C2n+1 is an r-covering map for every positive

integer r. If m > 2, then the graph homomorphism Cm(2n+1) → C2n+1 is

a (2n)-covering but not a (2n + 1)-covering. Compare these examples with

the r-fundamental groups of cycles (Example 3.4).

Lemma 6.4. Let p : G → H and q : H → K be graph homomorphisms.

Suppose that p : V (G) → V (H) is surjective as a set map. If two of p, q,

and q ◦ p are r-covering maps, then so is the third.

Proof. For a vertex v of G and i = 1, · · · , r, consider the diagram

Ni(v)
p−−−→ Ni(p(v))

q◦p
� �q

Ni(q ◦ p(v)) Ni(q ◦ p(v)).

If two of the three arrows are bijective, then so is the third. �

Proposition 6.5. Let p : G → H be an r-covering map and let v be a

vertex of G. Then the following hold.

(1) Let ϕ : Lm → H be a path of H starting from p(v). Then there is a

unique path ϕ̃ of G such that p ◦ ϕ̃ = ϕ and ϕ̃(0) = v. We call this ϕ̃

the lift of ϕ starting from v.

(2) Let ϕ : Lm → H and ψ : Ln → H be paths such that ϕ(0) = ψ(0) and

ϕ(m) = ψ(n). Let ϕ̃ and ψ̃ be the lifts of ϕ and ψ starting from v

respectively. If ϕ �r ψ then ϕ̃(m) = ψ̃(n) and ϕ̃ �r ψ̃.
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Proof. The proof of (1) is straightforward and is omitted.

Now we show (2). We can assume that the pair of paths ϕ : Lm → H

and ψ : Ln → H satisfies one of the conditions (A) and (B)′r in Section

3. Suppose that the condition (A) holds. Then n = m + 2 and there is

x ∈ {0, 1, · · · ,m} such that ϕ(i) = ψ(i) for every i ≤ x, and ϕ(i) = ψ(i+2)

for every i ≥ x. Note that ψ̃(x), ψ̃(x + 2) ∈ N(ψ̃(x + 1)) and

p(ψ̃(x)) = ψ(x) = ϕ(x) = ψ(x + 2) = p(ψ̃(x + 2)).

Since p is an r-covering map, we have ψ̃(x) = ψ̃(x + 2). The uniqueness

of the lift (see (1)) implies ψ̃(i) = ϕ̃(i) for every i ≤ x. Hence we have

ψ̃(x+2) = ψ̃(x) = ϕ̃(x). The uniqueness of the lift again implies ψ̃(i+2) =

ϕ̃(i) for every i ≥ x. Hence the pair ϕ̃ and ψ̃ of paths of G satisfies the

condition (A).

Next suppose that the pair ϕ and ψ satisfies the condition (B)′r, namely,

m = n and there is x ∈ {0, 1, · · · , n} such that ϕ(i) = ψ(i) if either i ≤ x or

i ≥ x + r holds. By the uniqueness of the lift, we have that ϕ̃(i) = ψ̃(i) for

i ≤ x. Suppose x + r ≤ n. Since ϕ̃(x) = ψ̃(x), we have ϕ̃(x + r), ψ̃(x + r) ∈
Nr(ϕ̃(x)). Moreover, we have

p(ψ̃(x + r)) = ψ(x + r) = ϕ(x + r) = p(ϕ̃(x + r)).

Since p is an r-covering map, we have ϕ̃(x+ r) = ψ̃(x+ r). Again the lift of

the uniqueness implies that ϕ̃(i) = ψ̃(i) for every i ≥ x + r. Thus the pair

ϕ̃ and ψ̃ of paths of G satisfies the condition (B)′r. Since the proof in the

case x + r > n is similar, we omit it. �

Corollary 6.6. Let p : G → H be an r-covering map, and let v be

a vertex of G. Then the group homomorphism p∗ : πr
1(G, v) → πr

1(H, p(v))

induced by p is injective.

Proof. Let ϕ be a loop of (G, v) and suppose that p◦ϕ is r-homotopic

to ∗p(v). It follows from (2) of Proposition 6.5 that ϕ is r-homotopic to ∗v. �

Corollary 6.7. Let p : (G, v) → (H,w) be a basepoint preserving r-

covering map, and let ϕ : Ln → H be a loop of (H,w). Then [ϕ]r belongs to

p∗(πr
1(G, v)) if and only if the lift ϕ̃ of ϕ starting from v is a loop of (G, v).
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Proof. Suppose that [ϕ]r belongs to p∗(πr
1(G, v)). Let ψ be a loop of

(G, v) such that p ◦ ψ �r ϕ. By (2) of Proposition 6.5, we have that ϕ̃ is a

loop. �

Lemma 6.8. Let p : (G, v) → (H,w) be a basepoint preserving r-

covering map, let (T, x) be a connected based graph, and let f : (T, x) →
(H,w) be a basepoint preserving graph homomorphism. Then a basepoint

preserving graph homomorphism f̃ : (T, x) → (G, v) such that p ◦ f̃ = f

exists if and only if f∗(πr
1(T, x)) ⊂ p∗(πr

1(G, v)). Moreover, such a graph

homomorphism f̃ is uniquely determined.

Proof. If there is a lift f̃ of f , then we have f∗(πr
1(T, x)) = p∗ ◦

f̃∗(π1(T, x)) ⊂ p∗(πr
1(G, v)). On the other hand, suppose that f∗(πr

1(T, x))

is contained in p∗(πr
1(G, v)). We construct a graph homomorphim f̃ as

follows. Let y ∈ V (T ) and let ϕ : Ln → T be a path joining x to y. Let

ϕ̃ : Ln → G be the lift of f ◦ ϕ starting from v.

We show that the terminal point of ϕ̃ does not depend on the choice of

the path ϕ. Let ψ be another path joining x to y. Let γ be the lift of f◦(ψ·ϕ)

of G whose initial point is v. By the hypothesis f∗(πr
1(T, x)) ⊂ p∗(πr

1(G, v))

and Corollary 6.7 we have that γ is a loop of (G, v). Hence the terminal

point of ψ̃ coincides with the one of ψ̃ · γ. Note that ψ̃ · γ is the lift of

p ◦ (ψ ·ψ ·ϕ). Since ψ ·ψ ·ϕ �r ϕ, we have that the terminal points of ψ̃ · γ
and ϕ̃ coincide (see (2) of Proposition 6.5).

Thus we let f̃(y) be the terminal point of ϕ̃. It is straightforward to

show that f̃ is a basepoint preserving graph homomorphism from (T, x) to

(G, v) and p ◦ f̃ = f , and we omit the details.

Finally, we show that the uniqueness of the lift f̃ . Let f̃0 : (T, x) →
(G, v) be a basepoint preserving graph homomorphism such that p◦ f̃0 = f .

Consider the set A = {y ∈ V (T ) | f̃0(y) = f̃(y)}. Since f̃0(x) = v = f̃(x),

we have that x belongs to A. Suppose y ∈ A and let z ∈ N(y). Note that

f̃(z) and f̃0(z) are contained in N(f̃(y)) and p(f̃0(z)) = f(z) = p(f̃(z)).

Since p is an r-covering map, we have f̃0(z) = f̃(z), and hence z ∈ A. Since

T is connected, the set A coincides with the vertex set of T . This implies

f̃0 = f̃ . �

The universal r-covering over a based graph (G, v) is a basepoint pre-

serving r-covering map p : (G̃, ṽ) → (G, v) such that G̃ is connected and the
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r-fundamental group of (G̃, ṽ) is trivial. It follows from Lemma 6.8 that the

universal r-covering is unique up to isomorphisms.

Proposition 6.9. For every based graph (G, v), the universal r-cov-

ering over (G, v) exists.

Proof. Recall that πr
1(G, v, w) denotes the set of r-homotopy classes

of paths joining v to w (see Section 3). Set

V (G̃) =
∐

w∈V (G)

πr
1(G, v, w),

E(G̃) = {(α, β) | There is ϕ ∈ β

such that the path ϕ|Ll(ϕ)−1
belongs to α.},

and let p : V (G̃) → V (G) be the map which takes an element of πr
1(G, v, w)

to w. Let ṽ be the r-homotopy class of the trivial loop ∗v of (G, v).

First we show that E(G̃) is a symmetric subset of V (G̃)×V (G̃). Consider

the following conditions (1), (2), and (3) concerning a pair (α, β) of elements

of V (G̃).

(1) The pair (α, β) belongs to E(G̃).

(2) There is a representative ϕ of α such that the map ϕ′ : V (Ll(ϕ)+1) →
V (G) defined by ϕ′|V (Ll(ϕ)) = ϕ and ϕ′(l(ϕ) + 1) = p(β) is a graph

homomorphism, and ϕ′ belongs to β.

(3) For each representative ϕ of α, the map ϕ′ : V (Ll(ϕ)+1) → V (G)

defined by ϕ′|V (Ll(ϕ)) = ϕ and ϕ′(l(ϕ) + 1) = p(β) is a graph homo-

morphism. Moreover, the path ϕ′ belongs to β.

We show that these conditions are equivalent. It is clear that the conditions

(1) and (2) are equivalent and the condition (3) implies the condition (2).

Suppose that the condition (2) holds. Let u : L1 → G be a path which takes

0 to p(α) and 1 to p(β). Then there is a representative ϕ of α such that

the extension ϕ′ = u · ϕ : Ll(ϕ)+1 → G is a representative of β. Let ψ be

another representative of α and consider ψ′ = u · ψ. Since ϕ �r ψ, we have

that ψ′ = u · ψ �r u · ϕ = ϕ′ ∈ β. Thus the condition (3) holds.
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Let (α, β) ∈ E(G̃). Let ϕ be an element of α. Define the path ϕ′′ :

Ll(ϕ)+2 → G by ϕ′′|Ll(ϕ)
= ϕ, ϕ′′(l(ϕ) + 1) = p(β), and ϕ′′(l(ϕ) + 2) = p(α).

Then we have (β, α) = ([ϕ′]r, [ϕ]r) = ([ϕ′]r, [ϕ′′]r) ∈ E(G̃). Hence E(G̃) is

symmetric.

Next we show that p is an r-covering map. It is clear that p is a graph

homomorphism and p|N(α) : N(α) → N(p(α)) is surjective for all α ∈ V (G̃).

By Lemma 6.2, it suffices to show that p|Nr(α) is injective for all α. Let

α ∈ V (G̃), β, β′ ∈ Nr(α), and suppose p(β) = p(β′). There are sequences

γ0, · · · , γr, and γ′
0, · · · , γ′

r of vertices of G̃ such that γ0 = γ′
0 = α, γr = β,

γ′
r = β′, and (γi−1, γi) and (γ′

i−1, γ
′
i) belong to E(G̃) for i = 1, · · · , r. Let ϕ

be a representative of α and put n = l(ϕ). Define the paths ψ,ψ′ : Ln+r →
G by ψ|Ln = ψ′|Ln = ϕ, ψ(n + i) = p(γi), and ψ′(n + i) = p(γ′

i). Then we

have that ψ ∈ β and ψ′ ∈ β′ (see (3) mentioned above). Since ψ �r ψ′, we

have β = β′. Hence the map p|Nr(α) is injective. Thus p is an r-covering

map.

It remains to be shown that G̃ is connected and πr
1(G̃, ṽ) is trivial. Let

α ∈ V (G̃) and let ϕ : Ln → G be a representative of α. Define the path ϕ̃ of

G̃ by ϕ̃(i) = [ϕ|Li ]r. Note that the path ϕ̃ connects ṽ with [ϕ]r = α. Hence

the graph G̃ is connected. Moreover, if α ∈ p∗(πr
1(G̃, ṽ)) ⊂ πr

1(G, v), then

we have [∗v]r = ṽ = ϕ̃(n) = α. This implies that p∗(πr
1(G̃, ṽ)) is trivial. It

follows from Corollary 6.6 that πr
1(G̃, ṽ) is trivial. �

Next we consider the relationship between r-covering maps and group

actions.

Throughout the section, all group actions are assumed to be from the

right. Let Γ be a group and consider a Γ-action on the graph G. Namely,

Γ acts on the vertex set V (G) from the right, and for every γ ∈ Γ, the map

V (G) → V (G), v �→ vγ is a graph homomorphism. Define the graph G/Γ

as follows. The vertex set is the orbit set V (G)/Γ, and two orbits α and β

are adjacent if and only if (α × β) ∩ E(G) �= ∅. Clearly, the quotient map

V (G) → V (G/Γ) is a graph homomorphism from G to G/Γ. The Γ-action

is an r-covering action if 1 �= γ ∈ Γ implies Nr(v) ∩ Nr(vγ) = ∅ for every

vertex v of G.

Proposition 6.10. Let G be a graph having no isolated vertices, and

let Γ be a group. Suppose that Γ acts on G, and the action is free as a
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set action on V (G). Then the graph homomorphism p : G → G/Γ is an

r-covering if and only if the Γ-action is an r-covering action.

Proof. Suppose that the Γ-action is an r-covering action. By Lemma

6.2, it suffices to show that p|N(v) : N(v) → N(p(v)) is surjective and

p|Nr(v) : Nr(v) → Nr(p(v)) is injective for every v ∈ V (G).

We show that p|N(v) is surjective. Let α be an element of N(p(v)). By

the definition of G/Γ, there are an element γ of Γ and a representative

w of α such that (vγ, w) ∈ E(G). Therefore we have wγ−1 ∈ N(v) and

p(wγ−1) = α. Hence p|N(v) is surjective.

We show that p|Nr(v) is injective. Let w0 and w1 be elements of Nr(v)

and suppose p(w0) = p(w1). By the definition of G/Γ, there is γ ∈ Γ with

w0γ = w1. Note

v ∈ Nr(w0) ∩ Nr(w1) = Nr(w0) ∩ Nr(w0γ)

and hence we have Nr(w0)∩Nr(w0γ) �= ∅. Since the Γ-action is an r-covering

action, we have γ = 1 and w1 = w01 = w0. Thus p|Nr(v) : Nr(v) → Nr(p(v))

is injective. Hence we have shown that the quotient map p : G → G/Γ is

an r-covering map.

Next suppose that the Γ-action is free and the quotient map p : G → G/Γ

is an r-covering map. Let v ∈ V (G), let γ ∈ Γ, and suppose Nr(v) ∩
Nr(vγ) �= ∅. Note that for an element w ∈ Nr(v)∩Nr(vγ), we have v, vγ ∈
Nr(w) and p(v) = p(vγ). Since p is an r-covering map, we have v = vγ.

Since the action is free, we have γ = 1. Thus the action is an r-covering

action. �

Let p : (G̃, ṽ) → (G, v) be the universal r-covering. We construct the

bijection

Φ : πr
1(G, v)

∼=−−−→ p−1(v)

as follows. Let α be an element of πr
1(G, v) and let ϕ be an element of α. By

(1) of Proposition 6.5, there is a unique lift ϕ̃ starting from ṽ. Let Φ([ϕ]r) be

the terminal point of ϕ̃. The independence of the choice of a representative

ϕ of α is deduced from (2) of Proposition 6.5. The verification of the fact

that Φ is bijective is straightforward and is left to the reader.

The above construction gives an alternative proof of πr
1(C2n+1) ∼= Z with

r ≤ n + 1 (Example 3.4) without using Theorem 3.2. Let L be the graph
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defined by

V (L) = Z,

E(L) = {(x, y) | |x − y| ≤ 1}.

Consider 0 as a basepoint of L. Then it is easy to see that πr
1(L) is trivial.

In fact, if ϕ : Ln → L is a loop of L and a ∈ V (Ln) is a point such that

|ϕ(a)| is maximum, then we have ϕ(a−1) = ϕ(a+1). Moreover, the natural

projection L → Cm is an r-covering map. Thus the above Φ gives a bijection

Z → πr
1(C2n+1), k �→ [ϕ]kr .

Here ϕ : L2n+1 → C2n+1 is the map i �→ (i mod.2n + 1). Note that [ϕ]2r = 1

in πr
1(C2n+1) when r > n + 1. Thus we also have πr

1(C2n+1) = Z/2Z when

r > n + 1. The computation of πr
1(C2n) is similarly obtained.

The following is the main result in this section.

Theorem 6.11. Let (G, v) be a based graph, and let Γ be a subgroup

of πr
1(G, v). Then there is a connected basepoint preserving r-covering pΓ :

(GΓ, vΓ) → (G, v) such that pΓ∗(πr
1(GΓ, vΓ)) = Γ. Moreover, such an r-

covering is unique up to isomorphisms.

Proof. The uniqueness of (GΓ, vΓ) follows from Lemma 6.8. If v is

isolated, the proof is trivial. So we assume that v is not isolated.

Consider the universal r-covering (G̃, ṽ) constructed in the proof of

Proposition 6.9. Since v is not isolated, G̃ has no isolated vertices. De-

fine the πr
1(G, v)-action on G̃ by

V (G̃) × πr
1(G, v) → V (G̃), (β, α) �→ β · α.

It is easy to see that for each element α of πr
1(G, v), the map V (G̃) → V (G̃),

β �→ β · α is a graph homomorphism.

Let β ∈ V (G̃) and set w = p(β). Then the orbit of the action is

πr
1(G, v, w) = p−1(w). Thus the induced map V (G̃/πr

1(G, v)) → V (G) is

bijective. It is easy to see that this is an isomorphism of graphs. Note

that for β ∈ V (G̃) and α ∈ πr
1(G, v), β · α = β implies α = 1 and hence

this πr
1(G, v)-action is free. Since the projection p : G̃ → G̃/Γ ∼= G is an

r-covering map, we have that this πr
1(G, v)-action is an r-covering action

(see Proposition 6.10).
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Let Γ be a subgroup of πr
1(G, v). Let GΓ = G/Γ, q : G̃ → GΓ the quotient

homomorphism, pΓ : GΓ → G the homomorphism such that pΓ ◦ q = p,

and let vΓ = q(ṽ). By Proposition 6.10, we have that q is an r-covering

map. By Lemma 6.4, we have that pΓ is an r-covering map. To deduce

p∗πr
1(GΓ, vΓ) = Γ, it suffices to note the following commutative diagram:

πr
1(GΓ, vΓ)

∼=−−−→ q−1(vΓ) Γ

pΓ∗

� � �
πr

1(G, v)
∼=−−−→ p−1(v) πr

1(G, v),

where the central and the right vertical arrows are inclusions. For the

definitions of the left horizontal arrows, see the paragraph after Proposition

6.10. �

Next we study the connected r-covering associated to the even part

πr
1(G, v)ev of πr

1(G, v). Let G and H be graphs. Define the categorical

product G × H by

V (G × H) = V (G) × V (H)

and

E(G × H) = {((x, y), (x′, y′)) | (x, x′) ∈ E(G), (y, y′) ∈ E(H)}.

The Kronecker double covering over G (see [2]) is the 2nd projection p :

K2×G → G. For a connected graph G, the Kronecker double covering over

G is connected if and only if G is not bipartite. It is easy to show that the

Kronecker double covering is an r-covering for every positive integer r.

Proposition 6.12. Let (G, v) be a connected based graph and suppose

that G is not bipartite. Then the double covering associated to the even part

of πr
1(G, v) is the Kronecker double covering p : (K2 × G, (0, v)) → (G, v)

over G.

Proof. Let ϕ : Ln → G be a loop of (G, v). Then the lift of ϕ with

respect to p : (K2 × G, (0, v)) → (G, v) is the map ϕ̃ : Ln → K2 × G,

i �→ (i mod.2, ϕ(i)). Note that ϕ̃ is a loop if and only if the length n of ϕ is

even. Thus this propoerition follows from Corollary 6.7. �
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Corollary 6.13. Let (G, v) be a based graph. Then there is a 1-1 cor-

respondence between connected based (2r)-coverings over G and connected

based r-coverings over (K2 × G, (0, v)).

Proof. Note that when G is bipartite, then K2 × G is two copies of

G. Thus it suffices to refer to Theorem 6.11, Proposition 6.12, and Theorem

1.1. �

The following proposition makes the correspondence of Corollary 6.13

apparent.

Proposition 6.14. Let p : G → H be a (2r)-covering map. Then the

map p∗ : Nr(G) → Nr(H) induced by p is a covering map.

Proof. Let w ∈ V (Nr(H)). It suffices to show the following asser-

tions:

(1) If v1, v2 ∈ p−1(w) with v1 �= v2, then stNr(G)(v1) ∩ stNr(G)(v2) = ∅

(2) p−1
∗ (stNr(H)(w)) =

∐
v∈p−1(w) stNr(G)(v)

(3) For each v ∈ p−1(w), the simplicial map p∗|stNr(G)(v) : stNr(G)(v) →
stNr(H)(w) is an isomorphism.

We first show (1). Suppose that there exists an element v′ of V (st(v1))∩
V (st(v2)). Then v1, v2 ∈ N2r(v

′) and p(v1) = w = p(v2). Since p is a (2r)-

covering, we have v1 = v2.

Next we show (2). Let σ be a non-empty simplex of p−1
∗ (stNr(H)(w)).

Then we have σ ∈ Nr(G) and p(σ) ∈ stNr(H)(w). Thus there exists a vertex

w′ of H such that p(σ) ∪ {w} ⊂ Nr(w
′). For each element x ∈ σ, there is

v′x such that p(v′x) = w′. Then we have v′x = v′y for every pair of elements

x and y of σ. In fact, p(v′x) = w′ = p(v′y) and v′x, v
′
y ∈ N2r(x), where x

is a vertex of G with σ ⊂ Nr(x) . Set v′ = v′x. Then there is an element

v ∈ Nr(v
′) with p(v) = w. Since σ ∪ {v} ⊂ Nr(v

′), we have that σ ∈ st(v).

This completes the proof of the inclusion “⊂” in (2). The other direction is

obvious.

Finally, we show (3). It is clear that V (st(v)) = N2r(v) and V (st(w)) =

Nr(w). Therefore p|N2r(v) = p|st(v) : V (st(v)) → V (st(w)) is a bijection.
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Thus it suffices to show that the inverse p|−1
N2r(v)

: N2r(w) → N2r(v) is a

simplicial map.

Let σ be a simplex of st(w) and set σ′ = (p|N2r(v))
−1(σ). There exists a

vertex w′ of H such that σ ∪ {w} ⊂ Nr(w
′). Then there exists v′ ∈ Nr(v)

with p(v′) = w′. Let σ be a subset of Nr(v
′) such that p(σ′′) = σ. Note that

σ′′ ∈ st(v) since σ′′∪{v} ⊂ Nr(v
′). Since σ′, σ′′ ⊂ N2r(v) and p(σ′) = p(σ′′),

we have that σ′ = σ′′. This completes the proof. �

Now we consider the correspondence of Corollary 6.13. Let (G, v) be a

based graph such that v is not isolated. We write Nr(G)0 to indicate the

connected component of Nr(G) containing v.

Suppose that G is not bipartite. It is clear that Nr(K2×G) is two copies

of Nr(G). Let p : H → K2 × G be a connected basepoint preserving (2r)-

covering over K2×G. Then Nr(H)0 → Nr(K2×G)0 = Nr(G)0 is a covering

space (Proposition 6.14). Similarly, if G is bipartite, then a connected

basepoint preserving (2r)-covering p : H → G, then p∗ : Nr(H) → Nr(G)0
is a covering space. These are the correspondences of Corollary 6.13.

We conclude this paper with a few remarks. Let G and H be connected

non-bipartite graphs and suppose that the Kronecker double coverings over

G and H are isomorphic. Then we have that π2
1(G)ev ∼= π2

1(H)ev. By

Theorem 1.1, we have π1(N(G)) ∼= π1(N(H)). In fact, the author showed

that K2 × G ∼= K2 × H implies N(G) ∼= N(H) (see [7]).

It follows from Theorem 1.1, Theorem 5.2, and Theorem 6.11 if the

neighborhood complex of G is simply connected, then a connected 2-covering

over G is isomorphic to either G or K2 × G. Examples of such graphs are

given by the Kneser graphs KGn,k for n > 2k + 1 (see Theorem 5.2) or

some of the stable Kneser graphs discussed in [1]. This phenomenon is quite

different from the usual covering maps over graphs. In fact, if a connected

graph G has an embedded cycle, then there are infinitely many coverings

over G.
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