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Kraśkiewicz-Pragacz Modules and Pieri and Dual

Pieri Rules for Schubert Polynomials

By Masaki Watanabe∗

Abstract. In their 1987 paper Kraśkiewicz and Pragacz defined
certain modules Sw (w ∈ S∞), which we call KP modules, over the
upper triangular Lie algebra whose characters are Schubert polynomi-
als. In a previous work the author showed that the tensor product of
KP modules always has a KP filtration, i.e. a filtration whose each
successive quotients are isomorphic to KP modules. In this paper we
explicitly construct such filtrations for certain special cases of these
tensor product modules, namely Sw ⊗ Sd(Ki) and Sw ⊗

∧d
(Ki), cor-

responding to Pieri and dual Pieri rules for Schubert polynomials.

1. Introduction

Schubert polynomials are one of the main subjects in algebraic combi-

natorics. One of the tools for studying Schubert polynomials is the modules

introduced by Kraśkiewicz and Pragacz. These modules, which here we call

KP modules, are modules over the upper triangular Lie algebra and have

the property that their characters with respect to the diagonal matrices are

Schubert polynomials.

It is known that a product of Schubert polynomials is always a positive

sum of Schubert polynomials. The previously known proof for this positivity

property uses the geometry of the flag variety. In [8] the author showed that

the tensor product of two KP modules always has a filtration by KP modules

and thus gave a representation-theoretic proof for this positivity. Although

the proof there does not give explicit constructions for the KP filtrations, it

may provide a new viewpoint for the notorious problem in Schubert calculus
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asking for a combinatorial positive rule for the coefficient in the expansion

of products of Schubert polynomials into a sum of Schubert polynomials.

There are some cases where the expansions of products of Schubert

polynomials are explicitly known. Examples of such cases include the Pieri

and the dual Pieri rules for Schubert polynomials ([1], [6], [7], [10]). These

are the cases where one of the Schubert polynomials is a complete symmetric

function hd(x1, . . . , xi) or an elementary symmetric function ed(x1, . . . , xi).

The purpose of this paper is to investigate the structure of tensor product

modules corresponding to these products and to give explicit constructions

of KP filtrations for these modules.

The structure of this paper is as follows. In Section 2 we prepare some

definitions and results on Schubert polynomials and KP modules. In Sec-

tion 3 we review the Pieri and the dual Pieri rules for Schubert polynomials.

In Section 4 we give explicit constructions for KP filtrations of the corre-

sponding tensor product modules Sw⊗Sd(Ki) and Sw⊗
∧d(Ki). In Section

5 we give a proof of the main result.

2. Preliminaries

Let N be the set of all positive integers. By a permutation we mean a

bijection from N to itself which fixes all but finitely many points. The graph

of a permutation w is the set {(i, w(i)) : i ∈ N} ⊂ N
2. For i < j, let tij

denote the permutation which exchanges i and j and fixes all other points.

Let si = ti,i+1. For a permutation w, let �(w) = #{i < j : w(i) > w(j)}. For

a permutation w and positive integers p < q, if �(wtpq) = �(w) + 1 we write

wtpq � w. It is well known that this condition is equivalent to saying that

w(p) < w(q) and there exists no p < r < q satisfying w(p) < w(r) < w(q).

For a permutation w let I(w) = {(i, j) : i < j, w(i) > w(j)}.
For a polynomial f = f(x1, x2, . . . ) and i ∈ N define ∂if = f−sif

xi−xi+1
. For

a permutation w we can assign its Schubert polynomial Sw ∈ Z[x1, x2, . . . ]

which is recursively defined by

• Sw = xn−1
1 xn−2

2 · · ·xn−1 if w(1) = n,w(2) = n− 1, . . . , w(n) = 1 and

w(i) = i (i > n) for some n, and

• Swsi = ∂iSw if �(wsi) < �(w).
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Hereafter let us fix a positive integer n. Let

S(n) = {w : permutation, w(n+ 1) < w(n+ 2) < · · · }.

Note that if w ∈ S(n) then I(w) ⊂ {1, . . . , n} × N. Let K be a field of

characteristic zero. Let b = bn denote the Lie algebra of all n × n upper

triangular matrices over K. For a b-module M and λ = (λ1, . . . , λn) ∈
Z
n, let Mλ = {m ∈ M : hm = 〈λ, h〉m (∀h = diag(h1, . . . , hn))} where

〈λ, h〉 =
∑

i λihi. If M is a direct sum of these Mλ and these Mλ are finite

dimensional then we say that M is a weight module and we define ch(M) =∑
λ dimMλx

λ where xλ = xλ1
1 · · ·xλn

n . For 1 ≤ i ≤ j ≤ n let eij ∈ b be the

matrix with 1 at the (i, j)-th position and all other coordinates 0.

Let U be a vector space spanned by a basis {uij : 1 ≤ i ≤ n, j ∈ N}.
Let T =

⊕∞
d=0

∧d U . The Lie algebra b acts on U by epquij = δiqepj and

thus on T . For w ∈ S(n) let uw =
∧

(i,j)∈I(w) uij ∈
∧�(w) U ⊂ T . The

Kraśkiewicz-Pragacz module Sw (or the KP module for short) associated to

w is the b-submodule of
∧�(w) U ⊂ T generated by uw. In [5] Kraśkiewicz

and Pragacz showed the following:

Theorem 2.1 ([5, Remark 1.6 and Theorem 4.1]). Sw is a weight mod-

ule and ch(Sw) = Sw.

Example 2.2. If w = si, then uw = ui,i+1 ∈ U and thus Sw =⊕
1≤j≤iKuj,i+1

∼=
⊕

1≤j≤iKuj =: Ki on which b acts by epquj = δqjup.

A KP filtration of a b-moduleM is a filtration 0 =M0 ⊂ · · · ⊂Mr =M

such that each Mi/Mi−1 is isomorphic to some KP module.

3. Pieri and Dual Pieri Rules for Schubert Polynomials

Definition 3.1. For w ∈ S∞, i ≥ 1 and d ≥ 0, let

Xi,d(w) = {tp1q1tp2q2 · · · tpdqd : pj ≤ i, qj > i,
w1 � w2 � · · · , w1(p1) < w2(p2) < · · · }

and

Yi,d(w) = {tp1q1tp2q2 · · · tpdqd : pj ≤ i, qj > i,
w1 � w2 � · · · , w1(q1) > w2(q2) > · · · }
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where w1 = w,w2 = wtp1q1 , w3 = wtp1q1tp2q2 , · · · .

Note that the condition forXi,d(w) (resp. Yi,d(w)) implies that q1, . . . , qd
(resp. p1, . . . , pd) are all different.

Theorem 3.2 (conjectured in [1] and proved in [10], also appears with

different formulations in [6] and [7]). We have

Sw · hd(x1, . . . , xi) =
∑

ζ∈Xi,d(w)

Swζ

and

Sw · ed(x1, . . . , xi) =
∑

ζ∈Yi,d(w)

Swζ

where hd and ed denote the complete and elementary symmetric functions

respectively.

The formulation of the Pieri rule here is slightly different from the one

in [1], but they are easily shown to be equivalent through other formulations

such as the one in [6]. It can also be obtained from the dual Pieri rule by

applying the ring automorphism on Z[x1, . . . , xN ]/IN =
⊕

w∈SN
ZSw given

by Sw �→ Sw0ww0 , where N � 0, w0 ∈ SN is the longest element and IN is

the ideal generated by all homogenous symmetric polynomials in x1, . . . , xN
of positive degree.

Note here that the permutation ζ ∈ Xi,d(w) (or Yi,d(w)) in fact uniquely

determines its decomposition into transpositions satisfying the conditions

in Definition 3.1. So we can write, without ambiguity, for example “for

ζ = tp1q1 · · · tpdqd ∈ Xi,d(w) define (something) as (some formula involving

pj and qj)”. Hereafter if we write such we will always assume the conditions

in Definition 3.1.

4. Explicit Pieri and Dual Pieri Rules for KP Modules

The author showed in [8] that the tensor product of KP modules always

has a KP filtration. Since Sd(Ki) and
∧d(Ki) (1 ≤ i ≤ n, d ≥ 1) are special

cases of KP modules, Sw ⊗ Sd(Ki) and Sw ⊗
∧d(Ki) (w ∈ S(n)) have KP

filtrations. In this section we give explicit constructions for these filtrations.
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For positive integers p ≤ q we define an operator e′qp acting on T as

e′qp(ua1b1 ∧ ua2b2 ∧ · · · ) =
∑

k(· · · ∧ δpbkuakq ∧ · · · ). Let these operators

act on T ⊗ Sd(Ki) and T ⊗
∧d(Ki) by applying them on the left-hand side

tensor component. Also for j ≥ 1 define an operator µj : T⊗
⊗a(Ki) → T⊗⊗a−1(Ki) (a ≥ 1) by u⊗(v1⊗v2⊗· · · ) �→ (ιj(v1)∧u)⊗(v2⊗v3⊗· · · ) where

ιj(up) = upj (1 ≤ p ≤ i). We denote the restrictions of µj to T ⊗ Sa(Ki)

and T ⊗
∧a(Ki) (seen as submodules of T ⊗

⊗a(Ki)) by the same symbol.

It is easy to see that e′rs and µj give an b-endomorphism on T ⊗
⊗•(Ki)

and thus on T ⊗ S•(Ki) and T ⊗
∧•(Ki).

For a permutation z and positive integers p < q let mpq(z) = #{r >
q : z(p) < z(r) < z(q)} and m′

qp(z) = #{r < p : z(p) < z(r) < z(q)}. For

ζ = tp1q1 · · · tpdqd ∈ Xi,d(w) (resp. Yi,d(w)) define

vζ = (
∏
j

e
mpjqj (wj)
pjqj uw) ⊗

∏
j

upj

= (
∏
j

e
mpjqj (wj)
pjqj uw) ⊗


∑

σ∈Sd

upσ(1)
⊗ · · · ⊗ upσ(d)


 ∈ Sw ⊗ Sd(Ki)

(resp.

vζ = (
∏
j

e
mpjqj (wj)
pjqj uw) ⊗

∧
j

upj

= (
∏
j

e
mpjqj (wj)
pjqj uw) ⊗


∑

σ∈Sd

sgnσ · upσ(1)
⊗ · · · ⊗ upσ(d)




∈ Sw ⊗
d∧

(Ki)

)

where wj = wtp1q1 · · · tpj−1qj−1 as in Definition 3.1. Note that these are

also well-defined even if some qj are greater than n, since in such a case

mpjqj (wj) = 0. Note also that the products of the operators epjqj above are

well-defined since the operators epjqj (pj ≤ i, qj > i) commute with each

other. Also, for such ζ, define a b-homomorphism φζ : T ⊗
⊗d(Ki) → T by

φζ = µqd · · ·µq1 ·
∏
j

(e′qjpj )
m′

qjpj
(wj).
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Note that the order in the product symbol does not matter since the oper-

ators e′qjpj commute.

Let <
lex

and <
rlex

denote the lexicographic and reverse lexicographic or-

derings on permutations respectively, i.e. for permutations u and v, u <
lex
v

(resp. u <
rlex
v) if there exists a k such that u(j) = v(j) for all j < k (resp.

j > k) and u(k) < v(k).

Proposition 4.1. For ζ, ζ ′ ∈ Xi,d(w) (resp. Yi,d(w)),

• φζ(vζ) is a nonzero multiple of uwζ ∈ T , and

• φζ′(vζ) = 0 if (wζ)−1 <
lex

(wζ ′)−1 (resp. (wζ)−1 <
rlex

(wζ ′)−1).

The proof for this proposition is given in the next section. Here we first

see that Proposition 4.1 gives desired filtrations.

For a b-module M and elements x, y, . . . , z ∈ M let 〈x, y, . . . , z〉 de-

note the submodule generated by these elements. Consider the sequence of

submodules

0 ⊂ 〈vζ1〉 ⊂ 〈vζ1 , vζ2〉 ⊂ · · · ⊂ 〈vζ : ζ ∈ Xi,d(w) (resp. Yi,d(w))〉

inside Sw ⊗ Sd(Ki) (resp. Sw ⊗
∧d(Ki)), where ζ1, ζ2, . . . ∈ Xi,d(w) (resp.

Yi,d(w)) are all the elements ordered increasingly by the lexicographic (resp.

reverse lexicographic) ordering of (wζ)−1. From the proposition we see that

there are surjections 〈vζ1 , · · · , vζj 〉/〈vζ1 , · · · , vζj−1
〉 � Swζj induced from

φζj . Thus we have

dim(Sw ⊗ Sd(Ki)) ≥ dim〈vζ : ζ ∈ Xi,d(w)〉
≥

∑
ζ∈Xi,d(w)

dimSwζ = dim(Sw ⊗ Sd(Ki))

and

dim(Sw ⊗
d∧

(Ki)) ≥ dim〈vζ : ζ ∈ Yi,d(w)〉

≥
∑

ζ∈Yi,d(w)

dimSwζ = dim(Sw ⊗
d∧

(Ki))
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respectively, where the last equalities are by Proposition 3.2. So the equal-

ities must hold everywhere. Thus 〈vζ : ζ ∈ Xi,d(w) (resp. Yi,d(w))〉 = Sw ⊗
Sd(Ki) (resp. Sw ⊗

∧d(Ki)) and the surjections above are in fact isomor-

phisms. So, in conclusion, we get from Proposition 4.1 the following:

Theorem 4.2. Let M = Sw ⊗Sd(Ki) (resp. Sw ⊗
∧d(Ki)). Define vζ

and φζ as above. Then M is generated by {vζ : ζ ∈ Xi,d(w) (resp. Yi,d(w))}
as a b-module and

0 ⊂ 〈vζ1〉 ⊂ 〈vζ1 , vζ2〉 ⊂ · · · ⊂ 〈vζ : ζ ∈ Xi,d(w) (resp. Yi,d(w))〉

gives a KP filtration of M , where ζ1, ζ2, . . . ∈ Xi,d(w) (resp. Yi,d(w)) are

all the elements ordered increasingly by the lexicographic (resp. reverse lex-

icographic) ordering of (wζ)−1. The explicit isomorphism 〈vζ1 , · · · , vζj 〉/
〈vζ1 , · · · , vζj−1

〉 ∼= Swζj is given by φζj defined above.

Remark 4.3. In [9] we related KP modules with the notion of highest

weight categories ([3]) as follows. For Λ′ ⊂ Z
n let CΛ′ be the category of

weight bn-modules whose weights are all in Λ′. Then if Λ′ is an order ideal

with respect to a certain ordering on Z
n then CΛ′ has a structure of highest

weight category whose standard objects are KP modules. One of the axioms

for highest weight categories requires that the projective objects should have

filtrations by standard objects.

It can be shown that the projective cover of the one dimensional bn-

moduleKλ with weight λ = (λ1, . . . , λn) ∈ Z
n
≥0 in the category CZn

≥0
is given

by Sλ1(K1)⊗· · ·⊗Sλn(Kn). Thus Theorem 4.2 gives a proof to the fact that

the indecomposable projective modules in CZn
≥0

have KP filtrations, which

leads to a different proof from the one in [9, §3] for the axiom mentioned

above (we do not need these results about highest weight structure for b-

modules in the proof of Theorem 4.2 which will be done below).

5. Proof of Proposition 4.1

Lemma 5.1. Let w ∈ S(n) and i ≥ 1. For p, p′ ≤ i and q, q′ > i

such that wtpq, wtp′q′ � w (i.e. tpq, tp′q′ ∈ Xi,1(w)), if upq′ ∧
e
mpq(w)
pq (e′q′p′)

m′
q′p′ (w)

uw �= 0 then w(p′) ≥ w(p) and w(q′) ≥ w(q), and if

(p, q) = (p′, q′) it is a nonzero multiple of uwtpq .
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Proof. This is essentially the same as [9, Lemma 5.8]. �

Lemma 5.2. Let w be a permutation, i ≥ 1 and d ≥ 0. Let ζ =

tp1q1 · · · tpdqd ∈ Xi,d(w) (resp. Yi,d(w)) and 1 ≤ a ≤ d. Suppose that there

exists no b < a satisfying pb = pa (resp. qb = qa). Then mpaqa(wa) =

mpaqa(w) and m′
qapa(wa) = m′

qapa(w) where wa = wtp1q1 · · · tpa−1qa−1 as in

Definition 3.1.

Proof. We show the case ζ ∈ Xi,d(w): the other case can be treated

similarly. First note that p1, . . . , pa−1 �= pa by the hypothesis. Also, as we

have remarked before, q1, . . . , qa are all different. Thus the proof is now

reduced to the following lemma. �

Lemma 5.3. Let p < q, p′ < q′ and suppose

• {p, q} ∩ {p′, q′} = ∅, and

• wtp′q′tpq � wtp′q′ � w.

Then mpq(wtp′q′) = mpq(w), m′
qp(wtp′q′) = m′

qp(w) and wtpq � w.

Proof. Let us begin with a simple observation: suppose there exist

two rectangles R1 and R2 with edges parallel to coordinate axes. Suppose

that no two edges of these rectangles lie on the same line. Then, checking

all the possibilities we see that

#(NW and SE corners of R1 lying inside R2)

− #(NE and SW corners of R1 lying inside R2)

= #(NW and SE corners of R2 lying inside R1)

− #(NE and SW corners of R2 lying inside R1).

First consider the case R1 = [p, q] × [w(p), w(q)] and R2 = [p′, q′] ×
[w(p′), w(q′)] in the observation above. wtp′q′tpq � wtp′q′ � w implies that

the first term in the left-hand side and the second term in the right-hand

side vanish (here the coordinate system is taken so that points with smaller

coordinates go NW). Thus all the terms must vanish. In particular the first

term on the right-hand side vanishes and thus wtpq � w.

We have shown that none of the points (p, w(p)), (p, w(q)), (q, w(p)) and

(q, w(q)) lie in [p′, q′] × [w(p′), w(q′)]. Since mpq(w) (resp. mp′q′(w)) is
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the number of points of the graph of w lying inside the rectangle R′
1 =

[q,M ] × [w(p), w(q)] (resp. R′
1 = [−M,p] × [w(p), w(q)]) for M � 0 and

the graphs of w and wtp′q′ differ only at the vertices of the rectangle R2 =

[p′, q′] × [w(p′), w(q′)], applying the observation to these rectangles shows

the remaining claims. �

Proof of Proposition 4.1.

Proof for Xi,d(w): We assume (wζ)−1 ≤
lex

(wζ ′)−1 and show that

φζ′(vζ) = 0 unless ζ ′ = ζ and φζ(vζ) is a nonzero multiple of uwζ . Let

ζ = tp1q1 · · · tpdqd and ζ ′ = tp′1q′1 · · · tp′dq′d as in Definition 3.1. We write

wa = wtp1q1 · · · tpa−1qa−1 and w′
a = wtp′1q′1 · · · tp′a−1q

′
a−1

.

For ζ =
∏

j tpjqj and ζ ′ =
∏

j tp′jq′j in Xi,d(w) we have

φζ′(vζ) =
∑
σ∈Sd


upσ(d)q

′
d
∧ · · · ∧ upσ(1)q

′
1
∧ (

d∏
j=1

Ej

d∏
j=1

E′
j · uw)


 · · · (∗)

where Ej = e
mpjqj (wj)
pjqj and E′

j = (e′q′jp′j
)
m′

q′
j
p′
j
(w′

j)
.

If w(p1) < w(p′1), then (wζ)−1(w(p1)) = q1 > p1 = (wζ ′)−1(w(p1)) and

(wζ)−1(j) = w−1(j) = (wζ ′)−1(j) for all j < w(p1), and this contradicts

the assumption (wζ)−1 ≤
lex

(wζ ′)−1. Thus w(p1) ≥ w(p′1). Also, by a similar

argument, if p1 = p′1 then q1 ≤ q′1.
Fix σ ∈ Sd. Let 1 ≤ a ≤ d be minimal such that pa = pσ(1). Note that

this in particular implies wa(pa) = w(pa). We have

upσ(d)q
′
d
∧ · · · ∧ upσ(1)q

′
1
∧ (

∏
j

Ej

∏
j

E′
j · uw)

= upσ(d)q
′
d
∧ · · · ∧ upσ(2)q

′
2
∧
∏
j �=a

Ej

∏
j �=1

E′
j · (upσ(1)q

′
1
∧ EaE

′
1uw)

= upσ(d)q
′
d
∧ · · · ∧ upσ(2)q

′
2
∧
∏
j �=a

Ej

∏
j �=1

E′
j · (upaq′1 ∧ EaE

′
1uw)

= upσ(d)q
′
d
∧ · · · ∧ upσ(2)q

′
2
∧
∏
j �=a

Ej

∏
j �=1

E′
j

· (upaq′1 ∧ e
mpaqa (w)
paqa (e′q′1p′1)

m′
q′1p

′
1
(w)
uw)
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where the last equality is by Lemma 5.2 (note that w′
1 = w by definition).

First consider the case w(p1) > w(p′1). We show that the summand in (∗)
vanishes for all σ. It suffices to show upaq′1 ∧ e

mpaqa (w)
paqa (e′q′1p′1

)
m′

q′1p
′
1
(w)
uw = 0.

We have w(pa) = wa(pa) ≥ w(p1) > w(p′1). Thus by Lemma 5.1 we see

upaq′1 ∧e
mpaqa (w)
paqa (e′q′1p′1

)
m′

q′1p
′
1
(w)
uw = 0 (note that wtpaqa �w by Lemma 5.2).

Next consider the case w(p1) = w(p′1) and a > 1. In this case we see

upaq′1 ∧ empaqa (w)
paqa (e′q′1p′1

)
m′

q′1p
′
1
(w)
uw = 0 since w(pa) = wa(pa) > w(p1) =

w(p′1).
Next consider the case w(p1) = w(p′1), a = 1 and q1 < q

′
1. Then since

wtp1q1 , wtp′1q′1 �w it follows that w(q′1) < w(q1). So again by Lemma 5.1 we

see upaq′1 ∧ e
mpaqa (w)
paqa (e′q′1p′1

)
m′

q′1p
′
1
(w)
uw = 0.

So the only remaining summands in (∗) are the ones with (p1, q1) =

(p′1, q
′
1) and a = 1, i.e. pσ(1) = p1. It is easy to see that the sum of such

summands is a nonzero multiple of the sum of terms with σ(1) = 1. If

σ(1) = 1 we have, by the latter part of Lemma 5.1,

upσ(d)q
′
d
∧ · · · ∧ upσ(1)q

′
1
∧ (

d∏
j=1

Ej

d∏
j=1

E′
j · uw)

= upσ(d)q
′
d
∧ · · · ∧ upσ(2)q

′
2
∧

d∏
j=2

Ej

d∏
j=2

E′
j

· (up1q1 ∧ e
mp1q1 (w)
p1q1 (e′q1p1

)m
′
q1p1

(w)uw)

= (nonzero const.) · upσ(d)q
′
d
∧ · · · ∧ upσ(2)q

′
2
∧ (

d∏
j=2

Ej

d∏
j=2

E′
j · uwtp1q1

).

So, working inductively on d (using wtp1q1 , tp2q2 · · · tpdqd and tp′2q′2 · · · tp′dq′d
in place of w, ζ and ζ ′ respectively, noting that if (p1, q1) = (p′1, q

′
1) then

(wζ)−1 ≤
lex

(wζ ′)−1 implies ((wtp1q1) · tp2q2 · · · tpdqd)−1 = (wζ)−1 ≤
lex

(wζ ′)−1 =

((wtp1q1) · tp′2q′2 · · · tp′dq′d)
−1) we see that:

• upσ(d)q
′
d
∧· · ·∧upσ(1)q

′
1
∧(

∏
j Ej

∏
j E

′
j ·uw) vanishes if (wζ)−1 <

lex
(wζ ′)−1,

or if ζ ′ = ζ and σ �= id, and

• if ζ ′ = ζ and σ = id then it is a nonzero multiple of uwζ .
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This finishes the proof for Xi,d(w).

Proof for Yi,d(w): This proceeds much similarly to the previous case.

Here instead of (∗) we use

φζ′(vζ) =
∑
σ∈Sd


sgn(σ) · upσ(d)q

′
d
∧ · · · ∧ upσ(1)q

′
1
∧ (

d∏
j=1

Ej

d∏
j=1

E′
j · uw)




=
∑
σ∈Sd


updq′σ−1(d)

∧ · · · ∧ up1q′
σ−1(1)

∧ (

d∏
j=1

Ej

d∏
j=1

E′
j · uw)




where Ej = e
mpjqj (wj)
pjqj and E′

j = (e′q′jp′j
)
m′

q′
j
p′
j
(w′

j)
as before.

We assume (wζ)−1 ≤
rlex

(wζ ′)−1. Fix σ and take 1 ≤ a ≤ d minimal with

q′a = q′σ−1(1). By an argument similar to the above, it suffices to show that

up1q′a∧e
mp1q1 (w)
p1q1 (e′q′ap′a)

m′
q′ap′a

(w)
uw is zero unless a = 1 and (p′1, q

′
1) = (p1, q1),

and in a such case it is a nonzero multiple of uwtp1q1 .

Since (wζ)−1 ≤
rlex

(wζ ′)−1 by the hypothesis, we see that w(q1) ≥ w(q′1),

and that if w(q1) = w(q′1) then p1 ≤ p′1.
If w(q1) > w(q′1) then the claim follows from Lemma 5.1 since w(q1) >

w(q′1) ≥ w′
a(q

′
a) = w(q′a). If w(q1) = w(q′1) and a > 1 then the claim follows

from Lemma 5.1 since in this case w(q1) = w(q′1) > w(q′a) by wtp1q1 , wtp′1q′1 �

w. If q1 = q′1, a = 1 and p1 < p′1 the claim follows from Lemma 5.1

since w(p1) > w(p′1). Finally if (p1, q1) = (p′1, q
′
1) and a = 1 then up1q′a ∧

e
mp1q1 (w)
p1q1 (e′q′ap′a)

m′
q′ap′a

(w)
uw = up1q1 ∧ e

mp1q1 (w)
p1q1 (e′q1p1

)m
′
q1p1

(w)uw is a constant

multiple of uwtp1q1
by Lemma 5.1. �
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[5] Kraśkiewicz, W. and P. Pragacz, Schubert functors and Schubert polynomi-
als, Eur. J. Comb. 25(8) (2004), 1327–1344.
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