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Microlocal Resolvent Estimates, Revisited

By Shu Nakamura

Abstract. Let H be a Schrödinger type operator with long-range
perturbation. We study the wave front set of the distribution kernel
of (H − λ ∓ i0)−1, where λ is in the absolutely continous spectrumof
H. The result is a refinement of the microlocal resolvent estimate of
Isozaki-Kitada [5, 6]. We prove the result for a class of pseudodifferen-
tial operators on manifolds so that they apply to discrete Schrödinger
operators and higher order operators on the Euclidean space. The
proof relies on propagation estimates, whereas the original proof of
Isozaki-Kitada relies on a construction of parametrices.

1. Introduction

In this Introduction, we present our main results for Schrödinger oper-

ators for simplicity. The results under more general settings are explained

in Section 2. Let

H = −1

2
� + V (x) on L2(Rd), d ≥ 1,

be a Schrödinger operator with a potential V ∈ C∞(Rd), real-valued. We

suppose there is µ > 0 such that for any multi-index α ∈ Z
d
+,

∣∣∂αxV (x)
∣∣ ≤ Cα〈x〉−µ−|α|, x ∈ R

d,

with some Cα > 0, where 〈x〉 = (1 + |x|2)1/2. Then it is well-known that

σess(H) = [0,∞); H has no positive eigenvalues; H is absolutely continuous

on (0,∞), and

(H − λ∓ i0)−1 = lim
ε→+0

(H − λ∓ iε)−1, λ > 0,

exist as operators from L2(Rd, 〈x〉sdx) to L2(Rd, 〈x〉−sdx) with s > 1/2.

We denote the Fourier transform by F , and we write Ĥ = FHF∗. Then

2010 Mathematics Subject Classification. 35P25, 81U05, 35A27.
Key words: Schrödinger operators, scattering theory, resolvent estimates.

239



240 Shu Nakamura

the above claim implies (Ĥ − λ ∓ i0)−1 exist as operators from Hs(Rd)

to H−s(Rd), and thus they have distribution kernel of order at most 1.

We denote their distribution kernels by K±(λ) ∈ S ′(R2d). We investigate

the wave front set of K±(λ). We use somewhat nonstandard notation to

represent a point in T ∗
R

2d ∼= R
4d: We denote

(x, ξ, y, η) ∈ T ∗
R

2d, where (ξ, η) ∈ R
2d, and (x, y) ∈ T ∗

(ξ,η)(R
2d),

i.e., ξ, η denote points in R
d (the Fourier space), and x, y denote points in

the cotangent spaces at ξ, η, respectively. We also use a special notation on

the wave front set:

WF′(K) =
{
(x, ξ,−y, η) ∈ T ∗

R
d
∣∣ (x, ξ, y, η) ∈ WF(K)

}

for a distribution K ∈ S ′(R2d), where WF(K) denotes the wave front set of

K.

We denote

Σ0 =
{
(x, ξ, x, ξ)

∣∣ (x, ξ) ∈ T ∗
R
d
}
,

Σ±(λ) =
{
(x+ tξ, ξ, x, ξ)

∣∣ (x, ξ) ∈ T ∗
R
d, 1

2 |ξ|
2 = λ,±t ≥ 0

}
,

Σ′
±(λ) =

{
(tξ, ξ)

∣∣ 1
2 |ξ|

2 = λ,±t ≥ 0
}
×

{
(tξ, ξ)

∣∣ 1
2 |ξ|

2 = λ,∓t ≥ 0
}

for λ > 0.

Theorem 1.1. For λ > 0,

WF′(K±(λ)) ⊂ Σ0 ∪ Σ±(λ) ∪ Σ′
±(λ).

Remark 1.1. Σ0 denotes the diagonal set, and WF((kernel of A)) ⊂
Σ0 if A is a pseudodifferential operator. Σ±(λ) represent the free propa-

gation parts, and it is easy to show WF(K±(λ)) = Σ0 ∪ Σ±(λ) if V = 0.

Thus only the third part Σ′
±(λ) describes the singularities generated by the

perturbation V .

Remark 1.2. A microlocal resolvent estimate of this form was proved

in [15] for the short range case (in more general setting as in Section 2),
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and applied to the analysis of scattering matrices. The proof relies on a

construction of parametrices.

The (two-sided) microlocal resolvent estimates of Isozaki-Kitada [5, 6]

follow easily from Theorem 1.1.

Corollary 1.2. Let a± ∈ S0
1,0(R

d), i.e., a± ∈ C∞(R2d) and for any

multi-indices α, β,

∣∣∂αx ∂βξ a±(x, ξ)
∣∣ ≤ Cαβ〈x〉−|α|, x, ξ ∈ R

d

with some Cαβ > 0. Suppose there are 0 < c1 < c2 and −1 < γ− < γ+ < 1

such that

supp[a±] ⊂
{

(x, ξ)

∣∣∣∣ ± x · ξ
|x| |ξ| ≥ ±γ±, c1 ≤ |ξ| ≤ c2, |x| ≥ 1

}
.

Let A± = a±(x,Dx). Then for any N > 0,

〈x〉NA∓(H − λ∓ i0)−1A∗
±〈x〉N ∈ B(L2(Rd)), λ > 0.

Proof. It suffices to show FA∓(H − λ ∓ i0)−1A∗
±F∗ are bounded

from H−N (Rd) to HN (Rd), ∀N > 0, i.e., they are smoothing operators.

We note the distribution kernels of FA∓(H − λ∓ i0)−1A∗
±F∗ are given by

a±(−Dξ, ξ)a∓(Dη, η)K
±(λ; ξ, η). We also note that if x · ξ ≥ γ+|x| |ξ| then

(x+ tξ) · ξ ≥ γ+|x| |ξ| + t|ξ|2 ≥ γ+|x+ tξ| |ξ|, t ≥ 0,

and thus we have
x · (x+ tξ)

|x| |x+ tξ| ≥ γ+. This implies that if (x, ξ) ∈ supp[a+]

then (x + tξ, ξ) /∈ supp[a−], t ≥ 0. Hence we learn that the essential sup-

port of (a−(x, ξ)a+(y, η)) does not intersect Σ+(λ). It is easy to show the

essential support of (a−(x, ξ)a+(y, η)) does not intersect Σ0 and Σ′
+(λ).

These imply FA−(H − λ − i0)−1A∗
+F∗ is smoothing. Similarly, we

can show FA+(H − λ + i0)−1A∗
−F∗ is smoothing, and we complete the

proof. �

Remark 1.3. Corollary 1.2 was proved by Isozaki and Kitada [5, 7],

and it is analogous to two sided resolvent estimates of Mourre [12] (see also
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Gérard [3]). The microlocal resolvent estimate of the above form is used to

analyze long-range scattering and scattering matrices ([6, 8]).

In Section 2, we formulate our main results in more general settings.

In Section 3, we prove our main theorem assuming a key lemma (Propo-

sition 3.1), which is proved in Section 4. We discuss so-called one-sided

microlocal resolvent estimates in Section 5.

Acknowlegement . A part of this work was done when the author was

staying at Isaac Newton Institute for Mathematical Sciences for the pro-

gram: Periodic and Ergodic Spectral Problems, supported by EPSRC Grant

Number EP/K032208/1, and he thanks the institute and the Simons Foun-

dation for the financial support and its hospitality. He also thanks the

referees for suggesting the convenient notation WF′(K), and pointing out

partially incomplete arguments in the original manuscript.

2. Model and Main Theorem

Here we formulate our model and state our main results that applies to

higher order operators on R
d as well as various difference operators on Z

d.

Let M be a d-dimensional C∞ Riemannian manifold with a smooth

density m, and let p0(ξ), ξ ∈ M , be a real-valued smooth function on M .

In this paper we suppose M is either a compact manifold or a Euclidean

space. If M = R
d, we also assume p0 ∈ S(Rd) with some &, i.e.,

∣∣∂αξ p0(ξ)∣∣ ≤ Cα〈ξ〉−|α|, ξ ∈ R
d

with any α ∈ Z
d
+, and it is elliptic, i.e.,

|p0(ξ)| ≥ c0|ξ| − c1, ξ ∈ R
d

with some c0, c1 > 0. The density m(ξ) is also supposed to be bounded

from above, and from below by a positive constant. These restrictions

are not essential, and we assume these so that we can apply the functional

calculus of pseudodifferential operators. We may consider more general case

if necessary by generalizing the functional calculus theorem.

Let µ ∈ (0, 1] and let V̂ be a pseudodifferential operator with the symbol

V (x, ξ) ∈ S−µ
1,0 so that V̂ = V (−Dξ, ξ), and we write V = V̂ where there
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is no confusion. We note we consider the pseudodifferential operators on

manifolds in the sense of [16] Sect. 14.2.2, and the assumption implies V ∈
C∞(T ∗M) and for any multi-indices α, β ∈ Z

d
+ there is CαβK in each local

coordinate patch K �M , such that∣∣∂αx ∂βξ V (x, ξ)
∣∣ ≤ CαβK〈x〉−µ−|α|, ξ ∈ K,x ∈ T ∗

ξM,

where the length of x is defined by the Riemannian metric on T ∗
ξM . We also

recall that the symbol is well-defined globally only modulo S−µ−1
1,0 , and the

full symbol is meaningful only in each local coordinate patch. If M = R
d,

we assume V (x, ξ)(p0(ξ) + i)−1 ∈ S0
1,0(R

d), globally.

We denote H = L2(M,m), and

H0ϕ(ξ) = p0(ξ)ϕ(ξ) for ϕ ∈ D(H0) =
{
ϕ ∈ H

∣∣ p0ϕ ∈ H
}
.

It is easy to see H0 is self-adjoint. We suppose V̂ is symmetric, and hence

H = H0 + V, D(H) = D(H0)

is self-adjoint on H. We note V is bounded ifM is compact, andH0-bounded

if M = R
d by the above assumptions.

Let I � R be an interval, and we consider (H − λ∓ i0)−1 for λ ∈ I. We

define the velocity by

v(ξ) = dp0(ξ) ∈ T ∗
ξM, ξ ∈M.

We suppose p−1
0 (I) =

{
ξ ∈M

∣∣ p0(ξ) ∈ I} is compact, and

v(ξ) �= 0 for ξ ∈ p−1
0 (I),

i.e., I does not contain critical values of p0. Under this assumption, it is

easy to see that the next claims follow from the standard Mourre theory

(see, e.g., [11], [1], [15] Section 2): σp(H) ∩ I is discrete, each eigenvalues

are finite dimensional, and for λ ∈ I \ σp(H), s > 1/2, the limits

(H − λ∓ i0)−1 = lim
ε→+0

(H − λ∓ iε)−1 ∈ B(Hs, H−s)

exist. Let K±(λ) be the distribution kernels of (H − λ ∓ i0)−1, and we

consider the microlocal singularities of K±(λ). As well as in the previous

section, we represent a point in T ∗M by

(x, ξ) ∈ T ∗M, where ξ ∈M,x ∈ T ∗
ξM,
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and also (x, ξ, y, η) ∈ T ∗(M ×M), where (ξ, η) ∈ M ×M , x ∈ T ∗
ξM and

y ∈ T ∗
ηM . We set Σ0, Σ±(λ), Σ′

±(λ) ⊂ T ∗(M ×M) as

Σ0 =
{
(x, ξ, x, ξ)

∣∣ (x, ξ) ∈ T ∗M
}
,

Σ±(λ) =
{
(x+ tv(ξ), ξ, x, ξ)

∣∣ p0(ξ) = λ,±t ≥ 0
}
,

Σ′
±(λ) =

{
(tv(ξ), ξ)

∣∣ p0(ξ) = λ,±t ≥ 0
}
×

{
(tv(ξ), ξ)

∣∣ p0(ξ) = λ,∓t ≥ 0
}
.

Then our main result is stated as follows:

Theorem 2.1. Let λ ∈ I \ σp(H). Then

WF′(K±(λ)) ⊂ Σ0 ∪ Σ±(λ) ∪ Σ′
±(λ).

Microlocal resolvent estimates of Isozaki-Kitada type follows from this

analogously to the previous section.

Corollary 2.2. Let λ ∈ I \ σp(H), a± ∈ S0
1,0(M), and suppose

supp[a±] ⊂
{

(x, ξ) ∈ T ∗M

∣∣∣∣ ± x · v(ξ)
|x| |v(ξ)| ≥ ±γ±, p0(ξ) ∈ K

}
,

where −1 < γ− < γ+ < 1, K � M . We set A± = a±(−Dξ, ξ). Then

A∓(H − λ ∓ i0)−1A∗
± are smoothing operators, bounded from H−N (M) to

HN (M) with any N .

Examples. (1) A straightforward application is a differential operator

on R
d. Let H0 be anm-th order symmetric elliptic partial differential opera-

tor with constant coefficients. We may writeH0 = p0(Dx) with a real-valued

polynomial of degree m. Suppose

V =
∑

|α|≤m−1

bα(x)Dα
x

with bξ ∈ C∞(Rd) for each α ∈ Z
d
+, |α| ≤ m− 1. Suppose moreover that V

is symmetric and
∣∣∂βξ bα(x)

∣∣ ≤ Cαβ〈x〉−µ−|β| for each α and β. Let I � R be

an interval that does not contain critical points of p0(ξ). Then Theorem 2.1

applies for λ ∈ I \ σp(H).
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(2) Another typical application is a difference operator on Z
d. Let H0 be a

finite difference operator with constant coefficients, i.e.,

H0u(n) =
∑
m∈K

γmu(n−m), n ∈ Z
d,

where K ⊂ Z
d is a finite subset, and γm ∈ C, m ∈ K. We suppose H0 is

symmetric. Then

p0(ξ) =
∑
m∈K

γme
iξ·m

is a real-valued trigonometric polynomial on the torusM = T
d = (R/2πZ)d.

Suppose V (n) is the restriction of a smooth real-valued function Ṽ (x) on

R
d which satisfy

∣∣∂αξ V (x)
∣∣ ≤ Cα〈x〉−µ−|α| for each α ∈ Z

d
+. Then we can

apply Theorem 2.1 to H = H0 + V . We refer Nakamura [15] Section 7 for

the detail of the construction.

3. Proof of Theorem 2.1

Here we prove our main theorem assuming a proposition, which is proved

in the next section.

3.1. Notation

We use several classes of symbols. We denote the standard Kohn-

Nirenberg symbol class of order m by Sm, i.e., a ∈ Sm if a ∈ C∞(T ∗M)

and for any multi-indices α, β ∈ Z
d
+,

∣∣∂αx ∂βξ a(x, ξ)∣∣ ≤ Cαβ〈x〉m−|α|, ξ ∈M,x ∈ T ∗
ξM

in each (relatively compact) local coordinate with some Cαβ > 0. We of-

ten use h-dependent symbols. We denote a(h, x, ξ) ∈ Sm
h if a(h, ·, ·) ∈

C∞(T ∗M), h ∈ (0, 1], and for any α, β ∈ Z
d
+,

∣∣∂αx ∂βξ a(h, x, ξ)∣∣ ≤ Cαβ min
(
〈x〉m−|α|, h−m+|α|)

for ξ ∈M , x ∈ T ∗
ξM , h ∈ (0, 1] with some Cαβ > 0. For example, a(hx, ξ) ∈

S0
h if a(x, ξ) ∈ C∞

0 (T ∗M) is supported away from {x = 0}. Similarly, we use
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(h, t)-dependent symbols, usually supported in the region: |x| = O(h−1 +t).

We denote a ∈ Sm
h,t if a(h, t, ·, ·) ∈ C∞(T ∗M), and for any α, β ∈ Z

d
+,

∣∣∂αx ∂βξ a(h, t, x, ξ)∣∣ ≤ Cαβ min
(
〈x〉m−|α|, (h−1 + t)m−|α|)

for ξ ∈M , x ∈ T ∗
ξM , h ∈ (0, 1], t ≥ 0 with some Cαβ > 0.

Our results are independent of the choice of quantizations, but it is

convenient to use a quantization so that the quantization of a real symbol is

symmetric. We hence use the Weyl quantization and we denote it by Op(a)

with additional weights, e.g., as in (4.3). We also denote the quantization

of a(h, hx, ξ) by Oph(a). We refer Hörmander [4] Vol. 3 or Zworski [16] for

the pseudodifferential operator calculus.

3.2. Semiclassical reduction

We consider the “+” case only. The “−” case can be handled similarly.

We suppose

(x1, ξ1,−x2, ξ2) /∈ Σ0 ∪ Σ+(λ) ∪ Σ′
+(λ),

where λ ∈ I \ σp(H), (x1, x2) �= 0, and we show (x1, ξ1, x2, ξ2) /∈
WF′(K+(λ)). By the well-known semiclassical characterization of the wave

front set (see, e.g., Martinez [10]), it suffice to show the existence of a0 ∈
C∞(T ∗(M ×M)) such that

a0(x1, ξ1,−x2, ξ2) �= 0

and

∥∥a0(−hDξ, ξ,−hDη, η)K
+(λ; ξ, η)

∥∥
L2 ≤ CNh

N , h ∈ (0, 1],

with any N . We consider the case

a0(x, ξ,−y, η) = a1(x, ξ)a2(y, η),

where a1, a2 ∈ C∞
0 (T ∗M) are real-valued. We note, by the definition of the

distribution kernel, the distribution kernel of Oph(a1)(H−λ−i0)−1Oph(a2)

is given by

a1(−hDξ, ξ)a2(hDη, η)K
+(λ, ξ, η) = a0(−hDξ, ξ,−hDη, η)K

+(λ, ξ, η).
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We also note that for any b ∈ C∞
0 (R2d),

‖Oph(b)‖HS = (2π)−d/2‖b‖L2 ,

where ‖·‖HS and ‖·‖B(L2) denote the Hilbert-Schmidt norm and the operator

norm, respectively. Combining them, we learn∥∥a0(−hDξ, ξ,−hDη, η)K
+(λ, ξ, η)

∥∥
L2

=
∥∥Oph(a1)(H − λ− i0)−1Oph(a2)

∥∥
HS

≤ Ch−d/2
∥∥Oph(a1)(H − λ− i0)−1Oph(a2)

∥∥
B(L2)

.

Thus it suffices to find a1, a2 ∈ C∞
0 (T ∗M) such that a1(x1, ξ1) �= 0,

a2(x2, ξ2) �= 0 and∥∥Oph(a1)(H − λ− i0)−1Oph(a2)
∥∥
B(L2)

≤ CNh
N , h ∈ (0, 1],(3.1)

for any N . In the following, we denote the operator norm of an operator A

by ‖A‖ without subscripts.

3.3. Case 1

At first we consider the easy case, i.e., either p0(ξ1) �= λ or p0(ξ2) �= λ.
For the moment we suppose p0(ξ2) �= λ. Then we choose a2 ∈ C∞

0 (T ∗M)

such that a2(x2, ξ2) = 1 and

supp[a2] ⊂
{
(x, ξ)

∣∣ |p0(ξ) − λ| > 3ε
}

with some ε > 0. We then choose f ∈ C∞
0 (R) such that f(z) = 1 on

(λ − ε, λ + ε) and supp[f ] ⊂ [λ − 2ε, λ + 2ε]. By the functional calculus,

f(H) is a pseudodifferential operator with the symbol in S0, and the symbol

is supported in p−1
0 ([λ−2ε, λ+2ε]) modulo the class of smoothing operators

S−∞ =
⋂

N S
−N (see, e.g., Dimassi-Sjöstrand [2], Zworski [16]). Hence, by

the asymptotic expansion, we learn f(H)Oph(a2) has a symbol in S−∞
h =⋂

N S
−N
h . In particular, we have∥∥〈Dξ〉f(H)Oph(a2)

∥∥ ≤ CNh
N , h ∈ (0, 1],

with any N . On the other hand, noting (z − 1)−1(1 − f(z)) ∈ S0(R), we

learn (H − λ − i0)−1(1 − f(H)) is a pseudodifferential operator with the

symbol in S0. We may suppose supp[a1] ∩ supp[a2] = ∅, and hence∥∥Oph(a1)(H − λ− i0)−1(1 − f(H))Oph(a2)
∥∥ ≤ CNh

N(3.2)
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with any N . Combining these, we have

∥∥Oph(a1)(H − λ− i0)−1Oph(a2)
∥∥

≤
∥∥Oph(a1)〈Dξ〉

∥∥∥∥〈Dξ〉−1(H − λ− i0)−1〈Dξ〉−1
∥∥∥∥〈Dξ〉f(H)Oph(a2)

∥∥
+

∥∥Oph(a1)(H − λ− i0)−1(1 − f(H))Oph(a2)
∥∥

≤ C ′
Nh

N−2, h ∈ (0, 1],

since
∥∥Oph(aj)〈Dξ〉

∥∥ = O(h−1) as h → +0. This proves (3.1). The case

p0(ξ1) �= λ is handled similarly.

3.4. Case 2

We now suppose p0(ξ1) = p0(ξ2) = λ. We choose f ∈ C∞
0 (R) so that

supp[f ] � (I \ σp(H)) and f = 1 on [λ − ε, λ + ε] with some ε > 0. Since

(H − λ − i0)−1(1 − f(H)) is a pseudodifferential operator, (3.2) holds as

well. Thus it suffices to consider Oph(a1)(H − λ− i0)−1f(H)Oph(a2). We

recall

(H − λ− i0)−1 = i lim
ε→+0

∫ ∞

0
e−it(H−λ−iε)dt = i

∫ ∞

0
eitλe−itHdt

in the weak sense. Thus it suffices to show∫ ∞

0

∥∥Oph(a1)e
−itHf(H)Oph(a2)

∥∥dt ≤ CNh
N , h ∈ (0, 1],(3.3)

for any N .

Proposition 3.1. Let (x1, ξ1,−x2, ξ2) /∈ Σ0 ∪ Σ+(λ) ∪ Σ′
+(λ), and

p0(ξ1) = p0(ξ2) = λ. If aj are supported in sufficiently small neighborhoods

of (xj , ξj), j = 1, 2, then for any N there is CN such that

∥∥Oph(a1)e
−itHf(H)Oph(a2)

∥∥ ≤ CNh
N , h ∈ (0, 1], t ≥ 0.

Remark 3.1. Here we do not assume λ /∈ σp(H). Thus the integrabil-

ity in t does not necessarily hold. We also note that we assume (x1, x2) �= 0,

but one of {x1, x2} may be 0.

We prove Proposition 3.1 in the next section, and we complete the proof

of Theorem 2.1 assuming Proposition 3.1. By the multiple commutator
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estimate (Jensen-Mourre-Perry [9]), we have the following standard local

decay estimate: for any ν > κ > 0, there is C such that∥∥〈Dξ〉−νe−itHf(H)〈Dξ〉−ν
∥∥ ≤ C〈t〉−κ, t ∈ R,(3.4)

provided f is supported in I \σp(H). We choose κ = 2, ν = 3, and then we

have∥∥Oph(a1)e
−itHf(H)Oph(a2)

∥∥
≤

∥∥Oph(a1)〈Dξ〉3
∥∥∥∥〈Dξ〉−3e−itHf(H)〈Dξ〉−3

∥∥∥∥〈Dξ〉3Oph(a2)
∥∥

≤ Ch−6〈t〉−2, h ∈ (0, 1], t ∈ R,

where we have used
∥∥Oph(aj)〈Dξ〉3

∥∥ = O(h−3). For an arbitrary M > 0,

we set N = 2M + 6 in Proposition 3.1, and T = h−M−6. Then we learn∫ ∞

0

∥∥Oph(a1)e
−itHf(H)Oph(a2)

∥∥dt ≤
∫ T

0
· · · dt+

∫ ∞

T
· · · dt

≤ CNh
2M+6h−M−6 + Ch−6hM+6

≤ CM ′hM , h ∈ (0, 1].

This implies (3.3), and hence Theorem 2.1. �

4. Propagation Estimate : Proof of Proposition 3.1

We employ propagation estimate argument similar to that in Nakamura

[13]. We note that the Egorov-type argument works for each t, but not

uniformly in t > 0. Thus we cannot apply the Egorov-type argument di-

rectly here. We also note that the following symbol calculus is carried out

mostly in a small local coordinate patch near ξ2, and hence we can compute

asymptotic expansions as in the Euclidean space case.

Let (x1, ξ1,−x2, ξ2) be as in the proposition. Since (x1, ξ1,−x2, ξ2) /∈
Σ′

+(λ), either x1 + tv(ξ1) �= 0 for t ≤ 0, or x2 + tv(ξ2) �= 0 for t ≥ 0. We

first consider the latter case, i.e.,

x2 + tv(ξ2) �= 0, t ≥ 0.

We remark that this assumption implies x2 �= 0, but the case x1 = 0 is not

excluded. Then there exist δ1, δ2 > 0 such that

Ω(t) ∩ {(x1, ξ1)} = ∅, Ω(t) ∩ ({0} ×M) = ∅, for t ≥ 0,(4.1)
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where

Ω(t) =
{
(x, ξ)

∣∣ |x− (x2 + tv(ξ2))| ≤ 3δ1(1 + t), |ξ − ξ2| ≤ δ2
}
.

We may also suppose δ2 is so small that:

if |ξ − ξ2| ≤ 2δ2 then |v(ξ) − v(ξ2)| < δ1/2.(4.2)

We choose Φ ∈ C∞([0,∞)) such that Φ(s) = 1 if s ≤ 1/2; Φ(s) = 0 if s ≥ 1;

Φ(s) > 0 if s < 1; and Φ′(s) ≤ 0 for s ≤ 1. We also write Ψ(s) = Φ(s)2,

s ≥ 0. We now set

aj(x, ξ) = Φ

( |x− xj |
δ1

)
Φ

( |ξ − ξj |
δ2

)
, (x, ξ) ∈ T ∗M, j = 1, 2,

then aj ∈ S0, and aj(hx, ξ) ∈ S0
h. We also set

φ0(t, x, ξ) = Φ

( |x− y(t)|
δ1(h−1 + t)

)
Φ

( |ξ − ξ2|
δ2

)
, (x, ξ) ∈ T ∗M, t ≥ 0,

where

y(t) = h−1x2 + tv(ξ2) = h−1(x2 + htv(ξ2)).

We note, by the condition (4.1),

|y(t)| ≥ 3δ1h
−1(1 + ht), t ≥ 0.

On the other hand, by the support property of Φ, we have

|x− y(t)| ≤ δ1h−1(1 + ht)

on the support of φ0(t; ·, ·). Hence we learn

2δ1h
−1(1 + ht) ≤ |x| ≤ Ch−1(1 + ht)

with some C on the support of φ0(t; ·, ·), and this implies φ0 ∈ S0
h,t. We

denote the support of φ0(t, ·, ·) by

Ω0(t) =
{
(x, ξ)

∣∣ |x− y(t)| ≤ δ1(h−1 + t), |ξ − ξ2| ≤ δ2
}
.
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We now quantize φ0(t;x, ξ) by

Op(φ0(t; ·, ·)) = γ∗m(ξ)−1/2χ(ξ)φW0 (t;−Dξ, ξ)χ(ξ)m(ξ)1/2(γ−1)∗(4.3)

where γ is the identification map of the local coordinate patch; χ(ξ) ∈
C∞

0 (Rd) such that χ(ξ) = 1 if |ξ − ξ2| ≤ δ2 and χ(ξ) = 0 if |ξ − ξ2| ≥ 2δ2;

and m(ξ) is the density. We use the same quantization in the following. We

note Op(a) is symmetric if a is real-valued. We also note all the symbols

here are supported in δ2-neighborhood of ξ2 modulo S−∞
h,t -terms.

We then define ψ0(t, x, ξ) be the symbol of Op(φ0(t; ·, ·))∗Op(φ0(t; ·, ·))
in the local coordinate patch. Clearly ψ0 ∈ S0

h,t and the principal symbol is

ψ0
0(t, x, ξ) = Ψ

( |x− y(t)|
δ1(h−1 + t)

)
Ψ

( |ξ − ξ2|
δ2

)
,

i.e., ψ0 − ψ0
0 ∈ S−1

h,t . We note ψ0 is supported in Ω0(t) modulo S−∞
h,t .

Then we compute

∂tψ
0
0(t, x, ξ) + v(ξ) · ∂xψ0

0(t, x, ξ)

=
1

δ1(h−1 + t)

{
−|x− y(t)|
h−1 + t

+
x− y(t)
|x− y(t)| · (v(ξ) − v(ξ2))

}
×

× Ψ′
( |x− y(t)|
δ1(h−1 + t)

)
Ψ

( |ξ − ξ2|
δ2

)
.

Since

δ1
2

(h−1 + t) ≤ |x− y(t)|, |v(ξ) − v(ξ2)| ≤
δ1
2

on the support, we learn {· · · } in the RHS is nonpositive. Recalling Ψ′(s) ≤
0, we learn

∂tψ
0
0(t, x, ξ) + v(ξ) · ∂xψ0

0(t, x, ξ) ≥ 0, (x, t) ∈ T ∗M, t ≥ 0.(4.4)

We also note ∂tψ
0
0, ∂xψ

0
0 ∈ S−1

h,t . Then by the sharp G̊arding inequality and

asymptotic expansions, we learn

∂tOp(ψ0
0) + i[H0,Op(ψ0

0)] ≥ Op(r00)

with some r00 ∈ S−2
h,t . We then have, using the assumption on V ,

∂tOp(ψ0) + i[H,Op(ψ0)] ≥ Op(r0)
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with some r0 ∈ S−1−µ
h,t , supported in Ω(t) modulo S−∞

h,t .

Now we choose constants γj , j = 1, 2, . . . , so that 1 < γ1 < γ2 < · · · < 2.

Let Cj > 0, j = 1, 2, . . . , be constants decided later. We then set

ψj(t, x, ξ) = Cjh
(j−1)µ

(
hµ − (h−1 + t)−µ

)
Ψ

( |x− y(t)|
γjδ1(h−1 + t)

)
Ψ

( |ξ − ξ2|
γjδ2

)

for (x, ξ) ∈ T ∗M , t ≥ 0 and j = 1, 2, . . . . By direct computations, we see

ψj ∈ hjµS0
h,t and ∂tψj ∈ hjµS−1

h,t . Moreover, we have

∂tψj + v(ξ) · ∂xψj

≥ µCjh
(j−1)µ(h−1 + t)−1−µΨ

( |x− y(t)|
γjδ1(h−1 + t)

)
Ψ

( |ξ − ξ2|
γjδ2

)
,

which is proved similarly to (4.4). We set

Ωj(t) =
{
(x, ξ)

∣∣ |x− y(t)| ≤ γjδ1(1 + t), |ξ − ξ2| ≤ γjδ2
}
.

Then ψj(t, x, ξ) are supported in Ωj(t), and

∂tψj + v(ξ) · ∂xψj(t, x, ξ) ≥ µκjCjh
(j−1)µ(h−1 + t)−1−µ on Ωj−1(t),

j = 1, 2, . . . , where κj > 0 are constants depending only on the choice of

{γj} and Ψ. Hence, if we choose C1 sufficiently large, we have

∂tψ1 + v(ξ) · ∂xψ1 + r0 ≥ 0 on T ∗M × ([0,∞).

Then by using the sharp G̊arding inequality again, we have

∂tOp(ψ0 + ψ1) + i[H,Op(ψ1 + ψ2)] ≥ Op(r1)

with some r1 ∈ hµS−1−µ
h,t , supported in Ω1(t) modulo S−∞

h,t . Repeating this

procedure, we decide C2, C3, . . . , and we have

∂t

(
Op

(∑m
j=1 ψj

))
+ i

[
H,Op

(∑m
j=1 ψj

)]
≥ Op(rm),

where rm ∈ hmµS−1−µ
h,t , supported in Ωm(t) modulo S−∞

h,t . In particular, we

have ∫ ∞

0

∥∥Op(rm)
∥∥dt ≤ Chmµ

∫ ∞

0
(h−1 + t)−1−µdt ≤ C ′h(m+1)µ.
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We fix m large enough so that (m+ 1)µ > 2N , where N is the exponent in

Proposition 3.1.

Then we set

ψ(t, x, ξ) =
m∑
j=1

ψj(t, x, ξ) ∈ S0
h,t.

We summarize the properties of ψ.

Lemma 4.1. ψ and F (t) = Op(ψ(t, ·, ·)) satisfy the following proper-

ties:

(1) ψ ∈ S0
h,t and F (0) = |Oph(a2)|2.

(2) ψ is supported in

Ω̃(t) =
{
(x, ξ)

∣∣ |x− y(t)| ≤ 2δ1(h
−1 + t), |ξ − ξ2| ≤ 2δ2

}
modulo S−∞

h,t .

(3) F (t) satisfies the energy inequality:

∂tF (t) + i[H,F (t)] ≥ R(t),

where
∫∞
0 ‖R(t)‖dt ≤ Ch2N .

Proof of Proposition 3.1. We recall the Heisenberg equation:

d

dt

(
eitHF (t)e−itH

)
= eitH

(
∂tF (t) + i[H,F (t)]

)
e−itH ,

and hence we have

d

dt

(
eitHF (t)e−itH

)
≥ eitHR(t)e−itH .

Integrating this inequality, we learn

eitHF (t)e−itH − F (0) ≥
∫ t

0
eitHR(t)e−itHdt ≥ −Ch2N

for all t ≥ 0 by Lemma 4.1(3). Then, by using Lemma 4.1(1), we have

e−itH |Oph(a2)|2eitH ≤ F (t) + Ch2N ,
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and hence

∣∣Oph(a1)e
−itHOph(a2)

∣∣2 ≤ Oph(a1)F (t)Oph(a1) + Ch2N .

We recall supp[a1(h·, ξ)] ∩ supp[ψ(t, ·, ·)] = ∅; ψ ∈ S0
h,t and hence ψ(t, ·, ·)

is uniformly bounded in S0
h. Then, by the asymptotic expansion, we learn

‖Oph(a1)F (t)‖ = O(h2N ), h→ +0, uniformly in t ≥ 0. These imply

∥∥Oph(a1)e
−itHOph(a2)

∥∥2 ≤ Ch2N ,

and we complete the proof of Proposition 3.1, provided x2 + tv(ξ2) �= 0 for

t ≥ 0.

We now turn to the case x1 + tv(ξ1) �= 0 for t ≤ 0. We consider

(Oph(a1)e
−itHOph(a2))

∗ = Oph(a2)e
itHOph(a1),

and replace t by −t. Then is is easy to check (x2, ξ2,−x1, ξ1) satisfies the

conditions in the other case. Thus the conclusion follows from the same

argument as above. �

5. One-Sided Estimates

In Isozaki-Kitada [5, 7], another kind of estimates, called one-sided mi-

crolocal resolvent estimates, are proved. In this section, we formulate the

one-sided estimates under our setting, and we show they are proved by the

same method used to prove Theorem 2.1.

Theorem 5.1. Let λ ∈ I \ σp(H) and suppose a± ∈ S0(M) such that

supp[a±] ⊂
{

(x, ξ) ∈ T ∗M

∣∣∣∣ ± x · v(ξ)
|x| |v(ξ)| > ±(−1 + ε), p0(ξ) ∈ K

}

where ε > 0, K �M . Let ν > 1, 0 < s < ν−1. Then (H−λ∓i0)−1Op(a±)

are bounded from H−s(M) to H−ν(M).

We consider the “+” case only. The other case is proved similarly.

Suppose (x2, ξ2) ∈ supp[a+]. Then x2 + tv(ξ2) �= 0 for t ≥ 0, and we can

construct the symbols used in Section 4. We use the same notation as in

Section 4, and we use the same time-dependent symbol ψ(t, x, ξ) constructed
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from a2(x, ξ), which is supported in a small neighborhood of (x2, ξ2). Let f ∈
C∞

0 (R) also as in Section 4. We choose χ ∈ C∞
0 (M) such that χ(ξ)f(H) =

f(H) modulo S−∞. We then set

ζ(t, x, ξ) = Ψ

(
2|x|

δ1(h−1 + t)

)
χ(ξ), (x, ξ) ∈ T ∗M, t ≥ 0,

and ζ̄(t, x, ξ) = χ(ξ) − ζ(t, x, ξ) = (1 − Ψ(· · · ))χ(ξ). We note ζ, ζ̄ ∈ S0
h,t.

Then we observe ‖Op(ζ)Op(ψ)‖ = O(h2N ) as h → +0, uniformly in t ≥ 0,

again as in Section 4, since supp[ζ] ∩ supp[ψ] = ∅ modulo S−∞
h,t . Thus we

arrive at the following estimate, analogously to Proposition 3.1:

Lemma 5.2. For any N , there is CN > 0 such that

∥∥Op(ζ(t, ·, ·))e−itHf(H)Oph(a2)
∥∥ ≤ CNh

N , h ∈ (0, 1], t ≥ 0.

We then have, using the decomposition 1 = ζ + ζ̄ + (1 − χ),

∥∥〈Dξ〉−νe−itHf(H)Oph(a2)
∥∥

≤
∥∥〈Dξ〉−νOp(ζ̄)

∥∥∥∥e−itHf(H)Oph(a2)
∥∥

+
∥∥〈Dξ〉−ν

∥∥∥∥Op(ζ)e−itHf(H)Oph(a2)
∥∥

+
∥∥〈Dξ〉−ν

∥∥∥∥(1 − χ(ξ))f(H)
∥∥∥∥e−itHf(H)Oph(a2)

∥∥
≤ C(h−1 + t)−ν + CNh

N

for h ∈ (0, 1], t ≥ 0. On the other hand, by the local decay estimate (3.4),

we have

∥∥〈Dξ〉−νe−itHf(H)Oph(a2)
∥∥ ≤ Ch−ν〈t〉−κ, t ∈ R,

with 1 < κ < ν. By setting T = h−N/2 and choosing N large enough, we

have

∫ ∞

0

∥∥〈Dξ〉−νe−itHf(H)Oph(a2)
∥∥dt ≤

∫ T

0
· · · dt+

∫ ∞

T
· · · dt

≤ C
∫ ∞

0
(h−1 + t)−νdt+ CNh

N/2 + Ch−ν+(κ−1)N/2 ≤ Chν−1.
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Thus we obtain the following:

Lemma 5.3. Let ν > 1. Then

∥∥〈Dξ〉−ν(H − λ− i0)−1Oph(a2)
∥∥ ≤ Chν−1, h ∈ (0, 1].

Now suppose ã ∈ S0(M) such that its essential support in contained in

a small conic neighborhood of (x2, ξ2). Then by the standard Littlewood-

Paley decomposition argument, we learn

(H − λ− i0)−1f(H)Op(ã) is bounded from H−s(M) to H−ν(M),

where 0 < s < ν − 1. Since (H − λ − i0)−1(1 − f(H)) is a pseudodiffer-

ential operator, it is also bounded from H−s(M) to H−s(M) ⊂ H−ν(M).

Thus (H − λ − i0)−1Op(ã) is bounded from H−s(M) to H−ν(M). Now

Theorem 5.1 follows by the partition of unity argument. �

References

[1] Amrein, W., Boutet de Monvel, A. and V. Georgescu, C0-groups, commu-
tator methods and spectral theory of N -body Hamiltonians, Progress in
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